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Abstract Computer graphics and
computer-aided design communities
prefer piecewise spline patches to
represent surfaces. But keeping the
smoothness between the adjacent
patches is a challenging task. In
this paper, we present a method for
stitching several surface patches,
which is a key step in complicated
surface modeling, with polynomial
splines over hierarchical T-meshes
(PHT-spline for short). The method
is simple and can be easily applied
to complex surface modeling. With
the method, spline surfaces can be
constructed efficiently and adaptively

to fit genus-zero meshes after their
spherical parameterization is ob-
tained, where only small sized linear
systems of equations are involved.
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1 Introduction

In geometric modeling, the representations of surfaces is
one of the most important and interesting research top-
ics. Computer graphics and computer-aided design com-
munities prefer parametric surfaces, especially spline sur-
faces, since their representations are simple, and points on
the surface can be easily determined [5]. These kinds of
surfaces are commonly supported within current surface
modeling systems. The commonly used spline surfaces are
tensor product (TP) B-splines or triangular splines. With
triangular B-splines, one must face the complexity of di-
mension calculation and basis function construction in the
spline space. In fact, there are still many theoretical issues
under research for triangular spline spaces [11]. Surface
fitting with TP B-spline surfaces needs to overcome the
weakness that the control points must lie topologically in
a rectangular grid. To model a geometric object with com-
plex topology, one has to smoothly piece many B-spline
patches together. But keeping the smoothness between the

adjacent patches is a challenging task. Most methods [3, 4]
restrict all the patches to have the same knot vectors and
same degrees. In the current CAD/CAM software sys-
tems, such as Maya and 3D Max, their stitching tools also
have this limit. Figure 1 shows an ear model which is com-
posed of 457 B-spline patches, where the adjacent patches
have many gaps when the knot vectors of the adjacent
patches do not match. The bottom part of Fig. 1 shows
the gap among three of the patches. In this paper, we
present a method for stitching several surface patches with
a PHT-spline – a polynomial spline over a hierarchical T-
mesh. The method is simple and can be easily used in
complex models. The bottom pictures of Fig. 1 depict the
result from our stitching algorithm with C0 continuity.

Geometric models are often described as closed,
genus-zero meshes. In this paper, we construct a PHT-
spline to approximate genus-zero mesh models. In the
process, we first partition the meshes into several parts, fit-
ting each part with a PHT-spline surface. Then we stitch
them into one surface patch. The process is very efficient
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Fig. 1. A gap in the ear model fixed with C0 continuity

and adaptive and it is very easily to extend to an arbitrary
topology.

The remainder of the paper is organized as follows:
Section 2 reviews some related work. Section 3 recalls
some preliminary knowledge about PHT-splines. Sec-
tion 4 proposes an algorithm for stitching surface patches
with PHT-splines. Section 5 provides a PHT-spline sur-
face fitting algorithm for genus-zero meshes. Section 6
concludes the paper with a summary and future work.

2 Related work

The literature on local control refinement of B-spline
surfaces was initiated by Forsey and Bartels. They in-
vented hierarchical B-splines and introduced two con-
cepts: local refinement using an efficient representation and
multi-resolution editing [6]. In 2003 and 2004, Sederberg
et al. [9, 10] introduced the notion of T-splines, where many
valuable operations are provided as well. But some of them
are not simple, such as control point insertion whose com-
plexity is uncertain in some cases. They also provided the
algorithm for merging B-splines into T-splines, which is
based on the control point insertion algorithm. In [1, 2],
polynomial spline functions over T-meshes are introduced,
where the spline function on every cell is a TP polynomial,
and achieves the specified smoothness across the common
edges. The new splines not only inherit the main advantage
of Sederberg’s T-splines, adaptivity, but also have the ad-

vantages over Sederberg’s T-splines in many aspects. For
example, the new splines are a single polynomial in each
mesh cell, which will reduce the time-cost in many geomet-
ric operations.

