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a b s t r a c t

PHT-splines (polynomials splines over hierarchical T-meshes) are a generalization of B-splines

over hierarchical T-meshes which possess a very efficient local refinement property. This prop-

erty makes PHT-splines preferable in geometric processing, adaptive finite elements and iso-

geometric analysis. In this paper, we first make analysis of the previously constructed basis

functions of PHT-splines and observe a decay phenomenon of the basis functions under cer-

tain refinement of T-meshes, which is not expected in applications. We then propose a new

basis consisting of a set of local tensor product B-splines for PHT-splines which overcomes the

decay phenomenon. Some examples are provided for solving numerical PDEs with the new

basis, and comparison is made between the new basis and the original basis. Experimental

results suggest that the new basis provides better numerical stability in solving numerical

PDEs.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In CAD/CAM industry, freeform surfaces are usually rep-

resented by tensor product polynomials or rational maps

such as tensor-product B-splines or NURBS. For these stan-

dard tensor-product representations, a weakness is the lack

of local refinement property since the control points must lie

topologically on a rectangular grid. In the past decades, sev-

eral kinds of locally refined splines have been proposed to

address the problem.

The pioneering work on this topic is hierarchical splines

[1], where the details of a model are identified by means of

a hierarchy of tensor product splines. Based on such hier-

archical model, complex surfaces can be created from sim-

ple NURBS surfaces by hierarchical editing. Later on, related

work mainly focuses on constructing basis functions for hi-

erarchical spline spaces, including the linearly independent

selection mechanism [2] and the truncated selection mech-

anism [3]. Another important progress of locally refinable

splines is the invention of T-splines [4,5] which permits
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T-junctions in a control mesh. T-splines overcome the weak-

ness of NURBS and have already shown its potential as a

powerful modeling tool for advanced geometric modeling

and adaptive isogeometric analysis [6,7]. Analysis-suitable T-

splines (AST-splines for short) [8,9] which are defined over

restricted T-meshes was proposed to fix the linear depen-

dency problem of T-splines. AST-splines form a subset of T-

splines and have desired properties which are suitable for

analysis. Other related local refinable splines include LR-

splines [10,11] and Modified T-splines [12], which are also

suitable in adaptive geometric modeling and isogeometric

analysis.

Polynomial splines over hierarchical T-meshes (called

PHT-splines) were introduced by two of the present authors

in [13]. PHT-splines possess a very efficient local refinement

algorithm and inherit many good properties of T-splines such

as adaptivity and locality. Owing to these nice properties,

PHT-splines have been widely applied in geometric modeling

and isogeometric analysis. With PHT-splines, surface mod-

els can be reconstructed and simplified efficiently [13]. PHT-

splines were also applied in surface reconstruction from a

very large set of point clouds in implicit form [14]. In [15],

PHT-splines were used in stitching several surface patches to

construct complex models. The finite element discretization

http://dx.doi.org/10.1016/j.gmod.2015.06.011
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Fig. 1. Examples of a T-mesh and a non-T-mesh.
of elliptic equations based on PHT-splines was discussed in

[16], where numerical solutions are refined adaptively and

have the optimal convergence rate. PHT-splines are also fa-

vored in isogeometric analysis for solving elastic problems,

see for example [17–20]. An extension of PHT-splines over

general T-meshes is explored in [21].

In [13], the authors presented a level-by-level strategy to

construct basis functions for PHT-splines. The constructed

basis functions share some important properties with B-

splines, such as nonnegativity, local support and partition of

unity. Unfortunately, the basis functions of PHT-splines re-

veal a decay phenomenon for certain types of refinement

of T-meshes. A typical example is shown in Fig. 6, where

the basis functions associated with the bottom-right vertex

(marked by a yellow circle) at different levels are plotted. As

the level increases, the finer basis functions approach zero

rapidly. Such a decay is not expected in practical applications

since the matrices assembled by these basis functions are

likely to be ill-conditioned.

