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Cubic Algebraic Spline Curves Design

XU Chen-dong! CHEN Fa-lai? DENG Jian-song? YANG Zhou-wang?

Abstract. In this paper we propose a construction method of the planar cubic algebraic spline
curve with endpoint interpolation conditions and a specific analysis of its properties. The
piecewise cubic algebraic curve has G* continuous contact with the control polygon at two
endpoints and is G2 continuous between each segments of itself. The process of this method is

simple and clear, and provides a new way of thinking to design implicit curves.

§1 Introduction

Cubic parametric curves play an important role in computer aided geometric design and
computer graphics. This is mainly due to that the cubic parametric curve is the curve of
the minimal degree which could be singular. Here the singularity includes cusps, inflection
points, closed circles, and so on. Furthermore, all quadratic curves are planar, while the cubic
curves can express a space curve whose torsion is not always zero. The representations and
properties of the parametric curve are discussed and studied in many literatures, see [9,16,22]
and references therein. Usually the methods of parametric curve design are intuitive. In other
words, we can construct a suitable curve in an interactive environment. For example in order
to change the curve’s shape, we only need to adjust the position of some control points.

In recent years, (piecewise) implicit/algebraic curves and surfaces have received increasing
attentions [17]. To visualize the implicit surfaces, [2] presented a practical algorithm of polygo-
nization and [10] used the ray tracing algorithm. In 1984, Sederberg used piecewise algebraic
curve in geometric modeling [20]. [1] presented a sufficient representation of a trivariate poly-
nomial within a tetrahedron (named A-patch). {17] brought forward the concept of functional
splines, discussed the properties of the parabolic functional spline, and applied them to surface
blending design. As a supplement, [11] discussed the determination method of the contact
points or contact curves as using the parabolic in blending design in detail. [12] proved the con-
vexity of this kind of splines. [13] provided systematical analysis on various kinds of functional
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spline methods and used them in the smoothing manipulation of G™ blending at cusps. The
first method of implicitization of parametric surfaces was given by [19]. [21] first proposed the
moving line and moving surface method to make the implicitization process much more effi-
cient, but this method could be theoretically improved. [7] described the method as the p basis
theory which was further improved and expanded in [3-6]. To solve the surface intersection
problem, [14] used a projection technique. [8] provided a quite comprehensive approach to solve
the blending problem of algebraic surfaces which is first studied by [23]. In addition, there are
many other methods in implicit molding such as CSG method, radial basis function method,
particle system, and so on.

As known to all, a planar polynomial or rational polynomial parametric curves can be
converted into an algebraic curve with the same degree. Compared with parametric curves,
algebraic curves of the same degree are with more freedom. For example, a cubic algebraic
curve can express a simple close curve with C* continuity, while a cubic polynomial or rational
polynomial parametric curve can not express any entire close curve.

It is regrettable that those methods of implicit curve design used in practice are all without
intuitive control. In this paper we will propose a construction method of the cubic algebraic
spline curve with endpoint interpolation conditions and a specific analysis of its properties.
This method can be regarded as a new way of designing implicit curves.

The rest of this paper is organized as follows: first we construct a cubic algebraic interpola-
tion curve from the given four control points and concretely analyze the geometric properties of
this curve such as convexity, convex hull and the treatment of some special situations etc; then
based on this interpolation curve construction method, we define a piecewise cubic algebraic
curve of the given n > 4 control points; also we will give some examples to illustrate the effect;
the conclusion and analysis of cubic algebraic spline curves are given finally.

§2 Cubic algebraic interpolation curve

In this section, we discuss how to construct a planar cubic algebraic interpolation curve
from the given four control points. The geometric properties of this curve are analyzed as well.

