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Abstract:    The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given 
mesh, different parametrizations can be obtained by different methods. And for a certain application, some parametrization results 
might behave better than others. In this paper, we will propose a method to parameterize a genus-zero mesh so that a surface fitting 
algorithm with PHT-splines can generate good result. Here the parametrization results are obtained by minimizing discrete har-
monic energy subject to spherical constraints. Then some applications are given to illustrate the advantages of our results. Based 
on PHT-splines, parametric surfaces can be constructed efficiently and adaptively to fit genus-zero meshes after their spherical 
parametrization has been obtained. 
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INTRODUCTION 
 

Parametrization is an important problem in 
Computer Graphics. A parametrization of a polygonal 
mesh in 3D space can be viewed as a one-to-one 
mapping from the given mesh to a suitable domain 
which is also a mesh. Typically, if the mesh is simple, 
the used domain is a connected region on the plane 
(Desbrun et al., 2002; Eck et al., 1995; Floater, 1997; 
2003; Sheffer and Sturler, 2000); and if the mesh is 
with genus-zero, the used domain is a unit sphere 
(Gotsman et al., 2003; Haker et al., 2000; Praun and 
Hoppe, 2003; Sheffer et al., 2004). Usually, the 
meshes consist of triangles, so the mappings are 
piecewise linear and we only need to compute the 
positions of the vertices. Parametrizations have many 
applications in various fields, including texture map-

ping, scattered data fitting, surface approximation and 
remeshing, reparametrization of spline surfaces, re-
pair of CAD models, morphing, and so on. And for a 
certain application, some parametrization results 
might behave better than others. Here the choice of 
different parametrizations depends heavily on the 
application details. Possibly a parametrization result 
behaves better for texture mapping, but worse for 
surface fitting. For a genus-zero mesh, there are some 
methods to parametrize it onto a sphere. But accord-
ing to our experiences, these results are unfit for sur-
face fitting with splines. Hence in this paper, we will 
propose a method to parameterize a genus-zero mesh 
so that a surface fitting algorithm in PHT-splines can 
generate a good result. 
 
Related works 

In this subsection we review some previous 
works on mesh parametrizations. For a more detailed 
summary, please refer to (Floater and Hormann, 2002; 
2005). 

1. Planar parametrization 
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A class of methods is known as convex combi-
nation maps (Tutte, 1963). These methods map the 
mesh boundary to some convex polygon and define 
each interior vertex as a convex combination of its 
neighbors. Tutte (1963) placed each vertex at the 
centroid of its neighbors. This method only considers 
the topological structure of the mesh. Floater (1997) 
used a specific weight to improve the effect of the 
mapping, and this method is shape-preserving in the 
sense that planar convex mesh parametrization is 
affine invariant. Furthermore, Floater (2003) gave a 
method based on mean value coordinates which ob-
tains the resulting parametrization depending 
smoothly on the vertices of the mesh. 

Maillot et al.(1993) gave a mathematical for-
mulation for the distortion of the mapped image and 
viewed the mapping as an energy-minimization 
process by considering a general optimization func-
tion. Here the energy is an approximation of the in-
tegral of the Green-Lagrange deformation tensor. 

Sheffer and Sturler (2000) proposed a method 
which minimizes the relative distortion of the planar 
angles with respect to their counterparts in 3D space. 

Sander et al.(2001) developed a method which 
minimizes texture stretch to balance sampling rates 
over all locations and directions on the surface and 
texture deviation to obtain accurate textured mesh 
approximations.  

Eck et al.(1995) introduced the discrete har-
monic map to parameterize a simple mesh. The 
method proposed in the current paper is hinted by this 
work. Eck’s method is a quadratic minimization 
problem and can be reduced to a linear system of 
equations. 

