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Abstract

In this paper, we introduce a new type of splines — polynomial splines over hierarchical T-meshes (called
PHT-splines) to model geometric objects. PHT-splines are a generalization of B-splines over hierarchical
T-meshes. We present the detailed construction process of spline basis functions over T-meshes which satisfy
some good properties with B-splines, such as nonnegativity, local support and partition of unity. As two
fundamental operations, cross insertion and cross removal of PHT-splines are discussed. With the new splines,
surface models can be constructed efficiently and adaptively to fit open or closed mesh models, where only
linear systems of equations with a few unknowns are involved. With this approach, a NURBS surface can
be efficiently simplified into a PHT-spline which dramatically reduces the superfluous control points of the
NURBS surface. Furthermore, PHT-splines allow of several important types of geometric processing in a
natural and efficient manner, such as segmentation of a PHT-spline into an assembly of NURBS patches,
and shape simplification of PHT-splines over a coarser T-mesh. PHT-splines not only inherit many good
properties of Sederberg’s T-splines such as adaptivity and locality, but also exceed T-splines in several aspects
except that they are only C

1 continuous. For example, PHT-splines are polynomial instead of rational; cross
insertion/removal of PHT-splines is local and simple; and conversion between a NURBS surface and a PHT-
spline is very effective.

Keywords T-mesh, T-splines, NURBS, local refinement, surface fitting, shape simplification

1 Introduction

A serious weakness with NURBS models is that they contain a large number of superfluous control points. T-
splines [16] overcome such weakness by allowing T-junctions in the control meshes, and thus provide adaptiveness
and flexibility in modeling geometric objects. In this paper, we introduce a new type of splines — polynomial
splines over hierarchical T-meshes, called PHT-splines. A PHT-spline is a piecewise bicubic polynomial with
respect to a hierarchical T-mesh. The basis functions of PHT-splines have good properties with B-splines, such
as nonnegativity, local support and partition of unity. Thus PHT-splines are a generalization of B-splines over
hierarchical T-meshes.

With the new splines, surface models can be constructed very efficiently and adaptively to fit open or closed
meshes (with genus zero), where only linear systems of equations with a few unknowns are involved. Figure 1
illustrates an example where the female head mesh has 19,231 points and 38,388 triangular faces. Provided the
mesh parameterization is given, which is not time-consuming with an up-to-date parameterization algorithm, a
PHT-spline surface can be constructed to fit the mesh model in about two seconds with an ordinary personal
computer. Further examples in Section 5 show that the complexity of our surface fitting algorithm is almost
linear with respect to the mesh size.

The surface fitting algorithm can be easily adapted to approximate a NURBS model with a PHT-spline. Thus
conversion from NURBS models to PHT-splines is very effective. As a comparison, it is reported by Zheng that
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a. Original model b. Step 1 c. Step 2 d. Step 4 e. Step 6 f. Step 10 g. Result surface

Figure 1: Fitting a mesh model (courtesy of Open3DProject) with polynomial splines over a hierarchical T-mesh.
The curves on the surfaces from b to f are the images of the hierarchical T-mesh.

fitting a z-map model of about 10,000 points with T-splines takes about 30 minutes [19].

Figure 2 is another example which compares the NURBS model of an ear (from http://www.b3dscann.com/-
samples.htm) and the fitting results of the ear model with PHT-splines. Figure 2.a shows a part of the NURBS
model which has wrinkles, gaps and self-intersections, while Figure 2.b is a part of the PHT-spline model which
looks much smoother and fairer than the original NURBS model.

si

wr

gp

a. NURBS b. PHT-spline

Figure 2: Comparison of fitting results (si: self-intersection, gp: gap, wr: wrinkle). (a) The original NURBS
model. (b) The PHT-spline fitting model. The part in the red frame in (b) corresponds to (a).

The local refinement of PHT-splines is another important operation in PHT-spline theory. Due to the nature of
hierarchical T-meshes, the local refinement of PHT-splines can be achieved by cross insertion, i.e., dividing a cell
into four subcells with a cross. The converse process is called cross removal. Many important types of geometric
processing such as surface fitting, conversion between NURBS and PHT-splines, segmentation of PHT-splines,
shape simplification, etc. all heavily depend on cross insertion/removal operation. We will present a local and
simple cross insertion/removal algorithm and apply it in several geometric processing applications such as surface
fitting, shape segmentation and simplification.