The goal of the current paper is to propose a new ba-

sis construction for PHT-splines to avoid the decay. The con-

struction rule is simple, the new basis functions are defined

as tensor product B-spline functions without applying trun-

cation mechanism. Comparing to the original basis functions,

the new basis functions do not decay for any underlying T-

meshes, but at the cost of a little bigger supports and of de-

stroying the partition of unity. From numerical experiments,

we notice that the new basis functions have better numerical

stability than that of the original basis functions.

The remainder of the current paper is organized as fol-

lows. In Section 2, we recall the definition of hierarchi-

cal T-meshes and PHT-splines. In Section 3, the decay phe-

nomenon of the original PHT-spline basis functions is ana-

lyzed. In Section 4, the proposed new basis construction is

presented in detail. Some properties of the new basis func-

tions are also discussed. In Section 5, we compare the per-

formance of the new basis functions and the original basis

functions in isogeometric analysis. Section 6 concludes the

paper with a summary and future work.

2. PHT-splines

In this section, we recall some preliminary knowledge of

PHT-splines, including hierarchical T-meshes and the defini-

tion of PHT-splines.

2.1. Hierarchical T-meshes

A T-mesh is a rectangular grid that allows T-junctions. It is

assumed that the end points of each grid line in the T-mesh

must be on two other grid lines and each cell or facet in the

grid must be a rectangle. Fig. 1(a) illustrates a T-mesh while

the mesh in Fig. 1(b) is not. The rectangles are also called the

faces or cells of the T-mesh. A grid point in a T-mesh is called

a vertex of the T-mesh. The line segment connecting two ad-

jacent vertices on a grid line is called an edge of the T-mesh.

If the vertex is on the boundary grid line, then it is called

a boundary vertex, otherwise it is called an interior vertex. For

example, b0, b1, … , b12, b13 in Fig. 1(a) are boundary vertices,

while v0, v1, … , v4, v5 are interior vertices. Interior vertices

have two types: one is crossing vertices, for example, v , v ,
0 1
v3, v5 in Fig. 1(a), and the other one is T-vertices, for example,

v2, v4 in Fig. 1(a).

A hierarchical T-mesh is a special type of T-mesh which

has a natural level structure. It is defined in a recursive fash-

ion. One generally starts from a tensor-product mesh (level

0). From level k to level k + 1, one subdivide a cell at level k

into four subcells which are cells at level k + 1. For simplic-

ity, we consider dyadic refinement. Fig. 2 shows an example

of hierarchical T-meshes.

2.2. Definition of PHT-splines

Given a T-mesh T, F denotes all the cells in T and � de-

notes the region occupied by F . The polynomial spline space

over T is defined as

S(m, n, α, β, T) :=
{

s(x, y) ∈ Cα,β(�)
∣∣s(x, y)|φ ∈ Pmn

for any φ ∈ F
}
,

where Pmn is the space of all the polynomials with bi-degree

(m, n), and Cα,β (�) is the space consisting of all the bivariate

functions which are continuous in � with order α in the x-

direction and with order β in the y-direction.

When m ≥ 2α + 1, n ≥ 2β + 1, the dimension of the

spline space S(m, n, α, β, T) is given in [22]. For the splines

S(3, 3, 1, 1, T) with T being a hierarchical T-mesh, the di-

mension formula has a concise expression

S(3, 3, 1, 1, T) = 4(V b + V +), (1)

where Vb and V + represent the number of boundary vertices

and interior crossing vertices in T respectively.

As in [13], we call a boundary vertex or an interior cross-

ing vertex a basis vertex. According to the dimension formula

(1), each basis vertex associates with four basis functions.

So the basis construction of PHT-splines is to construct four

bicubic C1 continuous functions for each basis vertex such

that the constructed functions span the PHT-spline space and

preserve some good properties. Hereafter, the basis functions

constructed in [13] are called the original basis functions, and

the basis functions constructed in this paper are called the

new basis functions.

