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Abstract

In this paper we propose a new type of splines —
biquadratic submesh splines over hierarchical T-meshes. The
biquadratic submesh splines are in rational form consisting
of some biquadratic B-splines defined over tensor-product
submeshes of a hierarchical T-mesh, where every submesh is
around a cell in the crossing-vertex relationship graph of the
T-mesh. We provide an effective algorithm to locate the valid
tensor-product submeshes. A local refinement algorithm is
presented and the application of submesh splines in surface
fitting is provided.
Key words: hierarchical T-mesh, submesh splines, local

refinement, surface fitting

1. Introduction

Tensor-product B-spline surfaces are a standard represen-
tation for free-form surfaces in the disciplines of computer
graphics and geometric modeling ([5], [10]). One of their
major weaknesses is that the control points must lie topolog-
ically in a rectangular grid and the local refinement by knot
insertion influences entire rows or columns of the control
points. To overcome this inflexibility, Forsey and Bartels
[7] introduced hierarchical B-splines. Hierarchical B-splines
were also studied by Kraft [9]. They constructed a multilevel
spline space which is a linear span of tensor-product B-
splines on different, hierarchically ordered grid levels.

T-splines, proposed by Sederberg ([11], [12]), are another
innovation in this direction. A T-spline is a type of point-
based spline defined over a T-mesh which is a rectangular
grid that allows T-junctions. T-splines can eliminate most
superfluous control points in NURBS representation. A T-
spline is a piecewise rational polynomial within each cell of
the T-mesh. This fact makes the local refinement algorithm
of T-splines would extend all partial rows of control points
to cross the entire surface in the worst case. In order to be
compatible with the standard defining fashion, two of the
present authors introduced the concept of spline spaces over
T-meshes [1]. The dimension formula was proved with the
B-net method [1] and the smoothing cofactor method [8]
for the spline space S m, n, α, β, T ) for m � 2α + 1 and
n � 2β + 1. Then in [2] we provided an approach to define
the basis functions of the C1 continuous bicubic splines

over hierarchical T-meshes and discussed its applications in
surface fitting.

In practice, we prefer splines with highest possible
smoothness, e.g. splines in S m, n, m − 1, n − 1, T ). Un-
fortunately, there is a lack of theoretic foundations for such
spline spaces. For example, we do not know the dimension
formula for such splines space for m � 3 [3]. We do not
know how to construct a set of basis functions neither. In this
paper, we propose a new type of splines — submesh splines,
which are defined in term of some tensor-product B-splines.
A submesh spline is a single rational polynomial within
each cell of a T-mesh. Hierarchical B-splines require a very
special hierarchical T-mesh structure due to its refinement
scheme, but a submesh spline is suitable for any hierarchical
T-mesh. Compared with PHT-splines in [2], submesh splines
have higher order of smoothness and are more adaptable to
applications.

In this paper, we mainly discuss biquadratic submesh
splines over hierarchical T-meshes. In [3] we have shown
that the dimension of biquadratic spline spaces over hi-
erarchical T-meshes is equal to the cell number of the
corresponding crossing-vertex relationship graph. According
to this conclusion, we can define submesh functions over
valid tensor-product submeshes. The submesh functions have
some good properties, such as nonnegativity, local support
and partition of unity. We present a local refinement al-
gorithm for submesh splines, which is achieved by cross
insertion, i.e., dividing a cell into four subcells by inserting
a cross. In some situations, the local refinement requires
some additional divided cells in order to retain the shape
of the submesh spline surfaces. Using submesh splines,
surface models can be constructed adaptively to fit open
mesh models with disk topology. Examples in Section 5
show that our surface fitting method needs less control points
compared with NURBS and PHT-splines.

This paper is organized as follows. Section 2 recalls some
preliminary knowledge about T-meshes and spline spaces
over T-meshes, and defines the crossing-vertex relationship
graph of hierarchical T-meshes. Section 3 introduces the bi-
quadratic submesh spline spaces over hierarchical T-meshes
and describes a method to find valid submeshes. The local
refinement algorithm is provided in Section 4. Section 5
discusses the surface fitting with the biquadratic submesh
splines over hierarchical T-meshes. Section 6 concludes the
paper with a summary and some future work.

