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h i g h l i g h t s

• An ℓ1-regression based subdivision scheme is proposed to handle noisy curve/surface data with outliers.
• A fast numerical optimization method named dynamic iterative reweighted least squares is proposed to solve this problem.
• The most advantage of the proposed method is that it removes noises and outliers without any prior information about the input data.

a r t i c l e i n f o

Keywords:
ℓ1-Regression
Data restoration
Outlier detection
Subdivision scheme
Iterative reweighted least squares

a b s t r a c t

Fitting curve and surface by least-regression is quite common inmany scientific fields. It, however cannot
properly handle noisy data with impulsive noises and outliers. In this article, we study ℓ1-regression and
its associated reweighted least squares for data restoration. Unlike most existing work, we propose the
ℓ1-regression based subdivision schemes to handle this problem. In addition, we propose fast numerical
optimizationmethod: dynamic iterative reweighted least squares to solve this problem, which has closed
form solution for each iteration. Themost advantage of the proposedmethod is that it removes noises and
outliers without any prior information about the input data. It also extends the least square regression
based subdivision schemes from the fitting of a curve to the set of observations in 2-dimensional space
to a p-dimensional hyperplane to a set of point observations in (p+ 1)-dimensional space. Wide-ranging
experiments have been carried out to check the usability and practicality of this new framework.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction and related work

The curve and surface fitting is the process of constructing
curve and surface that has the best fit to the data. In statistics
and machine learning, overfitting occurs when a statistical model
describes random error or noise instead of the underlying rela-
tionship. Overfitting generally occurs when a model is excessively
complex. Situation becomes more worse when some data points
deviate so much from the other data points as to arouse suspicions
in data. Such type of data points are called outliers. Outliers are
also referred to as abnormalities, discordants, deviants, or anoma-
lies in the data mining and statistics literature. Outlier detection
and dealing with noisy data have been extensively studied in the
past decades in different disciplines. Here is the brief survey of the
related work.
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One of the most widely used statistical technique to detect out-
lier is weighted least squares regression [1]. In 1997, Sohn and
Kim [2] proposed an algorithm for detection of outliers inweighted
least squares regression using Studentized weighted residuals.
Multiple case outlier detection in least squares regression model
using quantum inspired evolutionary algorithm has been intro-
duced by Khan and Aktar [3]. Iteratively reweighted minimization
algorithms for sparse recovery andmatrix rankminimization have
been discussed by [4–6]. Bissantz et al. [7] offered convergence
analysis of generalized iteratively reweighted least squares algo-
rithms on convex function spaces by using quantile, ℓq, q ∈ [1, 2)
logistic and isotonic regressions. Lai et al. [8] presented improved
iteratively reweighted least squares for unconstrained smoothed
ℓq, q ∈ (0, 1] minimization. However, the detection of outlier in
high dimensional case is a challenging task. This is because in high
dimensionality, the data becomes sparse and the sparsity behavior
makes all points look very similar and almost equidistance to one
another. A practical algorithm to outlier detection and data clean-
ing for the time-dependent signal is proposed by Pan et al. [9]. It is
claimed that proposed algorithm is good for bioinformatic appli-
cation. Nikolova [10] introduced ℓ1 data-fidelity based variational
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(a) Classical scheme. (b) LS scheme.

Fig. 1. Points are fitted by classical Chaikin scheme (i.e. quadratic B-spline) [29] and least square regression based subdivision scheme. Solid filled circles are initial data
with outliers.
method for the processing of image corrupted with outliers and
different kinds of impulse noise. Avron et al. [11] introduced an
ℓ1-sparse method for the reconstruction of a piecewise smooth
point set surface. Optimal fitting may alternatively be obtained us-
ing simpler functions and the ℓ1 and ℓ∞ norms [12].

