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Multivariate splines have a wide range of applications in function approximation, finite
element analysis and geometric modeling. They have been extensively studied in the last
several decades, and specially the theory on bivariate B-splines over regular triangular par-
tition is well developed. However, the above mentioned splines do not have local refine-
ment property – a property that is very important in adaptive function approximation
and level of detailed representation of geometric models. In this paper, we introduce the
concept of hierarchial bivariate splines over regular triangular partitions and construct
basis functions of such spline space that satisfy some nice properties. We provide some
examples of hierarchical splines over triangular partitions in surface fitting and in solving
numerical PDEs, and the results turn out to be promising.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction triangulation, we focus our attention on bivariate splines
In CAD/CAM industry, free form surfaces are usually
represented by tensor product polynomials or rational
maps, such as tensor-product B-splines and NURBS. For
these standard tensor-product representations, local adap-
tive refinement is naturally supported by the hierarchical
spline model, where different levels of details are identi-
fied by means of a hierarchy of tensor-product splines
[1]. Based on such hierarchical model, complex surfaces
can be created from simple NURBS surfaces with hierarchi-
cal editing.

Compared to tensor-product representations, splines on
triangular partition have the advantage of flexibility and
lower degree with the same continuity. The theory on mul-
tivariate splines over triangular partitions has been widely
studied in the past several decades, see [2] for a detailed
survey. However, for arbitrary triangular partition, the
spline space depends on not only the topology but also
the geometry of the partition, leading to high cost on
computation and difficulties in controlling the spline func-
tions. Thus, instead of working with splines over arbitrary
over two regular triangular partitions, called type-I trian-
gular partition and type-II triangular partition respectively.
The theory of bivariate splines defined on type-I and type-
II triangular partition has been well developed by Renhong
Wang et al. [2]. Unfortunately, such kind of splines does
not have local refinement property, which limits its appli-
cations in Computer Aided Design (CAD) and finite element
analysis.

In this paper, we extend the hierarchical representa-
tions from tensor-product splines to splines defined on
regular triangular partitions. The idea is to define a set of
basis functions by certain rules from a sequence of nested
bivariate spline spaces defined on a nested regular triangu-
lar partition. The refinement domain can be any type
which is convenient to capture local details. We call such
hierarchial model on regular triangular partition as
hierarchical bivariate splines. The functions in such spline
space have some nice properties which are useful in finite
element analysis and CAD.
2. Related work

To address the problem of local refinement of splines on
rectangular domain, the concept of hierarchical B-splines
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Fig. 1. (a) Type-I triangular partition. (b) Type-II triangular partition.
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(HB-splines for short) was firstly introduced by Forsey and
Bartels as an accumulation of B-splines with nested knot
vectors [1]. HB-splines can be locally refined using over-
lays. Later researches mainly focus on how to construct
bases of hierarchical B-spline spaces. The first specific basis
selection mechanism was proposed by Kraft in [3], and ex-
tended by Vuong et al. in [4]. The basis functions of the
hierarchical spline space constructed in [4] are non-nega-
tive, linearly independent and locally supported. Shortly
after, Jüttler et al. normalized the hierarchical B-splines
proposed in [4] by reducing the support of basis functions
defined on coarse grids, according to finer levels in the
hierarchy of splines [5]. They call such hierarchical
B-splines as truncated hierarchical B-splines (THB-splines),
which are non-negative, locally supported, linearly
independent and form a partition of unity, and allow an
effective local control of refinement.

There are also several other kinds of local refinement
splines developed in the past decade besides HB-splines.
T-splines were introduced by Sederberg et al. as a general-
ization of NURBS surfaces [6,7]. The control meshes of
T-splines permit T-junctions, which allows T-splines
locally refinable without propagating entire columns or
rows. This property makes T-splines an ideal modeling tool
for complicated geometry. However, T-splines blending
functions are not always linearly independent, which lim-
its its applications in analysis. A solution to this problem is
the so called analysis-suitable T-splines [8] which are a
subset of T-splines defined over a restricted T-mesh whose
T-junction extensions do not intersect. The blending
functions of AST splines are always linearly independent
and thus is suitable for finite element analysis. Other types
of local refinement splines proposed in recent years
include PHT-splines [9] and LR-splines [10], etc. They also
have good properties which are ideal in CAD and
iso-geometric analysis, for more details we the reader refer
to [9,10].

An attractive alternative of tensor-product representa-
tion is to define piecewise polynomials on triangular parti-
tions, since a triangulation has more flexibility to be
adapted to arbitrary shapes. Traditional finite element
spaces are defined on conforming triangulation, and local
refinement must guarantee the conformability of the trian-
gulation. Furthermore, to construct smooth (at least C1

continuous) finite elements, generally high degree polyno-
mials are required (for example, Argyris element consists
of quintic polynomials with C1 continuity globally) or each
triangle is further subdivided into many sub-triangles (e.g.,
for Powell–Sabin elements, each macro-triangle is subdi-
vided into 6 sub-triangles [11]). Recently, Speleers et al.
constructed hierarchical Powell–Sabin splines for iso-geo-
metric analysis applications [12,13]. Another related work
is hierarchical triangular splines (HTS) introduced in [14].
A HTS spline surface is a piecewise quintic Bézier surface
and is overall tangent plane continuous. The local refine-
ment can be done by splitting each of the refined triangles
into four sub-triangles regularly, which is referred to as a
macro-patch. The Bézier ordinates on a macro-patch are
constrained by G1 continuity. HTS mainly focuses on mod-
eling instead of analysis.
In this paper, we extend HB-splines paradigm to bivar-
iate splines defined on regular triangulation. Starting from
a spline space over a regular triangulation, we construct a
nested spline space sequences according to the successive
refinements of the regular triangulation by taking a similar
approach as in [4]. This construction can be easily general-
ized to the spline spaces defined on other triangulation if
local support basis functions of the space can be con-
structed. In this paper, we will focus our attention on
spline spaces S1

3ðD
ð1Þ
mnÞ � C1 continuous cubic splines over

type-I triangulations, and S1
2ðD

ð2Þ
mnÞ � C1 continuous

quadratic splines over type-II triangulations which will
be defined in details in Section 3.2.

