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Abstract

This paper addresses the problem of spherical
parametrization, i.e., mapping a given polygonal sur-
face of genus-zero onto a unit sphere. We construct an
improved algorithm for parametrization of genus-zero
meshes and aim to obtain high-quality surfaces fitting with
PHT-splines. This parametrization consists of minimizing
discrete harmonic energy subject to spherical constraints
and solving the constrained optimization by the Lagrange-
Newton method. We also present several examples which
show that parametric surfaces of PHT-splines can be
constructed adaptively and efficiently to fit given meshes
associated with our parametrization results.

Keywords. spherical parametrization, genus-zero
meshes, discrete harmonic energy, constrained optimiza-
tion, the Lagrange-Newton method

1. Introduction

Parametrization is an important problem in meshing data
processing. A parametrization of a polygonal mesh in 3D
space can be viewed as a one-to-one mapping from the
given mesh to a suitable domain which is also a mesh. Typ-
ically, if the mesh is simple, the suitable domain is a con-
nected region on the plane; and if the mesh is with genus-
zero, the domain is a unit sphere. Usually, the meshes con-
sist of triangles. Hence the mappings are piecewise linear
and we only need to compute the vertex positions of the
triangles.

Parametrizations have many applications in various
fields, including texture mapping, surface approximation
and remeshing, scattered data fitting, repair of CAD mod-
els, morphing, reparametrization of spline surfaces, and so
on [6]. For a specified application, some parametrization re-
sults might behave better than others. Here the choice of dif-

ferent parametrizations depends heavily on the application
details. Possibly a parametrization result behaves better for
texture mapping, but worse for surface fitting. For a genus-
zero mesh, there have existed some methods to parametrize
it onto a sphere. But according to our experiences, these
results are unfit for surface fitting with PHT splines [1]. In
[9], we proposed a method to obtain parametrization results
suitable for surface fitting. This method has some disad-
vantages as well, such as with the local bad shapes of the
triangles. Hence in this paper, we introduce a new method
to parameterize a genus-zero mesh such that the triangles in
the parametrization domain are with better shapes and a sur-
face fitting algorithm in PHT-splines can generate a better
result.

1.1. Related works

Now we review some previous works on mesh
parametrizations. For a more detailed summary, please re-
fer to [6, 12].

Most of planar parametrization methods establish map-
pings from a simple mesh to a planar domain by solving
linear equations system, such as [4, 5, 13]. Eck et al. [2]
introduced the discrete harmonic mapping to parameterize
a simple mesh. The methods proposed in the current paper
and [9], which are applied to genus-zero meshes, share the
same model as in the Eck’s method. The Eck’s method is
a quadratic minimization problem and also can be reduced
to a linear system of equations. But our model is for genus-
zero meshes.

Spherical parametrization methods build mappings from
a genus-zero surface to a sphere. There have been a lot of
interesting and novel methods in spherical parametrization.
Many of these methods are very similar to those mapping
simple meshes onto planar domains, whereas some of the
linear methods become non-linear versions. Haker et al. [8]
used a method which maps the given genus-zero mesh into
the plane and then uses stereographic projection to map to
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a sphere. Gu and Yau [7] gave an important point that har-
monic maps from a closed genus-zero mesh to a unit sphere
are conformal, which means harmonic and conformal maps
are the same with genus-zero meshes. Later, they proposed
an iterative method which approximates a harmonic map
without splitting. Praun and Hoppe [10] extended the defi-
nition of stretch to consider a spherical parametrization. For
any point inside, the Jacobian map provides a local approx-
imation for the mapping. Consequently, they defined the
stretch over the triangle with the singular values of the Ja-
cobian map.

In [9], a hierarchical method to parameterize a genus-
zero mesh to a unit sphere was presented. In the method,
a model of spherical parametrization based on minimiz-
ing the discrete harmonic energy [2] was proposed. Then
a model solving algorithm based on reset PRP conjugate
gradient method was introduced. In the algorithm, a hi-
erarchical idea was applied in order to reduce computing
time. All points were fixed layer by layer. Experien-
tially, this method is efficient, practical, and versatile for
different surfaces. It is more important that according to
our experiences, the PHT-spline surface fitting results with
hierarchical parametrization results are better than those
with other parametrization results. However, in the result
meshes, some triangles between two layers might have bad
shapes. And in the solving algorithm, there were many user-
specified parameters.

1.2. Our contribution

In this paper, we solve the model of mapping a
genus-zero surface to the unit sphere in [9] using the
Lagrange-Newton method. At first, the model of spherical
parametrization based on minimizing the discrete harmonic
energy is reviewed. Then we use the Lagrange-Newton
method to introduce a new stable spherical parametrization
algorithm which obtains result meshes with good shapes.

