
SCIENCE CHINA
Mathematics

Progress of Projects Supported by NSFC

. REVIEWS .
April 2016 Vol. 59 No. 4: 617–644

doi: 10.1007/s11425-015-5063-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 math.scichina.com link.springer.com

A survey on the local refinable splines

LI Xin∗, CHEN FaLai, KANG HongMei & DENG JianSong

School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China

Email: lixustc@ustc.edu.cn, chenfl@ustc.edu.cn, khm@mail.ustc.edu.cn, dengjs@ustc.edu.cn

Received September 11, 2014; accepted May 15, 2015; published online December 30, 2015

Abstract This paper provides a survey of local refinable splines, including hierarchical B-splines, T -splines,

polynomial splines over T -meshes, etc., with a view to applications in geometric modeling and iso-geometric

analysis. We will identify the strengths and weaknesses of these methods and also offer suggestions for their

using in geometric modeling and iso-geometric analysis.

Keywords geometric modeling, isogeometric analysis, B-splines, hierarchical B-splines, T -splines, polyno-

mial splines over hierarchical T -meshes (PHT-splines), locally refined (LR) B-splines, local refinement

MSC(2010) 65D07, 47A15

Citation: Li X, Chen F L, Kang H M, et al. A survey on the local refinable splines. Sci China Math, 2016, 59:

617–644, doi: 10.1007/s11425-015-5063-8

1 Introduction

Geometric modeling is concerned with the mathematical representation of shapes on a computer, which

has been used in computer-aided design, engineering and manufacturing, as well as in computer graphics

and animation. Among all the technologies, non-uniform rational B-splines (NURBS) provides an intu-

itive, easy-to-use, tractable scheme for creating mathematically well-defined freeform curves and surfaces,

which become current international de facto standard representation. However, a significant disadvantage

of NURBS is that they are based on a tensor-product structure, which means that NURBS models may

have a large number of superfluous control points only to satisfy the topological requirement. What is

more, in traditional NURBS-based design, modeling a complicated engineering design often requires hun-

dreds, if not thousands, of NURBS patches which are usually discontinuous across patch boundaries. The

complexity of the patch layout coupled with the manual enforcement of smoothness across patch bound-

aries (via control point positioning) makes NURBS design of complicated geometries time-consuming,

error prone, and tedious.

After creating the geometric models embodied in computer aided design (CAD) systems, the design

description needs to be translated to an analysis-suitable geometry for mesh generation and use in a

finite element analysis (FEA) code in order to simulate the physical behavior. This task is far from

trivial. For complex engineering designs it is now estimated to take over 80% of overall analysis time.

One vision to solve this integration problem of CAD and FEA is to breakdown the barriers between

engineering design and analysis and to reconstitute the entire process which focus on one, and only one,

geometric model. This new vision is formalized into a new notion, iso-geometric analysis (IGA), developed

in [35] and described in detail in [12]. With IGA, traditional design-through-analysis procedures such as
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geometry clean-up, defeaturing, and mesh generation are simplified or eliminated entirely. Additionally,

the higher-order smoothness provides substantial gains to analysis in terms of accuracy and robustness

of finite element solutions [13, 21, 54]. However, a global geometric discretization, based on NURBS, is

usually not suitable as a basis for analysis.

With the needs both from geometric modeling and iso-geometric analysis, a very natural question

arises that how to define a spline space such that we can adaptively refine the spline space in the localized

changes of the control net. A lot of researchers have tackled this issue and many different methods have

been developed in these years, including hierarchical B-splines [26, 87], T -splines [53, 70, 72], polynomial

splines over T -meshes [14,16], and LR B-splines [17], etc. In this paper, we provide a survey of all these

local refinable splines with a view to applications in geometric modeling and iso-geometric analysis. We

will identify the strengths and weaknesses of these methods and also offer suggestions for their using in

geometric modeling and iso-geometric analysis.

The paper is structured as follows. Pertinent background on NURBS and IGA is reviewed in Section 2.

In Sections 3–6, we introduce the basic concepts for hierarchical B-splines, T -splines, polynomial splines

over T -meshes and LR B-splines, respectively. The last section is the summary and conclusion.

2 NURBS and iso-geometric analysis

In this section, we briefly introduce bivariate tensor-product B-splines space [22, 23] and iso-geometric

analysis [12, 35] with the aim of recalling a few results that we will require in the next several sections.

2.1 Tensor-produce B-spline spaces

There are two separate ways to define a bivariate tensor-product B-spline space. Given two polynomial

degrees (d1; d2) and the horizontal and vertical knots vectors

U = {u0 � u1 � · · · � un+d1+1}, V = {v0 � v1 � · · · � vm+d2+1},

a bivariate tensor-product B-spline space B can be defined as a linear space spanned by a set of tensor-

product B-spline functions Ni,j(s, t) = Nd1

i,U (s)N
d2

j,V (t). Here N
d1

i,U (s) and Nd2

j,V (t) are univariate B-spline

functions defined by U , d1 and V , d2 as follows:

N0
i,U (s) =

{
1, ui � s < ui+1,

0, otherwise,

Np
i,U (s) =

s− ui

ui+p − ui
Np−1

i,U (s) +
ui+p+1 − s

ui+p+1 − ui+1
Np−1

i+1,U (s).

The B-spline basis can be generalized to the rational case by associating a positive weight ωi,j to each

control point, which gives the NURBS basis functions Ri,j(s, t) =
ωi,jNi,j(s,t)∑n

i=0

∑m
j=0 ωi,jNi,j(s,t)

, then any function

f(s, t) is represented as f(s, t) =
∑n

i=0

∑m
j=0 di,jRi,j(s, t). Here di,j form the control net associated to

the parametric representation.

The bivariate tensor-product B-spline space B can be considered in another way. Rewrite the two knot

vectors U and V by getting rid of the multiplicities as

{ui0 < ui1 < · · · < uip}, {vj0 < vj1 < · · · < vjq},

where uik = uik+1 = · · · = uik+1−1 and vjk = vjk+1 = · · · = vjk+1−1. Denote μk = ik+1 − ik and

νk = jk+1 − jk to be the multiplicities of knots uik and vjk . With these notations, the spline space B can

also be defined in terms of the smoothness and polynomial orders,

B := {f(s, t) | f(s, t)|[uik
,uik+1

]×[vjl ,vjl+1
] ∈ Pmn, f is Cd1−μk at s = uik and is Cd2−νl at t = vjl},

where Pmn is the space of all the polynomials with bi-degree (m,n).
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2.2 Iso-geometric analysis

Given a Lipschitz continuous domain Ω, which is designed in a NURBS-based CAD program with the

form G : Ω0 := [0, 1]2 �→ Ω as illustrated in Figure 1,

G(s, t) :=

n∑
i=0

m∑
j=0

Ri,j(s, t)Pi,j . (2.1)

Let L be an operator on Ω with boundary Γ = ΓD ∪ ΓN . We want to solve the partial differential

equation

Lu = f on Ω (2.2)

with the boundary conditions

u = 0 on ΓD and 〈∇u, n〉 = h on ΓN

for unknown u : Ω → R with given data f and the outer normal vector n on ΓN . Without loss of

generality, we assume the zero Dirichlet boundary conditions on ΓD.

The weak form of (2.2) takes the standard form: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V, (2.3)

where the appropriate function space is given by

V := {u ∈ H1(Ω), u|ΓD = 0}.

As usual, a : V × V → R denotes the symmetric bilinear form that corresponds to the operator L and

l : V → R is a linear functional that contains the right-hand side term f and the Neumann term h. The

bilinear form a is assumed to be continuous and coercive such that a unique solution to (2.3) exists.