The remainder of the current paper is organized as fol-
lows. In Section 3, we review some preliminary knowledge
about bivariate splines defined on type-I or type-II triangu-
lar partition. In Section 4, the construction of hierarchical
bivariate splines is described. Some properties of hierarchi-
cal bivariate spline basis functions are discussed. In Sec-
tions 5 and 6, applications of hierarchical bivariate
splines in surface fitting and finite element analysis are
demonstrated. Section 7 concludes the paper with a sum-
mary and future work.

3. Bivariate splines space defined on type-I and type-II
triangular partitions

In this section, we recall some preliminary knowledge
about bivariate splines defined on type-I and type-II parti-
tions which have been thoroughly discussed in [2]. With-
out of generality, we assume that the initial domain
D ¼ ½0;m� � ½0;n� is a rectangle domain, here m;n are posi-
tive integers. L-type domain can be segmented into several
rectangles. We should note that any linear transformation
of the domain does not influence the results in this section,
so D can be any parallelogram.

3.1. Splines space defined on type-I triangular partition

Type-I triangular partition, denoted by Dð1Þmn, is
constructed by connecting the diagonal line segment with
positive slope of every rectangular cell of a uniform rectan-
gular partition, see Fig. 1(a):

Dð1Þmn : x ¼ i; y ¼ j; x� y ¼ h;

where i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ; n� 1, and h ¼ �nþ 1; . . . ;

m� 1.



Fig. 2. Bézier expressions of B1ðx; yÞ and B2ðx; yÞ in S1
3ðD

ð1Þ
mnÞ. The numbers

in every triangle are the Bézier ordinates.
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The spline space defined on a type-I triangular partition
is denoted by Sl

k ðD
ð1Þ
mnÞ, where k and l are the degree and

order of smoothness of the splines respectively.

Proposition 1 [2]. The dimension of the spline space
Sl

k ðD
ð1Þ
mnÞ is given by

dimSl
k ðD

ð1Þ
mnÞ ¼

kþ 2
2

� �
þ ð2mþ 2n� 3Þ

k� lþ 1
2

� �
þ ðm� 1Þðn� 1Þðk� l
�½ðlþ 1Þ=2�Þþ � ðk� 2lþ ½ðlþ 1Þ=2�Þ:

ð1Þ
k and l must satisfy the following inequality

k > ð3lþ 1Þ=2;

if Sl
k ðD

ð1Þ
mnÞ has basis functions with local support. For a gi-

ven order of smoothness l, generally it is expected that
the degree of the spline function is as low as possible.
For example, S1

3ðD
ð1Þ
mnÞ is the spline space with lowest degree

for the given order of smoothness l ¼ 1.
Now we review the construction of basis functions with

local support of spline space S1
3ðD

ð1Þ
mnÞ. S1

3ðD
ð1Þ
mnÞ is spanned by

the translation of two kinds of locally supported functions
B1ðx; yÞ and B2ðx; yÞ, where B2ðx; yÞ ¼ B1ð�x;�yÞ. That is
Fig. 3. The left figure is a type-I triangular partition, where the interior of red poly
are the shapes of B1ðx; yÞ and B2ðx; yÞ respectively. (For interpretation of the refere
of this article.)
S1
3ðD

ð1Þ
mnÞ ¼ spanfB1

ijjði; jÞ 2 Q 1g [ fB2
ijjði; jÞ 2 Q2g;

where Bp
ij ¼ Bpðx� i; y� jÞ, Qp :¼ fði; jÞj9ðx; yÞ 2 D, s:t:Bp

ijðx; yÞ– 0g,
p ¼ 1;2.

For effective computation, we express B1ðx; yÞ and
B2ðx; yÞ in the form of Bézier ordinates. Fig. 2 shows the
supports together with the Bézier ordinates of B1ðx; yÞ
and B2ðx; yÞ respectively. Their shapes are depicted in
Fig. 3.

Since #ðQ1 [ Q2Þ ¼ 2ðmþ 2Þðnþ 2Þ � 2 and dimS1
3ðD

ð1Þ
mnÞ

¼ 2ðmþ 2Þðnþ 2Þ � 5, the functions in set eB ¼ fB1
ijjði; jÞ

2 Q1g [ fB2
ijjði; jÞ 2 Q2g are linearly dependent. Fortunately,

by removing three functions in eB, a set of linearly indepen-
dent basis functions B can be obtained which spans
S1

3ðD
ð1Þ
mnÞ. B is defined as follows

B ¼ fB1
ij;B

2
ijjði; jÞ 2 Q1ðm;nþ 1Þ;

ðs; tÞ 2 Q2ðmþ 1;n; mþ 1;n� 1Þg;
ð2Þ

where Qpði1; j1; . . . ; iq; jqÞ ¼ Qpnfði1; j1Þ; . . . ; ðiq; jqÞg; p ¼ 1;2.

The basis functions in B are non-negative, locally sup-
ported and P1 � S1

3ðD
ð1Þ
mnÞ. More precisely, polynomials

1; x; y 2 P1 can be represented by linear combinations of
basis functions in B [2].

3.2. Splines space defined on type-II triangular partition

Type-II triangular partition is constructed by connect-
ing the two diagonal line segments of every rectangular
cell of a uniform tensor-product partition, that is, type-II
triangular partition Dð2Þmn is composed of the following lines:

x ¼ i; y ¼ j; y� x ¼ h1; xþ y ¼ h2;

where i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ;n� 1;h1 ¼ 1� n; . . . ;m�
1;h2 ¼ 1; . . . ;mþ n� 1. See Fig. 1(b) for a reference.

A spline space defined on a type-II triangular partition is
denoted by Sl

k ðD
ð2Þ
mnÞ.