2. Spherical parametrization 
In surface fitting a genus-zero mesh, its pa-

rametrization over a sphere is needed. The problem of 
mesh spherical parametrization is that of mapping a 
piecewise linear surface with a discrete representation 
onto a spherical surface. The mapping is represented 
by the parametric locations of vertices of the surface. 
There are many interesting methods in spherical pa-
rametrization. Many of these methods are very similar 
to those of mapping simple meshes onto planar do-
mains, whereas some of the linear methods become 
non-linear versions. 

Haker et al.(2000) used a method which maps 
the given genus-zero mesh into the plane and then 

uses stereographic projection to map it to a sphere. 
Unfortunately, they did not describe how the surface 
is split to allow for mapping into the plane. For some 
models, Haker’s method fails to converge. 

Gu and Yau (2003) gave an important point that 
harmonic maps from a closed genus-zero mesh to the 
unit sphere are conformal, which means harmonic and 
conformal maps are the same with genus-zero meshes. 
Later, they proposed an iterative method which ap-
proximates a harmonic map without splitting. In the 
discrete case, piecewise linear mappings h: M→S2 are 
considered with the property that h(P) lies on the unit 
sphere S2 for every vertex P of the mesh M. 

Sheffer et al.(2004) proposed a method which 
ensures a valid embedding. They formulated a set of 
necessary and sufficient conditions for the spherical 
angles of a triangulation to form a valid spherical 
triangulation. But the numerical procedure to solve 
the system is quite slow and not practical for meshes 
containing more than a few hundred vertices. 

Praun and Hoppe (2003) extended the definition 
of stretch to consider a spherical parametrization h: 
M→ S2. They analyzed the map h from a triangle T to 
the sphere. For any point P inside T, the Jacobian map 
Jh provides a local approximation for h. Consequently, 
distances around h(P) get stretched through the map 
by a factor between 1/γ and 1/Γ with γ and Γ the 
singular values of Jh. They defined the stretch over the 
triangle T as: 

 

2 1 1 1( ) d ( , ),
T

T

M
M

L T A s t
A γ Γ

 
= + 

 
∫∫         (1) 

 
where d ( , ) d d

TMA s t s t=  is the differential mesh tri-

angle area. Then, they minimized the stretch by add-
ing a regularization term / 2 1( / 4π) ( )

T

p p
MAε Γ+  to 

avoid oversampling when Γ>>γ. 
 
Our contribution 

In this paper, we solve the problem of mapping a 
genus-zero surface to the unit sphere. First, the model 
of spherical parametrization based on minimizing the 
discrete harmonic energy is given, but the computa-
tion is much more complicated. Then we introduce a 
stable hierarchical spherical parametrization algo-
rithm which reduces much time. Based on our pa-
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rametrization results, a surface fitting algorithm with 
PHT-splines (Deng et al., 2006) can generate good 
results, where parametric surfaces can be constructed 
efficiently and adaptively to fit genus-zero meshes. 

The rest of the paper is organized as follows. In 
Section 2, we present our model and describe algo-
rithm in detail. In Section 3, we give the results of our 
algorithm and compare them with other parametriza-
tion results. An application is given in Section 4. 
Finally, in Section 5, we conclude the paper. 
 
 
MODEL AND ALGORITHM 
 

The triangles in the mesh are usually with good 
shapes, i.e., the three edge lengths do not change 
dramatically. In surface fitting a mesh, its pa-
rametrization over some standard domain is needed. 
Hence for a triangle in the mesh, we need its corre-
sponding triangle in the parametrization domain to be 
with good shape as well. 

Unfortunately, the existing spherical parametri-
zation methods do not satisfy these properties. On the 
other hand, for a simple mesh, Eck et al.(1995) pro-
posed a discrete harmonic method which satisfies this 
property. Thus we will generalize Eck’s model to 
spherical parametrization, so that the triangles in the 
sphere have good shape. 