3. The original basis

In this section, we briefly review the basis construction

in [13] and illustrate the decay phenomenon of the original

basis functions under certain refinement of T-meshes.
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Fig. 2. Hierarchical T-meshes.

Fig. 3. The Bézier ordinates associated with four corner vertices.
3.1. The original basis construction

In [13], a level-by-level strategy is proposed to construct

basis functions for PHT-splines. For the initial level (denoted

as T0), the standard bicubic C1 continuous tensor-product B-

splines are used as basis functions. A hierarchical T-mesh at

level k is denoted as Tk. Suppose the basis functions {bk
j
}, j =

1, . . . , dk, on Tk have been constructed, and then the basis

functions on Tk+1 are constructed by two steps: 1) truncating

the basis functions {bk
j
}dk

j=1
on Tk; 2) constructing bicubic C1

continuous B-splines basis functions associated with the new

basis vertices in Tk+1.

Now we describe the details of the first step. For brevity,

a bicubic basis function is represented in the Bézier form by

specifying its 16 Bézier ordinates in every cell within the sup-

port of the basis function. Suppose, among all the cells at

level k, the cells θ k
i
, i = 1, . . . ,Ck, are subdivided. For each j,

if the basis function bk
j

does not vanish in some cells of {θ k
i
},

then represent it in Bézier forms on these cells at level k + 1.
Fig. 4. Modification of a basis function, basis
It should be noted that the function bk
j

has not changed, but

is now defined over the mesh Tk+1.

From Tk to Tk+1, some new basis vertices appear. Denote

them as ξ k+1
i

, i = 1, . . . ,Vk+1. In each cell at level k + 1, the 16

Bézier ordinates are divided into four parts. Each part is as-

sociated with a cell corner vertex as shown in Fig. 3. Then all

the basis functions {bk
j
}dk

j=1
at level k are modified to {b

k

j}dk
j=1

in the following fashion: for each j, reset all the associated

Bézier ordinates with the new basis vertices to zero. One can

show that {b
k

j}dk
j=1

are in S(3, 3, 1, 1, Tk+1).

Fig. 4 illustrates the above construction process. Suppose

the 16 Bézier ordinates of a basis function over a cell are

shown in Fig. 4(a), where the yellow circles are basis vertices.

In Fig. 4(b), the cell is subdivided into four subcells with two

new basis vertices produced and the Bézier ordinates over

four subcells of the basis function are also shown. The Bézier

ordinates associated with new basis vertices are set to ze-

ros. Fig. 4(c) shows the Bézier ordinates of the basis functions

over the four subcells after truncation.

For the second step of the basis construction, for each new

basis vertex at level k + 1, four new basis functions are con-

structed which are simple tensor product B-splines.

The basis functions constructed as above are nonnegative,

linearly independent, form a partition of unity and have local

supports.

3.2. Decay of the original basis functions

We take the hierarchical T-meshes in Figs. 6 and 7 as

two examples to explain how the decay of a basis function is

produced.
vertices are marked by yellow circles.
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Table 1

Maximum values of four basis functions at six levels

Level k bk
0 0.5cm bk

1 bk
2 bk

3

0 0.4 0.16 1.0 0.4

1 0.2 0.04 1.0 0.2

2 0.1 0.01 1.0 0.1

3 0.05 0.0025 1.0 0.05

4 0.025 6.25e-4 1.0 0.025

5 0.0125 1.5625e-4 1.0 0.0125

Fig. 5. The Bézier forms of functions b0
1(left) and b1

1(right).
The vertex marked by a yellow circle in Fig. 6 is denoted

as v, and the four basis functions associated with v at level

k are denoted as bk
0
, bk

1
, bk

2
, bk

3
. At level k = 0, bk

0
, bk

1
, bk

2
, bk

3
are

defined as four bicubic B-splines with the following knot vec-

tors respectively:

b0
0 : (0, 0, 1, 1, 1) × (0, 0, 0, 0, 1),

b0
1 : (0, 0, 1, 1, 1) × (0, 0, 0, 1, 1),

b0
2 : (0, 1, 1, 1, 1) × (0, 0, 0, 0, 1),

b0
3 : (0, 1, 1, 1, 1) × (0, 0, 0, 1, 1).