The IGA-based Galerkin projection is the compositions of the shape functions with the inverse of the

geometry function, φ(m+1)i+j = Ri,j ◦ G−1. With the standard Galerkin finite element approach, the

approximation solution uh =
∑(m+1)(n+1)

i=1 qiφi has to satisfy a linear system Aq = b, where the matrix

Aij = a(φi, φj) and the right term bi = l(φi) for i, j = 1, 2, . . . , (m+ 1)(n+ 1), respectively.

We should emphasize that both geometric modeling and iso-geometric analysis based on NURBS offer

the possibility for knot insertion (h-refinement) by inserting new knots in the knot vectors and for degree

elevation (p-refinement) by increasing the degree of the NURBS. Additionally, in IGA, the so-called k-

refinement is available that combines the h- and p-refinement strategy [11, 21]. However, all the three

refinements are global in nature, and it is clear that there is a need for more general basis functions that

feature local subdivision (the survey only focuses on the problem of h-refinement) while still maintaining

the favorable properties of NURBS.

σ

τ

x

y

G −1

Figure 1 The iso-geometric analysis mapping
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3 Hierarchical B-splines

The concept of hierarchical refinement of B-splines was introduced by Forsey and Bartels for local surface

refinement in CAD [26]. However, it does not have a well development for applications in CAD. But

in the framework of iso-geometric analysis, hierarchical refinement of NURBS has recently attracted

increasing attention due to the following important advantages. First, hierarchical B-splines rely on

the principle of B-spline subdivision, which makes it easy to maintain linear independence and the

maximal smoothness throughout the refinement process. Second, hierarchical B-splines rely on a local

tensor product structure, and they can be easily generalized to arbitrary dimensions. The rigidity and

simplicity of the tensor product structure also facilitate automation of the refinement process. Third, very

similar refinement techniques based on a hierarchical split of standard finite element bases have existed

in the finite element analysis community for a long time and the tree-like data structure for hierarchical

B-splines is also well-established in computer science. These existing technologies can help one to become

familiar with hierarchical B-spline refinement. Despite being appealing for analysis purposes, it is unclear

whether hierarchical B-splines will be adopted in a commercial CAD environment because they do not

have a natural control grid.

A hierarchical B-splines surface can be locally refined using overlays. Based on such hierarchical model,

complex surfaces can be created from simple NURBS surfaces with hierarchical editing. Later researches

mainly focus on how to construct basis functions of hierarchical B-spline spaces. The first specific basis

selection mechanism was proposed by Kraft [41], and extended in [87] to satisfy some nice properties,

such as non-negativity, linearly independence and local support. Later, Vuong et al. [87] normalized

the hierarchical B-splines proposed by reducing the support of basis functions defined on coarse grids,

according to finer levels in the hierarchy of splines [29]. They called such hierarchical B-splines as

truncated hierarchical B-splines (THB-splines for short).

Surface reconstruction schemes for solving interpolation and approximation problems by using multi-

level B-splines were originally discussed by Forsey and Bartels [27], and additionally investigated in [30].

A quasi-interpolation algorithm based on hierarchicalB-splines was developed in [41]. There is an increas-

ing interest in hierarchical splines coming from recent studies related to iso-geometric analysis [87], where

a set of linearly independent weighted basis functions are constructed to define the geometry and are used

in analysis. In order to have a self-contained presentation, next, we briefly summarize from [29, 40, 87]

the construction of hierarchical B-splines and THB-splines. Generalization of hierachical B-splines over

regular triangular partitions is discussed in [39].

Let Sk, k = 0, . . . , N be a nested sequence of tensor-product B-spline function spaces defined on the

domain Ω0,

S0 ⊆ S1 ⊆ · · · ⊆ SN .

Each spline space Sk, k = 0, 1, . . . , N is spanned by a given tensor-product B-spline basis Bk defined

on two knot sequences Uk, V k, containing the horizontal and vertical knots, respectively. These knot

sequences are also nested, namely,

U0 ⊆ U1 ⊆ · · · ⊆ UN , V 0 ⊆ V 1 ⊆ · · · ⊆ V N .

The degrees of Bk is (pk, qk), and pk+1 � pk, qk+1 � qk, k = 0, . . . , N − 1. In order to obtain nested

spaces, it is assumed that

μ(Uk+1, u)− μ(Uk, u) � pk+1 − pk, μ(V k+1, v)− μ(V k, v) � qk+1 − qk,

for all u ∈ U, v ∈ V with k = 0, . . . , N − 1. Here, μ(U, u) is the multiplicity of the parameter value u

in the knot vector U (the multiplicity μ(U, u) is zero if the given value u is not a knot in U). These

conditions are necessary and sufficient.

In addition, let

Ω0 ⊇ Ω1 · · · ⊇ ΩN , ΩN+1 = ∅
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be a sequence of nested domains. Each Ωk ∈ R2, k = 0, . . . , N represents the region selected to be refined

at level k and its boundary ∂Ωk is may be aligned with the knot lines of Sk−1(strong condition) or Sk

(weak condition).

Finally, the support of a function f is defined as

supp f = {x : f(x) 
= 0 ∧ x ∈ Ω0}.

Definition 3.1. The hierarchical B-spline basis H is recursively constructed as follows (see [87]):

1. Initialization: H0 = {β ∈ B0 : supp β 
= ∅}.
2. Recursive construction: Hl+1 = Hl+1

A ∪Hl+1
B , for l = 0, . . . , N − 1, where

Hl+1
A = {β ∈ Hl : supp β � Ωl+1},

and

Hl+1
B = {β ∈ Bl+1 : supp β ⊆ Ωl+1}.

3. H = HN .

THB-splines improve hierarchical B-splines in two aspects: Normalizing hierarchical B-splines and

making the support of a basis function smaller. It is based on the following representation of a basis

τ ∈ Bl,

τ =
∑

β∈Bl+1

cl+1
β (τ)β, cl+1

β ∈ R. (3.1)

Then the truncation of τ with respect to Bl+1 and Ωl+1 is defined as

truncl+1τ =
∑

β∈Bl+1,supp β�Ωl+1

cl+1
β (τ)β. (3.2)

Definition 3.2. The hierarchical B-spline basis T is recursively constructed as follows (see [29]):

1. Initialization: T 0 = H0.

2. Recursive construction: T l+1 = T l+1
A ∪ T l+1

B , for l = 0, . . . , N − 1, where

T l+1
A = {truncl+1β : β ∈ T l ∧ supp β � Ωl+1},

and

T l+1
B = Hl+1

B .

3. T = T N .

In order to understand the difference between THB-splines and hierarchical B-splines more easily,

Figure 2 shows how to define univariate HB-splines and THB-splines on a nested intervals.

Figure 2 Univariate quadratic HB- and THB-splines defined on the hierarchical mesh shown in (a). For Cases (b)

and (c), top: Basis functions of level 1 (B-splines of level 1 that are replaced or modified are depicted in grey lines);

middle: Finer basis functions of level 2; bottom: Combination of basis functions from these two hierarchical levels



622 Li X et al. Sci China Math April 2016 Vol. 59 No. 4

4 T -splines

T -splines are introduced in [70,72] in the computer aided geometric design (CAGD) community to address

the important limitations of NURBS. T -splines can model complicated engineering designs as a single,

watertight geometry. Additionally, NURBS are a special case of T -splines, so existing technology based

on NURBS extends to T -splines. Any trimmed NURBS model can be represented by a watertight trimless

T -spline [71] and multiple NURBS patches can be merged into a single watertight T -spline [36,72]. Unlike

NURBS, T -splines can be locally refined [68,70]. These geometric properties are especially critical in the

context of geometric modeling and iso-geometric analysis where the behavior and accuracy of the method

are strongly influenced by the watertightness, smoothness, and the ability to refine the surface mesh in

a localized region. Thus, T -splines are regarded as a technology both for design and analysis.