2.1 Construction of the algebraic interpolation curve

Given four planar control points {p;}3_,, assume that the line equation of the control edge
pop: is l1, the line equation of p;p2 is Iz, the line equation of p2p; is I3, the line equation of
Papo is lp. The positive and negative values of these linear equation in the whole plane are
shown in Figure 1. Let

L(z,y) = (1 = Alilals — A5, A€ (0,1). (1)
We can define a cubic algebraic curve as the zero set of L(z,y) on R?. Here, the parameter A
is used to adjust the shape of the curve L(z,y). For example, to the curve segment inside the
control polygon formed by {p;};_, as shown in the figure, the larger the parameter A is, the
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Figure 1: Control points and the positive-negative stipulation of the control edges.

closer the curve is to the control edge pops. Here, the role of the parameter ) is similar to the
conic shape factor k in the implicit equation of a conic section (see page 292 of [18]).

It is easy to show that the algebraic curve L(z,y) must pass through the two endpoints po
and ps, i.e., interpolate the intersection points of iy and 1, lp and l3. Similarly, if I; and [y
intersect, the intersection point is also on L(z, y). However, here we are mainly concerned about
the part of the curve L(z,y) that is inside the convex hull of all the control points. Moreover,
according to the definition of the geometric continuity of algebraic curves, we have:

Proposition 2.1. L(z,y) has G? continuous contact with the control edges pop: and p2p3 at
the endpoints py and p3 respectively.

Assume the convex hull of all the control points is {2. Hereinafter we discuss the properties
of the algebraic curve L(z,y) in the region 2. For the given four control points, there are many
ways to form control polygons. According to the positions of the control points, these cases can
be classified into two categories:

o All the control points are the vertices of the convex polygon 2. This kind of polygons is
called non-degenerate. See Figure 2;

» One of the control points is inside the convex polygon € or on some edge of it. This kind
is called degenerate. See Figure 3.

In addition, if some of the control points are superposed, the construction method according
to the formula (1) is no longer available and needs additional processes, such as deleting the
superposed point, or using some other ways.

In the following subsections, we will show that, for the non-degenerate control polygons, the
cubic algebraic interpolation curves constructed as in formula (1) have convexity and convex
hull properties.

2.2 Convexity

After extending any edge of the polygon infinitely to become a straight line, if all the other
edges are in the same side of the line, then the polygon is called a convex polygon. Of course,
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Figure 2: The three cases of the non-degenerate control polygon.

it can also be defined by the magnitude of inner angles: if each interior angle of the polygon is
less than m, then the polygon is called a convex polygon. For the control polygon of the given
four control points, the first case of the non-degenerate control polygons in Figure 2 is a convex
polygon, while the other two cases are not.

The cubic algebraic curve constructed as (1) satisfies the following theorem:

Theorem 2.1. (Convexity) If the four control points {p;}3_, form a convez polygon, the
cubic algebraic interpolation curve L(z,y) defined in the conver hull Q is convez.

Proof: Without loss of generality, assuming the four control points as Figure 2(a), we only
need to prove that the cubic algebraic curves L(z,y) in the convex hull of the control points
must be a convex curve.

Through a projective transformation, a general convex quadrangle can be transformed into
a rectangle as shown in Figure 4. This transformation does not change the convexity of the
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P3 Po

Figure 3: The four cases of the degenerate control polygon.

curve inside the quadrangle, so we only need to prove the theorem for the situation that the
control polygon is a rectangle.

51 P2

P~ e - — - *P3

Figure 4: The control polygon after the transformation.

After choosing a suitable coordinate system, assume that the expressions of the straight

lines of the control edges are:

lo(z,y) =y

Lz,y)=z+a

lo(z,y) =~y +d

Lz, y)=-z+a
Where, a,d € Ry. Obviously, inside the rectangular, these linear expressions are all positive.
Here, the convex hull of the control polygon is € = {(z,y)||z| < ¢,0 < y < d}, and the
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expression of the cubic algebraic curve is
L(z,y) = (1 - N(a - 2)(a+z)(d - y) - \°
Considering y as a function of z determined by L(z,y) = 0, we have the second derivative
of y as follows:
Py 2y W Ma (WML
912 (L) ’ v
Since L; (z,y) = —3)\y?—(a—~z)(a+x)(1-A) is always negative in the region (2, the denominator
of this formula is always negative too. While the numerator can be written as follows.