At level k > 0, for each j, bk
j

is constructed by truncat-

ing bk−1
j

according to the strategy reviewed in Section 3.1.

Table 1 shows the maximum value of bk
0
, bk

1
, bk

2
, bk

3
at level
Fig. 6. The decay phenomenon of PHT-spline basis functions
k = 0, . . . , 5. It can be seen that bk
0
, bk

1
, bk

3
all have undesired

decay under the refinement of the T-mesh, and their decay

rates are 1
2 , 1

4 , 1
2 respectively.

We take bk
1

as an example for detailed analysis. From the

Bézier forms of b0
1

and b1
1 as shown in Fig. 5, we have b1

1 = 1
4 b0

1
over the support of b1

1
. In general, it is easy to show that

bk
1

= 1
4 bk−1

1
over the support of bk

1
for any k. This means that

after one step of refinement, one of the four basis functions

associated with v decays by 1/4. Fig. 6 shows the basis func-

tions bk
1

from k = 0 to k = 5.

The vertex marked by a yellow circle in Fig. 7(a) is denoted

as v. One of the four basis functions associated with v at level

k is denoted as bk. Fig. 7(a) shows four hierarchical T-meshes

at levels 0, 1, 3, 4. We plot bk and its corresponding contours

at levels k = 0, 1, 3, 4 in Fig. 7(b) and (c) respectively. For this

example, the maximum value of bk does not decrease as the

level k increases, but bk decays sharply along the refinement

direction. The decay phenomenon of this example is differ-

ent from that as shown in Fig. 6, but it is still not expected

in numerical computation. This example also shows that the

decay not only appears at a corner.

The above two examples are two extreme hierarchical T-

meshes, where some cells around a vertex are refined heavily.

If the vertex is a corner, three of the four basis functions as-

sociated with the vertex decay severely with a constant rate;

if the vertex is an interior vertex, a part of the basis functions

associated with the vertex decay. Actually one can image that

for a basis function, the bigger the level difference in the sup-

port of the basis function is, the severer the decay of the basis

function will be.

From the above analysis, the decay is mainly caused by

the truncation mechanism used in basis construction. To ad-

dress the decay, a simple way is to scale the decayed basis

functions such that their maximum values are equal to one.

However, such a strategy cannot fix the decay problem as

shown in Fig. 7. So in the following section, we introduce a
associated with the vertex marked by a yellow circle .
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Fig. 7. The decay phenomenon of basis functions associated with the vertex marked by a yellow circle.

Fig. 8. Four functions associated with a 2 × 2 tensor product mesh.
completely new method for constructing basis functions for

PHT-splines.

4. The new basis construction

By the dimension formula (1), we need to construct four

basis functions for each basis vertex. Then there is a natural

way to do this – construct four tensor product B-spline func-

tions associated with the basis vertex. We discuss it in details

below.

Consider a 2 × 2 tensor product mesh Tp as shown in

Fig. 8, where vc (the yellow solid circle) is the central vertex

of Tp, and s0 < s1 < s2 and t0 < t1 < t2 are the knot vectors

in the s-direction and t-direction respectively. Then there are

four C1 continuous bicubic tensor product B-spline functions

associated with the mesh Tp:

N3[s0, s0, s1, s1, s2] × N3[t0, t1, t1, t2, t2],
N3[s0, s0, s1, s1, s2] × N3[t0, t0, t1, t1, t2],

N3[s0, s1, s1, s2, s2] × N3[t0, t1, t1, t2, t2],

N3[s0, s1, s1, s2, s2] × N3[t0, t0, t1, t1, t2].

These four basis functions are linearly independent and have

the same support [s0, s2] × [t0, t2], and their Hermitian in-

formation vanish at the vertices in Tp except for vc. Here the

Hermitian information of a function is defined as the func-

tion value, the first order partial derivatives and the mixed

partial derivative of the function.