_____________________________ 
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2. Polynomial Splines over T-meshes and
Crossing-vertex Relationship Graph

In this section, we review the definition of T-meshes,
hierarchical T-meshes and splines spaces over T-meshes,
and then introduce the crossing-vertex relationship graph of
hierarchical T-meshes.

2.1. T-meshes and Hierarchical T-meshes
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Figure 1. A T-mesh

A T-mesh in R
2 is basically a rectangular grid that allows

T-junctions. We use the compatible definitions of vertices,
edges, cells with those in [1]. Figure 1 shows a T-mesh
in s, t) parameter space, where si denote s coordinates,
and ti denote t coordinates. Thus, each vertex has a knot
coordinate. For example, P1 has knot coordinates s1, t1)
and P2 has knot coordinates s4, t2). Similarly, we can
define edge’s knot coordinates and cell’s knot coordinates.
For example, [s0, s2], t4) denotes the edge L whose two
endpoints are s0, t4) and s2, t4). The cell Φ has knot
coordinates [s1, s4], [t1, t2]).

We classify T-vertices into two types: horizontal T-
vertices and vertical T-vertices. In Figure 1, P2 is a vertical
T-vertex, P3 is a horizontal T-vertex. A horizontal/vertical
l-edge is a contiguous line segment which consists of some
horizontal/vertical interior edges and whose two endpoints
are boundary vertices or horizontal/vertical T-vertices. Ob-
viously, an l-edge is the longest possible line segment in the
T-mesh.

a. Level 0 b. Level 1 c. Level 2

Figure 2. A hierarchical T-mesh

A hierarchical T-mesh [2] is a special type of T-mesh
which has a natural nested structure. It is defined in a recur-
sive fashion . Figure 2 illustrates the process of generating a

hierarchical T-mesh. For a hierarchical T-mesh T , in order
to emphasis its level structure in some cases, we denote the
T-mesh of level k to be T k.

2.2. Spline Spaces over T-meshes

Given a regular T-mesh T , F denotes all the cells in T
and Ω the region occupied by all the cells in T . In [1], the
following spline space is defined

S m, n, α, β, T )

:= {s x, y) ∈ Cα,β Ω) : s x, y)|φ ∈ Pmn, ∀φ ∈ F},

where Pmn is the space of all the polynomials with bi-degree
m, n), and Cα,β is the space consisting of all the bivariate

functions which are continuous in Ω with order α along
x direction and with order β along y direction. It follows
that S m, n, α, β, T ) is a linear space. It is called the spline
space over T-mesh T .

In this paper, we are interested mainly in the spline space
S 2, 2, 1, 1, T ), where T is a hierarchical T-mesh.

2.3. Crossing-vertex Relationship Graph

g2
g1

T G

Figure 3. A T-mesh T and its crossing-vertex relation-
ship graph G

Given a hierarchical T-mesh T , we keep all the interior
crossing vertices and the edges connecting them, and remove
all the other vertices and the edges in T , then we can get a
new mesh G. G is called the Crossing-vertex Relationship
Graph of the hierarchical T-mesh T .

Obviously, the crossing-vertex relationship graph is not a
rectangular grid, since there are L-vertices, hanging edges
and hanging vertices in the crossing-vertex relationship
graph. The valence of a vertex can be 1, 2, 3 and 4.
Figure 3 shows the crossing-vertex relationship graph G of
a hierarchical T-mesh T , where there are two cells in G,
denote as g1 and g2.

3. Biquadratic Submesh Spline Spaces over
Hierarchical T-meshes

In this section, we first introduce the concept of sub-
meshes in T-meshes, and then define the biquadratic sub-
mesh spline spaces over hierarchical T-meshes. We also give
a method to find valid biquadratic submeshes.
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3.1. Submeshes

Definition 3.1: Given a T-mesh T , suppose there are two
knot vectors Sk = [sk

0 , sk
1 , · · · , sk

m+1], T
k = [tk0 , tk1 , · · · ,

tkn+1] that satisfy the following conditions:
1) Sk and T k are in increasing order;
2) For all 0 � i � m + 1, 0 � j � n + 1, sk

i , [tk0 , tkn+1])
and [sk

0 , sk
m+1], t

k
j ) are edges of T .