A A
2(d - y)(1 — N)*[2*(2a® - 32%) + (a® + 3y2m)2 + 62%y(2d - y)l—_;‘-]
Inside the rectangular region £, it is true that the first term in the square brackets is larger

than —a?, the second term is larger than a* and the third term is larger than or equal to zero.
Furthermore when the third term is equal to zero namely = = 0, the first term is zero too while

the second term is larger than a* all the same. In sum, the numerator is always positive in Q.
Therefore, the second derivative of y about z inside the rectangular is less than zero, namely
the curve L(z,y) is convex in this region. n

2.3 Convex hull property

For the case of non-degenerate control polygon, about the properties of the cubic algebraic
curve L(x,y), we also have the following theorem.

Theorem 2.2. (Convex hull property) If the four control points {p;}5_, form a non-
degenerate control polygon, the cubic algebraic interpolation curve L(x,y) defined in the convex
hull Q is continuous and only intersects the edges of 2 at two points po and ps.

Proof: There are three cases of the non-degenerate control polygon as (a), (b) and (c) in
Figure 2 respectively.

For the first case that the control points form a convex quadrangle, by the previous theorem
of the convexity, the cubic algebraic curve segment L(z,y) inside the convex hull of the control
points is convex. Furthermore, the points on the edges of the control polygon except po and
p3 are not on this curve, so the theorem holds.

For the second case that all the control points are the vertexes of the convex polygon 2
and the control edges p1p2 and pops have an intersection point (named as p,), assuming the
triangular region determined by the control points p;,, p;, and p;, is Aj, 4,44, it is easy to known
that the curve L(z,y) certainly pass through po, p3 and p4 and the points on the edges of the
convex quadrangle 2 except pp and p3 are not on this curve. The points inside regions A143
and Ag42 can not satisfy the curve equation L(z,y) = 0, so the curve is definitely inside Agq1
and Aj43, and these two segments all have G? continuous contact with the line l; at the point
ps. Further, one can assume that the control edge pop: is parallel with pop3 after a projective
transformation. Considering the curve segment in Ag4;, assuming that there is a point q; on
PoPs, and the parallel line of pop; that passes through this point intersects the line segment
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p1DP4 at the point qa, we have L(q:1) > 0 and L(qz) < 0. Furthermore, if the point p moves
from q; to q2 along a straight line, the function L(p) decreases monotonously so that the line
segment q;q2 has only one intersection point with the curve. For the curve segment in Agys,
the analysis is similar. In sum, we have that the curve L(z,y) = 0 does not have multiple
segments inside 2. So the theorem also holds.

For the third case that all the control points are the vertexes of the convex polygon Q and
the control edges pop; and p:ps have a intersection point (also named as p4), it is easy to
known that the curve L(z,y) certainly pass through points pg and p3, and the points on the
edges of the convex polygon € and the four control edges except pp and p3 are not on this
curve. The points in regions Agzq and Ays4 can not satisfy the curve equation L{x,y) = 0, so
the curve is definitely in Aj24 and Ag34. Furthermore, the curve segment in the region Aggq is
a continuous curve passing through points pg and p3, while the one in A;z4 is a close curve if
it exists. And the proposition below gives a sufficient condition to determine whether the close
curve appears there. So the theorem holds too.

Thus, the theorem holds. [ ]

<

P2

——— = —— = ———f—

Figure 5: The third non-degenerate control polygon after the transformation.

The non-degenerate control polygon as Figure 2(c) can be transformed into the one as
Figure 5 by a projective transformation which keeps the curve’s convexity. Using an appropriate
coordinate system as shown in the figure, the expressions of those lines of the control edges are:

lo(z,y) =y

L{z,9)=-y+z+a

lo(z,y)=-y+a+b

Lz,y)=-y—-z+a
Where, a,b € R;. Then, the following proposition gives a sufficient condition about the segment
of the cubic algebraic curve defined as (1) in the region Ajo4, that is to determine whether this
close curve exists.

Proposition 2.2. If the parameter \ satisfies @a—':r%-, < A <1, then the curve L(z,y) in Q
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constructed from the four given control points {p;}i_o as Figure 5 merely appears inside the
regz‘on A034.

