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Abstract

In this paper. we develop an analytic solution for the
optimal degree reduction of interval polynomials and
interval Bézier curves under L; norm. The key in-
gredient is a characterization for the nonanegative least
deviation polynomials from zero based on orthogonal
polynomials. The direct application of the characteri-
zation leads to the optimal degree reduction algorithm.
Analytic results and examples show our algorithm is
much better than the previous method.
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1 Introduction

Interval Bézier curves which were firstly introduced by
Sederberg etal. [14] are new representation forms for
parametric curves. Such representation form can em-
body a complete description about coefficient errors
along with the curve. and it is convenient for tolerance
analyse in geometric modeling.

Inspired by Sederberg etal.’s work, Hu etal.
(7. 8, 9. 10, 15]) recently appeal to interval form of ge-
ometric objects and rounded interval arithmetic to deal
with the boolean operations in solid modeling. Their
works indicate that using interval representations of ge-
ometric objects will substantially increase the numer-
ical stability in geometric computations and thus en-
hance the robustness of current CAD/CAM systems.

[n this paper, we will discuss the problem
of bounding interval polynomials/Bézier curves with
lower degree interval polynomials/Bézier curves. The
degree reduction of Bézier curves has been a hot spot
in CAGD i the past decade, and there are a lot of
research literatures focusing on this problem([1, 2, 4,
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5, 11, 16]). However, these works mainly concern how
well the approximation is, and none has ever dealt with
the approximation errors, or in other words, none has
ever considered to approximate an interval Bézier curve
with a lower degree interval Bézier curve. As the au-
thors are aware, the only work which relates with de-
gree reduction of interval polynomials is J. Rokne’s pa-
per [13], in which the author used (the graph of) an in-
terval polynomial to bound (the graph of) a higher de-
gree interval polynomial. In this paper, we will present
a totally different approach to solve this problem. This
new algorithm is optimal in the sense that the area of
the degree reduction interval polynomial is the small-
est in all the interval polynomials which bound a given
interval polynomial. and the solution is analytic.

The organization of this paper is as follows. In
Section 2, we give a characterization for the nonneg-
ative least deviation polynomials from zero under L
norm. Then we apply the result to the degree reduction
of interval polynomials/Bézier curves in the following
section. Finally in section 4, we provide some examples
to demonstrate our algorithm. Theoretical results and
examples show our algorithm is much better than the
previous method(Rokne’s method).

2 Nonnegative Least Deviation
Polynomials

Let R[z] be the set of all polynomials with real coeffi-
cients, and

{p(z) € B[z]|deg(p) < n}.
{p(z) € B[z]| deg(p) = n}.
{p(z) € P,|LC(p) = 1}
{p(z) € P,|LC(p) = —1}
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where deg(p) and LC(p) denote the degree of p and the
leading coefficient of p respectively.
For any polynomial f(z) € R[z], we define the
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Coonern. of f by

1

Il = (/O e ds ) (2.1

The wnner product of f, g € R{z] with respect to
weight function w(z) is defined by

1
(f.g) = / w(z) flz)g(z)dz. (2.2)

Two polynomials f and g are said orthogonal to each
other if

(f9)=0 (2.3)

Let S be a base of polynomial space R[z], if any
two elements of S are orthogonal to each other, then
we call S an orthogonal polynomial system, and the el-
ements of S are called orthogonal polynomaals. There
are many special types of orthogonal polynomials such
as Chebyshev polynomials({of second kind whose weight

function w(z) = 1/\/z(1 — z))

sin[(n + 1) arccos (2z — 1)]

Unle) = . 2.4
() sin(arccos (2z — 1)] (24)
ind  Legendre polynomials(with weight function
ey =1)
1 d» , n
Ln(x) {((ze =1 ="} (25)

- 22nn! dy

['hese orthogonal polynomials are special cases of the
Jacobr polynomials

i .
] n+a\/n+b o
I ) = - )"t (26
) ;( P e e
wlich are orthogonal with respect to weight function
wir) = (1 —xr)*z?. Jacobi polynomials can be repre-
~~nted in Bézier form as
" d , TG
D ) i
0 1