4.1 Definition

The concept of an arbitrary degree T -spline was defined in [3, 25, 70, 72] based on a T -mesh in the index

domain which is referred as an index T -mesh. A T -mesh T for a bi-degree (d1, d2) T -spline is a collection

of all the elements of a rectangular partition of the index domain [0, c+d1]× [0, r+d2], where all rectangle

corners (or vertices) have integer coordinates. Each vertex has a unique pair of index coordinates (δi, τi).

The valence of a vertex is the number of edges such that the vertex is an endpoint. The interior vertices

allow valence three (called T -junctions) or four vertices. Notation �, �, ⊥ and � indicate the four possible

orientations for the T -junctions. The active region is the rectangle region [p, c+ d1 − p]× [q, r + d2 − q],

here p and q are the maximal integers equal or less than d1+1
2 and d2+1

2 , respectively. The active region

carries the anchors that will be associated with the blending functions while the other indices will be

needed for the definition of the blending function when the anchor is close to the boundary. For example,

Figure 3 is some example T -meshes, where active regions are marked with grey.

An anchor is a point in an index T -mesh which corresponds to one blending function. If both d1
and d2 are odd, the anchor is the vertex in the active region of the T -mesh, if both d1 and d2 are even,

then the anchor is the barycenter of each face in the active region of the T -mesh. If d1 is even and d2 is

odd, the anchor is the middle point of each horizonal edge in the active region of the T -mesh and if d1 is

odd and d2 is even, then the anchor is the middle point of each vertical edge in the active region of the

T -mesh.

For the i-th anchor, a local index vector 	δi × 	τi is used to define the blending function Ti(s, t). The

values of 	δi = [δ0i , . . . , δ
d1+1
i ] and 	τi = [τ0i , . . . , τ

d2+1
i ] are determined as follows. From the i-th anchor in

the index T -mesh, a ray is shot in the s and t direction traversing the T -mesh to get a total of d1 + 2

and d2 + 2 knot indices, which form 	δi and 	τi, as shown in Figure 3.
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  (b) bi-degree (2,2)(a) bi-degree (2,3)

Figure 3 Example T -meshes and the local index vectors for two blending functions
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For the given T -mesh, the knot vector indices correspond to two global knot vectors 	s = [s0, s1,

. . . , sc+d1] and 	t = [t0, t1, . . . , tr+d2]. The end condition knots for 	s and 	t may have multiplicity d1 + 1

and d2 + 1; all other knots are multiplicity � d1 and � d2, respectively.

The equation of a T -spline surface is defined as

T (s, t) =

nA∑
i=1

TiTi(s, t), (4.1)

where Ti = (ωixi, ωiyi, ωizi, ωi) ∈ P3 are homogeneous control points, ωi ∈ R are weights, and nA is

the number of control points or anchors. Ti(s, t) is a tensor-product of degree d1 and d2 B-spline basis

functions Ti(s, t) = N [	si](s)N [	ti](t), where

	si = [sσ0
i
, sσ1

i
, . . . , s

σ
d1+1

i

], 	ti = [tτ0
i
, tτ1

i
, . . . , t

τ
d2+1

i

]

are subsequences of 	s and 	t, respectively.

4.2 Arbitrary topology T -splines

T -splines can be generalized to arbitrary topology, i.e., for which extraordinary points are allowed in the

control grid, see Figure 4 for an example T -mesh. An extraordinary point is a vertex whose valence is

not four, and which is not a T -junction. However, with extraordinary points, the rules for the definition

of blending functions are not suitable for some vertices. There are two ways to generalize T -splines to

arbitrary topology, the rules based on subdivision surfaces [72, 73] and patch-based methods [69]. Both

methods can only handle bi-cubic T -splines as a special cases and only the surface patches associated with

the extraordinary faces (a face which at least has one extraordinary point as the vertex) are different.

The subdivision-based approach generates elements near the extraordinary point which are comprised

of an infinite sequence of piecewise polynomials. Thus, they are not backward compatible with NURBS

which can be avoided by patch-based methods. Figure 5 illustrates a T -spline models from Rhinoers

T -splines plugin using the patch-based approach.

Figure 4 An arbitrary topological T -mesh, black circle are extraordinary points

Figure 5 An arbitrary topological T -spline surface
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(a) bi-degree (3,  )* (b) bi-degree (5,  )* (c) bi-degree (  , 4)* (d) bi-degree (  , 2)*

Figure 6 The extension for four different kinds of T -junctions

4.3 Analysis-suitable T -splines

Analysis-suitable T -splines form a practically useful subset of T -splines, which maintain the important

mathematical properties of the NURBS basis functions while providing an efficient and highly localized

refinement capability. Analysis-suitable T -splines are defined in terms of T -junction extensions. For

example, for an i-th T -junction (δi, τi) of type � or �, the extension for the T -junction, denoted as

ext(Ti) is line segment [i, i] × {τi}. i and i are determined such that edges [i, δi) × {τi} intersect the

T -mesh [d1+1
2 ] times and edges (δi, i] × {τi} intersect the T -mesh [d1

2 ] times for T -junction of type �.
For T -junction of type �, one can similarly define the extension except the number of intersections are

exchanged. Also, the extensions for the other kinds of T -junctions ⊥, � can be defined while using degree

d2 instead of d1. All these extension examples are illustrated in Figure 6.

Definition 4.1. For a bi-degree (d1, d2) T -spline, a T -mesh is called analysis-suitable (for short, AS)

T -mesh if the extensions for all the T -junctions � and �, do not intersect the extensions for all the T -

junctions ⊥ and �. A T -spline defined on an analysis-suitable T -mesh is called analysis-suitable T -spline,

for short AS T -spline.

Several important properties of AS T -splines have been proven as follows:

• The blending functions are locally linearly independent for any choice of knots [53].

• The basis constitutes a partition of unity [108].

• Each basis function is non-negative.

• They can be generalized to arbitrary degree [81, 108].

• An affine transformation of an analysis-suitable T -spline is obtained by applying the transformation

to the control points. We refer to this property as affine invariance. This implies that all “patch tests”

are satisfied a priori.

• They obey the convex hull property.

• They can be locally refined [68, 70, 72].

• A dual basis can be constructed [80, 81].

• The AS T -spline space can be characterize in terms of piecewise polynomial [52].

4.4 Modified T -splines

Modified T -splines [38] are a variant of T -splines. For a given T -mesh T , a set of non-negative, linearly

independent basis functions are constructed for each anchor of the T -mesh, which are called Modified

T -splines basis functions. The construction consists of the following two major steps (see Figure 7).

In the first step, an extended T -mesh T ′ is constructed by extending T -junctions of T such that the

T -spline blending functions Ti(s, t) over T ′ are linearly independent and form a partition of unity. For

example, Figure 7(a) is an example T -mesh and Figure 7(b) is one possible extended T -mesh T ′ and the

corresponding local knot vectors for some basis functions are shown in Figure 7(c). In the second step,

we distribute the basis functions Ti(s, t) over T
′ to those for T -mesh T . Let {v′i}li=1 be the new vertices

generated by the T-vertex extensions. We distribute the basis function Ti(s, t) of v
′
i to the basis functions

at the neighboring old vertices of T ′. In Figure 7(d), the basis function of v′1 is distributed to the basis

functions of v2 and v5, and the basis function of v′2 is distributed to the basis functions of v2 and v6.
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Finally, the basis function over T is constructed as a linear combination of the basis functions Ti(s, t) at

the neighboring vertices of vi. Figure 7(e) illustrates the basis function of v2.