The class of ℓ1-regularized optimization problems has received
much attention recently because of the introduction of compressed
sensing [13], which allows images and signals to be reconstructed
from small amounts of data. Despite this recent attention, many
ℓ1-regularized problems still remain difficult to solve, or require
techniques that are very problem-specific [14]. Yang and Zhang
[15] studied the use of alternating direction algorithms for sev-
eral ℓ1-norm minimization problems arising from sparse solution
recovery in compressive sensing. A new nonlocal total variation
regularization algorithm for image denoising has been introduced
by Liu and Huang [16]. Xiao et al. [17] proposed, analyzed and
tested primal and dual versions of the alternating direction algo-
rithm for the sparse signal reconstruction from its major noise
contained observation data. The algorithm minimizes a convex
non-smooth function consisting of the sum of ℓ1-norm regular-
ization term and ℓ1-norm data fidelity term. Candès et al. [18]
presented a novel method for sparse signal recovery that in many
situations outperforms ℓ1-minimization in the sense that substan-
tially fewermeasurements are needed for exact recovery. The algo-
rithm consists of solving a sequence of weighted ℓ1-minimization
problems where the weights used for the next iteration are com-
puted from the value of the current solution.

Subdivision schemes (i.e. classical schemes) are widely used
for curve and surface fitting from few decades. An intensive study
and literature along with mathematical descriptions and formula-
tions are available now [19–23]. A major advantage of subdivision
schemes is that they can be easily applied to virtually any data type.
However, early work in subdivision schemes does not deal with
noisy data with impulsive noises and outliers. A downside of sub-
division algorithm is that they are sensitive to outliers. One outlier
can damage whole model and in most of the cases, schemes give
overfitted model for noisy data with outliers. One algorithm has
been reported by [24] for fitting a Catmull–Clark subdivision sur-
face model to an unstructured, incomplete and noisy stereo data
set by using quasi-interpolation technique but this work does not
deal with outliers. Recently, Dyn et al. [25] have presented univari-
ate subdivision schemes based on least squares minimization to
deal with noisy data. They have compared their schemeswith least
squares minimization problems with kernel weights. The main
purpose of their work was to address an open question: How to
approximate a function from its normally distributed noisy sam-
ples by subdivision schemes?

The purpose of our article is to address the open question:
Howcanwe approximate a function by subdivision technique from
its noisy samples with impulsive noises and outliers? To address
this question: we use the ℓ1-regression to construct subdivision
schemes with dynamic iterative reweighted weights. Numerical
results show that new schemes have the ability to remove outliers
and give better fitted models as compared to the other subdivision
schemes when data is contaminated with noises and outliers.
A major advantage of our schemes is that they give best fit to
any type of data with and without added noise and outliers in
high dimensional spaces. Throughout this paper, LS schememeans
subdivision scheme based on least square regressionwith constant
weights while ℓ1 scheme means subdivision scheme based on
ℓ1-regression with dynamic iterative reweighted weights.

The paper is structured as follows: In Section 2, the construction
of ℓ1 scheme for curve fitting is discussed in detail along with its
variants. Numerical examples for curve fitting are also presented
in this section. In Section 3, we introduce ℓ1 scheme for surface
fitting. We also introduce new least square regression surface
schemes in this section as special cases of ℓ1 schemes. Comparison
of fitting surfaces by ℓ1 and LS schemes is also presented in this
section. Section 4 summarizes the topics discussed in this article
and outlines further research directions.

2. ℓ1 scheme for curve fitting

In this section, we propose a class of ℓ1-regression based sub-
division schemes with dynamic iterative reweighted weights for
curve fitting. We also discuss its generalization and variants along
with some numerical experiments.

2.1. Motivation

There exists vast classical subdivision-based literature of fitting
curves and surfaces to a given data set in Geometric Modeling. But
this literature does not dealwith noisy data alongwith outliers (see
Fig. 1(a)). Although a class of least square regression based sub-
division schemes [25] are good to deal with normally distributed
noisy data but these do not seem reasonable to deal with outliers.
Fig. 1(b) shows a fitted curve to a data with outliers by least square
regression based subdivision scheme. A significant perturbation
has been occurred in the fitted curve due to outliers. This is because
the outlier has big distance value to the fitting curve, however, in
ℓ1-regression, it is not penalized toomuch,while in least square re-
gression based model, the distance is squared, and thus it has a big
impact to the objective energy. Also ℓ1-regression based procedure
is more robust to the presence of outlying observations [26]. So we
propose to initiate a new class of subdivision schemes based on
ℓ1-regression for fitting noisy data with impulsive noises and out-
liers.
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Fig. 2. Basic limit functions φ6 , φ7 , φ8 , of ℓ1 schemes D6 , D7 , D8 ..
2.2. Our approach

