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Abstract We propose a local model called moving multiple curves/surfaces approxi-
mation to separate mixed scanning points received from a thin-wall object, where data
from two sides of the object may be mixed due to measurement error. The cases of
two curves (including plane curves and space curves) and two surfaces in one model
are mainly elaborated, and a lot of examples are tested.
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1 Introduction

Nowadays, with the development of scanning technique, obtaining scanned point
cloud data via scanner becomes more and more convenient. However, because of
the limitation of measurement equipment, measurement technology, and the measure-
ment process, the acquired points usually deviate from their true positions, even mix
together, when the points come from multiple close surfaces such as thin machine
parts. But it is still possible to get the underlying smooth shapes (curves or surfaces)
from the unorganized noisy point cloud. So modeling from noisy data is receiving a
growing amount of attention.

The reconstructed surface from unorganized points can be represented in two ways.
One method is analytic surfaces obtained by conventional least squares (LS) method,
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108 W. Feng et al.

and another is point set surfaces [3]. The size of a point set in point-based representation
should be as small as possible, in the sense that the point set is neither noisy nor redun-
dant. It can be obtained by the moving least squares (MLS) method. The MLS method
was proposed by Lancaster and Salkauskas [14] for smoothing and interpolating scat-
tered data. The idea is to start with a weighted least squares (WLS) formulation [18]
for an arbitrary fixed point in Rd and then move this point over the entire parameter
domain, where a WLS fit is computed and evaluated for each point, respectively. In
this paper, we combine the LS method with a point-based representation to do curve
and surface fitting.

As an extension of the technique of MLS, moving parabolic approximation
(MPA) [27] is based on some given assumptions. By MPA, an improved point-based
model of curve or surface is reconstructed, while also the differential properties of the
underlying smooth manifold are estimated. The MPA models are solved by optimiza-
tion algorithms. MLS and MPA are effective to deal with a point cloud from a single
curve or surface. However, when the scanned points are from multiple close curves
or surfaces, they may mix together, and we cannot distinguish which point belongs
to which curve or surface, especially in the central area. This usually occurs when
scanning points from the patches of broken relics [12], thin machine parts and other
thin-wall objects. Motivated by MLS and MPA, we provide a model called moving
multiple curves/surfaces approximation (MMC/SA) to separate mixed data and recover
the underlying shapes. Instead of two boundaries approximation, shown in Fig. 1a, our
work is effective in the situation depicted in Fig. 1b. For MMC/SA, it is not necessary
to investigate which point belongs to which curve or which surface beforehand.

The rest of this paper is organized as follows. Section 2 reviews the related work
briefly. Section 3 introduces the MMC/SA and develops two straight lines and two
parabolas approximation for two close plane curves. Additionally, Sect. 3 introduces
two planes and two paraboloids approximation for two close surfaces and sets up four
appropriate optimization models. Section 4 shows the implementation of the algo-
rithm. Section 5 presents some examples and discussions and lastly, Sect. 6 concludes
the paper.

2 Related Work

Since this paper is in connection with MLS and MPA, we will review the relevant
work next.

Fig. 1 a Two boundaries
approximation; b two curves
obtained using the results of
MMCA models according to the
same red points as (a). (Color
figure online)
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Surfaces Approximation of Mixed Point Clouds 109

We can see the definition of MLS approximation for the case of function approxima-
tion from distinct scattered data [15,16]. Many variants of MLS have been developed.
For example, many strategies occur in specifying bandwidths of the Gauss weight func-
tion [6,22,26], the surface used in the models [4,11,16], the weight function [1,2],
the fitting criterion [9,20], and so on. Besides, MLS surfaces have been used widely
in the last few years. Reference paper [3] uses the MLS surface for point set model-
ing and rendering. A different point set surface definition in [4] utilizing the critical
points of an energy function on lines determined by a vector field is given. This defin-
ition reveals connections to research in computer vision and computational topology.
Shen et al. [24] describe a method for building interpolating or approximating implicit
surfaces from polygonal data and present an improved method for enforcing normal
constraints and an iterative procedure for ensuring that the implicit surface tightly
encloses their input vertices. MLS has also been successfully applied to image defor-
mation [23], shape optimization [19], animating [17] and many other research areas.
The MPA model is set up based on MLS. It resorts to a parabola to approximate a point
set from a plane curve or a paraboloid to approximate a point set from a surface. In
order to solve the MPA model, the problem is changed to a constrained optimization in
a local orthogonal coordinate. The MPA can also be used for adaptive triangular-mesh
reconstruction [28]. In this paper, we are persuaded by the MPA approach. However,
our approach differs in many respects. We set up a new local model to separate mixed
points coming from multiple curves or multiple surfaces. By our algorithm, we will
obtain multiple marked points simultaneously in each neighborhood consisting of k-
nearest neighbors [22] such that all the separated points steer the conventional curve
or surface fitting [8,13].