A triangle mesh M=(V,E) is given with a set of 
vertices V={v1, …, vn} and a set of edges 
E={(vi,vj)|vivj is an edge of the mesh M}. Suppose that 
h is any piecewise linear map from M to a unit sphere 
S2⊂ú3 with the restriction conditions 

 
||h(vi)||2=1, ∀vi∈V.                     (2) 

 
The map h is uniquely determined by its values 

h(vi) at each vertex vi of M. Then the discrete har-
monic energy of the map h associated with the mesh 
M is defined as 

 
2

( , )

1( , ) || ( ) ( ) || ,
2

i j

ij i j
v v E
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∈

= −∑       (3) 

 
where the spring constants κij are computed in many 
ways. In most cases and the rest of the paper, uniform 
spring constants are used. 
 

The model 
Denote 

 
3 T T T

1 2( ) ,  ( , ,  , ),i i nh v = ∈ =\ …X X X X X  
ˆ {( , ) | ( , ) }.i jE i j v v E= ∈  

 

Then we can setup the parametrization model by 
minimizing discrete harmonic energy in Eq.(3) with 
spherical constraints: 
 

2

ˆ( , )

1min ( ) || || ,
2 i j

i j E

f
∈

= −∑X X X           (4) 

s.t. 2( ) || || 1 0,  1,  ,  ,i ic i n= − = = …X X  
 
where X is the vector of optimization variables, f(X) is 
the objective function to be minimized, and c(X)= 
(c1(X), …, cn(X))T is the vector of equality con-
straints. 
 
The algorithm 

When solving constrained nonlinear program-
ming problem Eq.(4), in which the constraints cannot 
easily be eliminated, it is necessary to balance the 
aims of educing the objective function and staying 
inside or close to the feasible region, in order to in-
duce global convergence. This inevitably leads to the 
idea of a penalty function which enables f to be 
minimized whilst controlling constraint violations by 
penalizing them. The penalty function is some com-
bination of f and c, and is smooth so as to use efficient 
techniques for smooth unconstrained optimization. 
For the equality problem, the penalty function is 

 

2 2 2

ˆ 1( , )

1 1( , ) || || (|| || 1) .
2 2

n

i j i
ii j E

P σ σ
=∈

= − + −∑ ∑X X X X  

  (5) 
 
The penalty is formed from a sum of squares of con-
straint violations and the parameter σ determines the 
amount of the penalty. Thus the technique of solving a 
sequence of minimization problems is suggested. 

The objective function in Eq.(5) is with degree 
four, and it is hard to obtain its solution in one step. 
Hence we propose the following strategy to deal with 
this large-scale optimization problem. At first, two 
definitions are introduced to simplify the following 
description. 
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Definition 1    Given a mesh M=(V,E), for any vi, 
define Starm(vi) in a recursive fashion: 
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Definition 2    Given a mesh M=(V,E), for a triangle 

1 2 3
( )j j j jt v v v=  in M, define: 

 

1 2 3
( ) ( ) ( ) ( ).m m m m

j j j jStar t Star v Star v Star v= ∪ ∪  

 
1. Hierarchical strategy 
First, we map the mesh M to a unit sphere using a 

simple map, such as a central projection. Starting with 
the current solution, the nearest local minimum of the 
objective function can be found. But there possibly 
exist some parts of parametrization mesh on the 
sphere which are overlapped. Among each part, there 
exists at least a triangle, whose normal is opposite to 
the normal of one of its neighbour triangles. Those 
triangles are defined as reverse ones. Then the fol-
lowing work is to find all the reverse triangles, and 
determine the corresponding set Starm(tj) for every 
reverse triangle tj (see the next strategy for details). 
All vertices not being included in this set are fixed 
after normalization, and we only need to deal with the 
other vertices by minimizing the discrete harmonic 
energy. In this way, more and more vertices are fixed. 
Finally, the algorithm is terminated on condition that 
all vertices are fixed. This is a hierarchical process, 
and the computing speed is fast. 