4.5 Control point insertion algorithm

Local control points insertion algorithm is the key algorithm for T -splines. The algorithm in [70] is a

recursive procedure to refine all the possible influence blending functions. An important key to understand

the algorithm is that the blending functions and the T -mesh anchors are tightly coupled. Every anchor

corresponds to a blending function, and each blending function’s knot vectors are defined from the T -

mesh. For the given T -spline and some new insertion control points, the algorithm outputs a new T -spline

that contains all the insertion control points and keeps the geometry unchanged by the following steps:

1. Modify the topology for the T -mesh by insertion all the new control points.

2. Add all the blending functions into a list L. If L is not empty, select a blending function from L

and repeat the following steps:

(a) If the blending function is coupled with current T -mesh, continue.

(a) (b)

(c) (d)

(e)

Figure 7 Modified T -splines Construction. (a) Origin T -mesh T . (b) Extended T -mesh T ′. Circles are new vertices.

(c) Knot vectors of basis functions over T ′. (d) Basis functions at new vertices are distributed. (e) Basis function at v2

is constructed
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Figure 8 Local refinement for a T -spline. From left to right, the initial T -spline surface, insert one control point in

the middle of the edge, insert one new control point in the second T -spline surface and insert one control point in the

third T -spline surface with one additional insertion

Figure 9 Analysis-suitable T -spline local refinement. The left ones are the T -spline surfaces before refinement, the

dark regions are the elements which will be refined in the next iteration. The final T -spline surfaces are shown on the

right

(b) If the blending function has missing knots, refine the blending function into two new blending

functions and add the two blending functions into the list L.

(c) If the blending function has a knot that is not dictated, add an appropriate control point associated

with the knot into the T -mesh.

3. Compute the new positions for the control points.

Figure 8 shows a simple local refinement example. Given a sphere represented in a T -spline in the first

figure, if one inserts one control point in the middle of the marked edge, the algorithm will output the

second figure. Similarly, one can insert one more control point into the new T -spline surface and create

the third figure. The last one is the result of inserting one control point but with one more additional

control point by the algorithm in order to keep the geometry unchanged.

Scott et al. [68] developed a highly localized refinement optimized algorithm to make the T -spline after

knot insertion an analysis suitable T -spline, which meets the demands of both design and analysis. The

basic steps of the algorithm are described as follows, for more details, please refer to [68].

1. Modify the topology for the T -mesh by insertion all the new control points.

2. Convert the new T -mesh into an analysis-suitable T -mesh by minimizing the number of new insertion

control points using a greedy strategy.

3. Compute the positions for the control points.

The following real-world example of a ship hull design is used to show the results of refinement. Figure 9

shows two iterations of local refinements for the T -spline ship hull design. A set of elements are selected

for refinement as shown on the left of Figure 9. These T -mesh elements are subdivided and the local

refinement algorithm is applied to the resulting subdivided T -mesh. The control points added during

local refinement are shown on the right of Figure 9. Notice that these control points remain localized to

the region of selected elements.

4.6 Applications

T -splines have been applied into several important geometric modeling technologies, which have been

released into a commercial software for Rhinoers [78]. In this section, we summary some applications of

T -splines in geometric modeling and iso-geometric analysis.
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Figure 10 T -spline construction via NURBS simplification (reprinted with permission from [10])

4.6.1 Simplification from NURBS

Simplification is the process of modifying an existing geometric description of an object to an equivalent

or approximately equivalent form that is less complex, i.e., that has fewer control points. Motivated by

the new possibilities available in T -splines, there are two methods for simplifying T -spline surfaces [10,70].

The first approach is based on iterative refinement. The key initial step is to generate an over-simplified

version of the model (for example, a single Bézier patch) to be simplified and then to refine it until a desired

approximation to the original is achieved. The second approach is based on iterative simplification. The

approach tries to remove the unnecessary control points under the given tolerances. Figure 10 illustrates

a simplification example for the frog model, which has 11625 control points. The left figure is the result

of iterative simplification and the right one is the result of iterative refinement for the tolerance 1.5%.

Iterative simplification solution has 3,975 control points and iterative refinement solution has 5,035 control

points.

4.6.2 Merging Multiple NURBSes into a single T -spline surface

Another way to produce a T -spline surface is to merge a set of NURBS surfaces. In geometric modeling,

portions of objects are modeled separately. This creates a problem that result pieces do not always fit

precisely. So, it is very important to combine them into one single surface. This process is called merging

or stitching [36, 72].

Merging a set of B-splines into a single B-spline surface requires that any two adjacent surfaces must

have the same common knot vector along the common boundary lines. Hence knot insertion must first

be performed before stitching. However, in a tensor-product spline surface, these knot insertions can

significantly increase the number of control points. But merging with T -splines is different which only

needs to modify a narrow band of the surfaces along their common boundary curves. The main steps

of the merging algorithm are as follows. The first step is to determine the common parameter domains.

Then the surface should be reparameterized such that the parametrization of the two surfaces coincides

along the common boundary curve. And then some control points are inserted into T -meshes to combine

the vertices and edges for common boundary curves. The last step is to merge the end conditions.

Figure 11 illustrates the behavior of merging with T -splines. The left figure is the face model represented

with 18 different NURBS surfaces. And the right one is a single T -spline model after merging.

4.6.3 Convert trimming NURBS into a single T -spline surface

The trimmed-NURBS modeling paradigm suffers from a serious fundamental flaw: parametric trimming

curves are mathematically incapable of fulfilling their primary role, which is to represent the curve of

intersection between two NURBS surfaces. Sederberg et al. [71] proposed a two-steps method to convert

trimmed NURBS surfaces into a single watertight un-trimmed T -spline surface. Besides watertightness,

the result T -spline model is totally editable, directly fillet, simple crease generation, see Figure 12 for an

example.

4.6.4 Fitting a mesh model with T -splines

High-order and regularly sampled surface representations are more efficient and compact than general

meshes and considerably simplify many geometric modeling and processing algorithms. A number of
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Figure 11 Merging a face model using T -splines (reprinted with permission from [36])

Figure 12 Convert trimmed NURBS into a single T -spline, which can be edited and filleted naturally

recent algorithms convert arbitrary meshes to regularly T -spline form. Zheng et al. [114] considered an

adaptive T -spline fitting algorithm for function data. Later, they generalized the algorithm to handle

triangle mesh of simple topology [94, 95, 113]. Nasri et al. [57], and Yang and Zheng [106] approximated

a set of lofting curves with T -splines. Li et al. [45] demonstrated that how to use the periodic global

parametrization (PGP) to fit T -spline surfaces from triangle meshes of arbitrary topology. An important

feature of PGP is the ability that can introduce T -junctions during the parametrization process. However,

the complexity of the resulting domain mesh is still determined by the topological structure of the field,

with significant smoothing required to make it simpler. Thus, Myles et al. [55] proposed an approach

to construct patch layouts consisting of small numbers of quadrilateral patches while maintaining good

feature alignment. He et al. [31], and Wang et al. [88] presented a new and effective method to construct

manifold T -splines of complicated topology/geometry. The fundamental idea of the approach is the

geometry-aware object segmentation, by which an arbitrarily complicated surface model can be segmented

into several simple charts and be fitted with T -spline surfaces. Zhao et al. [112] discussesed a coupling

method of surface patch reconstruction based on T -splines and employed an iteration reconstruction

method to construct each patch. A lot of articles focus on the T -spline level set for surface reconstruction

and shape metamorphosis [24, 101–105]. Besides all these works, there are also several work focusing on

part of the reconstruction problem, such as [32, 61, 74, 75, 77, 97–99,115].