The straight-line regression based on weighted least squares is
a procedure to determine the best line fit to data. The basic problem
is to find the best fit straight line f (x) = β1 + β2x with respect to
the observations (xr = r, fr) for r = −n+1, . . . n, where n > 0. In
robust statistics [27], ℓ1 fitting function was found useful to make
estimation reliable. The ℓ1-norm operator can be expressed as

min
β1,β2∈R

n
r=−n+1

|fr − (β1 + β2r)|

which is also called ℓ1-regression problem. In order to estimate β1
and β2, without loss of generality, we express the optimization of
β1 and β2 as

β1, β2 = arg min
β1,β2∈R

n
r=−n+1

|fr − β1 − β2r|

= arg min
β1,β2∈R

F(β1, β2). (1)

It cannot be solved the same way as least square regression owing
to the lack of differentiability.We resort to the iterative reweighted
least squares (IRLS) [7]. The IRLS is based on the idea that, in a
first step, the ℓ1 norm F , being a convex functional, can be regu-
larized/approximated by a family of smooth convex functionals Fδ ,
δ > 0, i.e.

Fδ(β1, β2) =

n
r=−n+1

hδ (fr − β1 − β2r) , where

hδ (fr − β1 − β2r) =

(fr − β1 − β2r)2 + δ

1/2
. (2)

The regularization of a non-smooth functional as in (1) by (2) is
well known by [28]. Since β1,δ , β2,δ = argminβ1,β2∈R Fδ(β1, β2) is
approximation ofβ1,β2 by ([7], Theorem1). So in order to compute
β1,δ , β2,δ the following iterative formula for m > 0 and n > 1, can
be used

β
(m+1)
1,δ , β

(m+1)
2,δ = arg min

β1,β2∈R

n
r=−n+1

w(m)r (fr − β1 − rβ2)
2, (3)

where w(m)r = 1/

(fr − β

(m)
1,δ − rβ(m)2,δ )

2
+ δ

1/2
. As a starting val-

ue β(0)1,δ , β
(0)
2,δ any simple least squares estimator can be used. Each

iteration of above formula involves minimizing a quadratic objec-
tive function. Iterations are continued until

max
β(m+1)

1,δ − β
(m)
1,δ

 , β(m+1)
2,δ − β

(m)
2,δ

 < ϵ.

The global optimum can be reached by taking derivatives of (3) and
setting them to zero. This leads to the following solution of system
of linear equations.

β
(m+1)
2,δ =

n
r=−n+1

rτ (m)1 − τ
(m)
2

τ
(m)
1 τ

(m)
3 −


τ
(m)
2

2w(m)r fr ,
β
(m+1)
1,δ =

1

τ
(m)
1

n
r=−n+1

w(m)r fr − β
(m+1)
2,δ


τ
(m)
2

τ
(m)
1


,

where

τ
(m)
1 =

n
r=−n+1

w(m)r ,

τ
(m)
2 =

n
r=−n+1

rw(m)r ,

τ
(m)
3 =

n
r=−n+1

(r)2w(m)r .

By substituting optimum β
(m+1)
1,δ , β(m+1)

2,δ of β1, β2 into the linear
function f (x) = β1 + β2x and evaluating this function at 1/4 and
3/4 then changing notations, we get closed form of ℓ1 scheme for
the fitting of noisy data with impulsive noises and outliers shown
in Appendix A.

2.3. Overview of ℓ1 scheme

The ℓ1 scheme D2n has two main iterative steps. In first step,
it assigns the dynamic weights to only 2n local initial points then
these weights are iteratively reweighted. During this process the
outliers (if any) among these local 2n points have been killed (or
assigned less weight). Also noisy sample points assign less weights
during this step.

Second step comprises two rules: the topological rule and sub-
division rule. The topological rule describes how the refined mesh
is created from the original mesh. The subdivision rule computes
the locations of the vertices of the new mesh by taking a linear
combination of the local 2n points with iterative dynamic weights
assigned by step one to these points. These steps are carried out for
next local 2n points. In other words subdivision rule computes the
locations of the vertices of the new mesh and topological rule de-
scribes how many new vertices are added to the mesh and which
vertices in the new mesh are connected by edges.

