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• A concept ‘‘Spline spaces with mixed orders of continuity over T-meshes’’ is presented.
• Dimensional formulas are given for this type of bicubic spline spaces.
• A set of bases are constructed with nice property from the geometric view.
• Applications in image processing and FEM are presented.

a r t i c l e i n f o

Article history:
Received 3 April 2013
Received in revised form 26 February 2014

Keywords:
Spline
T-mesh
Discontinuous data processing
Finite element method
B-net method

a b s t r a c t

In this paper, we introduce the concept of spline spaces with mixed orders of continu-
ity over T-meshes. Then, the dimensions of the cubic spline spaces with continuity of or-
der one and locally discontinuous over hierarchical T-meshes are presented by the B-net
method. From the viewpoint of processing geometry data, a non-negative basis set with lo-
cal support and partition of unity is constructed. Finally, the behavior of this type of spline
is analyzed with the help of examples in image processing and finite element analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spline functions arewell-known functions that are defined by piecewise polynomials andwhose studywas first reported
in [1] in 1946. A B-spline function is a type of spline and that forms natural basis functions of univariate spline spaces. Due
to its computational feasibility, B-spline functions are widely used in computer aided geometric design, data processing,
numerical computing [2,3], etc. Spline theory is closely related to optimal control, statistics [4] and geometric computing [5].

To describe multivariate data, the tensor products of B-splines are introduced. A serious weakness of tensor-product
splines is that they contain a large number of superfluous control points. To reduce the number of these superfluous control
points, several different types of splines defined over T-meshes are constructed, such as hierarchical B-splines [6], T-splines
[7] and spline spaces over T-meshes [8], where a T-mesh is a rectangular grid that allows T-junctions [7].

When traditional spline functions are used to handle discontinuous data, the data is considered to lie on a surface
with uniform global smoothness because a traditional bivariate spline function has the same order of continuity along the
x-direction and the y-direction everywhere. However, this assumption is not always reasonable. For example, from the view
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of human vision, the boundary of an object represents important information that distinguishes the object from its back-
ground. In image processing, if we use smooth splines to handle this object and its background, the object’s boundary must
be blurred and this object may even be lost if it is small. Moreover, there is a Gibbs phenomenon for smooth splines [9],
when these smooth splines are used to deal with discontinuous data.

Discontinuity is a feature of such natural phenomenon in the world as shock waves, phase transitions and digital signals.
In approximation theory and finite element analysis, there are some methods that have been developed to address discon-
tinuity problems. For example, in approximation theory, there are some function systems for handling discontinuous data,
such as the Walsh function system [10] and Haar function system [11], which are well known in signal progressing and
image analysis. More recently, the U-system [12] and V-system [13] generalized the aforementioned function systems to a
higher degree. In terms of spline theory, the U-system and V-system are univariate splines of degree k with continuity of
order −1 on a knot sequence. There are some disadvantages to using C−1 splines to handle discontinuous problems, such
as lower computing efficiency due to redundant basis functions or shape functions. Moreover, C−1 splines lead to discon-
tinuity over smooth parts. In finite element analysis, the discontinuous Galerkin (DG) method is a famous technique for
solving PDEs with completely discontinuous piecewise polynomial (C−1-splines) space for the numerical solution and the
test functions. There are many papers on DG, for example, the review [14]. If a PDE has a smoothness solution, a ‘‘numerical
flux’’ is introduced into the DG method in order to prevent the problems caused by using C−1-splines.

In addition toC−1 splines, R. H.Wangproposed the concept of spline spaceswithmixed orders of continuity over arbitrary
triangular partitions in [15] in 1979 to describe discontinuous phenomena. In the present paper, based on spline spaces
over T-meshes [16,8], we propose the concept of spline spaces with mixed orders of continuity over T-meshes and provide
dimensional formulae for these spaces of bicubic splines with continuity of order 1 or −1 over hierarchical T-meshes called
combined PHT (C-PHT). We also construct a set of basis functions with important properties such as non-negativity, local
support and partition of unity for the space of special C-PHT.

The remainder of the paper is organized as follows. In Section 2, the concept of spline spaces with mixed orders of
continuity over T-meshes is proposed. In particular, C-PHT is treated as a special case. Then, the dimensional formula of
the space of C-PHT is presented in Section 3, and a set of basis functions is constructed by the B-net method [8] in Section 4.
In Section 5, some examples of the use of C-PHT in image processing and to solve PDEs are presented. After analyzing these
examples, conclusions and future research problems are presented in Section 6.

2. Spline spaces with mixed orders of continuity over T-meshes

In this section, we first review a few concepts regarding T-meshes and spline spaces over T-meshes. Then, we present
the concepts of spline spaces with mixed orders of continuity over T-meshes and combined PHT (C-PHT for short).

2.1. T-meshes and spline spaces over T-meshes

To reduce the superfluous degrees of freedom of splines defined over tensor product meshes, T-meshes are introduced.
A hierarchical T-mesh is a type of T-meshes with a natural level structure [16]. In the following, we will introduce some
concepts.