2. Overlapping detection 
In the parametrization result, overlapped parts 

should be eliminated. We find the reverse triangles by 
testing the orientation of the sequence vertices along 
the boundary of each face. It is important that the 
three vertices are recorded in a clockwise turn. This 
can be computed by estimating the sign of 

2 1 3 1 1
(( ) ( ) ),j j j j jv v v v v− × − ⋅  where 

1 2 3
( )j j j jt v v v=  is 

a triangle. If the considered mesh has overlapped 
parts, we can find many triangles with the reverse 
orientation. We should expand these triangles {tj} to 
get the set { ( )}.

j

m
t jStar t∪  For different models, the 

parameter m is different. 

Now, we give in detail our algorithm. 
 
Algorithm 1 (Hierarchical algorithm): 
Input a mesh M, the penalty factor σ>0 and the number m. 
Output h: M→S2, where h is a valid parametrization. 
Step 1: Given an initial map h(0): M→S2. Let the index set 

of the vertices Î={1, …, n} and l:=0. 
Step 2: Solve the unconstrained optimization problem 
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using Sub-Algorithm 2. 

Step 3: Determine the set T={tj|tj= 1 2 3
( )j j jX X X  is a re-

verse triangle} in the current solution, and set ,
|| ||

i
i

i

←
XX
X

 

ˆ,i I∉  where ˆ={ | ( )}.
j

m
i t T jI i Star t∈∈∪X  Then T=(...,  ,iX X  

T
ˆ...)i I∈  is the variable in the next iteration. 

Step 4: If Î=Ø, output h=h(l); otherwise, let l:= l+1, σ=0, 
and return to Step 2. 
 

In the first step, the initial map h(0) is given as 
follows. Transfer all vertices to make the barycenter 
of the mesh M be the origin, scale the coordinate of all 
vertex to make the minimal box containing the whole 
mesh be a cube, and normalize the position vector of 
the vertex. In this way, the changed position of a 
vertex vi is the value h(0)(vi). In our implementation, 
we set σ=0.5 experientially. 

In the second step, we use reset PRP conjugate 
gradient method (Fletcher, 1987) to solve this opti-
mization problem. There are two conditions. In the 
first iteration, the object function is fourth order while 
in the later iterations, it becomes only second order 
because the penalty factor is zero. In the following, 
the algorithms are described in detail. 
 

Sub-Algorithm 2 (Reset PRP conjugate gradient algo-
rithm): 

Input the initial vector X(0), the allowable error ε. 
Output the solution vector X*. 
Step 1: Compute g(0)=g(X(0)), d(0)=−g(0), γ0=g(0)Tg(0). Let 

k:=0. 
Step 2: Find the step size ( ) ( )

0
=arg min ( }k k

k P
α

α α
>

+X d  

through exact line search. 
Step 3: Update X(k+1)=X(k)+αkd(k). Compute g(k+1)= g(X(k+1)), 

γ1=g(k+1)Tg(k+1), γ2= g(k)Tg(k+1). 
Step 4: If γ1<ε, stop and output the solution vector 

X*=X(k+1). 
Step 5: If |γ2|<0.5γ1, β=(γ1−γ2)/γ0; otherwise, β=0. Com-

pute d(k+1)=−g(k+1)+βd(k). Set γ0=γ1, k:=k+1, and return to Step 2. 



Li et al. / J Zhejiang Univ SCIENCE A   2006 7(9):1589-1595 1593

In Sub-Algorithm 2, 
 

T T ˆ( ) (...,  ( ) ,  ...) ,  .
i

P P i I= ∇ = ∇ ∈X Xg X  
 

Our objective function is simple, and the element 
of g(X) can be computed as 
 

2

ˆ( , )

( ) 2 (|| || 1) .
i i j i i

i j E

P σ
∈

∇ = − + −∑X X X X X  

 
In Step 2 of Sub-Algorithm 2, the exact step size 

αk can be obtained by solving φ′(α)=0. In the first 
iteration process, the function φ′(α) is third order. 
From the second iteration on, φ′(α) has become one 
order and the exact step size is got directly by the 
formulae 
 