Both iterative steps are repeated for next level of iteration.
These steps continue until the resulting curve / polygon become
sufficiently smooth. If all the dynamic weight w(m)r = 1 then iter-
ative ℓ1-regression problem (3) switch over to LS-regression. As a
result ℓ1 scheme turns into LS scheme. The subscript 2n of the ℓ1
scheme D2n is called complexity of the scheme. We suggest n > 3
for better results.

2.4. Basic limit functions

If ∆ = {(−m, 0), . . . , (−2, 0), (−1, 0), (0, 1), (1, 0), (2, 0),
. . . , (m, 0)}, for sufficiently large integer m then the basic limit
functions of the schemes D2n and D2n+1 are defined as φ2n = D∞

2n∆

and φ2n+1 = D∞

2n+1∆. The basic limit functions φ6, φ7, φ8, of the
schemes D6, D7, D8 are shown in Fig. 2. From this figure we see that
the effect of these schemes away from the sample (0, 1) is zero so
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Fig. 3. Effect of outliers: Two outliers are presented in the initial data. Arrows indicate outliers and their effect on fitting curve. The color of each point represents the
reconstruction error, and the errors are normalized to [0, 1]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
these schemes are locally supported. It is also observed that basic
limit functions of D6, D7, D8 are smooth enough and have two top
peaks with one steep valley.

The support of basic limit functions and subdivision scheme is
the area of the limit curve that will be affected by the displacement
of a single control point. That part which is dependent on a given
control point is called the support width / region of that point.
The following proposition is related to the support of basic limit
function of the scheme D2n.

Proposition 1. The basic limit function defined by the scheme D2n
has support width 4n − 1, which implies that it vanishes outside the
interval


−

4n−1
2 , 4n−1

2


.

Proof. Since the basic limit function is the limit function of the
scheme D2n, its support width can be determined by computing
how far the effect of the nonzero vertex f (0)0 will propagate along
by. As themask of the scheme is a 4n-long sequence by centering it
on that vertex, the distances to the last of its left and right nonzero
coefficients are equal to 2n and 2n − 1 respectively. At the first
subdivision step we see that the vertices on the left and right sides
of f (1)0 at 2n

2 and 2n−1
2 are the furthest nonzero new vertices. At each

refinement, the distance on both sides is reduced by the factor 1
2 .

At the next step of the scheme this will propagate along by 2n
22

on
left and 2n−1

22
on right. Hence after k subdivision steps the furthest

nonzero vertex on the left will be at

2n

1
2

+
1
22

+
1
23

+ · · · +
1
2k


=

2n
2


k−1
j=0

1
2j


and

(2n − 1)

1
2

+
1
22

+
1
23

+ · · · +
1
2k


=
(2n − 1)

2


k−1
j=0

1
2j


.

Since 1
2 < 1, the geometric sequence can be summed to give the

extended distance on each side and we conclude that, in the limit,
the total influence of the original nonzero vertex will propagate
along by

2n
2


k−1
j=0

1
2j


+

2n − 1
2


k−1
j=0

1
2j


= 4n − 1.

This completes the proof. �

2.5. Numerical experiments

In this section, we present intrinsic comparisons among ℓ1
schemes and corresponding LS schemes.Wepresent several exper-
iments to illustrate the performances of fitting curves generated
by these schemes from input noisy data with outliers or impulsive.
The fitting performance is also characterized by the fitting error.
The fitting error for each point is displayed through the jet color-
bar as shown in Fig. 3, where the fitting errors are normalized to
[0, 1]. All sub-figures use the same normalization (color code).
Experiment 1: In our first experiment, we apply ℓ1 and LS schemes
to fit data sample from function f1(x) = sin(3x)e−

x
3 with two

outliers to see the effect of these outliers on fitting curves. It is
observed from Fig. 3 that fitting curves generated by S6, S7, S8
are greatly effected by outliers. But D6, D7, D8 do not give re-
sponse to these outliers. Arrows in this figure indicate outliers
and their effect on fitting curves. Since an outlier sample assign a
small corresponding weight defined in (6) then in turn enhancing
outlier rejection (or a small response) by scheme (4). Large com-
plexity schemes also give less response to outliers than small
complexity schemes. This is one of the reasons that small complex-
ity schemes are more effected by outliers than other schemes. If
f (k)i = (f (k)xi , f