Proposition 2 [2]. The dimension of Sl
k ðD

ð2Þ
mnÞ is given by
gon (blue polygon) is the support of B1ðx; yÞ(B2ðx; yÞ). The right two figures
nces to color in this figure legend, the reader is referred to the web version
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dimSl
k ðD

ð2Þ
mnÞ ¼

kþ 2
2

� �
þ ð3mþ 3n� 4Þ

k� lþ 1
2

� �
þmn

k� 2l
2

� �
þ ðm� 1Þðn� 1Þdl

k ð4Þ;

ð3Þ
where dl
k ð4Þ ¼ 1

2 ðk� l� ½ðlþ 1Þ=3�Þþ � ð3k� 5lþ 3½ðlþ
1Þ=3� þ 1Þ.

k and l should satisfy the following inequality:
k > ð4lþ 1Þ=3;
in order to get basis functions with local support. Typical
spline spaces interested include S1

2ðD
ð2Þ
mnÞ and S2

4ðD
ð2Þ
mnÞ.

Now we review the construction of locally supported
basis functions of spline space S1

2ðD
ð2Þ
mnÞ.

A basic B-spline basis function Cðx; yÞ in S1
2ðD

ð2Þ
mnÞ is

defined as in Fig. 4(a), where the equilateral octagon Q is
the support of Cðx; yÞ and the numbers in a triangle are
the Bézier ordinates of Cðx; yÞ. Notice that the Bézier ordi-
nates in some triangles are not shown, this is because
Cðx; yÞ is x-axial and y-axial symmetry, and also symmetric
to the origin, and the Bézier ordinates of Cðx; yÞ on these
triangles can be deduced by symmetry. The octagon Q is
centered at ð12 ; 1

2Þ. Fig. 4(b) illustrates the shape of Cðx; yÞ.
The dimension of S1

2ðD
ð2Þ
mnÞ is ðmþ 2Þðnþ 2Þ � 1, and a set

of linearly independent basis functions for S1
2ðD

ð2Þ
mnÞ can be

constructed as
B ¼ fCijðx; yÞ : ði; jÞ 2 E; ði; jÞ– ði0; j0Þg; ð4Þ
where Cijðx; yÞ ¼ Cðx� i; y� jÞ, E ¼ fði; jÞ : �1 6 i 6 m;�1
6 j 6 ng and ði0; j0Þ can be any specified index in E.

A nice property of spline space S1
2ðD

ð2Þ
mnÞ is polynomial

completeness – it contains quadratic polynomial space P2.
Another spline space with locally supported basis over

type-II partition is S2
4ðD

ð2Þ
mnÞ. We omit the detailed construc-

tion and refer the reader to [2] for a reference. We should
point out that this spline space contains cubic polynomial
space P3.
Fig. 4. (a) The Bézier ordinates of Cðx; yÞ 2 S1
2ðD

ð2Þ
mnÞ. The Bézier ordinates

in other triangles can be deduced by symmetry. (b) The shape of function
Cðx; yÞ.
4. Construction of hierarchical bivariate splines

In this section, we are going to construction hierarchical
bivariate splines over triangular partitions of type-I and
type-II. The properties of such hierarchical splines are also
presented. For convenience, we use D to denote a type-I or
type-II triangular partition, and S can be any of spline
spaces defined on D discussed in the last section. H denotes
the corresponding hierarchical spline space defined on a
hierarchical triangular partition as explained below.

4.1. Notations

Let

S0 � S1 � � � � � SN;

be a nested sequence of bivariate spline spaces defined on
a nested sequence of regular triangular partitions of a rect-
angular domain X0:

D0 # D1 # � � � # DN:

Here the notation Dk�1 # Dk means Dk is a refinement of
Dk�1, that is, Dk is obtained by subdividing each cell of
Dk�1 into four sub-triangles such that the resulting parti-
tion has the same type (type-I or type-II) as Dk�1. In addi-
tion, let

X0 � X1 � � � � XN;XNþ1 ¼ ;;

be a sequence of nested domains. Except X0 has to be a
rectangle, the remaining Xk 2 R2; k ¼ 1; . . . ;N represents
the region selected to be refined at level k and its boundary
@Xk is aligned with the edges of Dk�1. The union of all the
grid line segments of Dk that lie in Xk; k ¼ 0;1; . . . ;N is
referred to as a hierarchical triangular mesh. A hierarchical
triangular mesh divides the domain X0 into a hierarchical
triangular partition, denoted by DN . Obviously,

D0 # D1 # � � � # DN;

with D0 ¼ D0. Our goal is to define hierarchical spline
spaces over DN .

Fig. 5(a) shows a nested sequence of type-II triangular
partitions of domain X0 : D0 � D1 � D2, over which a nested
sequence of spline spaces is defined: S0 � S1 � S2. Fig. 5(b)
shows a nested sequence of domains X0 ¼ X1 � X2,
together with the corresponding type-II hierarchial mesh,
where X0 ¼ X1 is the red rectangular domain and X2 is
the interior of the polygon marked with blue line
segments. The corresponding hierarchical type-II
triangular partition D2 is illustrated in Fig. 5(c) (while
D0 ¼ D0;D1 ¼ D1).

Finally, the support of a function f is defined as

supp f ¼ fx : f ðxÞ – 0 ^ x 2 X0g:
4.2. Hierarchical bivariate splines

Now we can define the hierarchical spline basis func-
tions on a hierarchical triangular partition.



Fig. 5. (a) nested type-II triangular partition: D0 � D1 � D2. (b) Nested
domains: X0 � X1 � X2, together with the hierarchical mesh. (c) Hierar-
chical type-II triangular partition D2, while D0 ¼ D0 and D1 ¼ D1.
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Definition 1. Let Bk be a basis of the spline space Sk

defined on a regular triangular partition Dk of domain
X0; k ¼ 0;1 . . . ;N, with D0 � D1 � � � � � DN . The hierarchical
bivariate spline basis H is recursively constructed as
follows.
1. Initialization: H0 ¼ fb 2 B0 : suppb – ;g.
2. Recursive case: Hlþ1 ¼ Hlþ1

A [Hlþ1
B , for

l ¼ 0; . . . ;N � 1, where
Fig. 6.
marked
Eq. (4)
color in
article.)
Hlþ1
A ¼ fb 2 Hl : supp b � Xlþ1g;
and
Hlþ1
B ¼ fb 2 Blþ1 : supp b � Xlþ1g:
3. H ¼ HN .