Proof: We only need to prove that there is no multiple segment of the curve L{z,y) in
the region A;24 when the parameter A of the algebraic curve construction formula satisfies the
condition of the proposition.

For symmetry, if there is a branch of L(z,y) in A;24, this close curve segment must intersect
the y axis. According to the above line equations, we have:

LO,y) = (1-Na-y)*(a+b-y) - N°
In addition, L(0,0) = a?(a + b)(1 — A) > 0 and L(0,a) = —Aa® < 0, thereby the continuous
function L(0,y) must have a zero point in the interval (0,a), namely the curve L(z,y) must
appear in Ags4.

Considering the properties of the function L(0,y) in the interval (a,a + b), its derivative is:
d

Oy ==X~ y)? —2(1-N(a+b-y)a—y) -3’
= — 3t + (2b — 2bA — 6a\)t — 3a®A
where t =y — a € (0,b).

This is a quadratic polynomial of ¢, and the discriminant is A = —a?A + [3b(1 — ) — aAJ%.
Solving the inequality A < 0, we have ZSTZ-Q_bF < A < 1. So when ) satisfies the condition of the
proposition, one have

L(0,y) < L(0,a) < 0, Vy € (a,a + b)
namely the curve L(z,y) does not intersect that part of y axis.

Thus, the proposition holds. [ ]

Considering the four degenerate control polygon of Figure 3, one can find that: according
to the construction method of the formula (1), the curve of the case (a) is both continuous and
convex in 2 and satisfies the endpoint interpolation conditions; the one of case (b) includes
the line segment ly and a conic passing through pg and pe; curves of cases (c) and (d) are not
continuous in 2 and have other intersection points besides pg and p3 with the edges of the
convex hull Q. Specifically, considering case (¢) as an example, assuming that the control edge
P1P2 intersects the control edge pops at the point ps while the control edge p3p2 intersects
the control edge pop; at the point ps, the curve L(x,y) defined in 2 must be in A;23 and the
quadrangle popsP2P4, pass through points pg, ps and ps3, and have a intersection point with
the edge p1ps of Q. Later, when designing the cubic algebraic spline curve, we need to deal
with these cases (especially the last three ones).

§3 Cubic algebraic spline curve

In this section, we discuss that: given n > 4 control points (as Figure 6), how to construct
a piecewise cubic algebraic curve (named as cubic A-spline curve), so that it has some fine
properties like the classic parametric curve.
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Po Pn-1

Pi P2

Figure 6: n control points of the A-spline curve.

3.1 Subdivision of the control point sequence

Given n control points { Pz}z—o , the final A-spline curve is composed of n— 3 cubic algebraic
curve segments. Here, each segment is constructed from four control points according to the
previous construction method of the cubic algebraic interpolation curve. In order that the two
adjacent curve segments have G? continuous contact with each other, these two segment should
have a common control point, namely the last control point of the foregoing segment is exactly
the first control point of the posterior segment, and that the third control point of the foregoing
segment and the second control point of the posterior segment together with the common point
are collinear while these two points are at different sides of the common point. Thus we need
3n — 8 control points in all, written as {P;}:";°. Among these points, there are n — 4 points
named as virtual points, which are those common points between each two curve segments, and
are easy to be determined for their special locations; the remaining 2n — 4 control points are
called real points, written as {p; ?;‘5 5 which include the first and last endpoints. Once all the
real points have been established, the virtual points can be obtained by using the average of
the two corresponding adjacent real points.

First, we introduce a iterative subdivision method of the control points to generate 2n — 4
real points from the n initial control points {p; ?;01. This method is inspired by the de Casteljau
algorithm of the Bézier curve and the de Boor algorithm of the B-spline curve. By using the
so-called polygon corner cutting idea, the amount of the control points increases by one each
time.

