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A Catmull–Clark subdivision surface (CCSS) is a smooth surface generated by recursively
refining its control meshes, which are often used as linear approximations to the limit
surface in geometry processing. For a given control mesh of a CCSS, by pushing the
control points to their limit positions, another linear approximation—a limit mesh of the
CCSS is obtained. In general a limit mesh might approximate a CCSS better than the
corresponding control mesh. We derive a bound on the distance between a CCSS patch
and its limit face in terms of the maximum norm of the second order differences of the
control points and a constant that depends only on the valence of the patch. A subdivision
depth estimation formula for the limit mesh approximation is also proposed. For a given
error tolerance, fewer subdivision steps are needed if the refined control mesh is replaced
with the corresponding limit mesh.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Catmull–Clark subdivision surface (CCSS) was designed to generalize the bicubic uniform B-spline surface to meshes
of arbitrary topology (Catmull and Clark, 1978). Because a CCSS is defined as the limit of a sequence of recursively sub-
divided control meshes, a linear approximation (for example, a refined control mesh after several steps of subdivision) is
often used to approximate the limit surface in applications such as surface rendering, surface trimming, and surface/surface
intersection. It is natural to ask the following questions: “How does one estimate the error (distance) between a CCSS and
its approximation (for instance, the control mesh)?” and “How many (as small as possible) steps of subdivision are needed
to satisfy a user-specified error tolerance?”. Because of the exponential growth in the number of mesh faces with succes-
sive subdivisions, one step, more or one less, can mean a great difference in mesh density. Also, subdivision depth (step)
estimation relies on the approximation representation and its error estimate.

Inspired by ideas for computing the bounds on the approximation of polynomials and splines by their control structure
(Nairn et al., 1999; Reif, 2000; Lutterkort and Peters, 2001), many efforts have been devoted to estimating error bounds and
subdivision depths for subdivision surfaces. Mustafa et al. derived error bounds for general binary and ternary subdivision
curves/surfaces in terms of the maximal first order differences of the control points (Mustafa et al., 2006; Mustafa and Deng,
2007). Their bounds work for regular tensor product subdivision surfaces, and, to some extent, have only theoretical values.

As one of the most widely used subdivision surfaces, the CCSS receives more attention than others. The first attempt to
derive bounds on the approximation of the CCSS by its control mesh was made by Wang and Qin (2004). Using the distance
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Fig. 1. A Catmull–Clark subdivision surface, its control mesh and the corresponding limit mesh.

between the control points and their limits to describe how the control mesh approximates to the limit surface, they derived
bounds for the distance between a CCSS and its control mesh and a corresponding subdivision depth estimation method.
Their work is based on the assumption that the distance between a CCSS and its control mesh reaches a maximum value
at some vertex. But this is not always true. Being aware of this, Cheng and Yong (2006) estimated the distance between a
CCSS and its control mesh patch by patch. For a regular patch, the bound is given in terms of the maximum norm of the
second order differences (called the second order norm) of the control points; whereas for an extraordinary patch, the bound
is expressed in terms of the first order norm of the control points. They also derived a new subdivision depth estimation
technique. Then Cheng et al. (2006) improved the error estimate and subdivision depth estimation for an extraordinary
CCSS patch by introducing the second order norm into its control mesh. Furthermore, Chen and Cheng (2006) presented
another improvement by using a matrix representation of the second order norm, in the estimate of the convergence rate
of the second order norm of an extraordinary CCSS patch. Most recently, Huang and Wang (2007) evaluated the optimal
convergence rate of the second order norm by solving constrained minimization problems. Nevertheless, for an extraordinary
CCSS patch, the subdivision depth for a given error tolerance is still very large. Since the prior works all focus on the
approximation of a CCSS with its control mesh, we turn our attention to other linear approximations.

Another known linear approximation to a subdivision surface, obtained by pushing the control points of a control mesh
to their limit positions, has been applied in surface interpolation (Halstead et al., 1993) and fitting (Hoppe et al., 1994).
But the approximation error has not yet been investigated. We reformulate this approximation representation as follows.
Extracting a submesh consisting of all interior control points from the control mesh of a CCSS, then pushing the control
points to their limit positions, we get a limit mesh for the CCSS, which inscribes the limit surface (see Fig. 1). For a closed
CCSS, submesh extraction is not needed since its control points are all interior. To bound the distance between a CCSS patch
and its limit face, we introduce a distance bound function, and develop a way to find the maximum of the distance bound
function for extraordinary cases. The bound reveals that the limit mesh may approximate the limit surface better than the
corresponding control mesh in general. Given an error tolerance, the limit mesh approximation needs fewer subdivision
steps and fewer mesh faces than the control mesh approximation.