As an illustration, we explain how to construct hierar-
chical bivariate spline basis H for hierarchical spline space
H1

2ðD
2Þ, where D2 is the hierarchical type-II triangular
(a) The center of the support of a basis function in S1
2ðD

ð2Þ
mnÞ is

with a yellow circle. (b) The basis functions of S1
2ðD

ð2Þ
mnÞ defined by

are represented by circles. (For interpretation of the references to
this figure legend, the reader is referred to the web version of this
partition defined in Fig. 5. For convenience, we mark the
central vertex of the support of a basis function in
S1

2ðD
ð2Þ
mnÞ with a sold circle to represent the basis function

as shown in Fig. 6(a) and (b) illustrates all the linearly
independent basis functions in B1 defined by Eq. (4) which
spans spline space S1

2ðD
1Þ, where D1 ¼ Dð2Þmn with m ¼ n ¼ 4.

Because X0 ¼ X1, so H1 ¼ B1, thus H ¼ H2 are com-
posed of two parts: b 2 B1; supp b � X2 and
b 2 B2; supp b � X2. The first part and second part are rep-
resented by yellow solid circles in Fig. 7(a) and (b) respec-
tively. Notice that there are 9 basis functions in B1 which
are not included in the first part. On the other hand, the
11 yellow circles outside of the domain X0 in Fig. 7(b)
should be included in the second part, which are easy to
be neglected.

4.3. Properties

Now we discuss some properties of the bivariate hierar-
chical splines constructed in the above subsection.

Theorem 3. The bivariate hierarchical spline basis H con-
structed in Section 4.2 have the following properties:

1. Nonnegativity: b P 0;8b 2 H.
2. Compact support: b 2 H has compact support.
3. Polynomial completeness: P2 � H1

2ðDÞ for hierarchi-
cal type-II triangular partition D, and P1 � H1

3ðDÞ
for hierarchical type-I triangular partition D.

4. Linear independency: the functions in H are linearly
independent.

5. Nested property: spanHk� spanHkþ1;k¼0;1; . . . ;
N�1.
Proof. The first three properties are obvious. The linear
independency and nested property are proved in Lemmas
4 and 5. h
Lemma 4. The functions in H are linearly independent.
Proof. We have to prove thatX
b2H

cbb ¼ 0) cb ¼ 0; for all b: ð5Þ
Fig. 7. Basis of hierarchical spline space H1
2ðD

2Þ.
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The sum
P

b2Hcbb ¼ 0 can be rearranged asX
b2H\B0

cbbþ
X

b2H\B1

cbbþ � � �
X

b2H\BN

cbb ¼ 0:

Since the functions inH\ B0 are a subset of B0, they are
linearly independent. Only these functions are non-zero on
X0 nX1, hence, in view of their local linear independence,
we conclude that cb ¼ 0 for b 2 H \ B0.

Analogously, when we consider the remaining sums in

the sequence, firstly we know that the functions in H\ Bk

are linearly independent since H\ Bk �Bk; k ¼ 1; . . . N.
Then, except for the functions already considered in the
previous sums, namely b 2 H \ B0; . . . ; b 2 H \ Bk�1, only

the functions in H\ Bk are non-zero on Xk nXkþ1. This

implies that cb ¼ 0 for b 2 H \ Bk with k ¼ 1; . . . N. The
lemma is thus proved. h
Lemma 5. We have

spanHk � spanHkþ1; k ¼ 0;1; . . . ;N � 1:
Proof. Any f 2 spanHk can be expressed as

f ¼
X
b2Hk

dbðf Þb ¼
X
b2Hk

suppb � Xkþ1

dbðf Þbþ
X
b2Hk

suppb � Xkþ1

dbðf Þb: ð6Þ

The first sum in the right-hand side of the above rela-
tion Eq. (6) collects all basis functions in Hkþ1

A . In view of

the nested nature of the underlying spaces Bk; k ¼ 0; . . . ; N,
we can express each basis function b 2 Hk as linear combi-
nation of basis functions which belong to Bkþ1, so we have

f ¼
X

b2Hkþ1
A

dbðf Þbþ
X
b2Hk

suppb � Xkþ1

dbðf Þ
 X

a2Bkþ1
suppa� Xkþ1

ckþ1
a a

!

¼
X

b2Hkþ1
A

dbðf Þbþ
X

a2Bkþ1
suppa� Xkþ1

 X
b2Hk

suppb � Xkþ1

ckþ1
a dbðf Þ

!
a

¼
X

b2Hkþ1
A

dbðf Þbþ
X

a2Hkþ1
B

daðf Þa:

Hence, f 2 spanHkþ1. h
Remark 1. The hierarchical B-spline space Hl
k ðDÞ has glo-

bal continuity l for any hierarchical triangular partition
D, so it does not lose continuity order at hanging nodes
of D.

After defining a basis for a hierarchical spline space, one
can define a hierarchical spline surface as

Sðx; yÞ ¼
X
b2H

Pbbðx; yÞ; ðx; yÞ 2 X0; ð7Þ

where Pb 2 R3 are the control points, and bðx; yÞ; b 2 H are
basis functions. X0 is a 2D rectangular parametric domain.
5. Surface fitting

In this section, we show applications of hierarchical
splines on regular triangular partitions in surface fitting.
The hierarchial spline spaces H1

2 and H1
3 are chosen for

illustration. Here H1
2 is defined on hierarchical type-II trian-

gular partitions, and H1
3 is defined on hierarchical type-I

triangular partitions. Comparisons are made with hierar-
chical tensor product counterparts – H1;1

2;2 and H1;1
3;3 respec-

tively. Here H1;1
2;2 stands for C1 continuous biquadratic

hierarchical spline space which is constructed from C1 con-
tinuous uniform biquadratic splines S1;1

2;2. Similarly, hierar-
chical bicubic spline space H1;1

3;3 is constructed from
uniform bicubic spline space S1;1

3;3. The reader is referred
to [4] for details.