(k)
yi ) then the fitting performance is characterized by

the error i.e. the average of the square of the fitting value f (k)yi and
real value f1(f

(k)
xi )

Error =


i


f (k)yi − f1(f

(k)
xi )

2
N

,

where N is the total number of fitting values. The fitting errors are
summarized in Table 1.
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Fig. 4. The first row shows the middle results after iteration 1, 2, 4, 10 in the first subdivision step; The second row shows the results after 1, 2, 4, 6 times subdivision.
(a) LS scheme S6 . (b) LS scheme S7 . (c) LS scheme S8 .

(d) ℓ1 scheme D6 . (e) ℓ1 scheme D7 . (f) ℓ1 scheme D8 .

Fig. 5. Effect of noise and outliers: Thirteen outliers are presented in an initial data. Solid curves are generated by ℓ1 and LS schemes while dash curves are original curve.
Filled solid circles are noisy data with outlier.
Table 1
Comparison: Error between fitting curves shown in Fig. 3 and original function f1 .

LS schemes S6 S7 S8

Errors 0.325824 0.300979 0.300560
ℓ1 schemes D6 D7 D8
Errors 0.115044 0.179849 0.175459

Experiment 2: In second experiment, we generate data from the
same function f1(x) with Gaussian noise of mean zero and vari-
ance 0.1 along with thirteen outliers. Our findings in Experiment
1 are also supported by Experiment 2. Fitting curves by ℓ1 and LS
schemes are shown in Fig. 5. Fitting errors between fitting curve
and original function are shown in Table 2. We observe that over-
all ℓ1 schemes have better performance than LS schemes in terms
of visual fitting and error between fitting curve and original func-
tionwhen data is noisy alongwith outliers.We also notice that low
complexity schemes give more response to outlier, and to noise
Table 2
Comparison: Error between fitting curves shown in Fig. 5 and original function f1 .

LS schemes S6 S7 S8

Errors 1.485318 1.498197 1.511984
ℓ1 schemes D6 D7 D8
Errors 0.197140 0.281907 0.315305

so these schemes have more error. Since high complexity schemes
give less response to outliers, noise and even to real sample val-
ues so these schemes also have more error than low complex-
ity schemes. The scheme D6 offers better fitted results than other
schemes. Our claim is supported by this experiment as well as by
other experiments.

The iterative results of our proposed scheme are shown in Fig. 4
for this example (Fig. 5). We can see that the fitting curve gets
further improved as iterations increase.
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(a) LS scheme S6 . (b) LS scheme S7 . (c) LS scheme S8 .

(d) ℓ1 scheme D6 . (e) ℓ1 scheme D7 . (f) ℓ1 scheme D8 .

Fig. 6. Effect of outliers on fitting curves: Three outliers are presented in an initial data. Initial data generated by parametric curve is shown by solid filled circles while fitted
curves are shown by solid lines.
(a) LS scheme S6 . (b) LS scheme S7 . (c) LS scheme S8 .

(d) ℓ1 scheme D6 . (e) ℓ1 scheme D7 . (f) ℓ1 scheme D8 .

Fig. 7. Effect of impulsive noises on fitting curves: The input data is corrupted by 25% impulsive noises. Solid curves are generated by LS, ℓ1 schemes.
Experiment 3: In third experiment, we generate data from
parametric curve (i.e logarithmic spiral)

x(t) = cos(t)e0.1t ,
y(t) = sin(t)e0.1t ,

along with three outliers. Our findings in Experiment 1 and 2 are
also supported by third experiment. Curves fitted by LS schemes
S6, S7 and S8 are shown in Fig. 6(a)–(c) while fitted curves by ℓ1
schemes are shown in Fig. 6(d)–(f). From this figure, we observe
that curves fitted by ℓ1 schemes do not notice outliers while curves
fitted by LS schemes compromise with outliers.
Experiment 4: In this experiment, we consider the data with
25% impulsive noises. In order to restore data corrupted with
impulsive noises, we use ℓ1 and LS schemes. Fig. 7 illustrates the
fitting curves on restored data by ℓ1 and LS schemes.