This paper is organized as follows. Section 2 introduces some definitions and notation. In Sections 3 and 4, we derive
distance bounds for regular CCSS patches and extraordinary CCSS patches, respectively. And a subdivision depth estimation
method for limit mesh approximation is presented in Section 5. In Section 6, we compare limit mesh with control mesh
approximation. Finally we conclude the paper with discussion of future work.

2. Definition and notation

Without loss of generality, we assume the initial control mesh has been subdivided at least twice, isolating the extraor-
dinary vertices so that each face is a quadrilateral and contains at most one extraordinary vertex.

2.1. Distances

Given a control mesh and the corresponding limit mesh of a Catmull–Clark subdivision surface S̃, for each interior mesh
face F in the control mesh, there is a corresponding limit face F in the limit mesh, and a corresponding surface patch S in
the limit surface S̃. The limit face F is a quadrilateral formed by connecting the four corner points of the patch S.

2n + 8 control points in the 1-neighborhood of F form S’s control mesh, where n is the valence of F’s only extraordinary
vertex (if it has one and n = 4 if not) and called the valence of the patch S (see Fig. 2a). A CCSS patch S can be parame-
terized over the unit square Ω = [0,1] × [0,1] as S(u, v) (Stam, 1998). Let F(u, v) be the bilinear parameterization of the
corresponding limit face F over Ω . For (u, v) ∈ Ω , we denote ‖S(u, v) − F(u, v)‖ as the distance between the points S(u, v)
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(a) (b)

Fig. 2. (a) Ordering of the control points of an extraordinary patch. (b) Ordering of the new control points (solid dots) after a Catmull–Clark subdivision.

and F(u, v). The distance between a CCSS patch S and the corresponding limit face F is defined as the maximum distance
between S(u, v) and F(u, v), that is,

max
(u,v)∈Ω

∥∥S(u, v) − F(u, v)
∥∥,

which is also called the distance between the patch S and the limit mesh of the surface S̃.

2.2. Second order norms

Let Π = {Pi: i = 1,2, . . . ,2n + 8} be the control mesh of an extraordinary patch S = S0
0, with P1 being an extraordinary

vertex of valence n. The control points are ordered following Stam’s method (Stam, 1998) (Fig. 2a). The second order norm of
Π (or S), denoted M = M0 = M0

0, is defined as the maximum norm of the following 2n + 10 second order differences (SODs)
{αi: i = 1, . . . ,2n + 10} of the control points (Cheng et al., 2006):

M = max
{{‖P2i − 2P1 + P2((i+1)%n+1)‖: 1 � i � n

} ∪{‖P2i+1 − 2P2(i%n)+2 + P2(i%n)+3‖: 1 � i � n
} ∪{‖P2 − 2P3 + P2n+8‖,‖P1 − 2P4 + P2n+7‖,

‖P6 − 2P5 + P2n+6‖,‖P4 − 2P5 + P2n+3‖,
‖P1 − 2P6 + P2n+4‖,‖P8 − 2P7 + P2n+5‖,
‖P2n+6 − 2P2n+7 + P2n+8‖,
‖P2n+2 − 2P2n+6 + P2n+7‖,
‖P2n+2 − 2P2n+3 + P2n+4‖,
‖P2n+3 − 2P2n+4 + P2n+5‖

}}
= max

{‖αi‖: i = 1, . . . ,2n + 10
}
. (1)

For a regular patch (n = 4), there are only two second order differences with the form P2i − 2P1 + P2((i+1)%n+1) . Thus, the
second order norm of a regular patch is defined as the maximum norm of 16 second order differences.

By performing a Catmull–Clark subdivision on Π , one gets 2n + 17 new vertices P1
i , i = 1, . . . ,2n + 17 (see Fig. 2b), which

are called the level-1 control points of S. All these level-1 control points compose the level-1 control mesh of S: Π1 = {P 1
i : i =

1,2, . . . ,2n + 17}. We use Pk
i and Πk to represent the level-k control points and level-k control mesh of S, respectively, after

applying k subdivision steps to Π .
The level-1 control points form four control point sets Π1

0 ,Π1
1 ,Π1

2 and Π1
3 , corresponding to the control meshes of

the subpatches S1
0,S1

1,S1
2 and S1

3, respectively (see Fig. 2b), where Π1
0 = {P 1

i : 1 � i � 2n + 8}, and the other three control
point sets Π1

1 ,Π1
2 and Π1

3 are shown in Fig. 3. The subpatch S1
0 is an extraordinary patch, but S1

1,S1
2 and S1

3 are regular
patches. Following the notation in Eq. (1), one can define the second order norms M1

i for S1
i , i = 0,1,2,3, respectively. M1 =

max{M1
i : i = 0,1,2,3} is defined as the second order norm of the level-1 control mesh Π1. After k steps of subdivision

on Π , one gets 4k control point sets Πk: i = 0,1, . . . ,4k − 1 corresponding to the 4k subpatches Sk: i = 0,1, . . . ,4k − 1 of
i i
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Fig. 3. Control points of the subpatches S1
1,S1

2 and S1
3.