Suppose we are given an open mesh model with verti-
ces Pi, i ¼ 1;2; . . . ;N in 3D space, and their corresponding
parameter values ðsi; tiÞ; i ¼ 1;2; . . . ;N obtained from some
parametrization of the mesh (we use the parameterization
method in [15] in the current paper). The parameter
domain is assumed to be X0 ¼ ½0;1� � ½0;1�. We are going
to find a hierarchical spline surface Sðs; tÞ to approximate
the mesh model.

The surface fitting scheme repeats the following step 2
and 3 until the approximation error is satisfied with
respect to a given tolerance e.

1. Construct a uniform (triangular or rectangular) parti-
tion T0 of X0. T0 is the initial mesh. Set k ¼ 0.

2. Compute a least-squares approximation Sðs; tÞ by
minimizing:
XN

i¼1

ðSðsi; tiÞ � PiÞ2
according to current hierarchical spline space Hk. The
underlying hierarchical mesh is denoted by Tk.

3. Search for the violated cells in Tk. Then split these cells
into four sub-cells to obtain a new mesh Tkþ1. A violated
cell is the cell over which the fitting error is greater than
e. The fitting error over a cell h is calculated as the max-
imum of kPi � Sðsi; tiÞk2 for the points ðsi; tiÞ 2 h. Set
k :¼ kþ 1.

We demonstrate three examples to illustrate the above
algorithm. The approximate error of a model is defined as
the maximum of kPi � Sðsi; tiÞk2; i ¼ 1; . . . ;N.

Example 1. Consider a piecewise quadratic function
f ðx; yÞ ¼ ðx� yÞ2; x 6 y

�ðx� yÞ2; else

(

We approximate f ðx; yÞ by a hierarchical spline function
from H1

2, and a tensor product hierarchical spline function
from H1;1

2;2.

By sampling data points of f ðx; yÞ on a 51� 51 uniform
grid defined on the domain ½0;1� � ½0;1�, we obtain two



Table 1
Statistic data for fitting Female Head model with
#Points ¼ 19;231;#Faces ¼ 38;388.

Levels H1
2 H1;1

2;2

DOF Max error DOF Max error

0 99 0.597346 100 0.730179
1 208 0.403546 310 0.40666
2 321 0.37169 537 0.375345
3 505 0.33654 796 0.340688
4 769 0.32103 1198 0.322405
5 1070 0.26588 1699 0.264722
6 1459 0.204522 2397 0.205273
7 1877 0.132439 3165 0.143232
8 2161 0.0581819 3804 0.0666729
9 2336 0.048414 4195 0.0489152

10 2403 0.0333915 44,443 0.03445

H. Kang et al. / Graphical Models 76 (2014) 289–300 295
approximated functions g1ðx; yÞ and g2ðx; yÞ respectively
from H1

2 and H1;1
2;2, as shown in Fig. 8.

g1ðx; yÞ 2 H1
2 has 15 degrees of freedom (DOF for short)

with an approximation error 3:0� 10�8, while g2ðx; yÞ has
638 DOF with an approximation error 9:7� 10�5. The rea-
son why H1

2 approximates better in this example is that,
g1ðx; yÞ can naturally capture the second order derivative
discontinuity of f ðx; yÞ along the diagonal line y ¼ x.

Example 2. We consider the fitting of a 3D mesh model – a
female head with 19,231 points and 38,388 faces.

We start from a uniform type-II triangular partition Dð2Þ88

(for H1
2) or a uniform 8� 8 tensor product partition (for

H1;1
2;2). The surfaces at various levels approximated by spline

spaces H1
2 and H1;1

2;2 are shown in Fig. 15(a) and (b) respec-
tively. Table 1 summarizes the fitting results. From the sta-
tistic data, the approximation surfaces by two spline
spaces H1

2 and H1;1
2;2 have about the same approximation er-

ror at the same level, but H1
2 needs only about half of DOF

compared with H1;1
2;2.

Example 3. In this example, we fit Lauransana model with
surfaces from H1

3 and H1;1
3;3. The model has 6301 points and

12,487 faces.
The initial partition used for H1

3(H1;1
3;3) is a uniform type-I

triangular partition Dð1Þ88 (uniform 8� 8 tensor product par-
tition). The surfaces approximated by spline spaces H1

3 and
H1;1

3;3 are shown in Fig. 9(a) and (b) respectively. Table 2
summarizes the fitting results. From the statistic data,
the approximation error by H1

3 is a little larger than that
by H1;1

3;3, but with a smaller number of DOFs.

6. Solving elliptic PDEs

In this section, we discuss how to use hierarchical
bivariate B-splines defined in Section 4.2 to solve elliptic
PDEs with Dirichlet boundary constraint. Due to the
Fig. 9. Fitting Lauransana model in Example 3 with hierarchical spline
spaces H1

3 and H1;1
3;3. The left column is the original surfaces and the right

columns are approximation surfaces with hierarchical mesh.

Table 2
Statistic data for fitting Lauransana model with
#Points ¼ 6301;#Faces ¼ 12;487.

Levels H1
3 H1;1

3;3

DOF Max error DOF Max error

0 195 0.358897 324 0.40361
1 628 0.34233 788 0.411683
2 776 0.311991 1028 0.314497
3 838 0.148043 1120 0.127306
4 926 0.0623309 1200 0.0422704
5 1066 0.0374738 1332 0.0269059

Fig. 8. Two approximated functions of Example 1. The curves on the right
surfaces are the images of the left underlying meshes.
boundary constraint, the spline space S1
2ðD

ð2Þ
mnÞ cannot be

used directly, so we firstly introduce a subspace S1;0
2 ðD

ð2Þ
mnÞ

which satisfies the boundary constraint. The hierarchical
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spline space H1;0
2 can be constructed from S1;0

2 ðD
ð2Þ
mnÞ by the

process in Section 4.2. We compare our results with finite
element function space – C1 continuous hierarchical tensor
product spline space H1;1

2;2 constructed from C1 continuous

biquadratic spline space S1;1
2;2. From the numerical results,

it suggests that the hierarchical spline spaces H1;0
2 and

H1;1
2;2 have similar convergence rate, and they are superior

to uniform spline spaces S1;0
2 ðD

ð2Þ
mnÞ and S1;1

2;2.