4.6.5 Iso-geometric analysis with T -splines

It was found that T -splines possess the same optimal convergence properties as NURBS with far fewer

degrees-of-freedom [3,19,79], see Figure 13 for a simple example. T -spline-based isogeometric analysis has

been applied in various contexts. Application areas include fracture and damage [6,83–85], fluid-structure

interaction [4], and shells [18]. A design-through-analysis framework utilizing immersed boundary meth-

ods, hierarchical refinement, and T -splines is described in [62]. Scott et al. [69] coupled collocated

isogeometric boundary element methods and unstructured T -spline surfaces for linear elastostatic prob-

lems. Later, Buffa et al. [9] gave an example of a T -spline with linearly dependent blending functions,

which means that not all T -splines are analysis-suitable or suitable as a basis for iso-geometric analysis.
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Figure 13 IGA with T -splines for advection skew to the mesh, θ = 45◦ and p = 1 (reprinted with permission from [3])

Thus an important development in the evolution of iso-geometric analysis is the advent of analysis-

suitable T -splines which were formulated in [53]. Analysis-suitable T -splines are a canonical class of

T -splines which possess the basic mathematical properties of NURBS (linear independence, partition of

unity, etc.) while maintaining the local refinement property and design flexibility of general T -spline

descriptions. Automatic conversion algorithms from unstructured quadrilateral and hexahedral meshes

to T -splines surfaces and volumes is described in [92, 93, 110, 111]. Efficient and canonical finite element

data structures for NURBS and T -splines based on Bezier extraction are described in [67]. Mathematical

studies of the basic approximation properties of analysis-suitable T -spline spaces are studied in [52].

Hierarchical analysis-suitable T -splines, which are a superset of both analysis-suitable T -splines and

hierarchical B-splines, is developed in [20].

5 Polynomial spline over T -mesh

5.1 Spline spaces over T -meshes

The notion of a spline space over a T -mesh was firstly put forward in [14]. The parametric mesh is a

collection of axis-aligned rectangles Fi, where the distinct rectangles Fi and Fj can only intersect at points

on their edges. The T -mesh requires to be regular, which means that for any vertex in the T -mesh, the

set of all the rectangles that contain the vertex has a connected interior [64]. For example, in Figure 14,

T -mesh b is a regular T -mesh but T -mesh c is not a regular T -mesh because vertex V does not satisfy the

requirement for a regular T -mesh. The rectangles Fi are also called the faces or cells of the T -mesh. The

vertices of the rectangles are called the nodes or vertices for the T -mesh. The line segment that contains

two adjacent vertices on a grid line is called an edge of the T -mesh. T -meshes include tensor-product

meshes as a special case. However, in contrast to tensor-product meshes, T -meshes are allowed to have

T -junctions, or T -nodes, which are the vertices of one rectangle that lie in the interior of an edge of

another rectangle. The domain Ω does not need to be rectangular, so it may have concave corners and

holes (the grey region in Figure 14).

If a vertex is on the boundary grid line of the T -mesh, it is called a boundary vertex. Otherwise, it

is called an interior vertex. If both of the vertices of an edge are boundary vertices, the edge is called

a boundary edge; otherwise, it is called an interior edge. A composite edge (or c-edge) is a line segment

that consists of one or more edges. It is the longest possible line segment where the interior vertices are

all T -junctions. An l-edge is a line segment which consists of several interior edges. It is the longest

possible line segment, where all the interior edges are connected, and the two end points are T -junctions

or boundary vertices. If the two end vertices of an l-edge are interior vertices, the l-edge is called an

interior l-edge. If two end vertices of an l-edge are both boundary vertices, the l-edge is called a cross-cut.

Otherwise, if one end vertex is a boundary vertex and the other end vertex is an interior vertex, the l-edge

is called a ray. A mono-vertex is the intersection between an interior l-edge and a cross-cut or a ray, and

a free-vertex is the intersection between cross-cuts and rays. For example, in the T -mesh a in Figure 14,

vertex V58, is an interior vertex, V15, V16 and V57 are boundary vertices. The l-edge V16V46 is a cross-cut,

while V57V58 is a ray, V33V63 is an interior l-edges. V33V43, V57V58 are c-edges while V57V58, V33V63 are

l-edges.
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Figure 14 Example T -meshes

Definition 5.1. Suppose T1, . . . , Tn is a collection of T -nodes in a T -mesh such that for each i

= 1, . . . , n, the vertex Ti lies in the interior of a c-edge with one endpoint at Ti+1, where we set Tn+1 = T1.

Then we say that T1, . . . , Tn form a cycle.

Definition 5.2. Given a T -mesh T, F denotes all the cells in T and Ω the region occupied by all the

cells in T. Define

S(m,n, α, β,T) := {f(s, t) ∈ Cα,β(Ω)|f(s, t)|φ ∈ Pmn for any φ ∈ F},

where Pmn is the space of all the polynomials with bi-degree (m,n), and Cα,β(Ω) is the space consisting

of all the bivariate functions which are continuous in Ω with order α along s direction and with order β

along t direction. It is obvious that S(m,n, α, β,T) is a linear space. It is called the spline space over the

given T -mesh T.

5.2 Dimension

In order to understand the spline space over a T -mesh, the foundation but non-trivial problem is to

calculate the dimension of the space. Until now, many different methods were applied to tackle this issue,

including the B-net [14], the minimal determining set method [64], the smoothing cofactor-conformality

method [43, 48] and the homological technique [56].

Reduced regularity. In 2006, Deng et al. [14] studied the dimension of the spline space under the

constraints that required the order of smoothness is less than half of the degree of the spline functions

and provided the following main result.

Theorem 5.3. If a T -mesh has no cycles (see [14] used a tree structure to define this condition), and

d1 � 2α+ 1 and d2 � 2β + 1, then the dimension of spline space over the T -mesh is

dimS(d1, d2, α, β, T ) = F (d1 + 1)(d2 + 1)− Eh(d1 + 1)(β + 1)

− Ev(d2 + 1)(α+ 1) + V (α+ 1)(β + 1),

where F , Eh, Ev, and V are the number of aces, horizonal interior edges, vertical interior edges and

interior vertices, respectively.

Huang et al. [33], and Schumaker and Wang [63,64] also proved this result using the minimal determin-

ing set method and the smoothing cofactors method. Later, Buffa et al. [8] analyzed a special T -spline

with reducing regularity using the dimension formula in [14].

Enough mono-vertices. In 2006, Li et al. [43] calculated the dimension of spline space over a T -mesh

if each interior l-edges have enough mono-vertices.
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Theorem 5.4. If each horizontal l-edge has at least Nh−1 mono-vertices and each vertical l-edge has

at least Nv − 1 mono-vertices except two end vertices in a T -mesh, here Nh and Nv are the minimal

integer larger or equal to d1+1
d1−α and d2+1

d2−β , then the dimension of spline space over the T -mesh is,

dimS(d1, d2, α, β, T ) = (d1 + 1)(d2 + 1) + (Ch − Th)(d1 + 1)(d2 − β)

+ (Cv − Tv)(d2 + 1)(d1 − α) + V (d1 − α)(d2 − β),

here Ch, Cv, Th, Tv and V are the number of horizontal cross-cuts, vertical cross-cuts, horizontal interior

l-edges, vertical interior l-edges and interior vertices, respectively.

Diagonalizable T -mesh. Li and Deng [48] provided a general formula for the dimension of spline

spaces over general planar T -meshes (having concave corners or holes) using smoothing cofactor-confor-

mality method and introduced a new notion, the diagonalizable T -mesh, over which the dimension formula

is only associated with the topological information of the T -mesh. Li and Scott [52] computed the

dimension of the spline space S(d, d, d− 1, d− 1,T) if the T -mesh is an extended T -mesh of an analysis-

suitable T -mesh [53] by using the similar idea.

Weighted T -mesh. Mourrain [56] gave a general formula for the spline spaces by homological tech-

niques with a term in the dimension formula which is very hard to compute in practice. In the paper,

Mourrain defined a class of T -meshes, called weighted T -meshes, over which the dimension can be com-

puted in an explicit formula. The weighted T -meshes are associated with the order of the l-edges. So

Mourrain studied the dimension for spline space when the T -mesh is a regular T -subdivision, where the

T -mesh could be created by insertion edges into a tensor-product mesh.