A T-meshT [17] is a set of axis-aligned rectangles, and the intersection of any two distinct rectangles inT is either empty
or consists of points on the boundaries of the rectangles. Moreover, if the entire domain occupied by T is a rectangle, T

is called a regular T-mesh, otherwise, it is irregular. There are two T-meshes shown in Fig. 1. The right one is regular and
the left one is irregular. In order to review a few concepts, take the right T-mesh in Fig. 1 for example and the definitions of
these concepts have been presented in [16,8].
• Vertices of a T-mesh: A grid point of a T-mesh is called a vertex of this T-mesh. In the right T-mesh of Fig. 1, {vi}

15
i=1 are

the vertices of the T-mesh and v11 is a crossing vertex. v2, v4, v12, etc. are T-vertices. A vertex is called a boundary vertex
if it lies on the boundary of the domain occupied by this T-mesh, otherwise, it is called an interior vertex. For example,
v1, v2, . . . , v6, v7, v9, v10, v15 are boundary ones and v8, v11, v12, v13, v14 are interior ones.

• Edges of a T-mesh: A line segment connecting two adjacent vertices on a grid line is called an edge of a T-mesh; such line
segments include v1v2 and v2v11, where v1v2 is a horizontal edge and v2v11 is a vertical edge. v1v2, v4v5, etc. are called
boundary edges. v12v11 and v2v11 are called interior edges.

• C-edges of a T-mesh: A composite edge (c-edge) [8] is a line segment that consists of several interior edges. It is the
longest possible line segment, the inner vertices (all vertices except the end points of the line segment) of which are all
T-vertices. v10v11, v5v9 are c-edges of the right T-mesh of Fig. 1. For the line segment v10v11, it cannot be extended since
v11 is a crossing vertex and v11 is a inner vertex if we extend v10v11 to v10v4. Moreover, v10v11’s inner vertex is v13 and
v13 is a T-vertex; For the segment v5v9, it cannot be extended and its inner vertices {v8, v12, v14} are T-vertices. Thus,
v10v11, v5v9 are c-edges of this T-mesh.

• Cells of a T-mesh: In the right T-mesh of Fig. 1, the region occupied by the rectangle v1v2v11v10 is a cell of this T-mesh.
For this cell, the vertices v1, v2, v11, v10 are called the corner vertices of this cell. The line segment v10v11 is called an edge
of this cell, although v10v11 is not an edge of this T-mesh.

A hierarchical T-mesh is a special T-mesh defined in a recursive fashion. Initially a tensor product mesh (level 0) is pre-
sumed. Cells of this tensor product mesh are called cells at level 0. From level k to k+ 1, some cells at level k are subdivided
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Fig. 1. Examples of T-meshes.

by connecting the middle points of the opposite edges with two straight lines. Four sub-cells are generated for each cell.
These new cells are called cells at level k + 1. Fig. 2 illustrates a sequence of hierarchical T-meshes.

Specially, for any c-edge of a hierarchical T-mesh, it is an edge of a cell of this hierarchical T-mesh since each new c-edge
generated at level k + 1 is an edge of a cell of this hierarchical T-meshes.

Given a T-mesh T , F is the set of all of the cells of T and Ω is the region occupied by cells in F . Spline spaces over
T-meshes are defined by

S(m, n, α, β, T ) := {f (x, y) ∈ Cα,β(Ω) : f (x, y)|φ ∈ Pm,n, ∀φ ∈ F }, (1)
where Pm,n is the space of all of the polynomials of bi-degree (m, n), and Cα,β(Ω) is the space consisting of all of the bivariate
functions that are continuous in Ω with order α along the x-direction and order β along the y-direction. Specially, if T is a
hierarchical T-mesh, S(3, 3, 1, 1, T ) is called as a spline space of PHT (i.e., polynomial splines over hierarchical T-meshes)
in [16]. Recently, this type of splines have been used to traditional FEM [18] and Isogeometric analysis [19,20] not only used
in CAGD.

2.2. Splines with mixed orders of continuity over T-meshes

Based on the concepts presented in the previous section, spline spaces with mixed orders of continuity over T-meshes
can be defined.

Definition 2.1. Let Ev
= {ev

i }
s
i=1 and Eh

= {ehj }
t
j=1 be sets of vertical edges and horizontal edges of a T-mesh T respectively.

F is the set of all of the cells of T . A function f (x, y) is defined over the region Ω occupied by all of the cells of T . The
function is a spline function with C {αi}

s
i=1,{βj}

t
j=1 if it satisfies the following conditions:

• f (x, y)|φ ∈ Pm,n, where φ ∈ F and Pm,n is the space of all of the polynomials of bi-degree (m, n);
• f (x, y) is a function with continuity of order αi at each point within ev

i along the x-direction and with continuity of order
βj at each point within ehj along the y-direction, where −1 ≤ αi ≤ m, −1 ≤ βj ≤ n, i = 1, 2, . . . , s, j = 1, 2, . . . , t;

• If e is a vertical (horizontal) boundary edge, then αe = −1 (βe = −1), where αe (or βe) is the order of continuity along
the direction that is perpendicular to e.
All spline functions satisfying these conditions compose a spline space with mixed orders of continuity over T denoted

by S(m, n, {αi}
s
i=1, {βj}

t
j=1, T ). By this definition, for a vertex v of T , let ev

1, e
v
2, . . . , e

v
k be the edges with v as an endpoint

and αe1 , . . . , αel , βel+1 , . . . , βek be their continuity orders respectively. Then, the continuity order at v is min{αe1 , . . . , αel ,
βel+1 , . . . , βek}.