3 Polynomial splines over hierarchical T-meshes

A T-mesh is basically a rectangular grid that allows
T-junctions [1, 9]. Given a T-mesh T , let F denote all
the cells in T and Ω the region occupied by all the cells
in T ,

S(m, n, α, β, T )

:= {
s(x, y) ∈ Cα,β(Ω)

∣
∣s(x, y)|φ ∈ Pmn for any φ ∈ F

}
,

where Pmn is the space of all the polynomials with bi-
degree (m, n), and Cα,β(Ω) is the space consisting of
all the bivariate functions which are continuous in Ω,
with order α along the x-direction and with order β
along the y-direction. It is obvious that S(m, n, α, β, T )
is a linear space, which is called the spline space over
the given T-mesh T . As discussed in [1], the dimen-
sion of the spline space S(2α+ 1, 2β + 1, α, β, T ) is
(α+ 1)(β + 1) times the number of crossing vertices
and boundary vertices (which are later called basis ver-
tices).

A hierarchical T-mesh is a special type of T-mesh,
which has a natural level structure. Level-0 mesh is the
standard TP mesh. If level-i mesh is given, then the level-
i +1 mesh is obtained by subdividing some of the cells
in level-i . Each cell is subdivided into four subcells by
connecting the middle points of the opposite edges in the
cell.

In [2], the present authors proposed a method to con-
struct basis functions of S(3, 3, 1, 1, T ) over hierarch-
ical T-meshes. The basis functions are constructed level
by level, and have many good properties, such as non-
negativity, compact support and partition of unity.

For any function b(u, v), its function value b(u, v), two
partial derivatives of first order and mixed partial deriva-
tive are

bu(u, v) = ∂

∂u
b(u, v)|(u,v),

bv(u, v) = ∂

∂v
b(u, v)|(u,v),

buv(u, v) = ∂2

∂u∂v
b(u, v)|(u,v).

At some point (u0, v0) are called the geometric informa-
tion of b(u, v) at point (u0, v0).

Given a hierarchical T-mesh T , suppose the basis func-
tions are {bk

j (u, v)}, j = 1, . . . , N, k = 0, . . . , 3. Here N is
the number of basis vertices. Then a spline surface over T
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can be defined as

S(u, v) =
N∑

j=1

3∑

k=0

Ck
j bk

j (u, v), (1)

where Ck
j are the control points associated with the jth

basis vertex.
Suppose the associated domain of the ith basis vertex

is (u2
i , u1

i , v2
i , v1

i ). We can then write

(Bi) =

⎛

⎜
⎜⎜⎜
⎝

1 1 1 1
−ui

α
1−ui

α
−ui

α
1−ui

α

− vi
β

− vi
β

1−vi
β

1−vi
β

uivi
αβ

− (1−ui)vi
αβ

−ui(1−vi)
αβ

(1−ui)(1−vi)
αβ

⎞

⎟
⎟⎟⎟
⎠

,

where ui = u2
i

u1
i +u2

i
and vi = v2

i
v1

i +v2
i
. Assume the geometric

information at the ith basis vertex are f , fu , fv, fuv, re-
spectively. Then the control points of the ith basis vertex
are computed as
(
C0

i , C1
i , C2

i , C3
i

) = ( f, fu, fv, fuv)(Bi). (2)

In [2], an efficient scheme is proposed to fit scat-
tered data {Pi}N

i=1 with spline surfaces over hierarchical
T-meshes. According to Eq. 2, the main approach is to es-
timate the geometric information at all the basis vertices.
The basic idea is as follows: First, estimate the geomet-
ric information at every point Pi . For every point Pi in the
given mesh, its topological neighborhood N (Pi) is orga-
nized with enough points for information estimation. Then
fit a bi-cubic or bi-quadratic patch to the points in N (Pi)
(assuming a parameterization of the mesh model is ob-
tained). The required geometric information at point Pi is
obtained by evaluating the patch at the corresponding pa-
rameter value of Pi . Second, for each basis vertex Q, the
geometric information at Q can be obtained by linearly
interpolating the geometric information of three neighbor-
ing points Pi , Pj and Pk of Q. For a detailed description
of the basis construction and fitting process, the reader is
referred to [2].

4 Stitching surface patches

This section discusses the algorithm for stitching several
PHT-spline surface patches. In the algorithm, we only up-
date the information near the common boundary curves.
Because a polynomial B-spline surface is a special kind of
PHT-spline, the algorithm is also applicable for stitching
B-spline surface patches.