Special hierarchical T -mesh. Wu et al. [100] provided the dimension for the spline space S(d, d, d
− 1, d − 1, T ) over a special hierarchical T -mesh using homological algebra technique. Deng et al. [15]

derived a dimension formula for C1 biquadratic spline spaces over any hierarchical T -meshes. Giannelli

and Jüttler [28] gave certain conditions such that the hierarchical spline basis spanned the entire space

of all piecewise polynomial functions of the given degree and smoothness defined on the underlying grid.

Other generalization. There are several other articles generalizing spline space over T -meshes to

3D T -meshes and T -meshes with L-junctions. For example, Li et al. [49] and Wang [90] discussed the

dimension of spline space over 3D hierarchical T -mesh using B-net and minimal determining set method.

Huang et al. [34], Lang and Xu [42], Li [44], Zhang [107], and Zhang [109] generalized the dimension

formula to more general type of T -meshes. Jin [37], and Villamizar and Mourrain [86] discussed the

bound for the dimension of spline space. Schumaker and Wang [65] extended the results to spline space

on triangulations with hanging vertices.

Besides all these positive results, Li and Chen [47] discovered that the dimension of the spline space

S(d1, d2, d1 − 1, d2 − 1, T ) is instability over certain T -meshes, i.e., the dimension is not only associated

with the topological information of the T -mesh but also associated with the geometric information of the

T -mesh. And later, Berdinskya et al. [5] provided two more example T -meshes for which dimensions were

also instable for spline space S(5, 5, 3, 3,T ) and S(4, 4, 2, 2,T ). These results suggest us that we can

only study some special spline spaces for practical use. The first class of spline spaces are spline spaces

with reduced regularity.

5.3 Spline space with reduced regularity

Currently, the spline spaces S(m,n, α, β,T) when the order of smoothness is less than half of the degree

of the spline functions have been well understood. In the following, such spline space is called the spline

space with reduced regularity, or PHT-splines. The biggest advantages of the PHT-splines are the perfect

behavior of local refinement, which will never introduce any additional refinement. The PHT-spline basis

functions fulfill all important properties in the context of numerical analysis, i.e., non-negativity, parti-

tion of unity, linear independence and local support. Moreover, the PHT-spline formulation facilitates

adaptive refinement that is cumbersome for NURBS based finite element formulations. However, the main
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(a) level 0 (b) level 1 (c) level 2

Figure 15 Generation of a hierarchical T -mesh

drawback of PHT-spline is the reduced regularity, i.e., it will introduce more degrees of freedoms than

the other three approaches. Without lose of generality, we derive all the algorithms in term of bi-cubic

spline space with C1 continuity in the following, which can be generalized to higher degrees very easily.

5.3.1 Basis functions

Basis construction has been studied in [16, 46, 51]. This section only provides the detail construction for

spline space over a special T -mesh, called hierarchical T -mesh because most of the applications are based

on the spline spaces over the T -mesh. Also, for simplicity we only focus on the spline space for m = n = 3

and α = β = 1 which can be very easily to generalize to other degrees.

A hierarchical T -mesh is a special type of T -mesh which has a natural level structure. It is defined

in a recursive fashion. One generally starts from a tensor-product mesh (level 0). From level k to level

k + 1, one subdivides a cell at level k into four subcells which are cells at level k + 1. For simplicity, the

operator subdivides each cell by connecting the middle points of the opposite edges with two straight

lines. Check Figure 15 for an example of hierarchical T -mesh.

The basis functions for a PHT-spline space can be constructed in a level-by-level strategy. For the

initial level (level 0, denoted as T0), the standard bi-cubic tensor-product B-splines are used as basis

functions. Suppose the initial knot vectors are

[u1, u2, u3, . . . , um]× [v1, v2, v3, . . . , vn],

then there are four basis functions to be defined on any vertex (ui, vj), since all the vertices are either

crossing vertices or boundary vertices (called basis vertices). These four basis functions are defined to be

four B-spline basis functions with knot vectors

(ui−1, ui−1, ui, ui, ui+1, ui+1)× (vj−1, vj−1, vj , vj , vj+1, vj+1).

Inductively, suppose the basis functions {bkj }, j = 1, . . . , dk, on Tk have been constructed, the basis

functions on Tk+1 can be constructed from two sources: some are from the modifications of the old

basis functions on Tk, and others are from the new basis functions associated with the new basis vertices

of Tk+1.

Notice the fact that a basis function can be represented by specifying its 16 Bézier ordinates (coeffi-

cients) in every cell within the support of the basis function. When a cell is refined by adding a cross

vertex, the cell is subdivided into four subcells. Each subcell supports the original basis function, and

there are 16 Bézier ordinates on it. By adding a cross, we get 5 new vertices, some of which are new basis

vertices. Then we have to reset all the associated Bézier ordinates associated with the new basis vertices

to zero. Figure 16 illustrates this process. Other than the modification of old basis functions, there are

some new basis vertices. For these kind of basis vertices, the basis can be constructed as the B-spline

basis functions over their supports. Example basis functions are shown in Figure 17.

Definition 5.5. Given a T -mesh T, suppose the basis functions are {bkj (u, v)}, j = 1, . . . , N , k

= 0, . . . , 3, here N is the number of basis vertices. Then a PHT-spline surface S(s, t) over T can be
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(a) 16 Bézier ordinates of the func-

tion

(b) The function is subdivided into

four subcells, after adding a cross

(c) Set the Bézier ordinates asso-

ciated with new basis vertices to

be zeros (shaded area in (b))

Figure 16 Modification of a basis function at (xi, yj), rectangle vertices are basis vertices

Figure 17 Two images of basis functions

defined as

S(s, t) =

N∑
j=1

3∑
k=0

Ck
j b

k
j (s, t), (5.1)

where Ck
j are the control points associated with the j-th basis vertex.

The control points Ck
j can be determined by a generalized hermite interpolation procedure [16, 66].

Definition 5.6. For any function b(s, t), its function value b(s, t)|(s0,t0), two partial derivatives of first

order and mixed partial derivative

bs(s0, t0) =
∂

∂s
b(s, t)|(s0,t0),

bt(s0, t0) =
∂

∂t
b(s, t)|(s0,t0),

bst(s0, t0) =
∂2

∂s∂t
b(s, t)|(s0,t0)

at some point (s0, t0) are called the geometric information of b(s, t) at point (s0, t0).

Theorem 5.7. A PHT-spline surface S(s, t) over T is unique determined by the geometric information

at all basis vertices.

Proof. Assume the geometric information for some unknown function at i-th basis vertex are f , fs, ft,

fst respectively. Then the control points of the i-th basis vertex can be computed as

(C0
i ,C

1
i ,C

2
i ,C

3
i ) = (f, fs, ft, fst)(Bi) (5.2)
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to interpolate the geometric information at the basis vertex. Here (Bi) is a 4×4 matrix for the i-th basis

vertex,

(Bi) =

⎛
⎜⎜⎜⎜⎝

1 1 1 1

−ui

λ
1−ui

λ −ui

λ
1−ui

λ

− vi
μ − vi

μ
1−vi
μ

1−vi
μ

uivi
λμ − (1−ui)vi

λμ −ui(1−vi)
λμ

(1−ui)(1−vi)
λμ

⎞
⎟⎟⎟⎟⎠ ,

where

ui =
u2
i

u1
i + u2

i

, vi =
v2i

v1i + v2i
, λ =

1

u1
i + u2

i

and μ =
1

v1i + v2i
.

And u1
i , u

2
i , v

1
i and v2i are the parameter length of four adjacent edges of the i-th basis vertex.

5.3.2 Edge insertion and edge deletion

Local refinement is the most important operator for splines which is corresponding edge insertion operator

for splines over T -meshes. Edge deletion is the inverse operator of the edge insertion. In this section, the

general edge insertion and deletion algorithms for a PHT-spline surface in the form of (5.1) are discussed.