3 Moving Multiple Curves/Surfaces Approximation

Moving parabolic approximation [27] as an extension of MLS [16] is powerful for
curves and surfaces modeling. Compared to MLS, which is first-order projection, MPA
is a model of second-order projection. Given a dataset P and a point X ∈ R3 near the
underlying surface S. Let ox be the foot point of X on S, where n is the unit normal
vector to S at ox . Let {u(n), v(n)} be the perpendicular unit basis vectors of the tangent
plane such that {ox ; u(n), v(n), n} forms a local orthogonal system. An MPA model
for a surface can be set up accordingly:

min
∑

p∈P

[
h p − 1

2

(
au2

p + 2bu pvp + cv2
p

)]2

θ(‖ p − ox ‖), (1)

where (u p, vp, h p) is the coordinate of p in the local orthogonal coordinate system, and
θ(‖ p −ox ‖) is a weight function. It is usually changed to a constrained optimization
model to find ox which is on the underlying surface and we can get the paraboloid
approximation h(u, v) = 1

2 (au2 + 2buv + cv2) of P . Simultaneously, the differential
quantities at ox can be computed. Our approach is mainly motivated by [27], and we
establish a local model called MMC/SA. There is only one curve or one surface in
an MPA model. Compared with MPA, in an MMC/SA model, we use multiple curves
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Fig. 2 Local information display: a the local orthogonal coordinate system for two straight lines approxi-
mation; b the local information of two straight lines approximation; c the local information of two parabolas
approximation; d the local information of two parabolas approximation with outliers

or multiple surfaces. Our model can also be converted to a constrained optimization,
and by MMC/SA algorithm, we can obtain as many points as the number of curves or
surfaces in each model to express local underlying positions.

3.1 MMC/SA Models

Denote {Qi }n
i=1 as the scanning or sampling points from two or more underlying curves

or surfaces. X is a fixed point called a reference point near the underlying shape, see
Figs. 3c and 6. We can find its neighborhood Bx containing k points {Pi }k

i=1 ⊆ {Qi }n
i=1

nearest to X . Bx is a circle in 2D which is centered at X , and the radius is the maxi-
mum Euclidean distance from X to Pi ∈ Bx , see Figs. 2 and 3c. The value of k will
be found in the implementation details. Suppose that ox is a projected point of X on
an underlying curve or surface. For convenience, throughout this paper, X , Bx and ox

have the same meaning. Corresponding to MLS and MPA, we provide a local model
in each Bx as follow:

min
k∑

i=1

(A1(Pi ))
2(A2(Pi ))

2 · · · (As(Pi ))
2θ(‖Pi − ox‖), (2)

where, Al(x) = 0, l = 1, · · · , s are normalized algebraic curves/surfaces. s is the num-
ber of curves/surfaces in a model. Al(Pi ), l = 1, · · · , s are the algebraic distances from
Pi to Al(x) = 0, l = 1, · · · , s respectively. θ(d) is a weight function, which is smooth,
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Surfaces Approximation of Mixed Point Clouds 111

Fig. 3 Sine curve test by two straight lines approximation: a y = sinx and its offset curve; b The Gauss
noise sampling points and a close-up view; c The reference points and their k-nearest neighbors; d The
results of MMCA models; e Cubic B-spline curves fitting respectively

monotone decreasing, and positive for any d ≥ 0. The product of several squared
algebraic distance errors appears in the model. Our aim is to minimize the sum of the
weighted product errors. As long as one point belongs to an algebraic curves/surfaces
in (2), the final result is 0, so the model (2) is reasonable. However, (2) is highly
non-linear which is often synonym of instability and expensive computation. Based
on the assumption that X is close to ox , we reduce the nonlinearity by simplifying (2) to

min
k∑

i=1

(A1(Pi ))
2(A2(Pi ))