Assuming the initial control points are {p?}7%", and the control point set after k corner-

cutting subdivision is {p¥}7?*;", this algorithm can be described as follows:

Algorithm 3.1. (Iterative subdivision of the control points)
1 Ifi=0, pf =pf;

2. If1<i< |22,
- - -2
o pi Yo sk + pE e R e et
] -2
' IS [} S ey
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8 I [me2] 4 [mesl], = [2“:1-1,
e _ PR s Ipf RS+ T R e el
' DO Tt ey R s |
4 If[ﬁkg—l1+1<i<nk—2
ok = Pio Yisollpg” pw: Pl e Ipf el
pIvarsi | S |

5. If’L =n;—1, pf =p-?:11'

7

This subdivision method takes full advantage of all the edge’s length information of the
control polygons of the previous step, which is used as the weight value of the new control
point. Thus these new control points inherit the properties of the previous control points and
have more reasonable position distribution. However, this approach does not convenient for
practical applications sometimes, because in order to get 2n — 4 real points from the given
n initial given control points, n — 4 corner-cutting operations are needed to implement which
require a lot of computing. So it is inefficient by using this kind of iterative method when the
number of the initial given points is quite larger. Hence, we need to turn to other subdivision
method which can deal with this situation.

In order to generate all the real points after a few steps for any number of initial given
control points, we provide the following subdivision method. This method can be divided into
two steps: firstly, using the algorithm 3.2 to get 2n — 2 temporary control points, written as
{p;}?"53, from n initial control points {p;}?7y; and then adopting the algorithm 3.3 to get all
the real points {p;}>"5° from these temporary control points at one time.

Algorithm 3.2. (Step 1 of the two-step subdivision method)

1. Ifi=0, p; =pi;

2 Ifi=1,p _—p"‘;z"*,
Sp: + Pigz
3 Ifiisevenand2<i<2n-5, p} = ———2-;

6 b
Pi-: +5pi
4 Ifiisodd and 2 <i<2n -5, p! =——T’6—'3‘1,-

5. Ift=2n-4,p!= E—?%—:p—i—?;
6. Ifi=2n-3, p; =Puy-

Algorithm 3.3. (Step 2 of the two-step subdivision method)
1. If i =0, p; = p};

2. Ifi=1, p; =pj;
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3p; +2pj, +Plya .
’

8 Ifi=2,p;, =

fi=2, P -

4. If3<i<2n -8, pt+pz+l +P,+2
3

5 Ifi=2-17,p _Pi+2P; + 3P

6 !

6. Ifi=2n—6, P; = Pi o/
7. Ifi=2n-35, p; = pi-

By this two-step subdlvxsmn method, one can get 2n — 4 real points {P;}>75° from the n
initial points {p;}7;, and also the final 3n — 8 control points {p;}:7y® after adding n — 4
virtual points. The remaining question is how to construct a cubic algebraic spline curve from
these control points 7

3.2 Construction of piecewise algebraic curve

Using the previous subdivision method, we can get 3n.—8 control points {p;}>75® which were
further divided into n — 3 sub-terms, the k-th one of which is composed by those control points
from the (3k — 2)-th to the (3k + 1)-th. If these four control points form a non-degenerate
control polygon or the first case of the degenerate control polygon, one can directly define
a cubic algebraic curve segment in the convex hull of these points according to the formula
(1), (specially, for the third non-degenerate case, omitting the unwanted close curve); If these
four control points form other three cases of the degenerate control polygon, according to the
previous analysis, the curve directly constructed by the formula (1) has unreasonable shape, and
special treatments are needed. The approach that we would use is to convert the four control
points of this sub-term into six new ones by the algorithm 3.2 of the two-step subdivision
method, and insert an additional virtual point in the middle position to get a point set of total
seven control points, then divide it into two parts respectively and construct the corresponding
curve segment in the convex hull of each part according to the formula (1).

Therefore, the generation process of the piecewise algebraic curve can be briefly described
as follows.