1.1 Related work

In geometric modeling, the representation of surfaces is a fundamental research topic. Computer graphics and
computer aided design communities prefer parametric surfaces, especially tensor product (TP for short) B-spline
surfaces. However, TP B-spline surfaces suffer from the weakness that the control points must lie topologically
in a rectangular grid. Thus local refinement with a TP B-spline surface is difficult. To solve this problem, [7]
invented hierarchical B-splines by introducing two concepts: local refinement using an efficient representation
and multi-resolution editing. Other related work on hierarchical B-splines includes [10, 13, 17]. An innovation
along this direction is the invention of T-splines by Sederberg [16]. A T-spline is a point-based spline defined
over a T-mesh. For every vertex, a basis function is defined. Each of the basis functions comes from some TP
spline space. T-splines support many valuable operations within a consistent framework, and most importantly,
they can eliminate most superfluous control points in NURBS representations and they permit local refinement.
However, the local refinement of T-splines depends on the structure of the T-mesh, and its complexity might be
uncertain [15]. The reason leading to this problem is that the spline function over each cell of the T-mesh is not
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a polynomial, but a piecewise function. On the other hand, since the basis functions do not form a partition
of unity, T-splines are rational, which leads to complicated computations in subsequent geometric operations.
Sederberg [15] put forward the problem on how to construct polynomial T-splines.

1.2 Overview

The main contribution of this paper is the invention of a new type of splines–polynomial splines over hierarchical
T-meshes (called PHT-splines) in geometric modelling. PHT-splines not only inherit the main properties of
T-splines such as adaptivity, but also exhibit several advantages over T-splines. For example, unlike T-splines,
PHT-splines are polynomial instead of rational; The local refinement algorithm of PHT-splines is local and
simple; And conversion between NURBS and PHT-splines is very fast. However, conversion between NURBS
and T-splines is a bottleneck of T-splines in practical applications.

The remainder of the paper is organized as follows. In Section 2, we introduce polynomial spline spaces over
T-meshes and the dimension formula proved in [2]. Section 3 describes in detail the construction of the basis
functions of a spline space over a hierarchical T-mesh. The properties of the basis functions are discussed and
PHT-spline surfaces are introduced. Section 4 presents two important operations — cross insertion and removal
in PHT-spline theory. In Section 5, we propose a surface fitting scheme to fit open and closed meshes of genus-
zero with PHT-splines. In Section 6, some types of geometric processing such as shape segmentation and shape
simplification are discussed. Section 7 concludes the paper with a summary and some future work.

2 Polynomial Splines over T-meshes

In this section, we briefly review the definition of T-meshes, and then introduce polynomial spline spaces over
T-meshes. The dimension formula of the spline space is given.

2.1 T-meshes

A T-mesh is basically a rectangular grid that allows T-junctions [2, 16]. It is assumed
that the end points of each grid line in the T-mesh must be on two other grid lines,
and each cell or facet in the grid must be a rectangle. Figure 3 shows an example
of a T-mesh. A grid point in a T-mesh is also called a vertex of the T-mesh. If a
vertex is on the boundary grid line of the T-mesh, then is called a boundary vertex.
Otherwise, it is called an interior vertex. For example, bi, i = 1, . . . , 10, in Figure 3
are boundary vertices, while all the other vertices vi, i = 1, . . . , 5, are interior vertices.
Interior vertices have two types. One is crossing, for example, v2 in Figure 3; and the
other is T-junctional, for example, v1 in Figure 3. They are called crossing vertices
and T-vertices respectively. The line segment connecting two adjacent vertices on a
grid line is called an edge of the T-mesh.

b1 b2 b3

b4

b5

b6b7b8

b9

b10 v1 v2

v3 v4 v5

bc bc

bc bc bc

bc bc bc

bc

bc

bcbcbc

bc

bc

Figure 3: An example of a
T-mesh

2.2 Spline spaces over T-meshes

Given a T-mesh T , F denotes all the cells in T and Ω the region occupied by all the cells in T . Define

S(m, n, α, β, T ) :=
{
s(x, y) ∈ Cα,β(Ω)

∣∣∣s(x, y)|φ ∈ Pmn for any φ ∈ F
}
,

where Pmn is the space of all the polynomials of bi-degree (m, n), and Cα,β(Ω) is the space consisting of all the
bivariate functions which are continuous in Ω with order α along x direction and with order β along y direction.
It follows that S(m, n, α, β, T ) is a linear space. It is called the spline space over the given T-mesh T .