T( ) ( )

( 1) ( ) T ( ) .
( )

k k

k k k kα +

−
=

−
g d

g g d
 

 
 
RESULTS AND DISCUSSION 
 

Our main work is computing the surface 
spherical parameterization. We have implemented 
our method, and obtained some spherical parame-
terization results which prove that the algorithm is 
fast and efficient. The statistical data are listed in 
Table 1. In our algorithm, there are two parameters 
that must be rectified, which is the allowable errors 
and the number m of the set { ( )}.

i

m
t iStar t∪  

 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 demonstrates the process of Santa Clause 

spherical parameterization. Fig.1a is the mesh of 
Santa Clause, and Fig.1b is the initial mapping which 
has many reverse triangles. After the first iteration, 

some vertices are fixed and the others are put into the 
origin as the initial value for the next iteration as we 
can see in Fig.1c. Fig.1d shows the final parameteri-
zation result. The number m=8. We set the allowable 
error to be 0.6 in the first iteration, and 10−5 in the 
next iteration. Since then, the tolerance is multiplied 
by 0.1 after each iteration. 

In Figs.2 and 3, comparison of our spherical 
parameterization results with those of Praun’s (Praun 
and Hoppe, 2003) is shown. We can see that our tri-
angles are usually with good shapes. 
 
 
SURFACE FITTING 
 

Based on PHT-spline spaces, parametric sur-
faces can be constructed efficiently and adaptively to 
fit a genus-zero mesh after its spherical parameteri-
zation has been obtained. 

In (Deng et al., 2006) spline spaces are defined 
over T-meshes, which have enough flexibility in 
adaptive surface fitting. Based on the theory in (Deng 
et al., 2006), a set of basis functions of polynomial 
spline spaces over hierarchical T-meshes are defined, 
and a surface fitting algorithm is proposed recently. 
Now we apply this algorithm to fit the given ge-
nus-zero mesh based on its spherical parameterization 
and Praun’s result (Praun and Hoppe, 2003). In Fig.4, 
we can see that our results are better than those with 
Praun’s parameterization results. 
 
 
CONCLUSION 
 

We have presented an approach to parameterize 
a genus-zero mesh to a unit sphere and demonstrated 
our spherical parametrization results on a collection 
of challenging models. The algorithm is efficient, 
intrinsic, practical, and versatile for different surfaces. 
Specially, the surface fitting results with these pa-
rametrization results are better than those with other 
parametrization results. 

In the future, we will focus on the following 
works: 

(1) Use a better objective function to obtain 
better solutions. 

(2) Solve parametrization problem of higher 
genus surfaces. 

Table 1  Genus-zero examples 

Model Vertices 
No. 

Faces 
No. 

Runtime 
(s) 

Iterations
No. 

Santa Claus   46048   92092   108 7 
Venus   50002 100000   214 5 
Bunny   34817   69630   131 11 
Cow   11610   23216   118 6 
Horse   48476   96948   465 13 
Tyra 100002 200000 1866 19 
Gargoyle 100002 200000 1357 6 
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(a) (b) (c) (d) 

Fig.1  The parameterization process of Santa Claus. (a) The model; (b) The initial map; (c) The result after one step
computing; (d) The final spherical parameterization 

(a) (c) (b) 
Fig.2  The parameterization of bunny. (a) The model of bunny; (b) Praun’s result; (c) Our result 

(a) (c) (b) 

Fig.3  The parameterization of gargoyle. (a) The model of gargoyle; (b) Praun’s result; (c) Our result; (d) Local 
details of Praun’s result; (d) Local details of our result 

(e) (d) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig.4  Fitting genus-zero meshes. (a) and (e): The fitting surface using Praun’s parameterization result; (c) and
(g): The fitting surface using our parameterization result; (b), (d), (f), (h): Local details 
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