Based on our new parametrization results, a surface fit-
ting algorithm with PHT-splines [1] can generate good re-
sults, where parametric surfaces can be constructed effi-
ciently and adaptively to fit genus-zero meshes.

The paper is organized as follows. In Section 2, we re-
view the model and the algorithm proposed in [9]. In Sec-
tion 3, the Lagrange-Newton method is adopted to solving
the model. Then, the illustrative results of our solving algo-
rithm are provided in Section 4. Finally, we conclude this
paper in Section 5.

2. Review of the model based on discrete har-
monic mappings

In its surface fitting, the parametrization of a genus-zero
mesh over some standard domain is needed. Usually the

triangles in given meshes are with good shape, i.e., that the
three edges of the triangle do not change dramatically in
their lengthes. In order to obtain good fitting results, we
need the triangles in the parametrization domain to be with
good shapes as well. Hence, we should propose a mapping
from the given mesh to a unit sphere preserving the shapes
of the triangles.

Unfortunately, most of the existing spherical
parametrization methods do not fulfil this requirement. For
a simple mesh, Eck et al. [2] proposed a discrete harmonic
method which preserves the aspect ratios of triangles.
So in [9], the Eck’s model is generalized to spherical
parametrization. In the rest of the section, we review the
model and the solving algorithm.

2.1. The model

A triangular meshM = (V, E) is given with a set
of verticesV = {v1, . . . , vn} and a set of edgesE =
{(vi, vj) | vivj is an edge of the meshM}. Suppose thath
is any piecewise linear mapping fromM to a unit sphere
S2 ⊂ R3 with the restriction conditions

‖h(vi)‖2 = 1, ∀vi ∈ V. (1)

The mappingh is uniquely determined by its valuesh(vi)
at the vertices ofM . Then the discrete harmonic energy of
the mappingh associated with the meshM is defined as

f(h,M) =
1
2

∑

(vi,vj)∈E

κij ||h(vi)− h(vj)||2, (2)

where the spring constantsκij may be computed in many
ways. In most cases and the rest of the paper, uniform spring
constants are used, i.e.,κij = 1, for anyi andj.

Let h(vi) = Xi ∈ R3; x = (X1
T , X2

T , . . . , Xn
T )T ∈

Rm, wherem = 3n; D(i) = {j | (vi, vj) ∈ E}; andd(i)
denotes the element number of the setD(i). Then we can
setup the parametrization model by minimizing the discrete
harmonic energy in (2) with spherical constraints:

min f(x) =
1
2

n∑

i=1

∑

j∈D(i)

κij ||Xi −Xj ||2,

s.t. ci(x) = ||Xi||2 − 1 = 0, i = 1, . . . , n,

(3)

where, x is call the vector of optimization variables,
f(x) the objective function to be minimized,c(x) =
(c1(x), . . . , cn(x))T the vector of equality constraints.

2.2. The algorithm

The size of the constrained nonlinear programming prob-
lem (3) is quite large and these constrains cannot easily



be eliminated. In [9], a penalty function method is used
to solve this optimization problem, which needs to solve
a series of unconstrained optimization problem. The re-
set PRP conjugate gradient algorithm is used to solving the
large-scale unconstrained optimization problem. The con-
vergence rate is very slow. In order to reduce computing
time, we use a hierarchical idea. All points are fixed layer
by layer. After some points are fixed, the spherical con-
strains may be ignored, and the positions computation the
other points is similar to those in planar parametrization.
Finally, the points are mapped onto a unit sphere. This pro-
cedure leads to a disadvantage that some triangles along or
near the boundaries of two layers do not have good shapes.
See Figures 1 and 2 for examples.

On the other hand, the Lagrange-Newton algorithm is
suitable to solve the equality constraints optimization prob-
lem. The object function and all the constraints of the model
(3) are quadratic. We can easily give the explicit expres-
sions of the second order information to be computed in the
Lagrange-Newton method. Our main work is to pre-treat
data to simplify the process. This is what we do in the next
section.

3. The Lagrange-Newton method

The Lagrange-Newton method, one of the most efficient
numerical methods of solving optimization problems, is de-
veloped for problems with equality-type constraints. In the
method, the Newton procedure is applied to the first-order
optimality system, which has the form of a system of equa-
tions. The Lagrange-Newton method is locally quadrati-
cally convergent to the solution. This approach has been
successfully applied to a class of nonlinear constrained op-
timization problems.

3.1. Algorithm scheme

At first, we review the general scheme of the Lagrange-
Newton method. For an equality-type constrained optimiza-
tion problem,

min
x∈Rm

f(x),

s.t. c(x) = 0.
(4)

x is a Kuhn-Tucker point [3] if and only ifλ =
(λ1, . . . , λn)T ∈ Rn exists,

∇f(x)−∇c(x)T λ = 0,
−c(x) = 0.