Then we say that Sk and T k define a bi-degree m, n)
submesh in T , denoted as

Mk := Sk
× T k = [sk

0 , s
k
1 , · · · , sk

m+1]× [tk0 , tk1 , · · · , tkn+1].

In this paper, we assume m = n for simplicity. If a
rectangle with four vertices s0, t0), s1, t0), s0, t1), and
s1, t1) is a cell of the given T-mesh T , then [s0, s1]×[t0, t1]

is a bi-degree 0, 0) submesh of T . According to the
definition, a bi-degree (2,2)(called biquadratic) submesh
is a tensor-product grid with knot vectors [s0, s1, s2, s3]
and [t0, t1, t2, t3], and it has a center cell [s1, s2], [t1, t2]).
Generally, two different biquadratic submeshes may have
the same center cell. We will only select one as the valid
biquadratic submesh for a certain center cell.
Definition 3.2: Given a T-mesh T , suppose that there are

two different biquadratic submeshes M1 : [s1
0, s

1
1, s

1
2, s

1
3] ×

[t10, t
1
1, t

1
2, t

1
3] andM2 : [s2

0, s
2
1, s

2
2, s

2
3]×[t20, t

2
1, t

2
2, t

2
3] in T . If

s1
1 = s2

1, s
1
2 = s2

2, t
1
1 = t21, t

1
2 = t22, then we callM1 andM2

are two co-cell submeshes. There are two relations between
two co-cell submeshes:

1) If s1
0 � s2

0, s
1
3 � s2

3; t10 � t20, t
1
3 � t23, then we call

M1 includes M2;
2) If s1

0 � s2
0, s

1
3 � s2

3 or s1
0 � s2

0, s
1
3 � s2

3 or t10 �

t20, t
1
3 � t23 or t10 � t20, t

1
3 � t23, then we call M1

intersects M2.
For two co-cell submeshes M1 and M2 , if M1 intersects
M2, then there must be another co-cell submesh M3, such
that both M1 and M2 include M3.

For an arbitrary biquadratic submesh Mk, if there is no
co-cell submesh which includes it, we call Mk a valid
biquadratic submesh.

φ φ

a b

Figure 4. Two biquadratic submeshes with the same
center cell φ

Figure 4 show the relations of two co-cell submeshes of
the cell φ, M1 is with solid line boundary edges and M2 is
with dashed line boundary edges. In Figure 4.a,M1 includes
M2, while in Figure 4.b M1 intersects M2.

3.2. Biquadratic Submesh Spline Spaces over Hier-
archical T-meshes

Now we introduce the concept of the biquadratic submesh
spline spaces over hierarchical T-meshes.
Definition 3.3: Given a hierarchical T-mesh T , suppose

that the set of all valid biquadratic submeshes in T is
{Mk}

K
k=1. Define a biquadratic tensor-product B-spline

basis function Nk s, t) for each Mk. All these Nk s, t)
expand a linear space, which is defined to be the biquadratic
submesh spline space over hierarchical T-meshes. A
submesh spline is defined as:

S s, t) =
K∑

k=1

dkBk s, t), Bk s, t) =
Nk s, t)

K∑
i=1

Ni s, t)
, s, t) ∈ Ω

where dk k = 1, 2, . . . , K) are control points, Ω is the
region occupied by all the cells in T . For each k ∈ {1, 2,

. . . , K}, Bk s, t) is called a submesh function of Mk.
According to the definition above, it is easy to show

that all the submesh functions Bk s, t) satisfy the following
properties:

1) Bk s, t) � 0;
2) For any k, Bk s, t) has compact support;
3) The submesh functions form a partition of unity.

3.3. A Method to Find Valid Submeshes

In [3], we have proved the dimension formula of bi-
quadratic spline spaces with smoothness of order one over
hierarchical T-meshes. Given a hierarchical T-mesh T , sup-
pose that F is the number of cells in the the crossing-vertex
relationship graph of T . Then dimS 2, 2, 1, 1, T ) = F .
Based on this result, we can find all valid biquadratic
submeshes and define biquadratic submesh functions.