Suppose we insert an edge into a T -mesh T and get a new T -mesh T 1. The first step of the operation

is to construct the basis functions for the new T -mesh. Without lose of generality, suppose the edge

insertion leads one new basis vertex vnew with four new basis functions ni(s, t), i = 0, . . . , 3 which can be

constructed using the algorithm in [51]. Then for any existing basis function bkj (s, t), it will replaced by

b̂kj (s, t) = bkj (s, t)−
3∑

i=0

λini(s, t).

Here λi’s satisfy that bkj (s, t) and
3∑

i=0

λini(s, t)

have the same geometric information at vnew. So b̂kj (u, v) will have vanish geometric information at vnew.

The second step is to modify the new control points and keep the existing control points unchanged.

First, one computes the geometric information of PHT-spline surface at the new basis vertices and then

interpolate these geometric information to get the new control points according to (5.2).

Edge deletion is the inverse operator of the edge insertion. Suppose the T -mesh after an edge removal

is T 2 and the corresponding spline space is S2. Since edge deletion is not an exact operator, there

are many opinions to define the surface after edge removed. The opinion that one usually uses is to

keep the geometric information at all the existing basis vertices unchanged. According to interpolation

Theorem 5.7, the key step of edge deletion is define the basis functions for spline space S2. For more

details of the basis functions contruction, the reader is referred to [51].

5.4 Applications

PHT-splines have been applied in fitting [16], stitching [50], simplification [51], adaptive surface recon-

struction based on implicit PHT-splines [89]. Also PHT-splines have been applied in solving elliptic

equations [76], and iso-geometric analysis [58–60,91].

5.4.1 Fitting

In [16], an efficient scheme is proposed to fit triangle meshes with spline surfaces over hierarchical T -

meshes. According to 5.1 and the interpolation Theorem 5.7, the main step is to estimate the geomet-

ric information at all the basis vertices. Suppose the vertices positions for the triangle mesh vertices

are {Pi}Np

i=1. Then first, one estimates the geometric information at every vertex Pi. For every vertex

Pi in the given mesh, its topological neighborhood N (Pi) is organized with enough points for information
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Figure 18 Surface fitting a female head mesh (courtesy of Open3D Project on www.Project-Human.com) with splines

over hierarchical T -meshes. The curves on surfaces from b to f are the mapping images of the hierarchical T -meshes.

From left to right, are Original mesh, Levels 1, 2, 4, 6 and 10, respectively

Figure 19 Stitching two pieces and three pieces of surface patches

estimation. Then fit a bi-cubic or bi-quadratic patch to the points in N (Pi) (assuming a parametrization

of the mesh model is obtained). The required geometric information at point Pi is obtained by evaluating

the patch at the corresponding parameter value of Pi. Second, for each basis vertex Q, the geometric

information at Q can be obtained by linearly interpolating the geometric information of three neighboring

points Pi, Pj and Pk of Q. For the details for basis construction and fitting process, the reader is referred

to [16].

Figure 18 illustrates the surface fitting procedure, where the given mesh is a female head with 19,231

points and 38,388 triangular faces, and a hole around her neck. With the provided parameterization

into a square, the new spline surface can be constructed about two seconds with an ordinary personal

computer.

5.4.2 Stitching

Computer graphics and computer aided design communities prefer piecewise spline patches to represent

surfaces. The geometric models are composed with a set of B-spline patches, where the adjacent patches

have many gaps when the knot vectors of the adjacent patches do not match. Thus how to keep the

smoothness between the adjacent patches is a challenging task. In [50], Li et al. presented a method

for stitching several surface patches with a PHT-spline. The method was simple and could be easily

used in complex models. Figure 19 shows an result of the stitching algorithm. The left-top picture in

Figure 19 shows the gap among three of the patches from a real B-spline model. The picture on the

right-top depicts the result with the stitching algorithm with C1 continuity. The bottom two pictures

are the results of the C0 and C1 stitching algorithm with T -meshes.
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Figure 20 Simplify a B-spline surface into PHT-spline surface using iterative edge removal algorithm

5.4.3 Simplification

Surface fitting with tensor-product B-spline surfaces might have many superfluous control points or

surface patches. Deng et al. [16], Li et al. [51] provided two algorithms for converting a tensor-product

B-spline surface into a PHT-spline surface within a given tolerance. Deng et al. [16] discussed the B-

spline surface simplification with PHT-spline using iterative refinement with above fitting algorithm. Li

et al. [51] achieved the some purpose using iterative edge removal algorithm. The solution presented does

not produce the result with fewest surface patches that falls bellow the given tolerance. Since in general,

the models may have several thousands of surface patches, it is intractable to make an exhaustive search.

However, the surface will exactly fall under the given tolerance for both algorithms and the second one can

work on rational surface and arbitrary topology mesh also. A simple example is illustrated in Figure 20

to show the effect of the iterative edge removal algorithm. The example can be computed within twenty

seconds on a personal computer with Pentium 4 CPU 3.20GHz and 1.0GB RAM. The origin model has

8280 bi-cubic patches, for the given error of 1.0%, the algorithm produces 713 patches and for the given

error of 1.4%, the algorithm produces 387 patches.

5.4.4 Implicit PHT-splines

Wang et al. [89] proposed an adaptive surface reconstruction algorithm based on implicit PHT-splines.

The implicit PHT-spline representation could be viewed as an adaptive signed distance fields with globally

C1 continuous.

Definition 5.8. Given a 3D hierarchical T -mesh T, suppose the basis functions are {bkj (x, y, z)},

j = 1, . . . , Nc, k = 0, . . . , 7.

Here Nc is the number of basis vertices. Then a 3D PHT spline surface f(x, y, z) over T can be defined as

f(x, y, z) =

Nc∑
j=1

7∑
k=0

Ck
j b

k
j (x, y, z), (5.3)

where Ck
j are the control points associated with the j-th basis vertex.

Given a set of points {Pi}Np

i=1 with oriented normals, the goal is to generate a 3D PHT-spline func-

tion f(x, y, z) whose zero level set gives a good approximation to the underlying surface. Intuitively,

the algorithm tries to use the PHT-spline function to approximate the signed distance field as accu-

rate as possible in the vicinity of signed distance field while the approximation can be rough in regions

away from the surface. The scheme is to recursively construct a hierarchical T -mesh with simple and

error-guided local refinements that adapt to the target geometric details, and to determine the PHT-

spline by estimating the Hermitian information at basis vertices. First, one approximates the target

geometry of a point cloud with an implicit surface of polynomial splines over 3D hierarchical T -mesh,

which is constructed adaptively by error-guided local refinements. In each progressive level, the PHT-

spline function is determined by interpolating the Hermitian information at the basis vertices of the
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Figure 21 Adaptive reconstruction of Igea model, from left to right are the intermediate results at level 0 to level 5.

The leftmost is the T -mesh at level 0 with which there is no surface generated

hierarchical T -mesh, and the Hermitian information at the basis vertices is obtained from the geometric

quantities on the underlying surface of the point cloud. As a PHT-spline function in each cell is a tri-

cubic polynomial, so it has strong capability to capture geometric details. And since we can adaptively

produces a hierarchical T -mesh, thus the number of basis vertices is roughly one-third of the number of

cells. Also in the reconstruction process, one only has to estimate the Hermitian information at the basis

vertices instead of fitting local shape to data points in each cell. Figure 21 shows one simple example of

adaptive reconstruction of Igea model.

5.4.5 Iso-geometric analysis

There are a set of articles trying to consider the flexibility of the T -meshes and simple local refinement

algorithm for PHT-splines and applying PHT-splines to iso-geometric analysis [58–60, 76, 91]. In tradi-

tional finite element analysis, an adaptive procedure consists of successive loops of the form Solve →
Estimate → Mark → Refine.