= cn,i Bi (1) (2.7)

where BM(z) = (?)z'(1 — £)"~* are Bernstein bases.
Orthogonaj polynomials are a very important
2% of polynomials in approximation theory, and they
«ve many nice properties, one of which is the following

Lemma 1 Let pp(r) € Gp, no= 0,1...., be an or-
. qgonal system with respect to some weight function
r If po(z) € Gy, be the polynomial such that

1 1
/ w(z)pi(z) dl‘:prgci;ri/o 'LU(J:)pE(l’) de  (2.8)

(@) = pala).

Now we are ready to characterize the nonnega-
tive least deviation polynomials from zero.

Theorem 1 Let
G} = {p(z) € Gplp(z) > 0 over [0,1]}. (2.9)

and p}, € G be the polynomial which minimazes inte-
gral

1
min / p(z) dz (2.10)
p(z)eGT Jo
Then
Li(z), if n =2k,
pi(a) = { Lel®), il (2.11)
zdi(x). ifn=2k+1.

where Li(z) = 2"/ (*") Lk (z) € Gy 15 Legendre polyno-
maual(multipled by a constant), and Ji(z) € Gy ts the

Jacobr polynomaal J(0'1>(x) (multiphed by a constant).
We call p}, the nonnegative least demation polynomial
from zero(with leading coefficient 1).

Proof: We will prove the theorem in following four
steps when n is even. The proof is similar for odd n.

(1) Polynomial p3, (x) has only real roots.

Suppose p;, has complex roots. so p3, has the fol-
lowing form:

Phe(x) = (o + az + b)h(z).
where a.b € R, a® < 4b, and h(r) € G;’k_? Thus

1 1 a2
/ phe(z) de > / (;c2 + az + —)h(x) da
Jo 0 1

But p}, {(x) minimizes integral (2.10), an impossi-
bility.
(2) All the roots of polynomial p3, are in [0. 1].

Assume there exists a root r of pj, is outside of
[0,1]. Without loss of generality, we assume that
r < 0. Then we can write

P = (2 — r)h(z),
where h(z) € G}, _|. So

1 1
/p§k(r)dr>/ rh(r) dr.
0 0

which contradicts (2.10).

(3) There exists polynomial h(r) € Gy, such that
Phelx) = h¥(x).
Since p3, (x) > 0 over interval [0. 1] and the leading
coefficient of pJ, () 1s positive , any root of p3, («)
has even multiplicity. Thus there exists h(r) € Gy
such that p3, (z) = h*(x).

- 1011 -



(4) p3.(z) has required form (2.11).

Let p5.(z) = h*(z), where h(z) € Gi. By the
definition of pj,(x), h(x) is the polynomial which
minimize integral

1
. 2
min z) de
Q(I)EGk/o g ( )

From Lemma 1. we know h(r) = Lk(.r) 1s Leg-
endre polynomial multiplied by a constant. This
completes the proof W

Theorem 2 Let
HY = {g(s) € Hylg(2) > 0 over [0, 1]}, (2.12)

and g;, € H} be the polynomial which minimizes inte-
gral

1
min /qr) dz (2.13)
q(=)eHt Jo
then
— 2 =2k+1
g5 (z) = (=), (), n=2k+1, (2.14)
(1 —z)J2,(z), n=2k+2,

where Jei(x) € Gyi 1s the Jacobi polynomaal
J,gl‘o)(multzplzed by a constant), and Jeo(z) € Gy 1s

the Jacobi polynomaal J,El'”(multzplzed by a cénstant}.
qr(z) s called the nonnegative least deviation polyno-
mial from zero(with leading coefficient —1).

Proof: Similar to the proof of theorem 1. H

Next we consider the nonnegative least deviation
polynomial from zero with constraints.