S, with Sk
0 being the only level-k extraordinary patch (if n �= 4). We denote the second order norms of Πk

i and Πk as Mk
i

and Mk , respectively.
The second order norms Mk

0 and M0 satisfy the following inequality (Cheng et al., 2006; Chen and Cheng, 2006; Huang
and Wang, 2007):

Mk
0 � rk(n)M0, k � 0, (2)

where rk(n) is called the k-step convergence rate of second order norm, which depends on n, the valence of the extraordinary
vertex, and r0(n) ≡ 1. Furthermore, it follows that

Mk � rk(n)M0, k � 0.

An expression for the one-step convergence rate r1(n) was derived by Cheng et al. (2006) with a direct decomposition
method. The multi-step convergence rate rk(n) was introduced and estimated by Chen and Cheng (2006) with a matrix
based technique, then improved by Huang and Wang (2007) with an optimization based approach.

3. Regular patches

In this section, we first express a regular CCSS patch S and its corresponding limit face F in bicubic Bézier form. Then
we bound the distance between S and F by bounding the distances between their corresponding Bézier points.

If S is a regular CCSS patch, then S(u, v) can be expressed as a uniform bicubic B-spline surface patch defined over the
unit square Ω with control points pi, j,0 � i, j � 3, as follows:

S(u, v) =
3∑

i=0

3∑
j=0

pi, j N
3
i (u)N3

j (v), (3)

where N3
i (u), 0 � i � 3, are the uniform cubic B-spline basis functions. S(u, v) can be converted into the following bicubic

Bézier form (Farin, 2002):

S(u, v) =
3∑

i=0

3∑
j=0

bi, j B3
i (u)B3

j (v), (4)

where bi, j , 0 � i, j � 3, are the Bézier points of S (see Fig. 4), and B3
i (u), 0 � i � 3, are the cubic Bernstein polynomials. The

relationship between (bi, j) and (pi, j) is as follows:⎡
⎢⎣

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

⎤
⎥⎦ = T

⎡
⎢⎣

p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3

⎤
⎥⎦ T t , (5)

where

T = 1

6

⎡
⎢⎣

1 4 1 0
0 4 2 0
0 2 4 0
0 1 4 1

⎤
⎥⎦ ,

and T t is the transpose of T .
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Fig. 4. A regular CCSS patch with its control points (solid dots), the Bézier points (hollow dots) and the limit face.

3.1. Distance bound

Note that the limit points corresponding to p1,1, p2,1, p2,2 and p1,2 are b0,0, b3,0, b3,3 and b0,3, respectively. F =
{b0,0,b3,0,b3,3,b0,3} is the limit face corresponding to the center mesh face F = {p1,1,p2,1,p2,2,p1,2} (see Fig. 4). The
bilinear parameterization of F is

F(u, v) = (1 − v)
[
(1 − u)b0,0 + ub3,0

] + v
[
(1 − u)b0,3 + ub3,3

]
,

where (u, v) ∈ Ω . Since 1
3

∑3
i=0 iB3

i (t) = t , we can express F(u, v) as the following bicubic Bézier form:

F(u, v) =
3∑

i=0

3∑
j=0

bi, j B3
i (u)B3

j (v), (6)

where bi, j = F( i
3 ,

j
3 ), 0 � i, j � 3, are the Bézier points. It is obvious that b0,0 = b0,0,b3,0 = b3,0,b0,3 = b0,3,b3,3 = b3,3.

Hence, for (u, v) ∈ Ω , it follows that:

∥∥S(u, v) − F(u, v)
∥∥ =

∥∥∥∥∥
3∑

i=0

3∑
j=0

(bi, j − bi, j)B3
i (u)B3

j (v)

∥∥∥∥∥
�

3∑
i=0

3∑
j=0

‖bi, j − bi, j‖B3
i (u)B3

j (v). (7)

Let

Mb = max
{{‖bi−1, j − 2bi, j + bi+1, j‖: 1 � i � 2,0 � j � 3

} ∪{‖bi, j−1 − 2bi, j + bi, j+1‖: 0 � i � 3,1 � j � 2
}}

be the maximal norm of 16 second order differences of the Bézier points of S. Then we have the following result for the
pointwise distance between S(u, v) and F(u, v):

Lemma 1. For (u, v) ∈ Ω , we have∥∥S(u, v) − F(u, v)
∥∥ � 3

(
u(1 − u) + v(1 − v)

)
Mb.