In this paper, we are interested only in the spline space S(3, 3, 1, 1, T ), i.e., C1 continuous bicubic splines.
According to Theorem 4.2 in [2], it follows that

dimS(3, 3, 1, 1, T ) = 4(V b + V +), (1)
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where V b and V + represent the number of boundary vertices and interior crossing vertices, respectively. The
dimension formula gives us a hint on how to construct basis functions for the spline space, i.e., each boundary
vertex or interior crossing vertex associates with four basis functions. This observation will be further explored
in the construction of the basis functions in the next section. Hence later on if a vertex is a boundary vertex or
an interior crossing vertex, we call it a basis vertex. This spline space defines a function with only C1 continuous,
whereas bicubic splines are usually C2 continuous. But this low smoothness can help us to propose an efficient
surface fitting algorithm in Section 5. Furthermore, the implicit form of our new splines should be very useful in
curve/surface reconstruction since a set of basis functions are available [12, 18].

3 Basis Functions of PHT-splines

Instead of considering general T-meshes, we restrict our attention to hierarchical T-meshes, since such meshes
do not lose the main property — adaptivity of general T-meshes. We construct a set of basis functions over
hierarchical T-meshes which exhibit many good properties with B-splines such as nonnegativity, local support
and partition of unity. The basis functions directly lead to the construction of polynomial splines over hierarchical
T-meshes.

3.1 Hierarchical T-meshes

A hierarchical T-mesh is a special type of T-mesh which has a natural level structure. It is defined in a recursive
fashion. One generally starts from a TP mesh (level 0). From level k to level k + 1, one subdivide a cell at level
k into four subcells which are cells at level k + 1. For simplicity, we subdivide each cell by connecting the middle
points of the opposite edges with two straight lines. Figure 4 illustrates the process of generating a hierarchical
T-mesh.

a. Level 0 b. Level 1 c. Level 2

Figure 4: A hierarchical T-mesh

Hierarchical T-meshes have appeared in many research disciplines in computer science, computational mathemat-
ics, and so on. For example, adaptive finite elements [20, Chapter 15] and hierarchical B-splines [7] are defined
over hierarchical T-meshes.

3.2 Construction of basis functions

Before constructing the basis functions, we point out some basic facts. Let t0, t0 = t1, t1 < t2, t2 < . . . <

tp−2, tp−2 < tp−1, tp−1 = tp, tp be the knot vector of a C1 continuous cubic spline, where every interior knot is
with multiplicity two. For any interior knot ti, only two B-spline basis functions have support [ti−1, ti+1]. These
two basis functions are associated with knot vectors (ti−1, ti−1, ti, ti, ti+1) and (ti−1, ti, ti, ti+1, ti+1) respectively.
Except for the two basis functions, all the other B-spline basis functions and their derivatives vanish at ti.
Generalize this fact to C1 continuous bicubic TP B-splines, for any interior knot vertex (si, tj), where si and tj
are the knots in two directions respectively, only four B-spline basis functions have support [si−1, si+1]×[ti−1, ti+1].
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a. A function f(s, t) is defined
with the given Bézier ordinates.

b. f(s, t) is subdivided into four
subcells. The square shaped
vertices are new basis vertices.

c. The Bézier ordinates around
the new basis vertices are re-
set to zero. Though f(s, t)
is changed, it still lies in
S(3, 3, 1, 1, Tk+1).

Figure 5: Modification of a basis function

We say these four basis functions are associated with the vertex (si, tj). The function values, the first order partial
derivatives and the mixed derivatives of all the other B-spline basis functions vanish at (si, tj).

The basic strategy to construct the basis functions for the spline space S(3, 3, 1, 1, T ) is level by level. Denote
the T-mesh at level k by Tk. For level 0, the standard TP B-spline basis functions are taken to be the basis
functions over the initial TP mesh T0 , where every basis vertex associates with four basis functions according to
the analysis in the beginning of the subsection. Obviously, these basis functions satisfy the good properties such
as nonnegativity, local support and partition of unity. Now suppose the basis functions {bk

j (u, v)}, j = 1, . . . , dk

at level k have been constructed, and these basis functions satisfy the good properties, i.e.,
∑dk

j=1 bk
j (u, v) ≡ 1,

bk
j (u, v) > 0, and for each j, bk

j (u, v) has local support. Then the basis functions at level k + 1 consist of two
parts. The first part comes from the modification of the basis functions at level k. The second part comes from
the basis functions associated with the new basis vertices at level k + 1. The basis functions generated at level
k + 1 keep the same good properties as the previous level.