In this paper, we will focus on spline spaces withm = 3, n = 3 and αi, βj ∈ {1, −1} over hierarchical T-meshes. We also
call the spline function in this space combined PHT (C-PHT) named after PHT in [16]. If ev

i (ehj ) is of αi = −1 (βj = −1), ev
i

(ehj ) is called a discontinuous edge (D-edge for short).
The space of C-PHT is determined by the T-mesh T associated with the continuity order of each edge. This type of T ,

with continuity orders, is denoted TC , and the space of C-PHT determined by TC is denoted S(TC ). For example, in Fig. 3,
there is a T-mesh TC with the continuity orders, where the continuity orders of the edges in red are −1 and others are 1.
Thus, this information determines the C-PHT space defined over TC totally.

3. Dimension formulae of spaces of C-PHT

In this section, we present the dimensional formulae of C-PHT spline spaces. First, the B-net method of bicubic splines
over T-meshes is reviewed which is a basic tool used in the proof of dimension formulas. Then, we introduce a few concepts
to facilitate the expression of dimensional formulae and prove the dimensional formulae in the final part of this section.
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Fig. 2. Hierarchical T-meshes.

Fig. 3. A T-mesh TC with the continuity orders and its C-PHT space S(TC ). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. The Bézier ordinates bkij and Pk
ij of two bi-cubic polynomials.

3.1. The B-net method

In the theory ofmulti-variate splines, there are several approaches used to calculate the dimension of a spline space, such
as the B-net method [5]. In this section, we review the B-net method for the case of bicubic splines over T-meshes.

Let f1(x, y) and f2(x, y) be two bicubic polynomials defined over two adjacent domains φ1 and φ2 respectively, shown in
Fig. 4, where φ1 = [x0, x1] × [y0, y1] and φ2 = [x1, x2] × [y0, y1]. There are {b1i,j ∈ R : i, j = 0, 1, 2, 3} such that

f1(x, y) =

3
i,j=0

b1ijB
1
i,j(x, y),
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Fig. 5. The Bézier ordinates for two horizontal adjacent cells.

where

B1
i,j(x, y) = N[x0, . . . , x0  

4−i

, x1, . . . , x1  
i+1

](x) · N[y0, . . . , y0  
4−j

, y1, . . . , y1  
j+1

](y). (2)

Here N[t0, t1, . . . , ts](t) is a B-spline function defined by the knots t0 ≤ t1 ≤ · · · ≤ ts. Similarly, f2(x, y) can be expressed
by {B2

i,j(x, y)} with coefficients {b2i,j}, where B2
i,j(x, y) is defined similarly to B1

i,j(x, y) by Eq. (2). {b1i,j} and {b2i,j} are called the
Bézier ordinates of f1(x, y) and f2(x, y), respectively. It is well known that f1(x, y) and f2(x, y) are r-time differentiable across
their common boundary if and only if [5]

1
(x1 − x0)i

∆i,0b13−i,j =
1

(x2 − x1)i
∆i,0b20,j, (3)

where j = 0, 1, 2, 3, i = 0, 1, . . . , r, ∆i,0bj,k = ∆i−1,0bj+1,k − ∆i−1,0bj,k with ∆0,0bj,k = bj,k. In particular, when f1(x, y) and
f2(x, y) are one-time differentiable across their common boundary, i.e., r = 1, by Eq. (3), {b1i,j}

3
i,j=0 and {b2i,j}

3
i,j=0 satisfy

b13,j = b20,j,

b12,j =


1 +

x1 − x0
x2 − x1


b20,j −

x1 − x0
x2 − x1

b21,j,
(4)

where j = 0, 1, 2, 3.
Let B(φ1) =


P1
i,j

3
i,j=0

and B(φ2) =

P2
i,j

3
i,j=0

be point sets in the cells φ1 and φ2, where the coordinates of P1
i,j as

(3−i)x0+ix1
3 ,

(3−j)y0+jy1
3


and P2

i,j as


(3−i)x1+ix2
3 ,

(3−j)y0+jy1
3


. For example, in Fig. 4, the circular point set is B(φ1) and the

triangular point set is B(φ2).
We can construct a bijection τ between {P1

i,j}
3
i,j=0 and {B1

ij}
3
i,j=0 by τ(P1

i,j) = B1
ij(x, y), i, j = 0, 1, 2, 3. By this correspon-

dence, b1i,j can be treated as the Bézier ordinate of P1
i,j associated with f1(x, y).