Proof. By direct computation, we obtain:

‖b1,0 − b1,0‖ =
∥∥∥∥2

3
(b0,0 − 2b1,0 + b2,0) + 1

3
(b1,0 − 2b2,0 + b3,0)

∥∥∥∥
� 1

3

(
2
∥∥(b0,0 − 2b1,0 + b2,0)

∥∥ + ∥∥(b1,0 − 2b2,0 + b3,0)
∥∥)

� Mb,

and
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‖b1,1 − b1,1‖ =
∥∥∥∥2

9

[
(b0,0 − 2b1,0 + b2,0) + (b0,0 − 2b0,1 + b0,2)

]
+ 1

4

[
(b0,1 − 2b1,1 + b2,1) + (b1,0 − 2b1,1 + b1,2)

]
+ 1

6

[
(b0,2 − 2b1,2 + b2,2) + (b2,0 − 2b2,1 + b2,2)

]
+ 7

36

[
(b1,0 − 2b2,0 + b3,0) + (b0,1 − 2b0,2 + b0,3)

]
+ 1

12

[
(b1,2 − 2b2,2 + b3,2) + (b2,1 − 2b2,2 + b2,3)

]
+ 1

36

[
(b3,0 − 2b3,1 + b3,2) + (b0,3 − 2b1,3 + b2,3)

]
+ 1

18

[
(b3,1 − 2b3,2 + b3,3) + (b1,3 − 2b2,3 + b3,3)

]∥∥∥∥
� 2Mb.

By symmetry, it follows that:

3∑
i=0

3∑
j=0

‖bi, j − bi, j‖B3
i (u)B3

j (v)

� Mb
[

B3
0(u) B3

1(u) B3
2(u) B3

3(u)
]⎡
⎢⎣

0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

B3
0(v)

B3
1(v)

B3
2(v)

B3
3(v)

⎤
⎥⎥⎥⎦

= Mb
(

B3
1(u) + B3

2(u) + B3
1(v) + B3

2(v)
)

= 3
(
u(1 − u) + v(1 − v)

)
Mb.

Substituting the above inequality into Eq. (7), we have:∥∥S(u, v) − F(u, v)
∥∥ � 3

(
u(1 − u) + v(1 − v)

)
Mb.

This completes the proof of the lemma. �
Lemma 2. For a regular CCSS patch S as defined in Eq. (3), the second order norm is

M = max
{{‖pi−1, j − 2pi, j + pi+1, j‖: 1 � i � 2,0 � j � 3

} ∪{‖pi, j−1 − 2pi, j + pi, j+1‖: 0 � i � 3,1 � j � 2
}}

.

It follows that Mb � 1
6 M.

Proof. By Eq. (5), we have:

b0,0 = 1

36
(p0,0 + 4p1,0 + p2,0) + 1

9
(p0,1 + 4p1,1 + p2,1) + 1

36
(p0,0 + 4p1,0 + p2,0),

b1,0 = 1

18
(2p1,0 + p2,0) + 2

9
(2p1,1 + p2,1) + 1

18
(2p1,2 + p2,2),

b2,0 = 1

18
(p1,0 + 2p2,0) + 2

9
(p1,1 + 2p2,1) + 1

18
(p1,2 + 2p2,2).

It follows that:

‖b0,0 − 2b1,0 + b2,0‖ = 1

36

∥∥(p0,0 − 2p1,0 + p2,0) + 4(p0,0 − 2p1,0 + p2,0) + (p0,0 − 2p1,0 + p2,0)
∥∥ � 1

6
M.

Similarly, we have ‖b1,0 − 2b1,1 + b1,2‖ � 1
6 M . By symmetry, the result follows. �

Combining Lemmas 1 and 2, we obtain a bound on the pointwise distance between S(u, v) and F(u, v):

Theorem 3. For (u, v) ∈ Ω , we have∥∥S(u, v) − F(u, v)
∥∥ � 1

2

(
u(1 − u) + v(1 − v)

)
M.
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In the above theorem, B(u, v) = 1
2 (u(1 − u) + v(1 − v)) is called the distance bound function of S(u, v) with respect to

F(u, v). Since

max
(u,v)∈Ω

B(u, v) = B
(

1

2
,

1

2

)
= 1

4
,

we have a bound on the maximal distance between S(u, v) and F(u, v) as stated in the following theorem:

Theorem 4. The distance between a regular CCSS patch S and the corresponding limit face F is bounded by

max
(u,v)∈Ω

∥∥S(u, v) − F(u, v)
∥∥ � 1

4
M,

where M is the second order norm of S’s initial control mesh.