Now we describe the details of constructing the basis functions at level k + 1. For brevity, a basis function is
represented by specifying its 16 Bézier ordinates in every cell within the support of the basis function.

3.2.1 Modification of the basis functions at level k

Suppose, among all the cells at level k, the cells θk
i , i = 1, . . . , Ck, are subdivided. For each j, if the basis function

bk
j (u, v) does not vanish in some cells of {θk

i }, then subdivide bk
j (u, v) into these cells at level k + 1 according to

formula (14.15) in [4]. See Figure 5.a and Figure 5.b on the next page for an example. It should be noted that
the function bk

j (u, v) has not changed, but is now defined over the mesh Tk+1.

From Tk to Tk+1, some new basis vertices appear. Denote them as ξk+1
i , i = 1, . . . , Vk+1.

In each cell at level k +1, the 16 Bézier ordinates are divided into four parts. Each part
is associated with a cell corner vertex as shown in Figure 6. Then all the basis functions
{bk

j (u, v)} at level k are modified to {b̄k
j (u, v)} in the following fashion: for each j, reset

all the associated Bézier ordinates with the new basis vertices to zero. See Figure 5(c)
for an example, where there are three new vertices.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 6: The Bézier
ordinates are associated
with the four corner
vertices

One can show that {b̄k
j (u, v)} are in S(3, 3, 1, 1, Tk+1).
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3.2.2 Adding new basis functions at level k + 1

For each new basis vertex (si, ti), its neighboring cells must lie in a position as shown
in Figure 7. Then the four basis functions associated with (si, ti) are defined to be
M3

ik(s)N3
il(t), k, l = 1, 2, where M3

i1(s), M3
i2(s), N3

i1(t), and N3
i2(t) are the cubic B-

spline basis functions associated with the knot vectors (si−1, si−1, si, si, si+1), (si−1,
si, si, si+1, si+1), (ti−1, ti−1, ti, ti, ti+1) and (ti−1, ti, ti, ti+1, ti+1), respectively.
If (si, ti) is a boundary vertex, then either si−1 = si, or si+1 = si, or ti−1 = ti or
ti+1 = ti.

It is easy to show that these four basis functions are in S(3, 3, 1, 1, Tk+1) and they have
the same support [si−1, si+1] × [ti−1, ti+1]. Denote all the basis functions associated

with the new basis vertices as {b̃k+1
j (u, v)}

4Vk+1

j=1 .

(si, ti)
bcbc bc

bcbc bc

bcbc bc

(si−1, ti) (si+1, ti)

(si, ti−1)

(si, ti+1)

Figure 7: A new basis
vertex and its neighbor-
ing cells

From the previous construction process, it is easy to see that {b̃k+1
j (u, v)}

4Vk+1

j=1 and {b̄k
j (u, v)}dk

j=1 are linearly
independent. Since dk+1 = dk + 4Vk+1 according to the dimension formula (1), these functions form a basis for

the spline space S(3, 3, 1, 1, Tk+1), and are denoted as {bk+1
j (u, v)}

dk+1

j=1 .

3.3 Properties of the basis functions

The basis functions constructed in the last subsection satisfy the following properties:

• Nonnegativity. This follows from the fact that each basis function has nonnegative Bézier ordinates.

• Partition of unity. Define

s1(u, v) =

4Vk+1∑

j=1

b̃k+1
j (u, v), s2(u, v) =

dk∑

j=1

b̄k
j (u, v).

Check the Bézier ordinates of s1(u, v) and s2(u, v) in every cell. For s1(u, v), the Bézier ordinates associated
with the new basis vertices are one, and all the others are zero; for s2(u, v), the Bézier ordinates associated
with the new basis vertices are zero, and all the others are one. Hence it follows that s1(u, v)+s2(u, v) ≡ 1.

• Local support. From the construction of the basis functions, the support for each basis function is inside
a rectangle, and its size decreases level by level. In fact, the rectangular support for each basis function has
the following properties: 1. It is bounded by edges in the mesh. 2. Suppose the basis vertex associating
with the basis function is v. If v is an interior vertex, then it lies in the interior of the rectangle. Otherwise
it lies on the boundary of the rectangle. 3. The rectangle has the minimal size among all the rectangles
satisfying the previous two properties.