2 · · · (As(Pi ))
2θ(‖Pi − X‖) (3)

and find an effective algorithm. The number s and the types of curves/surfaces will
be specified by a user according to the shape of point cloud. We aim to find the
projected points of X on Al(x) = 0, l = 1, · · · , s. The projected points are called
target points. We call the model (3) MMC/SA instead of model (2) in this paper.
It is a local model, and it can be used to separate mixed data received from thin
machine parts and patches of broken relics. The curves/surfaces in (3) are called target
curves/surfaces. By an appropriate algorithm, we can obtain target points approximat-
ing multiple curves/surfaces. The target points are conducive to curve/surface fitting.

To demonstrate the details of the process, we only consider the cases of two curves or
two surfaces in a model, i.e., s = 2. Two straight lines and two parabolas approximation,
two planes and two paraboloids approximation are presented based on local maps of
differential geometry [7] and analytic representation of curves and surfaces [21]. To
guarantee the stability of numerical calculation, in this situation, the weight function
is taken as
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θ(‖Pi − X‖) = e
− ‖Pi−X‖2

ρ2

∑
Pi ∈Bx

e
− ‖Pi−X‖2

ρ2

, (4)

denoted as θi . The parameter ρ in the Gauss weight function is half of the average
Euclidean distance between the data points in the Bx in our most experiments.

3.2 2D Case: Two Straight Lines and Two Parabolas

For 2D, we consider the sampling points {Qi }n
i=1 from two close plane curves C1

and C2. So the noisy sampling points from C1 and C2 may mix together, and we
cannot distinguish which curve the points belong to, especially for the points along
the centerline of {Qi }n

i=1. Our purpose is to find two target points utilizing an MMCA
model established in a Bx consisting of {Pi }k

i=1 ⊆ {Qi }n
i=1. At first, we assume that

a reference point X is projected onto C1. The foot point is ox . n = (n1, n2)
� is the

unit vector at ox paralleling with the direction of projection. The unit vector t(n) =
(−n2, n1)

� is perpendicular to n such that {ox ; t(n), n} forms a local orthogonal
coordinate system, as illustrated in Fig. 2a. So T1 = ox can be considered as one target
point, and we can use h = 0 and h − bt − c = 0 for two straight lines approximation
in each Bx , where b, c are unknown parameters.

Since some quadric curves, such as a hyperbola and an ellipse, can approximate
two curves itself, we exclude them and consider a special class of parabolas for two
parabolas approximation in the similar local coordinate system. h− 1

2 a1t2 = 0 and h−
1
2 a2t2−b2t−c2 = 0 are adopted here, where a1, a2, b2 and c2 are unknown parameters.

Let (ti , hi ) be the coordinate of Pi in the local orthogonal coordinate system, where
ti = (Pi − ox )

�n and hi = (Pi − ox )
�t(n). Now we first provide the two straight

lines model to get the approximation of two close plane curves as follow:

min
k∑

i=1

h2
i (hi − bti − c)2θi . (5)

Let qi = Pi − X and ox = X + ξn. n is the unit normal at ox . ξ is the signed distance.
We change (5) to the following optimization model (6) with a constraint:

min f (n, ξ, b, c) =
k∑

i=1
(q�

i n − ξ)2(q�
i n − ξ

−b(q�
i t(n)) − c)2θi ,

s.t. n�n = 1.