4.1 Continuity conditions

Let π1(x, y) and π2(x, y) be two bi-cubic polynomials de-
fined over two adjacent domains [x0, x1]× [y0, y1] and

[x1, x2]×[y0, y1], respectively. They can be expressed in
the Bernstein–Bézier forms, with Bézier ordinates {b1

j,k}
and {b2

j,k}, respectively.
It is well known that π1(x, y) and π2(x, y) are C1 con-

tinuous across their common boundary if and only if

b1
3, j = b2

0, j j = 0, . . . , 3,

b1
3, j −b1

2, j

x1 − x0
= b2

1, j −b2
0, j

x2 − x1
j = 0, . . . , 3,

where the first equation is the condition for C0 continuity.
The geometric continuity conditions for π1(x, y) and

π2(x, y) are as follows: For G0 continuity,

π1(x1, y) = π2(x1, y), y ∈ [y0, y1]. (3)

For π1(x, y) and π2(x, y) to be G1 continuous, we require,
in addition,

∂

∂x
π1 = p(y)

∂

∂x
π2 +q(y)

∂

∂y
π1, (4)

for x = x1, y ∈ [y0, y1] and some functions p(y) and q(y),
with p(x) > 0; here p(x) and q(x) are called the connect-
ing functions.

4.2 Continuity conditions for PHT surfaces

The continuity conditions for two PHT-spline surfaces are
illustrated with an example in Fig. 2. Suppose two PHT-
spline surfaces S1(u, v) and S2(u, v) over T-meshes T 1

and T 2 are given, where T 1 and T 2 share a common
boundary line (but the two boundary line segments may
not exact coincide). We consider a basis vertex A ∈ T 1 on
the common part of the boundary lines. Suppose B ∈ T 2 is
the nearest vertex to A. If B is not a basis vertex, then its
geometry information is determined by its neighbor basis
vertices in T 2. This leads to discontinuity along the com-
mon boundary. Hence a knot line segment should be in-
serted through B in a fashion as shown in Fig. 2. Similarly,
other knot segments are inserted in T 1 or T 2 when run-
ning through the boundary basis vertices in both meshes.
Consequently, on the common part of the boundary lines,
every boundary basis vertex in one mesh has a correspond-
ing boundary basis vertex in the other mesh, as shown
in Fig. 2.

Fig. 2a,b. Continuity conditions for spline surfaces over T-meshes
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Now we can use the geometric information to express
the continuity conditions. The C0 continuity conditions
across their common boundary are at each of the basis ver-
tices A in T 1 and the corresponding basis vertex B in T 2,
then the following equations hold:

S1(A) = S2(B); S1
v(A) = −S2

u(B).

While the C1 continuity conditions across their common
boundary are, in addition, as follows:

S1
u(A) = S2

v(B); S1
uv(A) = −S2

uv(B).

4.3 Stitching surface patches

In geometric modeling, an object usually consists of many
parts, each of which is possibly modeled independently
with different B-spline surface patches. Two neighbor sur-
faces might have different knot vectors along their com-
mon boundary, such as the ear model in Fig. 1. As shown
in Fig. 3a,b, the grey and the black control grids are de-
fined over the different knot vectors. Stitching them into
a single B-spline surface requires that the two surfaces
have the same common knot vector along the common
boundary lines. Hence knot insertion must first be per-
formed before stitching. However, in a TP spline surface,
these knot insertions can significantly increase the number
of control points.

But stitching with PHT-splines is different. Here we
only need to modify a narrow band of the surfaces along
their common boundary curves. The main steps of the
stitching algorithm are as follows:

Step 1: Determine the common parameter domains. The
first step is to find the common parameter boundary do-
mains of the two patches. As illustrated in Fig. 4, at first
we extract B-spline curves which form the boundaries
of the two surfaces. Then, find a curve segment on each
boundary curve such that the two curve segments (say, AB
and CD in Fig. 4) are near to each other within a given tol-
erance. Finally, we map the two curve segments back to
get the parameter domains.

For simplicity, the common parameter domains can
also be specified by users.

Step 2: Reparameterize surfaces. This step is to reparam-
eterize the two surfaces such that the parameterization of

Fig. 3a,b. Stitching with B-splines

Fig. 4. Common boundary

the two surfaces coincides along the common boundary
curve.

As illustrated in Fig. 4, suppose the surface on the right
of Fig. 4 has geometric information is f, fs, ft, fst, then
we should convert them to g, gu, gv, guv with

g = f ; gu = ft; gv = − fs; guv = − fst .