The main challenge is how to find all valid biquadratic
submeshes in a hierarchical T-mesh. Here we propose a
method to find all the valid biquadratic submeshes. We
construct the crossing-vertex relationship graph G from the
given hierarchical T-mesh T . And then we use G to find all
valid biquadratic submeshes in T .

� �

T G0 G1 G = G2

Figure 5. Construct the crossing-vertex relationship
graph G from a hierarchical T-mesh T

Given a hierarchical T-mesh T , we can construct the
crossing-vertex relationship graph G from T level by level.
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For example, as shown in Figure 5, the hierarchical T-
mesh T have 3 levels. For the level k (k = 0, 1, 2), the
corresponding crossing-vertex relationship graph is Gk. Then
the crossing-vertex relationship graph of T is G2.

Suppose that {gi}
F
i=1 are all the cells of G. For each

cell gi, denote its rectangular bounding box as g̃i. We use
{g̃i}

F
i=1 to find valid biquadratic submeshes in T . For each

g̃i, we can find a corresponding rectangle Ti in T , where Ti

consists of one or several cells of T . Apparently, the four
corner vertices of Ti are all crossing vertices of T . Suppose
that the knot coordinates of Ti are [si

1, s
i
2], [t

i
1, t

i
2]), the left,

right, bottom and top l-edges of Ti are l, r, b and t.
In the following, we need four sets Vi, i = 0, 1, 2, 3. Their

initial values are assumed empty. For l, r, b and t, we delete
their interior T-vertices, and reserve the crossing vertices and
two endpoints. Then for every vertex vj in l, if the horizontal
l-edge through vj contains a vertex in r, we reserve the
vertex vj ; otherwise we delete the vertex vj . We denote the
set of remainder vertices in l as Vlr . Analogously, we can
get a set Vbt from b. For each t coordinate tj of element vj

in Vlr , if tj > ti2, push tj back into V1; if tj < ti1, push tj
back into V3. For each s coordinate sj of element vj in Vbt,
if sj > si

2, push sj back into V2; if sj < si
1, push sj back

into V0. Here V0 and V3 is sorted in descending order for
s and t coordinates, V2 and V1 is sorted in ascending order
for s and t coordinates.

With V0, V1, V2 and V3 in hand, we can ascertain the
valid biquadratic submesh for Ti. Find an element of each
Vi, that is si

0 in V0, si
3 in V2, ti0 in V3 and ti3 in V1. If they

form a submesh, then the valid biquadratic submesh for Ti

is [si
0, s

i
1, s

i
2, s

i
3]× [ti0, t

i
1, t

i
2, t

i
3]. Otherwise, there is no valid

biquadratic submesh for Ti. The pseudo-code of the process
is shown as in Algorithm 1.

Apparently, it is not always true that for every g̃i in G,
one can find a valid biquadratic submesh in T . By the
dimension formula dimS 2, 2, 1, 1, T ) = F , the number
of the valid biquadratic submeshes is no bigger than F.
According to Definition 3.2, each center cell has at most
one corresponding valid biquadratic submesh. Therefore
the method of finding all valid biquadratic submeshes is
feasible and reasonable. Then we can define the biquadratic
submesh function Bk s, t) and the biquadratic submesh
spline according to Definition 3.3.

4. Local Refinement Algorithm

Suppose that the submesh spline space over a T-mesh is
S1, when a cell of the T-mesh is divided by cross insertion,
we can get a submesh spline space S2 over the new T-mesh.
S1 is said to be a subspace of S2 if each submesh function
of S1 can be written as a linear combination of the submesh
functions of S2, denoted by S1 ⊂ S2.

Unfortunately, S1 ⊂ S2 is not always true for an arbitrary
T-mesh, that is, sometimes S1 �⊂ S2. For example, in Figure