Algorithm 3.4. (Construction of A-spline curve)
1. Assume that the amount of the algebraic curve segmentsism=n—3, and k=1;

2 Consz'der the k-th sub-term Pr = {Dsk-3,DP3k—2, P3k—1,DP3x} of the control point set
{p;}3" =0 9 assume that Siigia 18 the area of the triangle that consists of the ii-th, iz-
th and i3-th points of this sub-term;

3. If Min(S123+ S134, S124+ S234) = Max(S123, S124, 5134, S234) and S124-S134 # 0, then con-
struct the cubic algebraic curve segment from the point set Py in its conver hull according
to the formula (1);
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4. If Min(S123 + S134, S124 + S234) < Max(S123, S124, 5134, S234) 07 S124 - S134 = 0, convert
the four control points of the sub-term Py into siz new ones by algorithm 3.2, and insert
an additional virtual point in the middle position to get a point set of total seven control
points, then divide it into two parts respectively and construct the corresponding curve
segment in the convex hull of each part according to the formula (1). While the amount
of curve segments increases by one, that is m — (m + 1);

5. If k = n—3, end the process and output the amount m of all the curve segments; otherwise
let k — (k+1), go to step 2.

Here, we did not discuss the situation that some of the control points were superposed.
Because the previous construction method of the cubic algebraic interpolation curve is based
on control edges, it is not applicable and needs additional processes when there are superposed
points. Considering the two-step subdivision method before, one can find that if the given initial
points are not superposed, there is no superposed point among the control points { f),;}?;‘g 9 after
the subdivision. In the following examples, we always assume that there is no superposed point

in the initial control points .

3.3 Properties of the A-spline curve

Next, we present and analyze some of the properties of the cubic A-spline curve constructed
by the above method.

First, it is clear that the cubic A-spline curve constructed by the above method is geometric
invariant (affine invariant). Because this method is based on the control edges, as long as the
relative position of the control points remains unchanged, the shape of the curve segment in
the convex hull of these control points remains unchanged.

Second, this kind of cubic A-spline curve has convex hull property, namely the curve segment
must be inside the convex hull of the initial control points {p;}?= . The reason is that the 3n—8
final control points {p;}>";? by the previous two-step subdivision method are all inside the
convex hull of the initial control points, and according to the properties of the cubic algebraic
interpolation curve, for the n — 3 sub-term subdivided from the initial control points, each
corresponding curve segment is inside the convex hull of the corresponding four control points.
Thus the final piecewise cubic algebraic curve is actually composed of those curve segments each
one of which is inside the convex hull of the four control points of the corresponding sub-term,
so the convex hull of all the sub-terms can be regarded as a more precise definition region of
the cubic A-spline curve.

Moreover, this kind of cubic A-spline curve also has local control property, namely changing
a initial control point only effects a local part of the final curve. The reason is that according to
the two-step subdivision method, when one point of the set {p;}?=; is changed. At most there

are four points of the temporary control points {p;} ?;‘5 3 are changed correspondingly, and at

most six points of the real point set {p; ;‘.’:g 5 are changed correspondingly, while other points

remain unchanged. That is, the change of an initial point only spreads to the corresponding
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finite neighborhood of it. So at worst situation, four segments of the final A-spline curve are
changed because of the change of that initial point.

From the algorithms 3.2 and 3.3, it is easy to see that there exists a linear relationship
between the n control points {p;}7= and those junction points {P3;}>"5°. Assuming that the
junction points {f)gi}f;‘g 9 are given, we can use our curve construction method in an inverse

way to obtain an G? piecewise algebraic curve to interpolate these junction points. But some

9

end condition should be added since the number of junction points {ps; ?:6 isn—2.

Finally, we analyze how to set up the parameter A to adjust the curve’s shape. According
to the analysis of the cubic algebraic interpolation curve, for a sub-term of the A-spline curve,
the larger X is, the closer the curve segment’s shape is to the straight line. For the sake of
simplicity, one can always use the same value of the parameter A for each curve segment. But
in fact, we can use different value of ) for different segment to adjust the A-spline curve’s shape
more fairing. In the following section, we will determine the shape parameter A by minimizing
the corresponding smoothing energy of each curve segment as follows.

EO) =2 [ (L2, +I2, +2L2,) dzdy )
2 Ja

Where, the integral region ) is the convex hull of the four control points of that sub-term.
In fact, for each sub-term {P3zi-3,D3i—2, P3i—1,P3i}, the energy function E()) is a quadratic
polynomial of A. Thus it is simple to solve the minimization problem.

§4 Examples

In this section, we provide several examples of the cubic A-spline curve constructed by our
method.