Remark 5. The distance between a regular patch S and its corresponding center mesh face F is bounded as (Cheng and
Yong, 2006):

max
(u,v)∈Ω

∥∥S(u, v) − F(u, v)
∥∥ � 1

3
M.

For regular CCSS patches, these two upper bounds are sharp and achievable. Therefore, Theorem 4 shows that the limit
mesh can approximate a uniform bicubic B-spline surface better than the corresponding control mesh in general.

4. Extraordinary patches

An extraordinary CCSS patch S of valence n can be partitioned into an infinite sequence of uniform bicubic B-spline
patches {Sk

m}, k � 1, m = 1,2,3 (see Fig. 5 left). If we partition the unit square Ω into an infinite set of tiles {Ωk
m}, k � 1,

m = 1,2,3 (see Fig. 5 right), with

Ωk
1 =

[
1

2k
,

1

2k−1

]
×

[
0,

1

2k

]
,

Ωk
2 =

[
1

2k
,

1

2k−1

]
×

[
1

2k
,

1

2k−1

]
,

Ωk
3 =

[
0,

1

2k

]
×

[
1

2k
,

1

2k−1

]
.

Each tile Ωk
m corresponds to a B-spline patch Sk

m , and Sk
m(u, v) is defined over the unit square with the form as Eq. (3).

Therefore, the parameterization for S(u, v) is constructed as follows (Stam, 1998):

S(u, v)|
Ωk

m
= Sk

m(ũ, ṽ) = Sk
m

(
tk
m(u, v)

)
,

where the transformation tk
m maps the tile Ωk

m onto the unit square Ω:

tk
1(u, v) = (2ku − 1,2k v),

tk
2(u, v) = (2ku − 1,2k v − 1) and

tk
3(u, v) = (2ku,2k v − 1).

Fig. 5. Partition of an extraordinary CCSS patch (left) and Ω-partition of the unit square (right).
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The center face of S’s control mesh is F = {P1,P6,P5,P4} (see Fig. 2). The corresponding limit face is F = {P1,P6,P5,P4},
with Pi being the limit point of Pi, i = 1,4,5,6. Let F(u, v) be the bilinear parameterization of F:

F(u, v) = (1 − v)
[
(1 − u)P1 + uP6

] + v
[
(1 − u)P4 + uP5

]
, (8)

where (u, v) ∈ Ω . The limit face F can be partitioned into subfaces defined over Ωk
m as follows:

F(u, v)|
Ωk

m
= F̂k

m

(
tk
m(u, v)

)
.

Here F̂k
m is the bilinear patch defined by:

F̂k
m(u, v) = (1 − v)

[
(1 − u)b0,0 + ub3,0

] + v
[
(1 − u)b0,3 + ub3,3

]
, (9)

where (u, v) ∈ Ω . Let Ωk
m = [u0, u1] × [v0, v1]. Then,

b0,0 = F(u0, v0), b3,0 = F(u1, v0),

b0,3 = F(u0, v1), b3,3 = F(u1, v1).

Similarly to the analysis in Section 3, we can rewrite Sk
m(u, v) and F̂k

m(u, v) into the bicubic Bézier forms as Eqs. (4) and (6),
respectively. Thus, for (u, v) ∈ Ωk

m , we have∥∥S(u, v) − F(u, v)
∥∥ = ∥∥Sk

m(ũ, ṽ) − F̂k
m(ũ, ṽ)

∥∥
�

3∑
i=0

3∑
j=0

‖bi, j − bi, j‖B3
i (ũ)B3

j (ṽ). (10)

Notice that F̂k
m is not the limit face of the B-spline patch Sk

m but one portion of the extraordinary patch S’s limit face F. So
we cannot use the results for ‖bi, j − bi, j‖ derived in Section 3.

4.1. Distance bound

As k increases, the expression of bi, j − bi, j may be too complicated to decomposed directly into the linear combination
of the second order differences of the control points as done in Section 3. Fortunately, bi, j and bi, j,0 � i, j � 3, are the
convex combinations of the initial control points Pi , i = 1,2, . . . ,2n + 8, and bi, j − bi, j can always be expressed as the linear
combinations of 2n + 10 SODs αl, l = 1,2, . . . ,2n + 10, defined in Eq. (1):1

bi, j − bi, j =
2n+10∑

l=1

xi, j
l αl,

where xi, j
l , l = 1,2, . . . ,2n + 10, are undetermined real coefficients. It follows that:

‖bi, j − bi, j‖ �
2n+10∑

l=1

∥∥xi, j
l αl

∥∥ �
2n+10∑

l=1

∣∣xi, j
l

∣∣‖αl‖ �
2n+10∑

l=1

∣∣xi, j
l

∣∣M.