Algorithm 1 Find Valid Submesh for Ti in T
if V0 or V1 or V2 or V3 is empty then

There is no valid biquadratic submesh for Ti, return
else

nk ← 0 k = 0, 1, 2, 3)
W ← {{0, 1}, {1, 2}, {2, 3}, {3, 0}}
while do

j0 ←W [0][0] j1 ←W [0][1]
Estimate whether the vertex (Vj0 [nj0 ], Vj1 [nj1 ]) is a
valid vertex of a biquadratic submesh for Ti

if It is true then
W ←W\W [0]
if W is empty then

si
0 ← V0[nj0 ] si

3 ← V2[nj2 ]
ti0 ← V3[nj3 ] ti3 ← V1[nj1 ]
Return submesh [si

0, s
i
1, s

i
2, s

i
3]× [ti0, ti1, ti2, ti3]

end if
else {It is false}

if Vj0 [nj0 ] does not satisfy the qualification then
nj0 ← nj0 + 1
W ←W ∪ {{j0 − 1, j0}, {j0, j0 + 1}}

end if
if Vj1 [nj1 ] does not satisfy the qualification then

nj1 ← nj1 + 1
W ←W ∪ {{j1 − 1, j1}, {j1, j1 + 1}}

end if
if (nj0 is overflow) or (nj1 is overflow) then

There is no valid biquadratic submesh for Ti,
return

end if
end if

end while
end if

a. S0 b. S1 c. S2 d. S3

Figure 6. Nested sequence of submesh spline spaces

6, S0 ⊂ S1, S1 �⊂ S2, S2 ⊂ S3. So we should find other
cells for cross insertion to guarantee that S1 is the subspace
of the new submesh spline space. This process is called the
local refinement algorithm.

The local refinement algorithm has two phases: the topol-
ogy phase and the geometry phase. The topology phase
identifies which cells should be divided by cross insertion
in addition to the ones requested. The control points can be
computed using the linear transformation in the geometry
phase after all required cells are cross insertion.

We first introduce the topology phase of the algorithm.
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Given a hierarchial T-mesh T , its crossing-vertex relation-
ship graph is G. Expand all cells of G to rectangular cells,
denoted as G̃ = {g̃i|i = 1, 2, · · · , F}. For each g̃i, its
corresponding rectangle in T is Ti. We regard Ti as a center
cell [si

1, s
i
2], [t

i
1, t

i
2]), then find a valid biquadratic submesh

in T . If there is no biquadratic submesh for the cell g̃i, we
should divide other cells in T by cross insertion. Denoted
the left, right, bottom and top l-edges of Ti as l, r, b and t.
Ti is contained in a cell φj of T at level k. Here there are
four possible violations and at least one happens to Ti:

• Violation 1 On the left of Ti, we can not find the s

coordinates si
0 to compose a valid submesh of Ti;

• Violation 2 On the right of Ti, we can not find the s

coordinates si
3 to compose a valid submesh of Ti;

• Violation 3 On the bottom of Ti, we can not find the
t coordinates ti0 to compose a valid submesh of Ti;

• Violation 4 On the top of Ti, we can not find the t

coordinates ti3 to compose a valid submesh of Ti.
If no violation exists, the submesh spline is valid. If

violations do exist, we resolve them one by one as following:
• Rule 1 Select the nearest non-crossing cell at level k

on the left of φj for cross insertion;
• Rule 2 Select the nearest non-crossing cell at level k

on the right of φj for cross insertion;
• Rule 3 Select the nearest non-crossing cell at level k

on the bottom of φj for cross insertion;
• Rule 4 Select the nearest non-crossing cell at level k

on the top of φj for cross insertion.
In conclusion, the topology phase of the local refinement

algorithm consists of the following steps:
1) Divide all the desired cells by cross insertion in T , and

construct the crossing-vertex relationship graph G;
2) Expand all the cells of G to rectangular cells to

get Ḡ. If any cell of Ḡ have no corresponding valid
biquadratic submesh in T , apply Rule 1, 2, 3, and
4 for the cell. Then reconstruct the crossing-vertex
relationship graph G;

3) Repeat Step 2 until all cells of Ḡ have their corre-
sponding biquadratic valid submeshes in T .

Now we explain the geometry phase of the local refine-
ment algorithm. Given a submesh spline P s, t) ∈ S1, its
column vector of control points is P. Given another submesh
spline Q s, t) ∈ S2, its column vector of control points is
Q. Suppose that P s, t) ≡ Q s, t) and

P s, t) =
K∑

i=1

piBi s, t), Q s, t) =
K̃∑

j=1

qjB̃j s, t).

Since S1 ⊂ S2, each Bi s, t) can be written as a linear
combination of the B̃j s, t): Bi s, t) =

∑K̃

j=1 c
j
i B̃j s, t).