Next we study another important property of the basis functions. For any basis function b(u, v), we define a
geometric information (the function value, the first order partial derivatives and the mixed partial derivative)
operator by

Lb(u, v) =
(
b(u, v), bu(u, v), bv(u, v), buv(u, v)

)
. (2)

It follows that L(·) is a linear operator and satisfies the following properties:

• For any basis function b(u, v) and any basis vertex (u0, v0) in T , Lb(u0, v0) = 0 holds for all the basis
functions, except for the four basis functions associated with the basis vertex (u0, v0).

• For a basis vertex (u0, v0) which appears in the hierarchical T-mesh since level k0, Lbk
j (u0, v0) remains

unchanged for any k > k0. Here bk
j (u, v) is a basis function constructed at level k.

This is true since the Bézier ordinate modification happens only around the new basis vertices. These observations
are important for the surface fitting algorithm developed in Section 5.
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3.4 PHT-spline surfaces

Let T be a hierarchical T-mesh, and {bj(u, v)}, j = 1, . . . , d be the basis functions constructed in Subsection 3.2.
Then the polynomial spline surface over T (called PHT-spline surface) is defined by

S(u, v) =

d∑

j=1

Cjbj(u, v), (u, v) ∈ [0, 1] × [0, 1], (3)

where Cj are control points in a column vector form. PHT-spline surfaces have similar properties with B-spline
surfaces such as convex-hull property, affine invariant, local support, etc..

To efficiently manipulate and evaluate a PHT-spline surface, one should maintain the Bézier representation of
the PHT-spline surface in every cell, since the basis functions are represented in Bézier forms in every cell. The
geometric processing algorithms in later sections rely on such representation.

Since the operator L(·) in Equation (2) is linear, for any fixed basis vertex (u0, v0) with which four basis functions
with indices j1, j2, j3, j4 are associated, one has

LS(u0, v0) =

d∑

j=1

CjLbj(u0, v0) =

4∑

i=1

Cji
Lbji

(u0, v0) = C · b,

where C = (Cj1 ,Cj2 ,Cj3 ,Cj4) is a 3× 4 matrix, and b =
(
Lbj1(u0, v0),Lbj2(u0, v0),Lbj3 (u0, v0),Lbj4(u0, v0)

)
is

a 4 × 4 matrix.

Suppose the measurement of the T-mesh T around the basis vertex (u0, v0), when (u0, v0) just appears in T , is
as shown in Figure 8. Here the black dots illustrate the locations of Bézier ordinates. Then it follows that

b b

b b

b b

b b
b b

b b

b b

b b

∆v1

∆v2

∆u1 ∆u2

Figure 8: The size of the T-mesh T around a new basis vertex

b =




(1 − λ)(1 − µ) −α(1 − µ) −β(1 − λ) αβ

λ(1 − µ) α(1 − µ) −βλ −αβ

(1 − λ)µ −αµ β(1 − λ) −αβ

λµ αµ βλ αβ


 ,

where

α =
1

∆u1 + ∆u2
, β =

1

∆v1 + ∆v2
, λ = α∆u1, µ = β∆v1.

The matrix b is invertible and one has
C = LS(u0, v0) · b

−1. (4)

The above formula reflects the relationship between the control points and the geometric information at the basis
vertices of a spline surface over a (hierarchical) T-mesh. An efficient surface fitting scheme will be proposed in
Section 5 based on Equation (4).
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4 Cross Insertion and Removal

Knot insertion and removal operations play an important role in curve and surface modeling with standard B-
splines. For PHT-splines, cross insertion and removal operations play the same role as knot insertion and removal
with B-splines. Many geometric processing applications such as surface fitting, NURBS simplification (Section
5), segmentation to TP surfaces, and shape simplification (Section 6) all heavily depend on these two operations.

4.1 Cross insertion

Suppose we are given a PHT-spline surface S(u, v) over a hierarchical T-mesh T as defined in (3), and a cell θ

from T is subdivided into four subcells by inserting a cross. Denote the new T-mesh after subdivision by T̃ . We
want to find the representation of S(u, v) over the new T-mesh T̃ .

Suppose the level of the cell θ in T is k1, and the maximal level of the adjacent cells of θ is k2. If k1 > k2−1, then
the old control points Cj are unchanged, and for each new basis vertex in T̃ , the associated basis functions can
be constructed as described in Subsection 3.2, and the corresponding control points are determined according to
Equation (4).

If k1 < k2 − 1, the process is a bit more complicated. We need to remove temporarily the cells adjacent to θ

whose levels are larger than k1 + 1, and then perform cross insertion for θ. After this process, we perform cross
insertion algorithm to recover those removed cells level by level.