Our basis construction method depends on the following

definition.

Definition 1. Suppose v is a basis vertex in a T-mesh T. The

support mesh Tv of v is defined as a minimal 2 × 2 tensor

product mesh which satisfies a) the central vertex of the

mesh is v; and b) the edges of the mesh Tv are composed of

the edges in T.

Note that if v is a boundary vertex, the support mesh is ac-

tually a 2 × 1, 1 × 2 or 1 × 1 tensor product mesh satisfying

the conditions a) and b) in Definition 1. Fig. 9 illustrates the

support meshes of five basis vertices including two bound-

ary vertices and three interior crossing vertices, where the

five basis vertices are marked by solid circles and the corre-

sponding support meshes are marked by bold lines with the

same color as vertices.

Remark 1. For a general T-mesh, a basis vertex may not

necessarily correspond to a support mesh as illustrated in
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Fig. 9. Support meshes of basis vertices.

Fig. 10. The new basis function associated with a basis vertex.
Fig. 18(a). But for any given hierarchical T-mesh, the support

mesh of each basis vertex must exist and unique, and can be

found efficiently since we always start from a tensor product

mesh and make the refinement by subdividing each cell into

four equal subcells. In the following discussion, we restrict

our discussion to hierarchical T-meshes.

Now we are ready to present the basis construction algo-

rithm for PHT-splines.

Input A hierarchical T-mesh T in the 2D plane.

Output A set of basis functions bi(s, t) for the spline space

S(3, 3, 1, 1, T).

Step 1 For each basis vertex v in T, find the support mesh

Tv.

Step 2 Output the four tensor product B-spline functions

associated with the support mesh Tv, which are

treated as the basis functions over T.

The basis functions constructed by the above algorithm

are a collection of B-splines, but their linear independence is

not clear. The following theorem provides a positive answer.

Theorem 1. Let T be a hierarchical T-mesh with n basis vertices

and {bi}4n
i=1

be the B-splines functions constructed by the above

algorithm. Then {bi}4n
i=1

are linearly independent, and thus span

the PHT-spline space S(3, 3, 1, 1, T).

Proof. We have to prove that

4n∑
i=1

cibi(s, t) = 0 �⇒ ci = 0, i = 1, . . . , 4n. (2)

Suppose that the maximal subdivision level of T is N and

Tk denotes the hierarchical T-mesh at level k, k = 0, . . . , N.

Then we have T = TN . For a basis vertex v, if v ∈ Tk but v /∈
Tk−1, then it is called a basis vertex at level k, k = 1, . . . , N.

Specially, every vertex in T0 is a basis vertex at level 0. The ith

basis vertex at level k is denoted by vk
i

and the four basis func-

tions associated with vk
i

are denoted as bk
4i+ j

, j = 0, 1, 2, 3.

Then Eq. (2) can be reformulated as

N∑
k=0

nk∑
i=1

3∑
j=0

ck
4i+ jb

k
4i+ j(s, t) = 0, (3)

where nk is the number of basis vertices at level k.

According to the definitions of support meshes and hier-

archical T-meshes, a basis vertex at level l can not be in the

interior of the support of any basis function at level k > l.

Hence when l < k, we have bk
4i+ j

(vl
g) = 0, for j = 0, 1, 2, 3,

i = 1, . . . , nk, g = 1, . . . , nl; when l = k, the support of any

two different basis functions do not intersect interiorly, so

we have bk
4i+ j

(vl
g) = 0, for g �= i, j = 0, 1, 2, 3, k = 0, . . . , N.
Based on these equations, we evaluate the sum equation

(3) at v0
g that is

N∑
k=0

nk∑
i=1

3∑
j=0

ck
4i+ jb

k
4i+ j(v

0
g) = 0,

then we have
∑3

j=0 c0
4g+ j

b0
4g+ j

= 0. According to the lo-

cal linear independence of B-splines, we have c0
4g+ j

= 0,

j = 0, 1, 2, 3. Similarly we can prove c0
4i+ j

= 0, for all i =
1, . . . , n0, j = 0, 1, 2, 3.