6.1. Model problem

The elliptic model problem we considered is a Poisson’s
equation defined on a two-dimensional rectangle domain
X ¼ ½0;1� � ½0;1� with Dirichlet boundary C, which is de-
fined as follows:

� Du ¼ f on X

u ¼ 0 on C
ð8Þ

where f 2 L2ðXÞ.
The weak form solution of problem Eq. (8) is to seek

u 2 V such that

aðu;vÞ ¼ FðvÞ; 8v 2 V ; ð9Þ

where a is the bilinear form and F is the linear functional
defined by

aðu; vÞ ¼
Z

X
ru � rvdX;

FðvÞ ¼
Z

X
fvdX:

ð10Þ

The trial and test space V is the usual Sobolev space
H1ðXÞ vanishing at the boundary C, that is

V ¼ fv 2 H1ðXÞ : v ¼ 0 on Cg:

The energy norm associated with the bilinear form is
defined by

kvkE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðv; vÞ

p
: ð11Þ
Fig. 10. From left to right: the supports of corner spline, edge spline and
interior spline of S1;0

2 ðD
ð2Þ
mnÞ.
6.2. Hierarchical spline space H1;0
2

Let Bðx; yÞ be the basis function defined in Fig. 4(a) and
Bij be the translation of Bðx; yÞ:

Bijðx; yÞ ¼ Bðmx� iþ 1=2; nx� jþ 1=2Þ;

then the set

B ¼ fBijðx; yÞji ¼ 0; . . . ;mþ 1; j ¼ 0; . . . ;nþ 1g

spans the spline space S1
2ðD

ð2Þ
mnÞ.

The spline space S1;0
2 ðD

ð2Þ
mnÞ is defined as follows [16]:

S1;0
2 ðD

ð2Þ
mnÞ ¼ fs 2 S1

2ðD
ð2Þ
mnÞ : sð0; �Þ ¼ 0;

sð1; �Þ ¼ 0; sð�;0Þ ¼ 0; sð�;1Þ ¼ 0g:
ð12Þ

The basis functions of S1;0
2 ðD

ð2Þ
mnÞ can be constructed by

linear combination of Bij. Specifically, let eBi;jðx; yÞ 2
S1;0

2 ðD
ð2Þ
mnÞ, then we have
eB1;1ðx;yÞ¼B1;1ðx;yÞ�B0;1ðx;yÞ�B1;0ðx;yÞþB0;0ðx;yÞ;eBm;1ðx;yÞ ¼Bm;1ðx;yÞ�Bmþ1;1ðx;yÞ�Bm;0ðx;yÞþBmþ1;0ðx;yÞ;eB1;nðx;yÞ¼B1;nðx;yÞ�B0;nðx;yÞ�B1;nþ1ðx;yÞþB0;nþ1ðx;yÞ;eBm;nðx;yÞ ¼Bm;nðx;yÞ�Bm;nþ1ðx;yÞ�Bmþ1;nðx;yÞþBmþ1;nþ1ðx;yÞ;

8>>>>>>><>>>>>>>:
ð13Þ

eBi;1ðx; yÞ ¼ Bi;1ðx; yÞ � Bi;0ðx; yÞ; i ¼ 2;3; . . . ;m� 1;

eBi;nðx; yÞ ¼ Bi;nðx; yÞ � Bi;nþ1ðx; yÞ; i ¼ 2;3; . . . ;m� 1;

eB1;jðx; yÞ ¼ B1;jðx; yÞ � B0;jðx; yÞ; j ¼ 2;3; . . . ;n� 1;

eBm;jðx; yÞ ¼ Bm;jðx; yÞ � Bmþ1;jðx; yÞ; j ¼ 2;3; . . . ;n� 1;

8>>>>>>><>>>>>>>:
ð14Þ

eBi;jðx; yÞ ¼ Bi;jðx; yÞ i ¼ 2;3; . . . ;m� 1;
j ¼ 2;3; . . . ;n� 1: ð15Þ

The basis functions defined by formula Eqs. (13)–(15)
are called corner spline, edge spline and interior spline of
S1;0

2 ðD
ð2Þ
mnÞ respectively. The supports of these three kinds

of splines are shown in Fig. 10. One can show that the
dimension of space S1;0

2 ðD
ð2Þ
mnÞ is

dimS1;0
2 ðD

ð2Þ
mnÞ ¼ mn� 1:

The following set of functions forms a basis of S1;0
2 ðD

ð2Þ
mnÞ:eB ¼ feBi;j : 1 6 i 6 m;1 6 j 6 n; ði; jÞ – ði0; j0Þg;

where ði0; j0Þ is a specified index, i0 2 ½1;m�; j0 2 ½1;n�.
The hierarchical spline space H1;0

2 corresponding to
S1;0

2 ðD
ð2Þ
mnÞ is defined as in Definition 1. Similarly, one can

define its tensor product counterpart H1;1
2;2.

6.3. Finite element discretization

Now we are ready to use hierarchical spline space H1;0
2

and H1;1
2;2 to solve elliptic problem Eq. (9). For simplicity,

we simply useH to stand for H1;0
2 or H1;1

2;2. The finite element
approximation of problem Eq. (9) with H means to find a
function uh 2 H such that

aðuh; vÞ ¼ FðvÞ ð16Þ

for all test functions vh 2 H � V .
Suppose H ¼ fbig

n
i¼1;uh ¼

Pn
i¼1cibi, then problem Eq.

(16) is turned into solving the following linear equation

LC ¼ B;



Table 3
Computational results by H1;0

2 for Example 4 under uniform global
refinement.