It should be noted that all the operations take place in θ and its adjacent cells, hence the operation is local.
Furthermore, k1 > k2 − 1 is the most common case in geometric processing applications.

4.2 Cross removal

Cross removal is the converse operation of cross insertion. For simplicity, we require that the mesh after cross
removal is still a hierarchical T-mesh. Like knot removal, cross removal can be achieved only approximately in
general.

Let S(u, v) be a PHT-spline surface over a hierarchical T-mesh T , and T̃ be the mesh after removing a cross

from T . Let θ be the cell in T̃ from which the cross is removed. Our idea is to find a PHT-spline surface S̃(u, v)

defined over T̃ such that S(u, v) and S̃(u, v) share the same geometric information at the basis vertices of T̃ .
This requirement guarantees that S̃(u, v) ≡ S(u, v) whenever S(u, v) is obtained from S̃(u, v) by inserting the
cross in θ.

The basic approach is as follows. First, eliminate those terms in S(u, v) whose corre-
sponding basis functions are associated with the basis vertices in T but not in T̃ to obtain
S̄(u, v). Second, modify the basis function bi(u, v) in each term of S̄(u, v) to b̃i(u, v) while
keeping the corresponding control points unchanged. The requirement is that {b̃i(u, v)}
form a basis for the spline space S(3, 3, 1, 1, T̃ ), and that bi(u, v) and b̃i(u, v) share the
same geometric information at the basis vertices of T̃ . Over the cell θ as shown in Figure
9, the Bézier representation of b̃i(u, v) can be easily obtained from the 16 black Bézier
ordinates which come from bi(u, v). In the adjacent cells of θ, the modification is similar.
Note that only those basis functions need to be modified which do not vanish over θ or
its adjacent cells.

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b b

Figure 9: Cross removal

5 Surface Fitting

Surface fitting is a widely investigated problem and there is a wealth of literature focusing on it. The reader
is referred to [1, 8] for surveys. In this paper, we are going to present a very efficient scheme to fit a mesh
model with a PHT-spline. The scheme directly leads to an efficient method to convert a NURBS surface into a
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PHT-spline, and a NURBS model into a few PHT-spline patches which are C1 continuous globally. It should be
noted that if one tries to solve the fitting problem by the least-squares method, a system of linear equations of
huge size would be involved.

5.1 Fitting open meshes

Suppose we are given an open mesh model with vertices Pi, i = 1, 2, . . . , N in 3D space, and their corresponding
parameter values (si, ti), i = 1, 2, . . . , N obtained from some parameterization of the mesh (The reader is referred
to [5, 6] for a survey about mesh parameterization). The parameter domain is assumed to be [0, 1]× [0, 1].

According to Equation (4), in order to construct a PHT-spline to fit the given mesh, one only has to estimate
LS(u, v) at every basis vertex. This can be done in the following two steps. First, compute LS(si, ti). To do
so, we find a set of points in the neighborhood N (Pi) of Pi, and then fit the set of points with a quadratic
surface patch. The required information can be obtained by evaluating the surface patch at (si, ti). Next,
the geometric information LS(u, v) at every basis vertex can be calculated by a simple linear interpolation to
LS(si, ti), i = 1, 2, . . . , N .

The surface fitting scheme repeats the following two steps until the fitting error in each cell is less than some
tolerance ε:

1. Keep unchanged the control points associating with the old basis functions, and compute the control points
for the new basis functions (in the beginning, every basis function is new) according to Equation (4);

2. Determine the cells whose fitting errors are greater than ε, and then subdivide these cells into subcells to
form a new mesh, and construct basis functions for the new mesh.

Here the fitting error over a cell θ is defined to be

max
(u,v)∈θ

‖P(u, v) − S(u, v)‖,

where P(u, v) is the (piecewise linear) parametric equation of the mesh. In practice, the fitting error is calculated
as the maximum of ‖P(ui, vi) − S(ui, vi)‖ for some sample points (ui, vi) in θ.

Three examples are provided to illustrate the above surface fitting scheme in Figures 1 and 10. In all these
examples, the initial T-meshes are the square [0, 1] × [0, 1], and the parameterizations are obtained with the
discrete harmonic mappings proposed by [3]. The tolerance of the fitting error is ε = 0.1%. Table 1 shows the
computational time for the three examples, where CP stands for control points. The computation is performed
on a PC with Pentium 4 CPU, 3.20GHz and 1.0GB RAM. From the examples, we can conclude that the
computational complexity is almost linear in the mesh size.