Now Eq. (3) can be written as

N∑
k=1

nk∑
i=1

3∑
j=0

ck
4i+ jb

k
4i+ j(s, t) = 0.

Substituting the basis vertices v1
p at level 1 into the above

equation, we can similarly obtain c1
4i+ j

= 0, i = 1, . . . , n1,

j = 0, 1, 2, 3. Continuing the above process, finally we

have ck
4i+ j

= 0, i = 1, . . . , nk, j = 0, 1, 2, 3, k = 0, . . . , N. Thus

{bi}i=4n
i=1

are linearly independent.

Since bi ∈ S(3, 3, 1, 1, T), i = 1, . . . , 4n and dim S(3,

3, 1, 1, T) = 4n, {bi}i=4n
i=1

span the PHT-spline space defined

over T. �

The above constructed basis functions share the impor-

tant properties with B-splines, such as nonnegativity and

compact support. Above all, these basis functions do not de-

cay under refinement of T-meshes.

For the examples shown in Figs. 6 and 7, the new basis

functions corresponding to the basis vertices (marked with

yellow circles) do not decay anymore as the level increases

(see Fig. 10), and the maximum values of the basis functions

remain the same.

5. Comparison

In this section, we are going to compare the original bases

and the new bases in two aspects: condition number and

sparsity of the matrix assembled in isogeometric analysis.
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V

Fig. 11. Two physical domains of Example 1.
Suppose the model problem is an elliptic partial differen-

tial equation defined as

−�u = f in �,

u = 0 on 	D, (4)

∂u

∂n
= h on 	N,

where � ⊆ R
2 is a connected, bounded domain with a

Lipschitz-continuous boundary 	 = 	D ∪ 	N, 	D ∩ 	N = ∅. n

is the outward unit normal to 	N. We assume that 	D is

closed relative to 	 and has a positive length, while f and h

are square-integrable on � and 	N, respectively.

5.1. Discretization

We briefly review the framework of isogeometric analysis

based on PHT-splines, more details can be found in [19].

Suppose the physical domain � is parameterized by a

global geometry function G : (s, t) ∈ �0 = [0, 1]2 → (x, y) ∈
�, defined as

G(s, t) =
m∑

i=1

Pi

wiBi(s, t)∑m
i=1 wiBi(s, t)

, (s, t) ∈ �0,

where Pi ∈ R
2, Bi(s, t) is a PHT-splines basis function, wi ∈

R, wi > 0 is a weight, m is the number of basis functions and

�0 is the parameter domain.

The weak form solution of problem equation (4) is to seek

u ∈ V = {v ∈ H1(�) : v|	D
= 0} such that

a(u, v) = F(v), ∀v ∈ V (5)

where a is a bilinear form and F(v) is a linear functional de-

fined by

a(u, v) =
∫
�

∇u · ∇v d�,

F(v) =
∫
�

f v d� +
∫
	N

hv d	.

Among all the basis functions, suppose Bi(s, t), i =
1, 2, . . . , n(n < m) are PHT-spline basis functions which sat-

isfy Bi(s, t)|G−1(	D) = 0. Then a finite dimensional subspace

Vh ⊆ V is defined as

h = span{Gi(x, y)| Gi(x, y) = Bi ◦ G−1,

Gi(x, y)|	D
= 0, i = 1, . . . , n.},

The isogeometric approximation of the weak form in Eq. (5)

is given as:

Find uh ∈ Vh, such that for all vh ∈ Vh

a(uh, vh) = F(vh). (6)

The approximate solution uh can be written as

uh(x, y) =
n∑

i=1

ciGi(x, y) =
n∑

i=1

ciBi ◦ G−1(x, y), (7)

with unknown coefficients ci, i = 1, 2, . . . , n. Thus the weak

form solution of problem (5) is converted into solving the fol-

lowing linear system

LC = R, (8)

where L is a n × n matrix with the element Li j = a(Gi, G j),
R is a n-dimensional column vector with the element R(i) =
F(G ), i = 1, 2, . . . , n, and C = (c , . . . , cn)T .
i 1
5.2. Posterior error