Thus, f1(x, y) and f2(x, y) with continuity of order 1 (Eq. (4)) can be expressed by the sets B(φ1) and B(φ2) by using τ .
When T-meshes are considered, we must discuss two adjacent cells in a general position. In the following, this case

will be summed up in the former one by splitting cells. For two general horizontal adjacent cells φ1 = [x0, x1] × [y0, y1]
and φ2 = [x1, x2] × [y2, y3] (Fig. 5), the continuous conditions expressed by Bézier ordinates are defined by the domains
[x0, x1]×[y0, y1] and [x1, x2]×[y0, y1], where y0 = max{y0, y2} and y1 = min{y1, y3}. The Bézier ordinates in φ1 (or φ2) can
be completely determined by the Bézier ordinates in [x0, x1]×[y0, y1] (or [x1, x2]×[y0, y1]) because there is only one polyno-
mial over φ1 (or φ2). To bemore specific, we suppose that φ1 is split into φ11 and φ12 in Fig. 5. The Bézier ordinates of B(φ11)
determine the Bézier ordinates of B(φ12) as having continuity of order 3 along the common edge according to Eq. (3). Thus,
the Bézier ordinates of B(φ1) are obtained. Similar continuity conditions can be derived for any two vertical adjacent cells.

Let T be a T-mesh, and F = {φ1, φ2, . . . , φl} is a set of all its cells, where φk = [xk0, x
k
1] × [yk0, y

k
1]. Define the point set

B(T ) = ∪
l
k=1 B(φk),

where B(φk) = {Pk
i,j}

3
i,j=0.

For f (x, y) ∈ S(TC ), f (x, y)|φk ∈ P3,3. Therefore, a linear functional λPki,j
can be defined for each Pk

i,j ∈ B(φk) by

λPki,j
(f (x, y)) = bki,j,
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Fig. 6. The undirected graph G of a space of discontinuous PHT. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

where bki,j is the Bézier ordinate of f (x, y)|φk associatedwith Pk
i,j. A set of pointsP ⊂ B(T ) is called a determining set [21] for

the spline space S(TC ), if λP(f (x, y)) = 0(∀P ∈ P) indicates that f (x, y) = 0, for any f (x, y) ∈ S(TC ). If P is a determining
set of S(TC ), then

dim S(TC ) ≤ #P.

If each nontrivial subset of P is not a determining set of S(TC ), then P is called a minimal determining set and

dim S(TC ) = #P,

where #P is the cardinality of P . The dimensional formulae of S(TC ) will be derived using this method in the following
section. To describe a minimal determining set of S(TC ), a few concepts of point sets are presented at first.

3.2. Some concepts

Let T be a hierarchical T-mesh. Ev
= {ev

i }
s
i=1 and Eh

= {ehj }
t
j=1 are the sets of vertical edges and horizontal edges of T

respectively. φk, B(φk) and B(T ) are defined as before, where k = 1, 2, . . . , l.
The graph GD = (VD, ED) is defined by TC in the following fashion. Here,

ED := {e : e is a D-edge of TC },

and the vertex set VD consists of all of the vertices of T on the edges in ED. Let

Fv = {C ∈ F : v is on the boundary of C}

be the set of cells that are related to a vertex v ∈ VT , where VT is the set of vertices of T . Then GD can be used to classify
these cells. Specifically, the domain occupied by all of the cells in Fv can be divided into several connected components by
GD. Each connected component consists of some cells in Fv , and

Fv = Ω1 ∪ Ω2 ∪ · · · ∪ Ωr ,

where Ωi is the cell set formed the ith connected component and Ωi ∩ Ωj = ∅(i ≠ j), i, j = 1, 2, . . . , r .
By this classification, in Fig. 6, Fv5 = {φ1, φ2, φ3} and Fv4 = {ϕ1, ϕ2, ϕ3, ϕ4}. For the vertex v ∉ VD, there is only one

connected component of Fv . The numbers of connected components of v5 and v4 are 1 and 4 respectively.
Generally, for v ∈ VT , the number of connected components equals to deg v, where deg v = 0, if v ∉ VD; otherwise,

deg v is the degree of v in the sense of the graph GD.
For a cell φ and its point set B(φ), B(φ) can be divided into 4 disjoint sets associated with 4 corner vertices of φ. If Q is

one of the corner vertices of φ, the subset of B(φ) associated with Q consists of the nearest 4 points of Q in B(φ), denoted
as BQ ,φ . This procedure is illustrated in Fig. 7. Points in different subsets are distinguished from each other with different
shapes.

For each vertex v of T , the point set Pv
Ω is defined as follows.
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Fig. 7. The subsets of B(φ).

Definition 3.1. Ω is a connected component of v, where v is a vertex of T . If there is a cell φ ∈ Ω of T and v is not a corner
vertex of φ, Pv

Ω = ∅. Otherwise, there is a cell φ of T such that v is a corner vertex of φ. Then Pv
Ω = Bv,φ .