Table 1: Computation time for fitting open meshes
Mesh #points #levels # CP Time(sec.)

Female head 19,231 10 4,432 2.31
Igea Artifact 44,992 9 17,744 10.73
Gargoyle 91,279 17 35,764 33.23

5.2 Fitting closed meshes

Many geometric models are described by closed meshes of genus-zero. For such models, the unit sphere is the
most natural parameterization domain. In this section, we propose a method to fit a closed mesh model with
a family of PHT-splines which are pieced together with C1 continuity. The method relies on the spherical
parameterization of closed meshes. The reader is referred to [9, 11, 14] for some references on this topic.

The basic idea is as follows. Find an inscribed cube for the sphere of the parameterization domain, and project
the six faces of the cube onto the sphere by the central projection from the center of the sphere. The sphere
is divided into six parts corresponding to the six faces, and correspondingly the mesh model is divided into six
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Igea Artifact

Gargoyle with a bottom hole
Original meshes Result surfaces Surfaces with T-meshes

Figure 10: Two examples of fitting open meshes

parts by the spherical parameterization. This induces a planar parameterization for each part of the mesh model.
Fitting each part of the mesh by a PHT-spline results in a surface model for the closed mesh.

To guarantee the smoothness between two adjacent PHT-splines, one should ensure that the two corresponding
T-mesh domains share the same boundary vertices along their common edges when subdividing cells in the fitting
process, and that the geometric information at boundary basis vertices is the average information of the two parts
along the common edges. In this fashion, the final PHT-spline surface is C1 continuity except at the corners,
where G1 smoothness is obtained.

Figure 11 illustrates two examples for fitting closed meshes with PHT-splines, and Table 2 shows the execution
time. Again the computational complexity is linear in the mesh size.

Santa Clause model

Ear model

Figure 11: Two examples of fitting closed meshes (Courtesy of Berding 3D Scanning (http://www.b3dscann.com/-
samples.htm))

When modeling geometric objects with NURBS, it is a hard problem to smoothly piece the NURBS patches
together. PHT-splines demonstrate a promising approach to solve the problem. Furthermore, the number of
PHT-spline patches is much fewer (compare 914 NURBS patches with 6 PHT-spline patches for the ear model!).
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Table 2: Computation time for fitting closed meshes
Mesh #points #levels #CP Time(sec.)

Santa Claus 46,048 11 23,552 8.52
Gargoyle 100,002 11 50,652 23.22
Ear 1,407,202 9 58,876 304.25

5.3 NURBS approximation

The surface fitting scheme provided in the previous subsections can be easily adapted to converting a NURBS
surface into a PHT-spline surface. Since the local geometric information can be directly obtained from the
NURBS surface, the algorithm is much faster. Figure 12 demonstrates an example. The conversion process takes
0.875 seconds from a to b/c, and 0.125 seconds from a to d/e.

a b c d e

Figure 12: NURBS approximation. a. The original NURBS surface with 8835 control points. b and c: A
PHT-spline approximation with 4404 control points. ε = 0.35%. e and f: A PHT-spline approximation with 468
control points. ε = 1.1%.

6 Geometric Processing

PHT-splines allow of many types of geometric processing. For example, in the same approach as in [16], two
or more PHT-splines can be stitched together. The surface fitting scheme for closed meshes in Subsection 5.2
provides another approach for merging two PHT-spline surfaces. On the other hand, similar to [7], the local
details can be added onto the shape of the PHT-spline surfaces by mesh refinements.

In this section, more types of geometric processing on PHT-splines will be explored briefly. They include seg-
mentation of a PHT-spline into an assembly of TP B-splines and shape simplification.

6.1 Segmentation of PHT-splines

Given a PHT-spline defined over a hierarchical T-mesh, the PHT-spline can be easily converted into a family
of TP B-spline patches. This process is called segmentation. Segmentation makes it easy for PHT-splines to be
conveniently imported into the current surface modeling system.