The posterior error on a cell is

η2
K = h2

K ‖�uh + f‖2
L2(K),

where hK is the diameter of cell K and � = ∂2

∂x2 + ∂2

∂y2 . By the

chain rule, we have⎛
⎜⎝

∂2

∂x2

∂2

∂x∂y
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and(
∂
∂x

∂
∂y

)
=

(
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

)−1( ∂
∂s

∂
∂t

)
.

The posterior error on the hierarchical T-mesh T is the

sum of the posterior errors on all the cells, that is,

ηT =
(∑

K∈T
η2

K

)1/2

.

In the following, we provide several numerical examples

to illustrate the numerical performance of the new basis

functions, together with comparisons with that of the orig-

inal basis functions.

5.3. Numerical experiments

For convenience, we use DOF as the abbreviation for de-

gree of freedom. Let Lorg and Lnew be the matrices in Eq. (8)

assembled by the original bases and the new bases respec-

tively. For each example, we compare the condition number

and sparsity of Lorg and Lnew.

Example 1. The right-hand side term is defined as

f (r) = 0.01

(
(1 − g(r)2)r2

0.03r3
− 2

g(r)(1 − g(r)2)r2

0.032r2

)
,

where r =
√

(x − 0.5)2 + (y − 0.5)2 and g(r) = tanh((0.25 +
r)/0.03). We solve this problem on two different physical do-

mains as shown in Fig. 11.

We start from a 4 × 2 tensor-product mesh. The numer-

ical solutions and refined meshes on the physical domains
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�1 and �2 solved by new bases are shown in Figs. 12 and

13 respectively, where the rapid change of the solutions is

captured adaptively and effectively. Tables 2 and 3 show the

posterior errors and condition numbers of the stiffness ma-

trices solved by the original basis functions and the new ba-

sis functions. From the statistical data in Tables 2 and 3, the
Fig. 12. Numerical solutions uh and meshes on t

Fig. 13. Numerical solutions uh and meshes on t
condition number of Lnew is far less than that of Lorg at each

level.

Figs. 14 and 15 show the structure of Lorg and Lnew at the

forth level together with their reordered versions obtained

by the reverse Cuthill–McKee algorithm, where nz represents

the number of nonzero elements of Lnew (Lorg). The reverse
he physical domain of Example 1 at �1.

he physical domain of Example 1 at �2.
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Fig. 14. The structure of the matrices together with their reordered version of Example 1 at �1.

Fig. 15. The structure of the matrices together with their reordered version of Example 1 at �2.

Table 2

Condition numbers of the stiffness matrices in Example 1 at �1

solved by the original bases and new bases.

Original basis of PHT-splines New basis of PHT-splines

DOF ηT COND DOF ηT COND

32 0.76 214.14 32 0.76 63.64

128 0.26 5.38e+3 128 0.26 267.74

344 9.04e-2 3.93e+4 344 9.08e-2 506.71

852 2.18e-2 3.18e+5 852 2.22e-2 1.25e+3

2052 7.18e-3 4.05e+6 2068 7.85e-3 3.85e+3

Table 3

Condition numbers of the stiffness matrices in Example 1 at �2

solved by the original bases and new bases.