Therefore, to get a tight upper bound for ‖bi, j − bi, j‖, we solve the following constrained minimization problem:

ci, j = min
2n+10∑

l=1

∣∣xi, j
l

∣∣,
s.t.

2n+10∑
l=1

xi, j
l αl = bi, j − bi, j .

(11)

SODs αl , l = 1,2, . . . ,2n + 10, and bi, j − bi, j can be expressed as the linear combinations of the initial control points Pi ,
i = 1,2, . . . ,2n + 8. Consequently, the constraint in Eq. (11) can be written into

Xi, j DP = Ei, jP,

where Xi, j = [xi, j
1 , xi, j

2 , . . . , xi, j
2n+10], P = [P1,P2, . . . ,P2n+8]t , D is a (2n + 10)× (2n + 8) matrix, and Ei, j is a 1 × (2n + 8) row

vector. Then, the constraint reduces to a linear constraint of the form:

Xi, j D = Ei, j .

1 For 3 � n � 50, the statement has been verified using the symbolic computation of Mathematica. But we cannot give a strict proof for a general n,n � 3,
and then we leave it as an open problem.
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By solving 16 constrained minimization problems with the form as Eq. (11), we have:

‖bi, j − bi, j‖ � ci, j M, 0 � i, j � 3.

Consequently, it follows from Eq. (10) that∥∥Sk
m(u, v) − F̂k

m(u, v)
∥∥ � Bk

m(u, v)M, (u, v) ∈ Ω,

where the bicubic Bézier function

Bk
m(u, v) =

3∑
i=0

3∑
j=0

ci, j B3
i (u)B3

j (v), (u, v) ∈ Ω, (12)

is the distance bound function of Sk
m(u, v) with respect to F̂k

m(u, v). And the distance bound function of S(u, v) with respect to
F(u, v), B(u, v), (u, v) ∈ Ω , can be defined as follows:

B(u, v)|
Ωk

m
= Bk

m

(
tk
m(u, v)

)
, k � 1, m = 1,2,3.

It is obvious that B(0,0) = B(1,0) = B(0,1) = B(1,1) = 0. Let βk
m(n) = max(u,v)∈Ω Bk

m(u, v), k � 1, m = 1,2,3, and β(n) =
maxk�1,m=1,2,3 βk

m(n), we have the following theorem on the maximal distance between S(u, v) and F(u, v):

Theorem 6. The distance between an extraordinary CCSS patch S and the corresponding limit face F is bounded by

max
(u,v)∈Ω

∥∥S(u, v) − F(u, v)
∥∥ � β(n)M, (13)

where β(n) is a constant that depends only on n, the valence of S’s extraordinary vertex, and M is the second order norm of S’s initial
control mesh.

For 3 � n � 50, by plotting the graph of B(u, v) and numerically computing βk
m(n) and β(n), we obtain the following

facts:

(1) If n = 3, β(n) = β2
2 (n), i.e. B(u, v) attains its maximum in the tile Ω2

2 .
(2) If n � 4, β(n) = β1

2 (n), i.e. B(u, v) attains its maximum in the tile Ω1
2 .

Therefore, we have the following algorithm to determine the constants β(n), n � 4:
Step 1. Compute the control points pi, j,0 � i, j � 3, of S1

2 as described in Section 2.2, then determine the Bézier points
bi, j,0 � i, j � 3, of S1

2 according to Eq. (5).
Step 2. Calculate the limit points of P1,P4,P5,P6, and determine the expression of F̂1

2 according to Eqs. (8) and (9). Then
compute the Bézier points bi, j,0 � i, j � 3, of F̂1

2 as explained in Section 3.1.
Step 3. Solve 10 constrained minimization problems with the form as Eq. (11) to get the bound constants ci, j,0 � i �

j � 3. The remaining 6 constants ci, j,0 � j < i � 3, can be determined by symmetry. Then, the distance bound function
B1

2(u, v), (u, v) ∈ Ω can be obtained from Eq. (12).
Step 4. Finally, β(n) is determined as the maximum of B1

2(u, v), (u, v) ∈ Ω .
The algorithm has been implemented in Mathematica 5.1, and the involved optimization problems are solved using the

numerical optimization package of Mathematica 5.1. Note that during the computation process of the first three steps, control
points Pi, i = 1,2, . . . ,2n + 8, act as symbols and can be cancelled in the constraints of Step 3. These ci j are independent
of the initial control points because the constraint in Eq. (11) can reduce to a linear constraint independent of the initial
control points. Consequently, β(n) is a constant that depends only on the valence of S’s extraordinary vertex.