Theorem 3 Let

G}, = {p(r) € G, |pY)(0) = 0.p9)(1) = 0,

Jj=0.1,... m—-12m<n

p(z) = 0 over [0, 1]}, (2.15)
If P o € Gty satusfies

IP7 mll = , r2i£m lIplls (2.16)
then p;, . (z) = Wn.m(r)JZim(z), where

W m(z)=(1 —x) z#, (2.17)

(m,m+ 1), n odd, m even

(m, m) n even, m even ;
(A p) = . (218

(m+1,m). n odd, m odd

(m+1,m+1), n even, m odd

and Jpm(z) € Gi(k = (n — X — u)/2) 1s the Jacob:
polynomual JLA'“\’(multzplzed by a constant).

Theorem 4 Let Let

H, = {p(x) € H, [p”'(0) =2 0,p¥)(1) = 0,

j=0.1... m-=12m<n
p(z) > 0 over [0, 1]}, (2.19)
If g5, ., € HY . satisfies
g7 mlli = min lg||x (2.20)
q€HT
then g, . (z) = Wn'm(z)j,%ym(x), where
W(o:) = (1—z) z* (2.21)
(m+1,m), n odd, m even
N 1 )
() = (m+1.m+ 1), n even, m even (2.22)
(m, m+1) n odd, m odd
(m,m) n even, m odd

and Jp m(2) € Gi((k = (n— X — p)/2) 1s the Jacobr
polynomual Jéx'“)(multzplzed by a constant).

3 Degree Reduction of Inter-
val Polynomials and Interval
Bézier Curves

The direct application of the results presented in the
last section yields an algorithm for the optimal degree
reduction of interval polynomials and interval Bézier
curves.

3.1 Interval polynomials and interval
Bézier curves

An wnterval polynomial([14]) is a polynomial whose co-
efficients are intervals:

n

Pl = lax bl BR(H).  0<t<1  (3.)

k=0
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n

Fraun (t) = Z ClkB;: (t) and pmax(
k=0

t)=y bBp(t)
k=0
(3.2)

e called lower bound(denoted by lb([p](t))) and upper
~wund(denoted by ub([p](t))) of [p](t) respectively. The
.udth of an interval polynormal 1s defined

1
[ (pmax(t) = poin(t)) da
Jo

w([pl(t))

1
= n+1§)(bk—ak)

(3.3)

Using interval arithmetic([12]), we can carry the
1sual rules of polynomial arithmetic to interval poly-
omials.

An nterval Bézier curve[l4] is a curve whose
ontrol points are vector-valued intervals:

n

[P)(t) = > _[PBL(1) (3.4)
k=0
where
{Pk] = [ak.bk] X [ck.dk] = ([ak,bk]‘ [Ckadk]) (3.5)

which describes a rectangular region in the plane.
Like ordinary Bézier curves, interval Bézier
urves can also be degree elevated, subdivided, etc.

3.2 Degree reduction of interval poly-
nomial

['he problem of degree reduction of interval polynomi-
1ls can be put in the following way:

Problem 1 Guwen an wnterval polynomaal [p](t) of de-
Jree nas defined in (3.1), find an interval polynomual
 (t) of degree m =n — 1:

Z ax. bi) BE (t (3.6)
k=0
<uch that
[pl(t) C [q)(1). €10,1] (3.7)

ind the width of [q](1) s the smallest in all the interval
solynomaals of degree m whach bound [p](t)

Theorem 5 Guven a polynomual of degree n

n
= E a;z’.a; €R,
1=0

(3.8)

Let

p(z) +angn(z). an >0
U = .
p(p)(z) {pm ~anpt (). an <0 (3.9)
_ ) p() —anpy(z), an >0
tolp)z) = {p(x) + angp(z), an <0 (310
then Up(p) € I1,_1, Lo(p) € II,,_,
Lo(p)(z) < p(x) < Up(p)(z), Vze[0,1] (3.11)
and
IUp(p) = plly = min lg —pl|s, (3.12)
[lp = Lo(p)lly = min lg = pll1, (3.13)

where p; (x) and ¢}, (x) are defined as (2.11),(2.14).

Proof:
pr(r) and ¢5(r) Now we prove (3.12) for the case
an > 0. The other cases are similar.