Original basis New basis

DOF ηT COND DOF ηT COND

32 1.63 284.14 32 1.63 82.12

128 0.62 6.28e+3 128 0.62 436.85

344 0.21 1.31e+5 344 0.21 453.84

880 4.87e-2 3.40e+5 880 5.15e-2 1.06e+3

1936 1.16e-2 6.20e+6 1964 1.35e-2 5.25e+3

Table 4

Condition numbers of the stiffness matrices in Example 2 solved

by the original bases and the new bases.

original bases of PHT-splines new bases of PHT-splines

DOF ηT COND DOF ηT COND

4 2.78e-1 20.17 4 2.78e-1 20.17

16 9.20e-2 113.15 16 9.20e-2 21.53

64 2.92e-2 1.08e+3 64 2.92e-2 74.85

184 9.31e-3 1.36e+4 184 9.31e-3 193.77

400 3.16e-3 2.10e+5 400 3.16e-3 395.46

768 1.43e-3 3.36e+6 768 1.43e-3 841.72
Cuthill–McKee algorithm is used to compute a permutation

of a matrix such that the matrix tends to have its nonzero

elements closer to the diagonal. It can be seen that Lnew pos-

sesses more nonzero elements and a wider bandwidth than

Lorg.

Example 2. The domain � is chosen as a circle centered at

the original with radius r = 0.5. The exact solution is un-

known and

f (x, y) =
{

4(x − 2y + 3xy − x2 − y2), x > y,

−4(y − 2x + 3xy − x2 − y2), x ≤ y.

The initial mesh is a 1 × 1 tensor product mesh. Fig. 16

shows the refinement process of the T-mesh in geometric

space and the numerical solution solved by the new ba-

sis functions. Table 4 shows the posterior errors and the
condition numbers of the stiffness matrices by the original

basis functions and the new basis functions. From the statis-

tical data in Table 4, the condition number of L assembled by

the new basis functions is much less than that of the matrix

assembled by the original basis functions. Table 4 indicates

that the new basis functions reduce the condition number of

the stiffness matrix dramatically.

We also compare the sparsity of Lorg and Lnew. Fig. 17

shows the structure of Lorg and Lnew at the last level together

with their reordered version obtained by the reverse Cuthill–

McKee algorithm. From the comparison in Fig. 17, Lnew pos-

sesses more nonzero elements and a wider bandwidth than

Lorg, which means the sparsity of Lnew is not good as that of

Lorg.

6. Conclusions and future work

In this paper, we propose a new basis construction for

PHT-splines to address the decay problem of the original

basis functions of PHT-splines on certain kinds of hierar-

chical T-meshes. The key idea is to construct four tensor

product B-splines as the basis functions for each basis vertex.

Thus the new basis functions actually are a collection of

linearly independent B-splines, and hence they inherit some

good properties of B-splines such as nonnegativity and local

support except for the partition of unity. The most important
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Fig. 16. The hierarchical meshes and the contours of the discrete solution in Example 2.

Fig. 17. The structure of the matrices together with their reordered version of Example 2.

Fig. 18. (a) A T-mesh, where the support mesh of v1 does not exist; (b) after

a local modification, the T-mesh becomes supportable.
property is that the new basis functions do not decay on

any hierarchical T-meshes. We provide several numerical

examples to demonstrate that the new basis functions can

greatly decrease the condition numbers of the stiffness

matrices assembled in isogeometric analysis.

We have to point out that the new basis functions are not

guaranteed to vanish at other basis vertices as the original

basis functions do. In addition, the support of a new basis

function is a little bigger than that of the corresponding orig-

inal basis function associated with the same basis vertex. In

this sense, the new basis functions overcome the decay prob-

lem at the cost of bigger support and no partition of unity.

Fortunately, this later disadvantages do not influence the per-

formance of the new basis functions, while have a significant

improvement on the condition numbers of the stiffness ma-

trices.

The basis construction method in this paper is valid for

general T-meshes assuming each basis vertex has a support

mesh (such a mesh is called a supportable mesh). Unfor-

tunately, not every T-mesh is supportable. As illustrated in
Fig. 18(a), the support mesh of v1 does not exist. But it is pos-

sible to make a local modification to the T-mesh to fix the

problem. Fig. 18(b) is the T-mesh after extending v2 by one

bay in Fig. 18(a), and now the T-mesh after modification is

supportable. Finally, we lack a proof for the fact that all the

functions associated with all the basis vertices are linearly in-

dependent for a supportable T-mesh. These problems resort

a future work.
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