(6)

In this constrained optimization, n, ξ , b and c are decision variables. T2 = ox + cn,
which is the intersection of target curve h −bt −c = 0 and the coordinate axe decided
by the direction of n, can be regarded as another target point, because it is much easier
to find than compute projected points. Subsequently, the two target points T1 = ox
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and T2 = ox + cn will be used to find the underlying shape. Likewise, we build the
two parabolas model for plane curves.

min
k∑

i=1

(hi − 1

2
a1t2

i )2(hi − 1

2
a2t2

i − b2ti − c2)
2θi . (7)

Then we change it to an optimization problem as follows:

min f (n, ξ, a1, a2, b2, c2) =
k∑

i=1

(q�
i n − ξ − 1

2
a1(q

�
i t(n))2)2

(8)
×(q�

i n − ξ − 1

2
a2(q

�
i t(n))2 − b2(q

�
i t(n)) − c2)

2θi ,

s.t. n�n = 1,

where n, ξ, a1, a2, b2 and c2 are also decision variables. Finally, T1 = ox and
T2 = ox+c2n. For two straight lines and two parabolas approximation, we use the same
type of curves in a model. However, we can utilize different types such as a straight
line and a parabola in a model if necessary and change the algorithm accordingly.

3.3 3D Case: Two Planes and Two Paraboloids

The ideas from the 2D case can be generalized to a 3D scenario. Let points {Qi }n
i=1,

be sampled from two close underlying surfaces S1 and S2. X is a reference point, and
Bx is the neighborhood of X related to k-nearest neighbors {Pi }k

i=1 ⊆ {Qi }n
i=1 in 3D.

Assume that the projection of X is on the underlying surface S1, also denoted as ox . n
is the unit normal at ox . Let {u(n), v(n)} be the perpendicular unit basis vectors of the
tangent plane at ox such that {ox ; u(n), v(n), n} forms a local orthogonal coordinate
system. Thus, hi = (Pi − ox )

�n, ui = (Pi − ox )
�u(n), and vi = (Pi − ox )

�v(n)

also hold. So for two planes approximation, S1 can be approximated by h = 0, and
S2 can be approximated by h − au − bv − c = 0 in the local orthogonal coordinate
system, where a, b and c are unknown parameters. As a result, the local model of two
planes approximation for two close surfaces is

min
k∑

i=1

h2
i (hi − aui − bvi − c)2θi . (9)

Set qi = Pi − X , ox = X + ξn and reformulate the model above as a constrained
optimization.

min f (n, ξ, a, b, c) =
k∑

i=1

(q�
i n − ξ)2[(q�

i n − ξ)−

a(q�
i u(n)) − b(q�

i v(n)) − c]2θi ,

s.t. n�n = 1,

(10)
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where, n, ξ, a, b and c are decision variables. Let n = (n1, n2, n3)
�,

u(n) =
⎛

⎜⎝

n2
1

1+n3
− 1

n1n2
1+n3

n1

⎞

⎟⎠, v(n) =
⎛

⎜⎝

n1n2
1+n3

n2
2

1+n3
− 1

n2

⎞

⎟⎠.

By a proper initialization of n, we can ensure that n3 �= −1. Here T1 = ox and
T2 = ox + cn. In the similar local orthogonal coordinate system, the two paraboloids
approximation can use h − 1

2 (a1u2 + 2b1uv + c1v
2) = 0 and h − ( 1

2 (a2u2 + 2b2uv +
c2v

2) + d2u + e2v + f2) = 0 for surfaces approximation. So the two paraboloids
approximation framework in 3D is

min
k∑

i=1

[hi − 1

2
(a1u2

i + 2b1uivi + c1v
2
i )]2[hi − (

1

2
(a2u2

i +

2b2uivi + c2v
2
i ) + d2ui + e2vi + f2)]2θi . (11)

Its constrained optimization model is

min f (n, ξ, a1, b1, c1, a2, b2, c2, d2, e2, f2) =
k∑

i=1

[(q�
i n − ξ)

− 1

2
(a1(q

�
i u(n))2 + 2b1(q

�
i u(n))(q�

i v(n)) + c1

(q�
i v(n))2)]2 × [(q�

i n − ξ) − (
1

2
(a2(q

�
i u(n))2 + 2b2

(q�
i u(n))(q�

i v(n)) + c2(q
�
i v(n))2) + d2(q

�
i u(n))

+ e2(q
�
i v(n)) + f2)]2θi ,

s.t. n�n = 1,

(12)

where n, ξ, a1, b1, c1, a2, b2, c2, d2, e2 and f2 are decision variables. Hence T1 = ox ,
and T2 = ox + f2n. To solve the four constrained optimization problems above, all
the variables need initial guesses.