(5)

According to the definition of the Lagrange function

L(x,λ) = f(x)− λT c(x), (6)

formulas (5) virtually solve the stable points of the La-
grange function (6). So all methods based on formulas (5)

are called the Lagrange methods. Given a current iterative
point (xk ∈ Rm,λk ∈ Rn), the Newton step of formulas
(5) is (δxk, δλ

k) which satisfies,
(
W (xk,λk) −A(xk)
−AT (xk) 0

)(
δx

k

δλ
k

)
=−

(∇f(xk)−A(xk)λk

−c(xk)

)
,

(7)
where,

A(x) = ∇c(x)T ,

W (x,λ) = ∇2f(x)−
n∑

i=1

λi∇2ci(x). (8)

It is well known that the basic Newton iteration only
achieves local convergence. A strategy for controlling the
step size is required to obtain global convergence. So we
define a penalty function,

P (x,λ) = ‖∇f(x)−A(x)λ ‖2 + ‖ c(x) ‖2, (9)

for determining the step sizeαk of thekth iteration, because
the correction

(
δx

k, δλ
k
)

satisfies

((
δx

k
)T

,
(
δλ

k
)T

)
∇P (xk,λk) = −2P (xk,λk) ≤ 0.

(10)
The direction represents a descent ofP (x,λ) at (xk,λk).
Then the new iteration is given by

xk+1 = xk + αkδx
k, λk+1 = λk + αkδλ

k. (11)

In the following, the line search Lagrange-Newton algo-
rithm based on formula (7) is given.

Algorithm 1 (the Lagrange-Newton Algorithm)

1.1 Give the initial value(x0,λ0), the tolerance errorε ≥
0, andβ = 0.5. Letk := 0;

1.2 ComputeP (xk,λk). If P (xk,λk) ≤ ε, stop the com-
putation; Otherwise, solve formula (7) to obtainδxk

andδλ
k, and letα ← 1;

1.3 If

P (xk + αδx
k,λk + αδλ

k) ≤ (1− βα)P (xk,λk),
(12)

goto Step 4; Otherwise,α←α/4, and return to Step 3;

1.4 Update
xk+1 = xk + αδx

k andλk+1 = λk + αδλ
k.

Setk ← k + 1, and return to Step 2.

3.2. Matrix computation of the model

For the given optimization model (3) of spherical
parametrization, we can get the expression of all matrices
in the Lagrange-Newton method.



Denote the submatricesW andA of the Hessian matrix
in the formula (7) as the form of block matrices,




W11 W12 · · · W1n

W21 W22 · · · W2n

...
...

...
...

Wn1 Wn2 · · · Wnn


 ,




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

An1 An2 · · · Ann


 ,

where,

Wij =
∂2L

∂Xi∂Xj

=




∂2L

∂Xi1∂Xj1

∂2L

∂Xi1∂Xj2

∂2L

∂Xi1∂Xj3
∂2L

∂Xi2∂Xj1

∂2L

∂Xi2∂Xj2

∂2L

∂Xi2∂Xj3
∂2L

∂Xi3∂Xj1

∂2L

∂Xi3∂Xj2

∂2L

∂Xi3∂Xj3




,

Aij =
∂2L

∂λi∂Xj
=




∂2L

∂λi∂Xj1
∂2L

∂λi∂Xj2
∂2L

∂λi∂Xj3




.

HereWij is a3×3 matrix, andAij is a3×1 vector. Usually,
the uniform spring constantsκij = 1 are used. From the
model (3), we can obtain the Lagrange function as follows:

L(x,λ) = f(x)−
n∑

i=1

λici(x)

=
1
2

n∑

i=1

∑

j∈D(i)

‖Xi −Xj ‖2 −
n∑

i=1

λi(‖Xi ‖2 − 1).

And, in term of the formula (8), all the matrices to be com-
puted can be expressed as follows:

Wij =





(
2d(i)− 2λi

)
I3, i = j,

−2I3, i 6= j, j ∈ D(i),
0, otherwise.

Aij =
{

2Xi, i = j,
0, otherwise.

The right part of equation (7) is

∇Xif = 2
∑

j∈D(i)

(Xi −Xj).

Now, we have obtained the expression of all the matrices.
In the following subsection, how to solve the corresponding
large-scale linear system (7) is discussed.

3.3. Solving the linear system

Denote the linear system (7) as

Hx = b. (13)

It is easy to show that the matrixH is highly sparse and
symmetrical. In our experience, the case that the matrixH
is singular occurs extremely rarely, and we can change the
initial value to avoid the singular matrix. Hence, we can
assume that the matrixH is nonsingular.

For a large-scale sparse linear system of equations, if
its coefficient matrix is symmetric and positive definite, the
Cholesky decomposition is generally applied. This method
is efficient and robust. The linear system (13) is equivalent
to

HT Hx = HT b.