The following should benoted regarding this definition. If there is another cellϕ satisfying conditions besidesφ, the Bézier
ordinates of Bv,ϕ and Bv,φ are equivalent from a ‘‘determining set’’ point of view according to Eq. (4). Thus, the definition of
Pv

Ω is independent of the choice ofφ from the view of a determining set. Specifically, the Bézier ordinates ofBv,φ are zeros if
and only if the Bézier ordinates of Bv,ϕ are zeros. This result will be used in the proof of dimensional formulae in Section 3.3.

Let {Ω1, Ω2, . . . , Ωr} be all of the connected components of v, where Pv
= ∪

r
i=1 Pv

Ωi
is called the set of points associated

with v.
In Fig. 6, there are four connected components of v4 and Pv4 = ∪

4
i=1 P

v4
ϕi , where P

v4
ϕi = Bv4,ϕi . In addition, Pv5 = ∅

because there is a cell φ1 in the unique connected component of v5, and v5 is not a corner vertex of φ1.

3.3. Dimensional formulae

Based on the concepts defined in the previous section, the dimensional formulae of a space of C-PHT is presented by the
following theorem.

Theorem 3.1. Let S(TC ) be a space of C-PHT over a hierarchical T-mesh T , where TC is T associated with continuity orders.
GD = (VD, ED) is the graph defined by TC . Thus,

dim S(TC ) = 4V+
+


v∈VD

4(deg v − 1),

where V+ is the number of crossing vertices of T and deg v is the degree of v in GD.

Proof. Let VT be the set of vertices of T . Denote P = ∪v∈VT Pv , where Pv is the set of points associated with v. We will
demonstrate that P is a determining set of S(TC ).

For a spline function f (x, y) ∈ S(TC ), the function satisfies λP(f (x, y)) = 0 for all P ∈ P . For any Pk
i,j ∈ B(T ) \ P , there

is a unique cell φk and a unique vertex v0 ∈ VT such that Pk
i,j ∈ Bv0,φk . LetΩ be the connected component of v0 and φk ∈ Ω .

Thus P
v0
Ω ⊂ Pv0 . We first consider two cases.

a. v0 is a crossing vertex of T . Thus, v0 is one of corner vertices of these cells around v0. According to the definition of
P

v0
Ω , P

v0
Ω ≠ ∅. Therefore, the Bézier ordinates of Bv0,φk are zeros because the ordinates of P

v0
Ω are zeros. Specifically,

λPki,j
(f (x, y)) = 0.

b. v0 is a T-vertex of T . If P
v0
Ω ≠ ∅, λPki,j

(f (x, y)) = 0 can be obtained by using the same method as described above.

In the following, we will consider the case P
v0
Ω = ∅ for a T-vertex v0. Let v01v02 be the c-edge with endpoints v01 and

v02 such that v0 is one of its inner vertices. Thus, there is a cell ϕ1 with v01v02 as one of its edges because T is a hierarchical
T-mesh. φk and ϕ1 are in the same connected component of v0 because P

v0
Ω = ∅. Thus, the Bézier ordinates of Bv0,φk are

determined by the Bézier ordinates of Bv01,ϕ1 ∪ Bv02,ϕ1 . If the Bézier ordinates of Bv01ϕ1 (or Bv02,ϕ1 ) can be determined to
be zeros by Pv01 (or Pv02 ), then the progress is terminated. Else treat v01 (or v02) as v0 and repeat this progress. Here, this
progress can be described as a binary tree structure shown in Fig. 8. According to the structure of a hierarchical T-mesh, the
vertices that appear in the process are different from each other, and this process must be terminated after several steps.
The leaf nodes of this binary tree are the point sets whose Bézier ordinates are zeros, since they are determined by the Bézier
ordinates of P for f (x, y). Thus, the Bézier ordinates of Bv0,φk are zeros. Specifically, λPki,j

(f (x, y)) = 0.
Thus, according to the discussion above, P is a determining set of S(TC ). Moreover, if any point Q is removed from P , a

non-zero spline function g(x, y) ∈ S(TC ) can be constructed with λQ (g(x, y)) = 1 and λP(g(x, y)) = 0, for all P ∈ P \ {Q }.
Thus P is a minimal determining set of S(TC ).
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Fig. 8. The tree of relationships among Bézier ordinate sets.

For v ∈ VT \ VD,

#Pv
=


4, v is a crossing vertex;
0, v is a T-vertex.

For v ∈ VD, the number of connected components of v is deg v, therefore,

#Pv
=


4 deg v, v is a crossing vertex;
4(deg v − 1), v is a T-vertex.

Thus,

dim S(TC ) = 4V+
+


v∈VD

4(deg v − 1),

where V+ is the number of crossing vertices of T and deg v is the degree of v in G. �

4. Basis functions of spaces of C-PHT

In practice, it is important to construct a set of basis functions with suitable properties. In this section, an algorithm for
generating a hierarchical T-mesh with D-edges are given at first. Then, based on this algorithm, a set of bases with local
support, non-negativity and partition of unity is presented.

4.1. Generation of a hierarchical T-mesh with D-edges

There are two types of operations that can be used to change the structure of a hierarchical T-mesh T with D-edges
denoted as TC . One is setting D-edges, the other is subdividing cells of T . Here is an algorithm for generating a class of
hierarchical T-mesh with D-edges.