Given a nonnegative integer σ and a hierarchical T-mesh T , one can organize the cells in T into an assembly of
rectangles such that the level differences of the cells in each rectangle are not greater than σ. This organization is
usually not unique, but any solution leads to a segmentation of the PHT-spline surface in the following fashion:
in each rectangle, perform some cross insertions such that the T-mesh in the rectangle becomes a TP mesh, and
then form a TP B-spline surface over the rectangle from the Bézier representation of the PHT-spline surface in
each cell. See Figure 13 for an example.
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Mesh σ = 0 σ = 2

Figure 13: Examples of hierarchical T-mesh segmentation

Figure 14 shows the segmentation results of the PHT-spline surface from Figure 1.g. Here the control nets of the
TP B-spline patches are displayed in brown, and the patch boundaries are in light blue. It takes 1.44, 0.33 and
0.14 seconds to generate the results in Figure 14.a, b and c, respectively.

a. One patch b. 17 patches c. 47 patches

Figure 14: Segmentation of PHT-spline surfaces

6.2 Shape simplification

Shape simplification of a PHT-spline surface over a T-mesh T is to find a coarser mesh T̃ (obtained from T
by removing some crosses) of T such that the difference between the original PHT-spline surface and the new

PHT-spline surface defined over T̃ is smaller than some given tolerance, and the two surfaces share the same
geometric information at the same basis vertices. The result of shape simplification can be applied in level-of-
detail operation in computer graphics.

ε = 0.5%, F = 1, 000 ε = 3.0%, F = 517 ε = 6.7%, F = 466

Figure 15: Shape simplification

Given a PHT-spline surface S(u, v) over a hierarchical T-mesh T with level k0 and a tolerance ǫ, the procedure
of shape simplification can be described as follows:
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• Set k = k0 − 1 and S̄(u, v) = S(u, v).

• For each cell θ in T at level k which has a cross inside θ (and each subcell of θ does not have a cross inside
itself), perform cross removal operation for S̄(u, v). Denote the PHT-spline surface after cross removal by

S̃(u, v), and the mesh after cross removal by T̃ . If ||S(u, v)− S̃(u, v)|| < ǫ over θ and its adjacent cells, then

replace S̄(u, v) by S̃(u, v), and T by T̃ .

• Set k = k − 1. If k > 0, go to the previous step.

To speed up computation, we use the Bézier representations for the PHT-spline surfaces. The Bézier represen-
tation for S̃(u, v) over T̃ can be easily obtained from the Bézier representation of S̄(u, v) by the smoothness
conditions. The difference between S(u, v) and S̃(u, v) can be measured by the control points of the two surfaces.
Figure 15 shows the surface simplification result of the female head model, where the original mesh has 1, 528
cells. The simplification operation can be accomplished in real-time.

7 Conclusions and Future Work

The paper presents the theoretical foundation for PHT-splines — polynomial splines over hierarchical T-meshes.
The construction of basis functions is simple and straightforward to implement. The cross insertion and removal
operations are discussed as well. With PHT-splines, an efficient and adaptive surface fitting scheme are presented.
Several types of geometric processing are studied, such as segmentation of a PHT-spline surface into a family of
NURBS patches, and shape simplification of PHT-splines.

PHT-splines can model a geometric object with a single PHT-spline patch or several PHT-spline patches which
are C1 continuous globally. On the other hand, it is a very difficult problem to construct geometric models with
NURBS patches to guarantee global smoothness and fairness.

PHT-splines inherit many good properties of T-splines such as adaptivity and locality. They also exhibit several
advantages over T-splines. For example, unlike T-splines, PHT-splines are polynomial instead of rational. Thus
geometric computation with PHT-splines is simpler and less costly. The local refinement algorithm of PHT-
splines is local and simple while the complexity of knot insertion with T-splines may be uncertain. Finally,
conversion between NURBS and PHT-splines is very fast, while conversion between NURBS and T-splines is a
bottleneck of T-splines in practical applications.

One main drawback of our new splines is that they are only C1 continuous. However, having a set of basis
functions should be helpful for theoretic analysis and many other applications. For example, in fitting scattered
data points with implicit splines [12, 18], a set of basis functions are a necessity. Thus the implicit form of our
new splines (i.e., the zero level-set of PHT-splines) can be applied in adaptive curve/surface fitting of scattered
data. We will explore this possibility in future papers.

There are still many interesting research problems about PHT-splines for further research. For example, how to
construct the basis functions for spline surfaces over general T-meshes? How to generalize the PHT-splines to
higher degree surfaces with arbitrary order of smoothness? Especially how to construct C2 continuous bicubic
spline surfaces over T-meshes? Is there a more efficient cross insertion algorithm whenever k1 < k2 − 1? How to
fit a model with complicated topology with PHT-splines? There are problems worthy of further study.
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