β(3) = 0.258146 can be determined with a similar procedure. The values of β(n),3 � n � 50, are plotted in Fig. 6. For
n > 4, β(n) < β(4) = 1

4 . And for 3 � n � 48, β(n) strictly decreases as n increases.

5. Subdivision depth estimation

Given an error tolerance ε > 0, the subdivision depth of a CCSS patch S with respect to ε is a positive integer d such that
if the control mesh of S is recursively subdivided d times, the distance between the resulting limit mesh and S is smaller
than ε .

The distance between an extraordinary CCSS patch S(u, v) and its level-1 limit mesh can be expressed as

max
i=0,1,2,3

max
(u,v)∈Ω

∥∥S1
i (u, v) − F1

i (u, v)
∥∥,

where S1
i , i = 0,1,2,3, are the level-1 subpatches of S as described in Section 2.2, and F1

i are the limit faces corresponding
to S1, i = 0,1,2,3, respectively. It is easy to see that:
i
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Fig. 6. Graph of β(n), 3 � n � 50.

max
(u,v)∈Ω

∥∥S1
0(u, v) − F1

0(u, v)
∥∥ � β(n)M1

0 � β(n)r1(n)M0,

max
(u,v)∈Ω

∥∥S1
i (u, v) − F1

i (u, v)
∥∥ � β(4)M1

i � 1

4
r1(n)M0, i = 1,2,3.

It follows that:

max
i=0,1,2,3

max
(u,v)∈Ω

∥∥S1
i (u, v) − F1

i (u, v)
∥∥ � max

{
β(n),

1

4

}
r1(n)M0.

Because of the properties of r j(n), j � 0, the distance between an extraordinary CCSS patch S(u, v) and its level-k limit
mesh is bounded by:

max
i=0,1,...,4k−1

max
(u,v)∈Ω

∥∥Sk
i (u, v) − Fk

i (u, v)
∥∥ � max

{
β(n),

1

4

}
rk(n)M0.

Similarly to the derivation in Huang and Wang (2007), we have the following subdivision depth estimation theorem for
CCSS patches.

Theorem 7. Given a CCSS patch S of valence n and an error tolerance ε > 0, after

k = min
0� j�a−1

al j + j (14)

steps of subdivision on S’s initial control mesh, the distance between S and its level-k limit mesh is smaller than ε . Here,

l j =
⌈

log 1
ra(n)

(
r j(n)max{β(n), 1

4 }M

ε

)⌉
, 0 � j � a − 1, a � 1.

In particular, for regular CCSS patches, k = �log4(
M
4ε )	. For an extraordinary CCSS patch with n > 4, since β(n) < 1

4 , l j can

be simplified to �log 1
ra(n)

(
r j(n)M

4ε )	.

6. Comparison

Both a control mesh and its corresponding limit mesh can be employed to approximate a CCSS in practical applications.
This section compares these two approximation representations.

The distance between a CCSS patch S of valence n and its control mesh is bounded as (Cheng et al., 2006; Chen and
Cheng, 2006; Huang and Wang, 2007):

max
∥∥S(u, v) − F(u, v)

∥∥ � Ca(n)M. (15)

(u,v)∈Ω
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Table 1
Comparison of Ca(n), a = 1,2, and β(n), 3 � n � 10

n C1(n) (Cheng et al., 2006) C2(n) (Chen and Cheng, 2006) C2(n) (Huang and Wang, 2007) β(n)

3 1.000000 0.784314 0.784314 0.258146
4 0.333333 0.333333 0.333333 0.250000
5 0.714286 0.574890 0.574890 0.243129
6 0.705882 0.642267 0.549020 0.237454
7 0.717949 0.527357 0.527357 0.232761
8 0.695652 0.582436 0.424242 0.228848
9 0.736364 0.510181 0.510181 0.225549

10 0.757576 0.678442 0.519591 0.222738

Table 2
Comparison of subdivision depths

n 3 4 5 6 7 8 9 10

Cheng et al. (2006) 14 4 16 19 23 26 27 28
Chen and Cheng (2006) 9 4 11 16 14 18 16 22
Huang and Wang (2007) 9 4 11 13 14 13 16 17
limit mesh approx. 6 3 8 10 11 11 12 12

And Ca(n) can be unified as (Huang and Wang, 2007)

Ca(n) = 1

min{n,8}

∑a−1
j=0 r j(n)

1 − ra(n)
, a � 1.

The case where a = 1 corresponds to the result proposed in Cheng et al. (2006), and the case where a = 2 is exactly as per
the result presented in Chen and Cheng (2006). The distance estimates in Eqs. (13) and (15) are both expressed in terms
of M , the second order norm of S, and constants that depend on n which is the valence of S.