3. ℓ1 scheme for surface fitting

In this section, we generalize our representation of Section 2.2
to the 3-dimensional case. That is, we focus our attention to
introduce ℓ1 scheme for surface based on fitting of a 2-dimensional
line function f (x, y) = β1 + β2x + β3y to 4n2 observations (xr =

r, ys = s, fr,s) for −n + 1 6 r, s 6 n, for n > 1 in 3-dimensional
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Fig. 8. Functional surface reconstructed from highly noisy functional data with outlier by ℓ1 , LS and classical schemes.
space by IRLS procedure. All that needed, is to take derivative of
following iterative formula

β
(m+1)
1,δ , β

(m+1)
2,δ , β

(m+1)
3,δ

= arg min
β1,β2∈R

n
r=−n+1

n
s=−n+1

w(m)r,s


fr,s − β1 − rβ2 − sβ3

2
,

where w(m)r,s = 1/


fr,s − β
(m)
1,δ − rβ(m)2,δ − sβ(m)3,δ

2
+ δ

1/2
and

setting them to zero. This leads to the system of linear equations.
For solving this system we get β(m+1)

1,δ , β(m+1)
2,δ and β(m+1)

3,δ .
By substituting optimum β

(m+1)
1,δ , β(m+1)

2,δ , β(m+1)
3,δ of β1, β2, β3

into the linear function f (x, y) = β1 + β2x + β3y and evaluating
this function at (1/4,1/4), (3/4,1/4), (1/4,3/4), (3/4,3/4) then
changing notations, we get closed form of ℓ1 scheme for surface
fitting of noisy data with impulsive noises and outliers shown in
Appendix B.

3.1. Numerical experiments

This section uses numerical experiments to demonstrate per-
formance and accuracy of our ℓ1 and LS surface schemes. Same
with the curve examples, we use the jet colorbar to display the fit-
ting error for each point on the reconstruction surface. The colorbar
is shown in Fig. 8 and the fitting errors are normalized to [0, 1].
Experiment 1: Consider the function

z = F(x, y) = xe−x2−y2 .

By taking randomly distributed pointswithGaussian noise ofmean
zero and variance 0.1 along with one outlier with high amplitude
Table 3
Comparison: Error between fitting surfaces shown in figure surface and actual
function F .

LS schemes S6 S7 S8

Errors 0.004313 0.004887 0.007428
ℓ1 schemes D6 D7 D8
Errors 0.002307 0.003898 0.006764

we fit surfaces by ℓ1 and LS schemes. Fitted surfaces by these
schemes are shown in Fig. 8(c)–(i), while original surface and noisy
data with outlier are presented in Fig. 8(a) and (b) respectively.
From this figure it is observed that outlier leave significant effect
on fitting surfaces for low complexity LS scheme but its effect
go on decreasing with the increase of complexity of the scheme
while ℓ1 schemes are free from the effect of outlier. However, both
schemes have ability to produce smooth surface fitting models.
The surface reconstructed by classical scheme i.e. bi-quadratic B-
spline is shown in Figure (c). From this figure we conclude that
classical schemes are not suitable for fitting such type of data. If
f (k)i,j = (f (k)xi,j , f

(k)
yi,j , f

(k)
zi,j ) then the fitting performance is characterized

by the fitting error.

Error =


i,j


f (k)zi,j − F(f (k)xi,j , f

(k)
yi,j )

2
N

,

where N is the total number of fitting values. The mean errors of
fitting surfaces shown in Fig. 8 are presented in Table 3.

Experiment 2: In this experiment, we consider following
parametric surface

x(u, v) = cos(v)(3 + u cos(v/2)),
y(u, v) = sin(v)(3 + u cos(v/2)),
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(a) Original surface. (b) Noisy data. (c) Classical scheme.

(d) LS scheme S6 . (e) LS scheme S7 . (f) LS scheme S8 .

(g) ℓ1 scheme D6 . (h) ℓ1 scheme D7 . (i) ℓ1 scheme D8 .