Let ETC be the set of interior edges ofTC . CTL
TC

is a set of its cells at the top level.B(TC ) is a set of basis functions of the space
of C-PHT over TC and it should satisfy the given conditions denoted by C eventually. T⊗ is an initial tensor product mesh.

In the following, there is an example shown in Fig. 9 that illustrates a sequence of a hierarchical T-mesh by this algorithm
and this type of hierarchical T-mesh with D-edges is called a hierarchical T-mesh with incomplete D-edges.
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Fig. 9. A generation progress of a hierarchical T-mesh with D-edges by the algorithm in Section 4.1, where the continuity orders of the edges in red are
−1 and others are 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. Construction of basis functions

In this section, a set of basis functions of a space of C-PHT defined over a hierarchical T-mesh with incomplete D-edges
is constructed with nonnegativity, local support and partition of unity. This construction process is recursive in generating
TC defined in Section 4.1.

The basis functions of S(3, 3, 1, 1, T ′
⊗
), where T ′

⊗
is the initial tensor product T-mesh, are standard tensor product

B-splines. These functions are with non-negativity, local support and partition of unity naturally. Now, suppose there is
a set of basis functions B0 with these properties before setting D-edges in E . When an edge in E is set as a D-edge, the set of
basis functions B1 consists of two parts. The first part is composed of new basis functions associated with this edge which
we prepare to set as a D-edge. The second part is composed of functions formed by modifying the functions in B0.

1. New basis functions: Based on Theorem 3.1, when an edge v1v2 is set as a D-edge, new basis functions corresponding
to the points that are added to Pv1 and Pv2 can be constructed, where v1, v2 are endpoints of the edge v1v2. These
endpoints are classified into crossing vertices and T-vertices.
(a) v is a crossing vertex. All of the cases are collected in Table 1, where,

N1(s) = N[s1, s1, s1, s1, s2](s), N2(s) = N[s1, s1, s1, s2, s2](s),
N3(t) = N[t1, t1, t1, t1, t2](t), N4(t) = N[t1, t1, t1, t2, t2](t),
N5(t) = N[t0, t0, t1, t1, t2](t), N6(t) = N[t0, t1, t1, t2, t2](t)

and N[x1, x2, x3, x4, x5](x) is a cubic B-spline function defined by the knots x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5.
(b) v is a T-vertex. All of the cases are collected in Table 2, where {Ni(t)}i=6

i=3 are the same as case (a) and N1(s) =

N[s0, s0, s0, s0, s1](s), N2(s) = N[s0, s0, s0, s1, s1](s).
2. Modification of the old basis functions: The function f (x, y) ∈ B0 is represented by Bézier ordinates on each cell. f (x, y)

is modified by setting all of the Bézier ordinates of the points in the point sets shown in Tables 1 and 2 as zeros.

It is easy to verify that the functions in B1 possess the properties of local support and non-negativity. The partition of
unity of B1 will be verified in the following.

Let B0 = {fi(x, y)} with


i fi(x, y) ≡ 1 and {gj(x, y)} be the new basis functions that are added to the first part. Thus,
all the Bézier ordinates of


i fi(x, y) are ones, and the Bézier ordinates of


j gj(x, y) associated with the points in the point

sets are ones. By modifying in the second part, all of the Bézier ordinates of the sum of all of the functions in B1 are ones,
i.e., B1 has the partition of unity.

Thus, suppose there is a set of basis functions B1 with the properties of local support, non-negativity and partition of
unity before subdividing the cells in C . Let B2 be the set of basis functions constructed after subdividing one of the cells in
C . B2 consists of two disjoint parts. One is the set of new functions added; the other is the set of functions generated by
modifying the functions in B1.
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Table 1
The collection of all cases when v is a crossing vertex, where the knots of the tensor product mesh are [s0, s1, s2] ⊗ [t0, t1, t2] and the original D-edges are
indicated by black solid lines and new D-edges by black broken lines. The upper left cell is labeled as φ1 , and all other cells are labeled in counterclockwise
fashion.

Cases B-splines Point sets

∅ ∅

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ4

∆2 = {N1(s)N5(t),N1(s)N6(t),N2(s)N5(t),N2(s)N6(t)} Bv,φ3 ∪ Bv,φ4

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ4

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ4

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ4

Table 2
The collection of all of the cases when v is a T-vertex, where the knots of the tensor product mesh are [s0, s1, s2] ⊗ [t0, t1, t2], and the original D-edges are
indicated by black solid lines and new D-edges by black broken lines. The upper left cell is labeled as φ1 and all other cells are labeled in label others along
the counterclockwise fashion.