According to the properties of the matrixH, the new coef-
ficient matrixHT H is highly sparse, symmetrical, and pos-
itive definite. Then the Cholesky decomposition can be ap-
plied ontoHT H. In the implementation, we use a scheme
called row-indexed sparse storage mode, which requires
storage of only about two times the number of nonzero ma-
trix elements, to store the large coefficient matrix. The row-
indexed storage mode is introduced in detail in [11].

In a valid parametrization result, overlapped parts should
be eliminated. We use the same method as in [9] to detect
overlapping. An overlapping is a region on the parametriza-
tion result, where there exists reverse triangles, whose nor-
mals are opposite to the normals of their neighbor triangles.
We find these reverse triangles by testing the orientation of
the sequence vertices along the boundary of each face. It
is important that the three vertices are recorded in a clock-
wise turn. This can be computed by estimating the sign of(
(vj2 − vj1)× (vj3 − vj1) · vj1

)
, wheretj = (vj1vj2vj3) is

a triangle.
Starting with the given mesh as the initial value, the new

mesh can be obtained using Algorithm 1. While overlaps
exist in the current mesh, we update the tolerance error by
mutiltying the error by a factorθ ∈ (0, 1), sayθ = 0.5,
and use Algorithm 1 to get a new mesh. Repeat this work
until there are no overlapped part in the obtained mesh. This
mesh is a valid parametrization result.

4. Results and discussion

The statistical data of some spherical parametrization re-
sults using the solving algorithm are provided in Table 1.

From Table 1, it is known that, compared with hierar-
chical method in [9], our new method cannot reduce com-
puting time effectively. But the new method is improved at



Model Num. Num. Runtime Num.
vertices faces (seconds) iterations

Bishop 250 496 0.891 16
Blob 8036 16068 85 10
Venus face 8268 16532 34 3
Venus body 11362 22720 52 4
Gargoyle 10002 20000 50 4
Cow 11610 23218 201 14
Skull 20002 40000 560 24

Table 1. Genus-zero examples

two main points. Firstly, the triangles in new parametriza-
tion results are with better shapes. The local comparison
will be provided in the next subsection. Secondly, the new
parametrization algorithm is more automatically. In the hi-
erarchical algorithm, there are many parameters to be spec-
ified by users. And in the new algorithm, only one parame-
ter, which is the global tolerance error, need to be given.

4.1. Local shape comparison

In Figures 1 and 2, the triangle local shape compari-
son is provided. In all the figures, there is a point labeled
with a red square to identify the same vertex in the original
meshes, the whole parametrization results with the meth-
ods in [9] and in the current paper, and the local zoom-in
triangles, respectively.

With the local zoom-in viewports, we can see that the
results using hierarchical method usually have some lathy
triangles, and the corresponding triangles in the new results
are more better.

4.2. Surface fitting

Based on PHT-spline spaces, parametric surfaces can
be constructed efficiently and adaptively to fit a genu-zero
mesh after its spherical parametrization has been obtained.
In [1] a surface fitting algorithm with PHT-splines is pro-
posed. Now we apply this algorithm to fit genus-zero
meshes based on their spherical parametrizations. In Figure
3, we can see that the new result, especially parts around
eyes, nose, forehead and cheek, is better than that with
the hierarchical parametrization results. Figure 3(a) and
3(d) are the whole fitting surfaces based on the different
parametrization results; 3(b) and 3(c) are the local details
of 3(a), while 3(e) and 3(f) are the local details of the new
result 3(d).

(a)

(b) (c)

(d) (e)

Figure 1. The parametrization results of the
model Blob. (a): the original mesh. (b): the
parametrization result using the hierarchical
method in [9]. (d): the parametrization result
using the Lagrange-Newton method in this
paper. (c) and (e): the local details compari-
son of the parametrization results (b) and (d).

5. Conclusions

We have presented a new approach based on the
Lagrange-Newton method to solve the spherical parameter-
ization model of a genus-zero mesh proposed in [9]. Com-
pared with the hierarchical algorithm, the new approach has
improved the results in two points: the local shapes of the
triangles and less user-specified parameters. Specially, the
PHT-spline surface fitting results with the new parametriza-
tion results are better than those with hierarchical results.

In the future, we will focus on the following works:

• Now, we use the discrete harmonic energy as the objec-
tive function, and obtain the results with good shapes.
But, the size of triangles are different widely. So a bet-
ter objective function or a new storage structure may
be given.

• In this paper, the genus-zero surfaces can be param-
eterized efficiently. The parametrization method of
higher genus surfaces can be generalized from this
method.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The parametrization of the model
Gargoyle. (a) and (d): the diffirent sides
of the original mesh. (b): the parametriza-
tion result using the hierarchical method in
[9]. (e): the parametrization result using the
Lagrange-Newton method in this paper. (c)
and (f): the local details comparison of the
parametrization results (b) and (e).
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