4 Implementation

With respect to implementation, we refer to the choice of reference points, the initial-
ization of optimization algorithm, and other details of MMC/SA with the model of
s = 2.

We describe the details of implementation for the model of two planes approxima-
tion here. They can be generalized to other three models mentioned in Sect. 3 similarly.
First, we can compute a principal surface [5] (or a principal curve [25]) of {Qi }n

i=1 and
regard the sampling points from it as reference points {X j }m

j=1. In this way, {X j }m
j=1

are all distributed uniformly in {Qi }n
i=1 and near the underlying shape, see Fig. 6. For
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Fig. 4 Implementation pipeline

each reference point X j , denoted as X , we will find out its Bx which must enclose
enough points to represent two surfaces. Besides, the value of k in our implementation
need to make sure that maximum Euclidean distance from X to Pi ∈ Bx is 2.5 times
of the local thickness of the point cloud. They are circles in 2D, see Figs. 2 and 3c.
The optimization model related to two planes approximation will be solved in the Bx

using an optimization function ‘fmincon’ in matlab which is mainly based on sequen-
tial quadratic programming (SQP) method [10]. The MMSA algorithm needs initial
values for all the parameters. As with the initialization in [27], by first fitting a local
hyperplane with norm n0 according to the data points around X , we get the initial
value n0 of n. For two planes approximation, since S1 is approximated by h = 0, and
S2 is approximated by h − au − bv − c = 0, we need the initial guesses a0, b0 and
c0 of a, b and c. To get a0 and b0, we need solve the WLS model below:

min
k∑

i=1

(ϕ0
i − ξ0 − (a0u0

i + b0v0
i ))2θi , (13)

where ϕ0
i = q�

i n0, u0
i = q�

i u(n0), v0
i = q�

i v(n0). We can also get the initial
values ξ0 of ξ according to (13). Lastly, we assume that xx is the uppermost (or the
lowest point) point along the direction of n0 in the Bx to keep two different surfaces
in an MMSA model not too near. xx( j) represents the j th component of xx . Let
h −a0u −b0v−c0 = 0 pass through xx . The initial guess c0 of c is calculated by c0 =
xx(3) − a0xx(1) − b0xx(2). The initializations for two paraboloids approximation,
even for two straight lines approximation and two parabolas approximation, are similar
to two planes approximation.

By the MMSA algorithm, we will compute two planes (the case of two planes)
approximating the underlying shape in a Bx . The details of obtaining two target points
are shown in Sect. 3. The similar local information in 2D can be seen in Fig. 2. For
all the reference points {X j }m

j=1, {Qi }n
i=1 are changed to two classes of target points.

Generally speaking, it is a re-sampling process. We expect that the two classes of
points can portray the underlying shape. Finally, we do surface fitting [13]. Figure 3
shows the whole process of implementation in 2D. Obviously, the number of the target
points fixed by the number of the reference points decides the quality of the result of
the surface fitting. In general, the more target points, the better we can express the
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Fig. 5 Quadratic B-spline curve test by two parabolas approximation: a a quadratic B-spline curve and its
offset curve b the Gauss noise sampling points; c the results of MMCA models; d cubic B-spline curves
fitting respectively

Fig. 6 Reference points obtained by sampling a principal surface

Fig. 7 Complexity data test by
four parabolas approximation: a
the noisy sampling points from
four curves; b the results of
multiple MMCA models

target shape. An increased amount of reference points, however, increases the amount
of models we need to solve. Since efficiency requires equilibrium, we only divide the
domain into 64 parts in all the examples in the cases of surfaces. Our implementation
pipeline is also illustrated in Fig. 4.