Cases B-splines Point sets

∅ ∅

∅ ∅

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1

∆2 = {N1(s)N5(t),N1(s)N6(t),N2(s)N5(t),N2(s)N6(t)} Bv,φ1 ∪ Bv,φ2

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1

1. New basis functions: When we subdivide a cell in C , the new basis functions corresponding to the points that are added
to Pv1 and Pv2 can be constructed, where v1v2 is a new edge and v1, v2 are endpoints of the edge v1v2 according to
Theorem 3.1. Let v be an endpoint of a new edge by subdividing of a cell C in C .
(a) v is the center point of the cell C . The new basis functions are

N1(s) = N[s0, s0, s1, s1, s2](s), N2(s) = N[s0, s1, s1, s2, s2](s),
N3(t) = N[t0, t0, t1, t1, t2](t), N4(t) = N[t0, t1, t1, t2, t2](t).

The new points associated with these functions are shown in Table 3.
(b) v is a crossing vertex of T ′

C and is not a center point of any cell in C . There are 4 new basis functions based on the
dimensional formula we proved. In Table 4, all cases of v are classified, and the new basis functions are presented.

(c) v is a T-vertex of T ′

C . Based on the dimensional formula, all cases of v and the new basis functions are collected in
Table 5.

2. Modification of the old basis functions: The function f (x, y) ∈ B1 is represented by Bézier ordinates on each cell. f (x, y)
is modified by setting all of the Bézier ordinates of the points in point sets in Tables 3–5 as zeros.

The functions inB2 have the properties of local support, non-negativity and partition of unity. These facts can be verified
in a manner similar to described above.
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Table 3
The collection of all cases in which v is the center point of C , where the knots of the tensor product mesh are [s0, s1, s2] ⊗ [t0, t1, t2] and new edges with
the center point C as an endpoint are indicated in black. The upper left cell is labeled as φ1 and all other cells are labeled in counterclockwise fashion.

Cases B-splines Point sets

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1 ∪Bv,φ2 ∪Bv,φ3 ∪Bv,φ4

Table 4
The collection of all cases in which v is a crossing vertex of T ′

C and is not a center point of any cell in C . The knots of the tensor product mesh are
[s0, s1, s2] ⊗ [t0, t1, t2]. ∆1 is the same as ∆1 in Table 3, and new edges with the center point C as an endpoint are indicated in black. The upper left cell is
labeled as φ1 , and all other cells are labeled in counterclockwise fashion.

Cases B-splines Point sets

∆1 = {N1(s)N3(t),N1(s)N4(t),N2(s)N3(t),N2(s)N4(t)} Bv,φ1 ∪Bv,φ2 ∪Bv,φ3 ∪Bv,φ4

Table 5
The collection of all cases in which v is a T-vertex of T ′

C , where ∆2 is the same as ∆2 in Table 2 and new edges with the center point C as an endpoint are
indicated in black. The original D-edges are indicated by broken gray lines. The knots of the tensor product mesh are [s0, s1, s2]⊗ [t0, t1, t2]. The upper left
cell is labeled as φ1 , and all other cells are labeled in counterclockwise fashion.

Cases B-splines Point sets

∅ ∅

∆2 = {N1(s)N5(t),N1(s)N6(t),N2(s)N5(t),N2(s)N6(t)} Bv,φ1 ∪ Bv,φ2

The base of C–PHT space
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Fig. 10. An example of basis functions in a space of C-PHT.

In Fig. 10, some basis functions in a space of C-PHT are presented. The left image shows basis functions, and the right one
shows the hierarchical T-mesh with incompleted D-edges of this C-PHT space.

5. Examples

In this section, C-PHT splines are applied to handle image data processing and solve a PDE that has a discontinuous
solution.

5.1. Example 1: image data processing

C-PHT splines are a kind of splines which are used to keep the discontinuous characteristic of data. In this section, in
order to seek a better visual effect, we choose image data in the left side of Fig. 11 as an experiment. The discontinuous
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Original Image Its boundary

Fig. 11. An original image and its considered boundary.

Original Image
By PHT–Splines 

 (level=2)
By Splines with Mix Orders 

 Continuity (level=2)

Orginal boundary By PHT–Splines
By Splines with Mix 
 Orders Continuity

Fig. 12. Comparing fitting results of PHT and C-PHT.

part shown in the right side of Fig. 11 is the boundary which separates the object in this image from its background. More-
over, considering the structure of T-meshes, their reparameterization must be appreciated. Here we adopt the boundary
parameterization method described in [22].

In Fig. 12, PHT-splines and C-PHT splines have been used to reconstruct the image. Under the same conditions, the bound-
ary of these reconstructed images are obtained by the edge detection with the help of Matlab. Form these detection results,
the boundary of the image has noise by using PHT-splines. However, the boundary is maintained better by using C-PHT
splines. Moreover, in Fig. 13, this discontinuous characteristic is kept, even though the image reconstructed by C-PHT splines
is enlarged.

5.2. Example 2: solving PDE

Many physical problems can be described mathematically as PDEs. The finite element method (FEM) is commonly used
to solve PDE. The choice of finite element space is important because a solution given by the FEM is a type of projection of
a (weak) PDE solution in this finite element space. In other words, if a PDE has a discontinuous solution and we choose a
smooth finite element space, the solution given by the FEM is smooth. If we want to obtain a discontinuous solution, we
should choose a discontinuous finite element space such as a C-PHT space. Here, we consider a two-dimensional elliptic
boundary value problem (BVP). As is known, the continuity of weak solutions of BVPs is affected by many factors, such as
the shape of the physical domain of BVPs, the continuity of the coefficients and the function on the right-hand side of the
corresponding elliptic equations.