Example 1 Assuming the given five control points are:
{(0,0),(1,2),(3,2.6),(5,2),(6,0)}.
The cubic A-spline curve defined in the convex hull of the control points is shown as Figure

7. Here, solid lines denote the initial control polygon, and the dotted lines denote the control
polygon after subdivisions.

The curve is divided into two segments, for symmetry, the two shape parameters are all
A =0.708324.

The expressions of the two cubic algebraic curves are:
fi(z,y) =0.159539z% — 0.769380yx> + 0.3337222% + 1.10364y°z

— 0.857875yx + 0.442405z — 0.462441y° + 0.345507y>
—0.221203y + 7.75448 x1078

falz,y) = — 0.159539z° — 0.769380yz> + 3.20543z% — 1.10364y%z
+ 10.0904yz — 21.6773z — 0.462441y° + 6.96736y°
— 33.0661y + 49.1289.
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Figure 7: A cubic A-spine curve of five control points.

Example 2 Assuming the given six control points are:
{(0,1.5),(0.5,3),(2.5,3), (2.5,0), (4.5,0), (5,1.5)}.

The cubic A-spline curve defined in the convex hull of the control points is shown as Figure 8.

1 2 3 T 5

Figure 8: A cubic A-spine curve of six control points.

The whole curve is divided into three segments, and their corresponding control polygon are
the first case of the non-degenerate control polygon, the second case of the non-degenerate con-
trol polygon and the first case of the non-degenerate control polygon in turn. The corresponding
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values of A are 0.435883, 0.486906 and 0.435883. Their expressions are:
fi(z,y) = — 0.0913879z> + 0.0765831yx> ~ 0.0837695z2 + 0.716863y x

— 3.52873yx + 4.62479z — 0.430742y° + 2.39426y>
— 4.59016y + 2.95190,

fo(z,y) = — 0.05301512> + 0.0188762yz? + 0.369299z% + 0.0396800y°z
—0.213421yz — 0.795526x — 0.00429716y> — 0.0798629y>
+0.379383y + 0.534343,

f3(z,y) = — 0.0913879z> + 0.0765831yz2 + 1.22484x2 + 0.716863y >z
— 1.53829yx — 4.90392r — 0.430742y° — 2.10190y>
+ 3.92223y + 6.22234.

Example 3 Assuming the given seven control points are:
{(0,2),(0.5,0),(2.,0),(2.5,2), (4.,3.25), (5.5, 3.5), (7,2.5)}.

The cubic A-spline curve defined in the convex hull of these control points is shown as Figure
9.

3 x
1 2 3 4 5 6 7

Figure 9: A cubic A-spine curve of seven control points.

Here, the whole curve is divided into five segments, where the control polygon of the second
term is the third case of the degenerate control polygon and is further divided into two sub-
terms.

All these above examples use the two-steps subdivision method of the control points. In
fact, for the cases of less initial control points, it is more reasonable to select the iterative
subdivision method (algorithm 3.1) to make better use of the edge information of the control
polygon. This is because: first of all, for less control points, the efficiency of this iterative
algorithm can be accepted (since the total number of iteration is n — 4 here); Secondly, by the
two-step subdivision method, the local property and smoothness of the final curve are not good
with a few initial control points. In other words, for a relatively small number of control points,
we can get a more reasonable final A-spline curve with the acceptable efficiency and non-local
property by the iterative subdivision algorithm. For example, the results of example 2 and 3
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by using the iterative subdivision algorithm are shown in Figure 10.

X

¢ —
1 2 3 4 5 6 7

Figure 10: The results by using the iterative subdivision algorithm.

85 Conclusion

In this paper, we proposed a construction method of the planar cubic algebraic spline curve
with endpoint interpolation conditions and a specific analysis of its properties. The piecewise
cubic algebraic curve has G? continuous contact with the control polygon at two endpoints and
is G? continuous between each segments of itself. In addition, for each segment of the curve, we
modified its shape by using a reasonable value of the parameter A. The process of this method
seems simple and clear, and provides a new way of thinking to design implicit curves.
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