Fig. 9. Parametric surface reconstructed by ℓ1 and LS and classical schemes from highly noisy parametric data with outliers.
z(u, v) = u sin(v/2).
The data shown in Fig. 9(b) has been generated by taking −1.5 6
u 6 1.5, −1.25 6 v 6 1.25 (40 values of u and 50 values of v)
added with Gaussian noise of mean zero and variance 0.1 along
with outliers. Parametric surface has been reconstructed by ℓ1 and
LS schemes from data shown in Fig. 9(b). Results have been shown
in Fig. 9(c)–(i) while original parametric surface in Fig. 9(a).

4. Conclusion

We have developed ℓ1-regression based subdivision algorithm
with dynamic iterative reweighted weights which has closed form
solution for each iteration. It is suitable for curve and surface fitting
when the data points are given as exact, or contaminated with
random noise, or noisy data with impulsive noises and outliers.
Several experiments have been carried out on different types
of data such as functional and parametric data along with and
without added noise and outliers. These experiments demonstrate
that the introduced algorithm can significantly outperform LS-
regression based subdivision algorithm with constant weights.
Compared with LS-regression based subdivision algorithm, our
algorithm can approximate an input model with a much smaller
error. To the best of our knowledge, this is the first subdivision-
based algorithm for removal of outliers. The introduction of
subdivision-based algorithm for preservation of sharp features in
the presence of noise and outliers is the possible future research
direction.
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Appendix A

A.1. Algorithm for subdivision curve

Let f (k)i ∈ RN , i ∈ Z, denote a sequence of points in RN ,N > 2,
where k is a non negative integer, then ℓ1 scheme D2n for curve
fitting which maps coarse points f (k)i to refined points f (k+1)

i is
defined by (4)

f (k+1)
2i =


1

τ
(m)
1,i


n

r=−n+1

1 −


τ
(m)
2,i −

1
4
τ
(m)
1,i



×

 rτ (m)1,i − τ
(m)
2,i

τ
(m)
1,i τ

(m)
3,i −


τ
(m)
2,i

2

w(m)i+r f

(k)
i+r ,
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f (k+1)
2i+1 =


1

τ
(m)
1,i


n

r=−n+1

1 −


τ
(m)
2,i −

3
4
τ
(m)
1,i



×

 rτ (m)1,i − τ
(m)
2,i

τ
(m)
1,i τ

(m)
3,i −


τ
(m)
2,i

2

w(m)i+r f

(k)
i+r , (4)

where

τ
(m)
1,i =

n
r=−n+1

w
(m)
i+r ,

τ
(m)
2,i =

n
r=−n+1

rw(m)i+r ,

τ
(m)
3,i =

n
r=−n+1

(r)2w(m)i+r , (5)

for k > 0,m > 0, δ > 0,

w
(m)
i+r =

1
f (k)i+r − β

(m)
1,δ,i − rβ(m)2,δ,i

2
+ δ

1/2 , (6)

form > 1,

β
(m)
2,δ,i =

n
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rτ (m−1)
1,i − τ

(m−1)
2,i

τ
(m−1)
1,i τ

(m−1)
3,i −


τ
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2,i

2w(m−1)
i+r f (k)i+r , (7)

β
(m)
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1

τ
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1,i
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w
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i+r f (k)i+r − β

(m)
2,δ,i
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τ
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2,i

τ
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1,i


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and form = 0

β
(0)
2,δ,i =


1

4n3 − n

 n
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(6r − 3) f (k)i+r ,

β
(0)
1,δ,i =


1
2n
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f (k)i+r −
1
2
β
(0)
2,δ,i. (9)

In the above algorithm, D2n means scheme named D2n takes 2n
consecutive points form initial polygon to compute new point in
order to get a refined polygon. Dotted points in Figs. 3–5 are initial
points of the initial polygon. For example: for n = 3, scheme S6 use
6 consecutive points form initial polygon to compute new point to
get refined polygon.

At the moment we cannot propose an automatic way of select-
ing δ. However, numerical experiments show that small value of δ
is good choice. Sufficiently large value of m is better choice. How-
ever, the choice ofm = 5 or 6 is sufficient.