Here we have two sub-examples for solving PDEs. The constrain of the first example is only on the boundary of the
physical domain; The constrain of the second example is on the boundary and the D-edges.
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By Splines with Mix  
Orders of Continuity 

Original Size

By Splines with Mix Orders of Continuity 
Enlarged Two Times 

(a) The boundary of original size
image by C-PHT.

(b) The boundary of enlarged image by C-PHT.

Fig. 13. Enlarge the image by C-PHT splines.

5.2.1. Example 2.1
The strong form of this BVP is as follows. Find u : Ω −→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω,

whereΩ is a rectangular domain (0, 4)×(0, 4) ⊂ R2, whose boundary is denoted as ∂Ω . Now, f is chosen as a discontinuous
function over Ω , we take

f (s, t) =


−0.8[(t − 1)2 + (s − 1)2] + 2t(4 − t) + 2s(4 − s), (s, t) ∈ [1, 2) × [1, 2);
−2[(3 − t)2 + (s − 1)2] + 2t(4 − t) + 2s(4 − s), (s, t) ∈ [1, 2) × [2, 3);
−1.2[(t − 1)2 + (3 − s)2] + 2t(4 − t) + 2s(4 − s), (s, t) ∈ [2, 3) × [1, 2);
−1.6[(3 − t)2 + (3 − s)2] + 2t(4 − t) + 2s(4 − s), (s, t) ∈ [2, 3] × [2, 3];
2t(4 − t) + 2s(4 − s), (s, t) ∈ Ω − [1, 3] × [1, 3].

The weak form of this model BVP can be defined as follows: find u ∈ V such that for all v ∈ V ,
Ω

∇u · ∇vdΩ =


Ω

f vdΩ,

where V = {u : u ∈ H1(Ω), u|∂Ω = 0},H1(Ω) is the Sobolev space that consists of the functions in L2(Ω) that possess
weak and square-integrable derivatives.

In this example, f (s, t) is discontinuous overΩ .We choose a C-PHT space based on the discontinuity of f (s, t) as the finite
element space to discretize the weak form of the BVP. The refinement is driven by the L2 norm of error between the FEM
solution and the exact solution of this BVP. By h-refinement of the mesh, we obtain the solution and adaptive refinement
meshes given by the FEM shown in Fig. 15; The FEM solution of the model BVP is plotted it in Fig. 14.

5.2.2. Example 2.2
The strong form of this BVP is as follows. Find u : Ω −→ R such that

−∆u = f in Ω,

u = 0 on ED,
where Ω is a rectangular domain (0, 2)× (0, 1) ⊂ R2, whose boundary is denoted as ∂Ω , where ED = ∂Ω ∪ ({1}× [0, 1]).

We take the exact solution u(s, t) as

u(s, t) =


s(1 − s)t(1 − t) sin(s t), (s, t) ∈ [0, 1) × [0, 1];
(s − 1)(2 − s)t(1 − t) sin(s t), (s, t) ∈ [1, 2] × [0, 1]

and f (s, t) = −∆u(s, t). It is easy to check that u(s, t) is C0 along {1} × [0, 1].
The weak form of this model BVP can be defined as follows: find u ∈ V such that for all v ∈ V ,

Ω

∇u · ∇vdΩ =


Ω

f vdΩ,

where V = {u : u ∈ H1(Ω), u|ED = 0},H1(Ω) is the Sobolev space that consists of the functions in L2(Ω) that possess weak
and square-integrable derivatives.
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The FEM Solution By Mix orders Splines

Fig. 14. The finite element solution given by C-PHT splines of the model BVP.
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Fig. 15. The adaptive refinement meshes of the model BVP.

In contrast, we use the C-PHT space and the PHT space as finite element spaces for solving this BVP respectively. Take the
tensor-product mesh [0, 1, 2] × [0, 1] as the initial mesh. For constructing the C-PHT space, if an edge of this initial mesh
coincides with ED, then it is set as a D-edge. With the samemethod of refinement as Example 2.1, the convergence behavior
is shown in Fig. 16.

6. Conclusion and future work

In this paper, the space of spline functions with mixed orders of continuity over a T-mesh was proposed to more ex-
actly recover data. The dimensional formula was been presented in the case of C-PHT. A set of basis functions with local
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Fig. 16. The convergence behavior of FEM solutions with the help of C-PHT space and PHT space.

support, nonnegativity and partition of unity was also constructed over a hierarchical T-mesh with incomplete D-edges. As
a preliminary application, C-PHT was applied to handle image data and to solve a PDE by FEM.

C-PHT splines have good potential for application in isoparametric finite element and in handling discontinuous data.
However, before these applications are realized, the challenge presented by the reparameterization of a physical domain by
C-PHT or PHT must be overcome which is a problem we will address in the future.
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