So, there is a linear transformation that maps P into Q:
H1,2P = Q, where the element at row j and column i of
H1,2 is c

j
i .

We illustrate the refinement algorithm with an example.
Figure 6.b shows an initial T-mesh, its submesh spline space
is S1. When we divide a cell by cross insertion as shown
in Figure 6.c, the new submesh spline space is S2, S1 �⊂

S2. According to the algorithm, we must cross insert other
cells, and get the new T-mesh as shows in Figure 6.d whose
submesh spline space is S3. Then we have S1 ⊂ S3.

5. Surface Fitting

Surface fitting is one of the most important research
topics in computer graphics and geometric modeling. This
section presents an adaptive scheme to fit open mesh models
with disk topology with biquadratic submesh splines over
hierarchical T-meshes.

Given an open mesh model in 3D space with disk
topology, suppose the vertices are Pi i = 1, 2, . . . , N).
Using some parametrization method [6], we can obtain their
corresponding parameter values si, ti), i = 1, 2, . . . , N in
a rectangular region. For simplicity, the parameter region is
assumed to be [0, 1]× [0, 1]. The surface fitting scheme can
be described as follows:

1) Let the initial T-mesh T 0 be a tensor-product mesh,
and the initial submesh spline surface S0 be the tensor-
product B-spline surface defined over T 0. Suppose
that the fitting tolerance is ε > 0, and set k = 0;

2) Compute the fitting error in each cell at level k, and
mark the cells whose fitting errors are larger than ε;

3) If no cell is marked, Sk is the final submesh spline
surface, and return Sk; else, subdivide all marked cells,
and obtain a new T-mesh of level k + 1, denoted as
T̃ k. Then according to the local refinement algorithm,
subdivide some necessary cells of level k in T̃ k to
obtain the level k + 1 T-mesh T k+1;

4) Find out all valid biquadratic submeshes in T k+1,
define a biquadratic tensor-product B-spline basis
function for each valid submesh, and compute the
submesh functions of level k + 1;

5) Use the least-squares method to compute the control
points at level k +1 to get the submesh spline surface
Sk+1. Set k = k + 1, return to Step 2.

Here the fitting error in a cell θ is ideally defined to be

max
(u,v)∈θ

‖P u, v)− S u, v)‖,

where P u, v) is the parametric equation of the mesh model.
In practice, the fitting error is calculated as the maximum of
‖P ui, vi)−S ui, vi)‖ for some sample points ui, vi) in θ.

We provide three examples to illustrate the surface fitting
scheme in Figure 7. In all these examples, the initial T-
meshes are square [0, 1]× [0, 1], and the parameterizations
are obtained with the discrete harmonic mappings proposed
by [4]. The tolerance of the fitting error is ε = 1%, which
refers to the size of the bounding box of the corresponding
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Female Head

Igea Artifact

Gargoyle

Original surfaces Result surfaces

Figure 7. Three examples of fitting closed meshes

model. The computation is performed on a PC with Intel
Pentium 4 CPU 3.20GHZ and 1.0GB RAM. Table 1 shows
the computational time and other information for the three
examples, where CP stands for control points. The last
column shows the number of control points when fitting
with PHT-splines.

Table 1. Computation time for fitting open meshes

Mesh #points #levels #time(sec.) #CP #CP/PHT
Female head 19231 10 8.93 2163 4432
Igea artifact 46313 6 40.71 5580 17744

Gargoyle 74721 13 132.45 8309 35764

6. Conclusions and Future Work

This paper introduces a new type of splines — sub-
mesh splines over hierarchical T-meshes, and specifically we
studied biquadratic submesh splines. First we define valid
submeshes and introduce a method to find valid submeshes.
Then the local refinement algorithm is proposed. With the
submesh splines over hierarchical T-meshes, an adaptively
surface fitting scheme is presented as well.

There are still some interesting research problems about
the submesh splines over hierarchical T-meshes. The natural
problems are whether the set of submesh functions is linear
independence and how to construct the basis functions of
the spline space S 2, 2, 1, 1, T )? Besides, how to handle

surfaces with general topologies? These are problems worthy
of further research.
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