This is very important for Steps 3 and 4.
Next is to reparameterize the two surfaces to make

them have the same knot values along the common bound-
ary. Here we use the linear reparameterization with func-
tion f(t) = at +b along the common boundary. In order to
guarantee that the common domains have coincident pa-
rameter (i.e., the parameters at A and C are the same, also
at B and D), we can use these conditions to determine the
constants a and b.

Step 3: Combine the boundary information. In order for
that, along the common boundary a basis vertex in one
patch is also a basis vertex in the other patch, we should
insert some knot segments into T-meshes (see Fig. 3 as an
example). The geometric information at these basis ver-
tices is the average of the geometric information at the
two basis vertices on the common boundary (red points
in Fig. 3).

For example, in Fig. 2, suppose the geometric informa-
tion at A and B are ( f 1, f 1

s , f 1
t , f 1

st) and ( f 2, f 2
s , f 2

t , f 2
st),

respectively.
For C0 stitching, the new geometric information at A

and B should be ( f, f 1
s , fv, f 1

st) and ( f, − fv, f 2
t , f 2

st), re-
spectively. Here,

f = f 1 + f 2

2
; fv = f 1

t − f 2
s

2
.

For C1 stitching, the new geometric information at A
and B should be ( f, fu, fv, fuv) and ( f, − fv, fu, − fuv),
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respectively. Here,

f = f 1 + f 2

2
; fu = f 1

s + f 2
t

2
;

fv = f 1
t − f 2

s

2
; fuv = f 1

st − f 2
st

2
.

Step 4: Interpolate the information. Applying Eq. 2, we
can easily obtain the control points for the PHT-splines.

There are mainly three cases in the stitching proced-
ure which are illustrated in Fig. 5. The first case is to stitch
two surfaces which have an aligned common boundary, as
shown in Fig. 5a. In this case, we just need to apply the
former algorithm directly. The pictures in Fig. 6a are the
stitching results for this case. The colored curves are the
isoparameter curves projected onto the surfaces.

Fig. 5a–c. The three cases for
stitching

Fig. 6a,b. Stitching two pieces and three pieces of surface patches

The second case is to stitch three patches, illustrated in
Fig. 5b. In this case, one patch shares a boundary with the
other two patches. We can apply the former algorithm to
stitch patches A and B, patches B and C, and patches C
and A in some order. The pictures in Fig. 6b are the results
for this case.

The third case is to stitch n patches around an extraor-
dinary vertex, which has valence not equal to four. In this
case, we cannot achieve global C1 continuity when n �= 4.
The next section will provide the method of determining
geometric information in detail. However, if n = 4, we can
stitch the surfaces in the same fashion as the second case.

4.4 Stitching at extraordinary vertex

First we will review the geometric continuity conditions
of order one provided in [8]. In fact, in Eq. 4, let p(x) = 1
and q(x) = αx +β(1− x), then the following equations are
sufficient conditions for two bi-cubic surfaces as shown in
Fig. 7a to be G1:

p0 −q0 = q0 −r0 +α(q0 −q1);
p1 −q1 = q1 −r1 + 2

3
α(q1 −q2)+ 1

3
β(q0 −q1); (5)

p2 −q2 = q2 −r2 + 1

3
α(q2 −q3)+ 2

3
β(q1 −q2);

p3 −q3 = q3 −r3 +β(q2 −q3).

Here we call α the geometric constant for vertex q0 along
the common boundary and β the constant for vertex q3.

If we set p(x) = 1 and q(x) = α(1− x)2, which would
automatically force the boundary curves to be quadratic,
as shown in the last equation of Eq. 6, then the conditions
are:

p0 −q0 = q0 −r0 +α(q0 −q1);
p1 −q1 = q1 −r1 + 2

3
α(q1 −q2)− 1

3
α(q0 −q1);

p2 −q2 = q2 −r2; (6)
p3 −q3 = q3 −r3;
q0 −q3 = 3(q1 −q2).

Fig. 7a,b. The G1 continuity between two bi-cubic patches and
around a common vertex
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We will apply these two conditions into the stitching algo-
rithm around an extraordinary vertex.