The essential part of the loops is the Estimate step. Error estimate methods with a posteriori error

control have so far been well-developed in adaptive FEA. The posteriori error estimate started with

the pioneering work in [2]. Wang et al. [91] followed up on the ideas presented by Verfürth [82] and

Ainsworth [1] and derived a residual-based error estimator based on RPHT-splines (rational PHT-splines).

The adaptive scheme of [91] is as follows:

1. Build a PHT-based geometry or Rational-PHT-based geometry, use the geometry basis function to

represent the physical domain and construct the approximate solution space V h.

2. Solve the system of equations of the iso-geometric approximation to calculate field variables.

3. Calculate the local error indicator ηK patch by patch. If the total error η is less than the prescribed

tolerance, then end.

4. Mark the patches that contribute most to the total error with the marking strategy.

5. Refine the marked patches according to the refinement strategy, and go to Step 2.

The following several Figures 22–24 are PHT-based iso-geomtric analysis the infinite plate with circular

hole under constant in-plane tension in the x-direction, which is a benchmark problem in IGA literature.

The setup is illustrated in Figure 22. Here, Tx is the magnitude of the applied stress for the infinity plate

case, R is the radius of the hole, L is the length of the finite quarter plate, E is Young’s modulus, and υ

is Poisson’s ratio.

At the coarsest level, the geometry is exactly represented with two patches by RPHT-splines. Figure 23

shows the adaptive hierarchical T -meshes after 3, 5, 6, 13 level refinements. The results show that the

geometry can be exactly represented with the RPHT-splines at every refinement level. Figure 24 gives

the the convergence results with NURBS and with RPHT-splines.

5.5 Spline space with highest order of smoothness

There are also several articles focusing on the spline space

S(m,n,m− 1, n− 1,T),

which is called spline space with highest order of smoothness. As the dimension for the spline space is

instable over some particular T -meshes [47], so the researchers focus on the spline spaces over some special
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Figure 22 Setup of an infinite elastic plate with a circular hole

Figure 23 Resulting meshes after 3, 5, 6 and 13 refinements
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Figure 24 Comparison of the exact L2 error of x-direction stress

T -meshes. Deng et al. [15] obtained the dimension formula of biquadratic spline spaces over hierarchical

T -meshes. But the basis functions still need further construction. Wu et al. [100] presented a dimension

formula for a spline space

S(m,n,m− 1, n− 1,T)

when the T -mesh is a certain type of hierarchical T -mesh. They also proposed a method for constructing

a set of basis in the paper. However, it is still unclear whether the restriction of the hierarchical T -mesh

is flexible enough for application. All the issues associated with the highest order of smoothness are the

main future directions of the polynomial splines over T -meshes.
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Figure 25 A μ-extended box-mesh M at the top left, and 3 examples of bilinear B-splines and their relation to M .

The number on a edge of a mesh is the multiplicities of this edge

6 LR B-splines

Local-refined (LR) B-spline is introduced in [17] which is based on the dimension result in [56]. However,

LR B-splines are not always linear independent although there exists an algorithm to check whether

the spline is linear dependent and convert the spline to be linear independent by insertion more control

points. And what is more, LR B-spline does not have a nature control grid which restricts the application

in geometric modeling. Thus, it is still unclear whether LR B-spline will be a powerful tool for design or

analysis.

An LR-spline is defined on a μ-extended LR-mesh M which is constructed by inserting line segments

starting from a tensor product mesh according to certain rules (can be referred in [17]). For the con-

struction of LR-splines, we use Figure 25 to show the procedure. In Figure 25, the B-spline indicated

by the knot line multiplicities at the top to the right does not have support in M since a part of a knot

line of the B-spline is not present in M , and the two examples below has support in M , but only the

B-spline to the right has minimal support in M . In the B-spline to the left the internal vertical knot line

has lower multiplicity than the corresponding mesh-rectangle in M .

In [17], Dokken et al. discussed splines defined over box-meshes (LR-mesh is a special box-mesh),

and the dimension formulas of some special cases are also given. When the refinement follows certain

rules, LR-splines can span the full spline space defined by μ-extended LR-mesh. Additionally, for the

linear dependence of LR-splines, a so-called peeling algorithm is proposed to select the maximum set of

linearly independent LR-splines function. In [7], different properties of the LR-splines are analyzed: In

particular the coefficients for polynomial representations and their relation with other properties such as

linear independence and the number of B-splines covering each element.

7 Conclusion and a few open questions

As described in Section 2, the tensor-product B-spline space can be thought as the linear space spanned

by a set of B-spline basis functions or a linear piecewise polynomial space with specified smoothness

continuity. Thus, in the beginning development of generalization tensor-produce B-spline space to spline

space with local refinement property, all the approaches try to focus on one of the two ways. For example,

hierarchical B-splines [26,87], T -splines [53,70,72], and LR B-splines [17] focus on how to define a set of

functions in terms of the knot information and control grid. All these approaches are easy to construct

the set of functions but it is difficult to derive the mathematical properties for the spline space, which

is one of the key issues for IGA. On the other hand, polynomial spline spaces over T -meshes [14, 16, 96]

try to generalize the piecewise polynomial linear space to the parametric domain with T -junctions. The

approaches are easy to have the mathematical properties but it is difficult to derive the dimension

and construct the basis functions for the space in general. But recently, the new development of all

these approaches try to combine both ways, such as the completeness of spline space for hierarchical

B-splines [28], Analysis-suitable T -splines [53] and LR B-spline [17].

In the end of the paper, we provide some future directions that we think should be pursued associated
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with local refinable splines and their application in geometric modeling and iso-geometric analysis.

Analysis-suitable models generation. The key to eliminating the CAD/CAE bottleneck is to create

parameterized geometries in the design phase. The recent development of T -spline surfaces illustrates

the possibilities to convert trimming NURBS BRep models to untrimmed T -splines which can be directly

used as iso-geometric analysis. The most significant challenge facing iso-geometric analysis is developing

three-dimensional spline parameterizations from surfaces. This is a problem of geometry generation. The

most promising starting points seem to be based on the assumption of untrimmed T -spline or NURBS

surfaces containing a volume. This would be applicable to solid parts and also internal flow geometries.

The case of external flow geometries appears to be easier. Ideally, it would be desirable to retain the

surface parameterization in the process. However, this probably could be relaxed for many practical

applications.

Structure and shape optimization. A key advantage of isogeometric analysis is the potential ability

of integrating CAD, FEA and shape optimization. The control variables of the geometry provide a concise

parameterization that can be used as design variables. Once an optimal design has been obtained, the

design can be returned to the CAD system directly because it will already be in the language of the

system, namely, NURBS, T -splines, etc.

Efficient computation. Isogeometric analysis has been shown to be more accurate than traditional

finite element analysis per degree-of-freedom. So far, sufficiently accurate Gaussian quadrature has been

utilized on knot spans, which engenders considerable overhead compared with higher order C0 elements.

It should be very important to generalize the Gaussian quadrature rules for any locally refinable splines.

Application in computer engineering. Local refinable spline should have a big impact in iso-

geometric analysis in many important engineering problems, such as dynamic structural applications,

contact problems with friction, thin shell elements, curved beam element and so on.
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24 Feichtinger R, Fuchs M, Jüttler B, et al. Dual evolution of planar parametric spline curves and T -spline level sets.

Comput Aided Design, 2008, 40: 13–24

25 Finnigan G T. Arbitrary degree T -splines. Master’s thesis. Provo: Brigham Young University, 2008

26 Forsey D, Bartels R. Hierarchical B-spline refinement. ACM SIGGRAPH Comput Graph, 1988, 22: 205–212

27 Forsey D, Bartels R. Surface fitting with hierarchical splines. ACM Trans Graph, 1995, 14: 134–161
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