Table 1 illustrates the comparison results of the constants C1(n), C2(n), and β(n) for 3 � n � 10. The values of C1(n)

in the second column are evaluated with the approach derived by Cheng et al. (2006). The values of C2(n) in the third
and fourth columns are computed with the techniques proposed by Chen and Cheng (2006) and Huang and Wang (2007),
respectively. It can be seen that Ca(4) = 1

3 is the smallest of Ca(n), n � 3, but β(4) = 1
4 is the biggest of β(n), n � 4.

β(n) < Ca(n), n � 3, shows that the limit mesh approximates a CCSS better than the corresponding control mesh in general.
Given a CCSS patch S of valence n and an error tolerance ε > 0, the subdivision depth estimation formula for the control

mesh approximation is expressed as follows (Huang and Wang, 2007):

k = min
0� j�a−1

al j + j, (16)

where

l j =
⌈

log 1
ra(n)

(
r j(n)Ca(n)M

ε

)⌉
, 0 � j � a − 1, a � 1.

The cases where a = 1 and a = 2 correspond to the formulas derived in Cheng et al. (2006) and Chen and Cheng (2006),
respectively. For regular patches, k = �log4(

M
3ε )	.

Although β(n) is much smaller than Ca(n), the convergence rates of the second order norm, r j(n),0 � j � a, play the
major role in subdivision depth estimation. For example,

0 < log4

(
M

3ε

)
− log4

(
M

4ε

)
= log4

4

3
< 1

means that for regular CCSS patches, to satisfy the same error tolerance control mesh approximation needs at most one
more subdivision step than limit mesh approximation. Notice that at each subdivision step, the number of quadrilaterals
quadruples. One less step implies that the number of faces in the limit mesh approximation is a quarter of the number in
the control mesh approximation.

Table 2 shows the comparison results for subdivision depths for the two representations. The error tolerance ε is set to
0.01, and the second order norm M is assumed to be 2. The first three rows are the results for control mesh approximation,
computed with the direct decomposition method (Cheng et al., 2006), the matrix based technique (Chen and Cheng, 2006),
and the optimization based approach (Huang and Wang, 2007), respectively. The last row is the depths in the limit mesh
approximation. As can be seen from the table, the limit mesh approximation shows a 30–50% improvement over control
mesh approximation in most of the cases.

In the following, we compare the number of mesh faces needed to satisfy the same precision, in a control and a limit
mesh approximation to a CCSS. Given an error tolerance ε , we can first estimate the subdivision depth for each patch
according to Eqs. (14) and (16), then uniformly subdivide each patch correspondingly. However, even applying uniform
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Fig. 7. Limit surfaces of a frog model (left) and a car model (right).

Table 3
Comparison of the numbers of faces in control and limit mesh approximations after adaptive subdivision

ε Frog model Car model

Control mesh Limit mesh Control mesh Limit mesh

0.1 25,642 14,527 14,717 8285
0.05 43,864 26,482 24,905 14,375
0.01 172,159 113,713 97,704 58,805

subdivision to one extraordinary patch, a large number of faces are required to produce a high accurate approximation
(Huang and Wang, 2007). Therefore, we apply the error controlled adaptive subdivision, proposed by Huang and Wang
(2007), to a closed surface—a frog model (see Fig. 7 left) and an open surface—a car model (see Fig. 7 right).

Table 3 illustrates the numbers of faces in control and limit mesh approximations for error tolerances 0.1, 0.05 and 0.01,
respectively. Results show that the limit mesh approximations reduce the number of faces by about 30%, compared to the
control mesh approximations. Thus, limit mesh approximation can improve performance in high accuracy CCSS rendering.

7. Conclusion

In this paper the approximation of a Catmull–Clark subdivision surface by its limit mesh is investigated. By introducing
a distance bound function, we propose a bound on the distance between a CCSS patch and its limit face in terms of the
second order norm of the control points and a constant that depends on the valence of the patch. A subdivision depth
estimation formula for a CCSS patch is also derived.

In general, a limit mesh approximates the limit surface better than the corresponding control mesh. This means that,
compared with control mesh approximation, limit mesh approximation has a smaller subdivision depth and, consequently,
requires fewer faces for a given error tolerance. The test results show that limit mesh approximation improves on control
mesh approximation by about 30% in most of the cases. Thus, for a CCSS, a limit mesh is more appropriate in rendering and
other applications.

Our analysis techniques can be easily extended to other spline based subdivision surfaces, such as Doo–Sabin subdivision
surfaces (Doo and Sabin, 1978) and Loop subdivision surfaces (Loop, 1987). We will explore these in a forthcoming paper.
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