First we will discuss how to stitch at an extraordi-
nary vertex of valence three. Suppose the Bézier control
points are illustrated in Fig. 7b. In the figure, E4 is an
extraordinary vertex, but Ei, i = 1, 2, 3 are not extraordi-
nary vertices. We can otherwise refine the three patches
such that they are not extraordinary by inserting some knot
lines. We can denote the geometric constant for vertex E4
along Ei E4 as αi .

Notice that Ei, i = 1, 2, 3 are not extraordinary ver-
tices, so the control points Di and Ei should be kept
unchanged. Thus here we apply Eq. 6 to describe the con-
tinuity conditions. That is to say we have to force the
boundary curves to be quadratic, i.e.,

E4 − Ei = 3(Ci − Di).

Let Pi = (3Di − Ei)/2, then Ci = (2Pi − E4)/3. Accord-
ing to the first line of Eq. 6, we have:

Ck+1 − E4 = E4 −Ck−1 +αk(E4 −Ck)

where k = 1, 2, 3, and Ck+3 = Ck. Adding all three equa-
tions with αi = λ, we then determine that E4 = P1+P2+P3

6
and λ must be 1.

Now only the control points Ti should be computed. In
fact, Ti is the unique solution of the second line of Eq. 6:

T1 = 3

2
(D1 + D2 − D3)− 1

3
(D1 + D2 − D3)− E4

6
,

T2 = 3

2
(D2 + D3 − D1)− 1

3
(D2 + D3 − D1)− E4

6
,

T3 = 3

2
(D3 + D1 − D2)− 1

3
(D3 + D1 − D2)− E4

6
.

After having computed all the Bézier control points, we
can compute the geometric information at the extraordi-
nary vertex, using Eq. 2 to compute the control points for
the PHT-spline.

If the valence of the extraordinary vertex is n, n �= 3, 4,
we can apply the similar method to compute the Bézier
control points around the vertex (see [8] for details).

5 Fitting genus-zero meshes

Geometric models are often described by closed meshes
with genus-zero. For such models, the sphere is the most
natural parameterized domain. In this section, an assem-
bly of spline surfaces over hierarchical T-meshes are con-
structed based on the spherical parameterization [7] with
the stitching algorithm. The method is efficient and adap-
tive, where only small sized linear systems of equations
are involved.

First, we partition the meshes into six parts according
to the spherical parameterization. To do so, one selects

an inscribed cube of the parameterized sphere, and maps
the twelve edges of the cube onto the sphere with the
central projection from the center of the sphere. These
twelve curves on the sphere partition the mesh into six
parts. Each parameterized part is central-projected onto
the corresponding face of the cube to obtain its planar pa-
rameterization. Then we construct six PHT-spline surfaces
to fit the six parts using the fitting algorithm in [2] level by
level. Finally, we use the stitching method to stitch the six
PHT-spline patches together to achieve C1 continuity, ex-
cept the patches around the extraordinary vertices, where
G1 is achieved.

The surface fitting algorithm mainly has the following
steps:

1. Partition the given closed mesh into six parts according
to its spherical parameterization and central projec-
tion. Then we obtain a planar parameterization for each
face.

2. Construct a PHT-spline surface to fit each part of the
mesh model using the fitting algorithm in [2].

3. Use the stitching method to stitch the six PHT-spline
patches together.

It should be noted that this approach is different from
what we did in [2], where, in order to maintain smoothness
between any two neighbor patches, one needs, in each step
of the fitting algorithm, to adjust the geometric informa-

Fig. 8. Fitting examples
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tion calculation along their boundary curves. This makes
the fitting algorithm more complex.

Several examples are provided in Fig. 8 to illustrate
the stitching algorithm. In each of the examples, the first
image is the original mesh model which is partitioned into
six parts. The second image is the fitting result, and the last
is the result with parameter uv curves. The blue curves are
the boundary curves of the six parts of the mesh model.

6 Conclusions and future work

The paper presents a method for stitching several PHT sur-
face patches. The stitching method plays an important role
in complex surface modeling. As an application, we ap-

ply this method in constructing PHT-spline surfaces to fit
genus-zero meshes.

There are a number of issues for future research.
For example, we only discuss surface fitting of genus-
zero meshes in this paper. In the future, we will discuss
how to construct several polynomial spline surfaces over
hierarchical T-meshes to fit arbitrary topology triangle
meshes.
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