For any polvnomal ¢(2) € My_1. ¢(z) > p(2)

for r € [0.1].
1 i,
llg(x) = p(x)|li = an| — " + (;’J(I) - ; Z—,,l >H1
2 anllgn (z)|l1 = [[Up(p) — p(2)|Ix

The theorem is thus proved. l

Using relationship (2.7), It 1s easy to convert the
above results to Bernstein form. The details are omit-
ted.

Based on the above theorem, we can device an
algorithm to solve Problem 1 as follows.

Given an interval polynomial [p](t) of degree n.
we construct an interval polynomial [¢](t) of degree n —
1 whose lower bound is Lo(lb([p](t))) and upper bound
is Up(ub([p](t))). Obviously, [¢](t) bounds [p](t) and
[g](t) is optimal in the sense that the upper bound and
the lower bound are optimal respectively.

3.3 Degree reduction of interval Bézier
curves

To solve the problem of the degree reduction of interval
Bézier curves is to solve:

Problem 2 Guwen an nterval Bézier curve [P](t) o

degree n, find an interval Bézier curve [Q](t) of degree
m =mn— 1, such that
[P](t) C [Q](t). €0,1] (3.14)

and the region occupied by [Q](t) s as small as possible.
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The solution to the degree reduction of inter-
val polynomials directly yields the algorithm to solve
Problem 2.

Theorem 6 Given an interval Bézier curve of degree
n:

n

[P)(t) = ([z](). [W)() = D _([ai, b, [es, &]) BY(t)

1=0
(3.15)
Let
[21() = ) _law. b BT (1), (3.16)
[5) = > &, di]BP (1) (3.17)
1=0

are the interval polynomial bounds of [z](t) and [y](¢)
of degree m < n respectiely, then interval Bézier curve

m

([Ql() = ([z](1), [9](¥)) = Z([&n bi), (&, i) B (t)
= (3.18)

bounds interval Bézier curve [P](t), i.e., [P](t) C
(QI().

Proof: Straight forward. Bl

The above theorem states, the degree reduction
of interval Bézier curve can be obtained by seperately
finding degree reduction interval polynomial for each
component.

4 Examples

In this section we will provide some examples to illus-
trate the approximation results of the algorithm in this
paper, and compare it with Rokne’s algorithm.

Example 1 In this example, we consider a degree
seven polynomial whose magnitude drastically changes
on [0,1]

[p](t) =43 t — 368 t* + 537 ¢> + 2168 t*
— 7514 t° 4+ 8046 t5 — 2193 ¢7

We use an interval polynomial of degree six to bound
[pl(t). Fig 1 and Fig 2 illustrate the approximation
results by our algorithm and Rokne’s method respec-
tively. The areas of the bounding interval polynomials
by these two methods are 0.59, 165.03 respectively.

Figure 1: Using our algorithm
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Figure 2: Using Rokne’s algorithm

Example 2 Let [P]({) be an interval Bézier curve of
degree six with control points as follows:

50.70].[140. 155]),

[Po] = ([

[P,] = ([130. 150],[350. 370]).
[P2] = ([190.220]. [110,120]).
[P3] = ([250.260]. [290. 300]).
[P4] = ([340.360].[100, 120]).
[Ps] = ([390. 400]. [150, 165]),
[Ps] = ([430.455],[360,375]).

We bound [P](t) with a degree five wterval
Bézier curve using our method and Rokne’s method
The results are shown in Fig. 3(Rokne’s method)
Fig. 4(our method without constraints) and Fig. 5(cur
method with constraints).

From the above examples, we can sec ow
method produces much better approximation resulis
than Rokne’s method.

5 Conclusions

In this paper. we present an analytic solution to the
problem of how to bound an interval polynomial /Bézier
curve with a lower degree interval polynomial/Bézier
curve. The solution is optimal in the sense that the area
between the upper bounds and the area between the
lower bounds of the two interval polynomials/curves
attain minimum values seperately. Theoretical results
and examples show that our algorithm provides much
tighter bounds than Rokne’s algorithm.
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Figure 4:

Figure 5:
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