DOF ku� uhkL2 CR ku� uhkE CR

3 2.14789e�3 2.54794e�2
15 1.89944e�4 3.0141 5.46014e�3 1.9142
63 2.08673e�5 3.0779 1.30255e�3 1.9973

255 2.51227e�6 3.0283 3.21580e�4 2.0010
1023 3.10966e�7 3.0078 8.01381e�5 2.0004
4095 3.87764e�8 3.0019 2.00185e�5 2.0001
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where L is a n� n matrix with the element
Lði; jÞ ¼ aðbi; bjÞ;B is a n� 1 vector with element
BðiÞ ¼ FðbiÞ and C ¼ ðc1; . . . ; cnÞT .

All the numerical experiments are tested over a domain
X ¼ ½0;1� � ½0;1�. The refinement at each level is achieved
(a) DOF = 15

Fig. 11. Discrete solutions uh

(a) DOF = 35

(c) DOF = 279

Fig. 12. Discrete solutions uh of Example 5 solved with H1;0
2 . The green curves on

of the references to color in this figure legend, the reader is referred to the web
by performing the marking strategy used in [17] with a
parameter h, which is used to control the refinement pro-
cess [18]. The refinement strategy is based on an error esti-
mate on a cell. Here we use the residual-based posteriori
error estimate gK on a cell K of mesh, defined by

g2
K ¼ h2

kkDuþ fk2
L2ðKÞ;

where hK is the diameter of cell K. The posterior error on
mesh T is the sum of gK on each cell, that is

gT ¼
X
K2T

g2
K

 !1=2

:

The convergence rate CR with respect to the norm k � k
at the refinement level k is roughly computed by
(b) DOF = 255

by H1;0
2 of Example 4.

(b) DOF = 143

(d) DOF = 545

the surfaces are the images of the hierarchical meshes. (For interpretation
version of this article.)
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CR ¼ 2logðkeh;k�1k=keh;kkÞ
logðnk=nk�1Þ

;

where nk is the degree of freedom at level k and eh;k de-
notes the error (energy-norm error ku� uhkE or L2-norm
error ku� uhkL2 ) at level k. For convenience, we use DOF
as the abbreviation for degree of freedom (=number of ba-
sis functions).

In the following, we provide several numerical exam-
ples to illustrate the numerical property of hierarchical
spline space H1;0

2 , together with comparisons with that of

spline spaces H1;1
2;2, S1;0

2 and S1;1
2;2.
(a) DOF = 36

(c) DOF = 218

Fig. 13. Discrete solutions uh of Example 5 solved by H1;1
2;2. The green curves on th

the references to color in this figure legend, the reader is referred to the web ve
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lo
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(||
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u h|| E)

solved uniformly by S2,2
1,1

solved adaptively by H2,2
1,1

solved uniformly by S2
1,0

solved adaptively by H2
1,0

(a) Example 5

Fig. 14. Convergence plot f
Example 4. In this experiment, the global uniform refine-
ment is performed. The exact solution is
uðx; yÞ ¼ exð1�xÞyð1�yÞ � 1 and f is determined by Eq. (8).

The computational results for spline space H1;0
2 under 6

different resolutions, i.e. Dð2Þmn with m ¼ n ¼ 2;4;8;16;
32;64, are shown in Table 3. From the results, the conver-
gence rate CR with respect to L2-norm (energy-norm) is
about three (two), which is consistent with the theory of
finite element. Fig. 11 depicts two numerical solutions.

Example 5. In this example, the exact solution is
(b) DOF = 112

(d) DOF = 460

e surfaces are the images of the hierarchical meshes. (For interpretation of
rsion of this article.)
1 2 3 4 5 6 7 8 9−11
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solved uniformly by S2,2
1,1

solved adaptively by H2,2
1,1

solved adaptively by H2
1,0

(b) Example 6

or Examples 5 and 6.
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uðx; yÞ ¼ 2:0

3:0expðð20x� 13Þ2 þ ð20y� 13Þ2Þ

þ 2:0

3:0expðð20x� 7Þ2 þ ð20y� 7Þ2Þ
;

and f is determined by Eq. (8).
Fig. 15. Fitting Female Head model in Example 2 with hierarchical spline spaces
are approximation surfaces with hierarchical meshes.

Fig. 16. The refined meshes (left) and the contours of the corresponding discret
solved by H1;1

2;2.
The exact solution uðx; yÞ has two peaks and it decays
very fast away from the two peaks. For the two hierarchical
spline spaces H1;0

2 and H1;1
2;2, Figs. 12 and 13 depict

respectively the numerical solutions (right) and the
corresponding refined meshes (left) at the first four levels.
It is worth noting that the numerical solutions quickly
H1
2 and H1;1

2;2. The left column is the original surfaces and the right columns

e solutions (right) for Example 6; (a) is solved by H1;0
2 and (d) and (e) are
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capture the two peaks as the refinement proceeds. The
energy-norm errors with respect to DOF are plotted in
Fig. 14(a). From the numerical results, both H1;0

2 and H1;1
2;2

have about the same convergence rate, which is faster than
the uniform refinement splines.

Example 6. In the final example, the exact solution is

uðx; yÞ ¼
ðx� yÞðx� yÞð1� xÞy; x > y

�ðx� yÞðx� yÞð1� yÞx; x 6 y

�
and f is determined by Eq. (8).

For this example, the initial mesh is Dð2Þmn with m ¼ n ¼ 2
when it is solved by H1;0

2 . Fig. 16(a) shows the refined mesh
and the contour of the corresponding solution at the third
level. The corresponding discrete solution uh is shown in
Fig. 16(b). The contour of exact solution uðx; yÞ is shown
in Fig. 16(c).

Fig. 16(d) shows the results at the third level solved by
H1;1

2;2. From the contour plot, it can be seen that the solution
by H1;1

2;2 is much less accurate than that by H1;0
2 at the same

level. Fig. 16(e) depicts the results at the level five solved
by H1;1

2;2, where the energy-error has the same magnitude
as the one in Fig. 16(a), while the DOF is much larger than
the one used by H1;0

2 at the level three. Furthermore, H1;0
2

has a much faster convergence rate than H1;1
2;2, as shown

in Fig. 14(b). The reason why H1
2 approximates better in

this example is similar to the analysis in Example 1,
namely H1

2 can naturally capture the second order deriva-
tive discontinuity of uðx; yÞ along the diagonal line y ¼ x.