A.2. Generalization and variants

Thus far in this brief, and for ease of exposition, we have
restricted our attention to introduce ℓ1 scheme based on fitting of a
one-dimensional line to 2n observations in two-dimensional space
by IRLS procedure. A further generalization to yield ℓ1 scheme of
the IRLS procedure can be made by fitting function of the form
f (x) =

K
i=1 βifi(x), K > 0. It is not necessary for the functions

fK to be linear in x-all that is needed is that f is to be a linear
combination of these functions.
As a slight variation on ℓ1 scheme D2n, we suggest the replace-
ment of 1/4 by −1/4 and 3/4 by 1/4 in (4), summation from
r = −n+1 . . . n by r = −n . . . n in (4)–(8), and Eq. (9) by following

β
(0)
1,δ,i =


1

2n + 1

 n
r=−n

f (k)i+r ,

β
(0)
2,δ,i =

1
n(n + 1)(2n + 1)

n
r=−n

3rf (k)i+r

to get (2n + 1)-point ℓ1 scheme D2n+1. If weights w(m)i+r = 1,
∀i, r, m, then for n > 1, scheme D2n+1 changes into following LS
scheme S2n+1

f (k+1)
2i =


1

2n + 1

 n
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3r
4n(n + 1)
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1 +

3r
4n(n + 1)


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It is to be noted that for n = 1 and m > 0, scheme (4), coincides
with classical Chaikin’s scheme [29]. However, for n > 2, it is non-
symmetric with dynamic weights.

If weights w(m)i+r = 1, ∀i, r, m in (4), then for n > 1, it changes
into following LS scheme S2n for curve fitting.

f (k+1)
2i =


1
2n

 n
j=−n+1


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6j − 3
8n2 − 2


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1
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
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8n2 − 2


f (k)i+j .

Indeed, in this brief we have introduced two special cases S2n and
S2n+1 of the least square regression based subdivision schemes
with constant weights.

Appendix B

B.1. Algorithm for subdivision surface

Let f (k)i,j ∈ RN , i, j ∈ Z, denote a sequence of points inRN ,N > 2,
where k is a non negative integer, then ℓ1 scheme D2n for surface
fitting which maps coarse points f (k)i,j to refined points f (k+1)

i,j is
defined by (10), where
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where
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for k > 0,m > 0, δ > 0,
w
(m)
i+r,j+s

=
1

f (k)i+r,j+s −


β
(m)
1,δ,i,j + rβ(m)2,δ,i,j + sβ(m)3,δ,i,j

2
+ δ

1/2 , (15)

for m > 1 use following
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and use following form = 0, ξn =
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B.2. Generalizations and variants

We can continue generalization by considering the fitting of a
p-dimensional hyperplane to a set of point observations in (p+1)-
dimensional space. Again using the IRLS as optimality criterion, we
obtain ℓ1 scheme for the fitting of the hyperplane to this set of
observations. A further slight generalization of ℓ1 scheme (10) can
be made based on fitting of a 2-dimensional polynomial of degree
> 2 to 4n2 observations (xr = r, ys = s, fr,s) for −n + 1 6 r, s 6 n,
for n > 1 in 3-dimensional space by IRLS procedure.

Here we present some variants of ℓ1 scheme. If weights
w
(m)
i+r,j+s = 1, ∀i, j, r, s, m in (10) then for n > 1, we get following

new LS scheme S2n to handle noisy data.
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Here is the another slight variant of ℓ1 scheme D2n (10).

Lemma 1. Let f (k)i,j ∈ RN , i, j ∈ Z, denote a sequence of points in
RN ,N > 2, where k is a non negative integer, then ℓ1 scheme D2n+1

for surface fittingwhichmaps coarse points f (k)i,j to refined points f (k+1)
i,j

is defined by (10)with some variants i.e. replace 1/4 by−1/4, 3/4 by
1/4 in (10) and take summation from −n, . . . , n in (10)–(19), and
for m = 0 use following instead of (20)
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If weightsw(m)i+r,j+s = 1, ∀i, j, r, s,m in ℓ1 scheme D2n+1 then for
n > 1, we get following new LS scheme S2n+1 for surface fitting.
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The iterative illustration of ℓ1 schemes D2n, D2n+1 is similar to the
discussion presented in Section 2.3.
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