As for space curves, our model framework can also work utilizing three steps in a
Bx . First, find a plane by fitting a local plane according to the data points around the
reference point X and establish a local orthogonal coordinate system. Second, project
the points in the Bx onto the plane above. Third, separate the projected points on the
plane by two straight lines or two parabolas approximation according to 2D case in
Sect. 3. The two computed points are regarded as target points. Figure 8 shows the
results of applying MMCA models to noisy sampling points from two close space
curves.
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Fig. 8 Double helix test by two parabolas approximation: a the exact double helix; b the Gauss noise
sampling points and a close-up view; c the results of multiple MMCA models and curves fitting; d a close-
up view of the result about one MMCA model; e and f are the results of multiple MMCA models and curves
fitting expressed separately

Fig. 9 Plane test with clean data by two planes approximation: a the sampling points from two exact planes
and the results of three MMSA models; b the results of 64 MMSA models and surfaces fitting; c a different
view of graph (a); d a different view of graph (b)

5 Examples and Discussions

Some examples corresponding to Sect. 3 and some limitations about our algorithm
are presented in this part.

5.1 Examples

In 2D, the result using two straight lines approximation is Fig. 3. Figure 2d shows that
the MMCA model is insensitive to outliers due to the adjustment of the parameter ρ
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Fig. 10 Plane test with 22.5 % noise by two planes approximation: a the sampling points with 22.5 %
noise from the two planes depicted in Fig. 9a and the results of three MMSA models. b the result of 64
MMSA models and surfaces fitting; c a different view of graph (a); d a different view of graph (b)

Fig. 11 Sphere test with clean data by two planes approximation: a the sampling points from the exact
sphere and its offset surface and a close-up view of the results about three MMSA models; b the results of
64 MMSA models and surfaces fitting; c and d are the separate representations of (b)

of Gauss weight function. Two parabolas approximation is provided in Fig. 5. In the
case of two curves approximation, we usually establish a local coordinate system, and
we use two curves to approximate. When the sampling points are acquired from many
curves/surfaces, s > 2 occurs in an MMC/SA model. For example, in Fig. 7, we use
four different parabolas to approximate. We did not set up a local coordinate system,
and the projected locations of reference points onto four parabolas are regarded as
four target points in this situation. Sometimes the optimization algorithm does not
converge when the objective function is solved using the k-nearest neighbors in some
Bx . But the result is still good by changing the Gauss weight function of objective
function to 1

‖Pi −X‖2 . In 3D, the MMCA result of space curves is shown in Fig. 8. We
also do some experiments on surfaces and present RMS errs estimation:
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Fig. 12 Sphere test with 22.5 % noise by two planes approximation: a the sampling points with 22.5 %
noise from the surfaces depicted in Fig. 11a and a close-up view of the results about three MMSA models;
b the results of 64 MMSA models and surfaces fitting; c and d are the separate representations of (b)

Fig. 13 Elliptic paraboloid test with clean data by two paraboloids approximation: a the sampling points
from the exact elliptic paraboloids its offset surface and a close-up view of the results about three MMSA
models; b the results of 64 MMSA models and surfaces fitting; c and d are the separate representations
of (b)

err =

√√√√√
m∑

i=1
(d2

i1 + d2
i2)

m
. (14)

di1 represents the minimal distance from the upper target point to the upper exact
surface and di2 represents the minimal distance from the lower target point to the
lower exact surface in the i th Bx .

In order to verify the algorithm, we generate a point cloud by adding Gaussian
noise with a magnitude of 22.5 % of the distance between the exact surface and
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Fig. 14 Elliptic paraboloid test with 22.5 % noise by two paraboloids approximation: a the sampling
points with 22.5 % noise from the surfaces depicted in Fig. 13a and a close-up view of the results about
three MMSA models; b the results of 64 MMSA models and surfaces fitting; c and d are the separate
representations of (b)

Fig. 15 Hyperboloid paraboloid
test with clean data by two
paraboloids approximation: a the
sampling points from the exact
hyperboloid paraboloids and its
offset surface and a close-up
view of the results about three
MMSA models; b the results of
64 MMSA models and surfaces
fitting; c and d are the separate
representations of (b)

its offset surface. The test surfaces are related to a plane z = 0.02, a sphere
z = √