Remark 2. Notice that here we do not consider the
boundary element basis for the spline space S1

3ðD
ð1Þ
mnÞ, since

there should be at least one so-called ‘global’ spline
function which is not easy to be constructed (see the
theory in Section 2.6 of [2]).
7. Conclusion

In this paper, we extend the hierarchical paradigm of
tensor-product B-splines to bivariate splines defined on
regular triangular partitions and propose a method to con-
struct basis functions of such a hierarchical spline space.
The basis functions constructed have nice properties such
as, nonnegativity, compact support, linear independence
and nested property. The spline space spanned by these
basis functions supports local refinement, which is impor-
tant in adaptive geometric modeling and adaptive finite
element. We illustrate applications of such splines in
geometric modeling and solving numerical PDEs, and the
results suggest that hierarchical B-splines defined on regu-
lar triangular partitions seem promising in applications.

There are a few problems worthy of further
investigation. First, there is a natural spline space Sl

k ðDÞ
which consists of all the piecewise polynomials of degree
k with the order of smoothness l defined over a hierarchi-
cal triangular partition D. Obviously, our hierarchical
spline space Hl

k ðDÞ defined in this paper is a subset of
Sl

k ðDÞ. The question is what is the relationship between
these two spline spaces? What is the dimension of the
spline space Sl

k ðDÞ for a hierarchical triangular partition?
Second, how to extend our hierarchical splines to spline
spaces defined on other types of triangular partitions? Fi-
nally, we will investigate further applications of these hier-
archical splines in iso-geometric analysis and geometric
modeling.

Acknowledgments

The authors thank the reviewers for providing useful
comments and suggestion. The work is supported by 973
Program 2011CB302400, the NSF of China No. 11031007.

References

[1] D. Forsey, R. Bartels, Hierarchical B-spline refinement, Comp. Graph.
22 (1988) 205–212.

[2] R. Wang, Multivariate Splines and its Application, Science Publisher,
China, 1994.

[3] R. Kraft, Adaptive and linearly independent multilevel B-splines, in:
A.L. Méhauté, C. Rabut, L.L. Schumaker (Eds.), Surface Fitting and
Multiresolution Methods, Vanderbilt University Press, Nashville, TN,
1997, pp. 209–218.

[4] A.-V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical
approach to adaptive local refinement in isogeometric analysis,
Comput. Meth. Appl. Mech. Eng. 200 (2011) 3554–3567.

[5] C. Giannelli, B. Jüttler, H. Speleers, THB-splines: the truncated basis
for hierarchical splines, Comp. Aided Geom. Des. 29 (2012) 485–498.

[6] T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-
NURCCSs, ACM Trans. Graph. 22 (3) (2003) 477–484.

[7] T.W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, T.
Lyche, T-spline simplification and local refinement, ACM Trans.
Graph. 23 (3) (2004) 276–283.

[8] M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of
analysis-suitable T-splines, Comp. Meth. Appl. Mech. Eng. 213–216
(2012) 206–222.

[9] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, Y. Feng, Polynomial
splines over hierarchical T-meshes, Graph. Mod. 74 (2008) 76–86.

[10] T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally
refined box-partitions, Comp. Aided Geom. Des. 30 (2013) 331–356.

[11] M. Powell, M. Sabin, Piecewise quadratic approximations on
triangles, ACM Trans. Math. Softw. 3 (1977) 316–325.

[12] H. Speleers, P. Dierckx, S. Vandewalle, Quasi-hierarchical Powell–
Sabin B-splines, Comput. Aided Geom. Des. 26 (2009) 174–191.

[13] H. Speleers, C. Manni, F. Pelosi, M.L. Sampoli, Isogeometric
analysis with Powell–Sabin splines for advection–diffusion–
reaction problems, Comput. Meth. Appl. Mech. Eng. 221–222
(2012) 132–148.

[14] A. Yvart, S. Hahmann, G.-P. Bonneau, Hierarchical triangular splines,
ACM Trans. Graph. 24 (2005) 1374–1391.

[15] M.S. Floater, Parameteriztion and smooth approximation of surface
triangulations, Comp. Aided Geom. Des. 14 (1997) 231–250.

[16] K. Qu, Multivariate Splines and Some Application, Ph.D. thesis,
Dalian University of Technology, 2010.

[17] A. Schmidt, K. Siebert, Design of Adaptive Finite Element Software:
The Finite Element Toolbox ALBERTA, Springer, 2005.

[18] W. Döfler, A convergent adaptive algorithm for poisson’s equation,
SIAM J. Numer. Anal. 33 (1996) 1106–1124.

http://refhub.elsevier.com/S1524-0703(14)00009-5/h0010
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0010
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0015
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0015
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0015
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0020
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0025
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0025
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0025
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0030
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0030
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0035
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0035
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0040
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0040
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0040
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0045
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0045
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0045
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0050
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0050
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0055
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0055
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0060
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0060
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0065
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0065
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0070
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0070
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0070
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0070
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0075
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0075
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0080
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0080
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0085
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0085
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0085
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0090
http://refhub.elsevier.com/S1524-0703(14)00009-5/h0090

	Hierarchical B-splines on regular triangular partitions
	1 Introduction
	2 Related work
	3 Bivariate splines space defined on type-I and type-II triangular partitions
	3.1 Splines space defined on type-I triangular partition
	3.2 Splines space defined on type-II triangular partition

	4 Construction of hierarchical bivariate splines
	4.1 Notations
	4.2 Hierarchical bivariate splines
	4.3 Properties

	5 Surface fitting
	6 Solving elliptic PDEs
	6.1 Model problem
	6.2 Hierarchical spline space ? 
	6.3 Finite element discretization

	7 Conclusion
	Acknowledgments
	References