0.92 − x2 − y2, a elliptic paraboloid z = −x2 − y2 and a hyperboloid
paraboloids z = x2 − y2. We consider the bivariate function z(x, y), (x, y) ∈
[−0.5, 0.5] × [−0.5, 0.5], and 64 local MMSA models are solved in each test. Plane
test and sphere test using two planes approximation are presented in Figs. 9–12, and
elliptic paraboloid test and hyperbolic paraboloid test are displayed in Figs. 13–16.
Since partial cover happens in the case of surfaces, the MMSA results are shown in
different ways. The error analysis is shown in Tables 1 and 2. Figure 17 shows that
our model and algorithm can be applied to non-uniform situations. We also present the
MMSA results of the actual data from the inner and outer walls of a part of cylindrical
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Fig. 16 Hyperboloid paraboloid
test with 22.5 % noise by two
paraboloids approximation: a
the sampling points with 22.5 %
from the surfaces depicted in
Fig. 15a and a close-up view of
the results about three MMSA
models; b the results of 64
MMSA models and surfaces
fitting; c and d are the separate
representations of b

Table 1 Errs estimation for two
planes approximation

Examples for two planes case errs

Plane (clean data) 6.3738e-007

Plane (with 22.5 % noise) 8.9128e-004

Sphere (clean data) 9.6911e-004

Sphere (with 22.5 % noise) 0.0039

Table 2 Errs estimation for two
paraboloids approximation

Examples for two paraboloids case errs

Elliptical paraboloid (clean data) 1.1033e-004

Elliptical paraboloid (22.5 % noise) 0.0051

hyperbolic paraboloid (clean data) 1.0736e-004

hyperbolic paraboloid (22.5 % noise) 0.0062

object by a structured light scanner in Fig. 18. The comparisons with MPA plus surface
fitting, boundary approximation, and our MMSA plus surface fitting are also carried
out in Fig. 19 to prove the effectiveness of our strategy.

5.2 Discussions

It should be noted that the MMC/SA model and the corresponding algorithm presented
in the paper just work in a local fashion. The number and types of curves or surfaces
in a model can be chosen by users according to the point cloud. If a user deals with
a point cloud data from a whole thin-wall object, she/he is expected to use our model
and algorithm to deal with the most parts of the data. For the other parts, data from
the object part with more complicated topological structure and sharp features, she/he
needs to utilize other techniques to finish data separation.
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Fig. 17 Parabolic cylinder test by two paraboloids approximation: a the Gauss noise sampling points from
the exact parabolic cylinders; b the results of 64 MMSA models and surfaces fitting; c a different view of
graph (a); d a different view of graph (b)

Fig. 18 Actual data test by two planes approximation: a the scanned points from the inner and outer walls
of a part of cylindrical object; b the results of 64 MMSA models and surfaces fitting; c a different view of
graph (a); d a different view of graph (b)

On the other hand, in the current implementation of MMC/SA model, for each
reference point, a single optimization model may consume a few seconds. In the
future, we need to consider how to improve the efficiency of the implementation.
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Fig. 19 Surface fitting of the real data in Fig. 18 with different techniques. a MPA plus surface fitting; b
boundary approximation similar to [29]; b our MMSA plus surface fitting

6 Conclusion

A local model called MMC/SA to separate mixed points from multiple curves or sur-
faces have now been provided. The number and types of curves or surfaces in a model
can be chosen by users themselves according to the point cloud, and it is insensitive to
outliers. In this paper, we focus on the case of two curves or two surfaces in a model.
Two straight lines and two parabolas approximation, two planes and two paraboloids
approximation are elaborated. We have tested our algorithm on many examples includ-
ing various curves (including plane curves and space curves) and surfaces to prove
its effectiveness combined with the requisite error analysis. A simple example test
using four parabolas proves that our model can be extended to more curves/surfaces
approximation. Real data from a part of cylindrical object by a structured light scan-
ner are also tested. We emphasize that the model is a local model. The comparisons
with MPA plus surface fitting, boundary approximation, and our MMSA plus surface
fitting are also carried out to prove the effectiveness of our strategy. We expect that our
MMC/SA method will be used in reverse engineering application, such as modeling
of thin machine parts and patches of broken relics. Nevertheless, our current algorithm
has several limitations that we wish to address in our future work. First, we need to
reduce time consumption. Second, if the algorithm is improved in adaptively changing
the type of surfaces and detecting the number of different surfaces automatically, it
will be better.
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