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We present a new surface reconstruction framework, which uses the implicit PHT-spline
for shape representation and allows us to efficiently reconstruct surface models from very
large sets of points. A PHT-spline is a piecewise tri-cubic polynomial over a 3D hierarchical
T-mesh, the basis functions of which have good properties such as nonnegativity, compact
support and partition of unity. Given a point cloud, an implicit PHT-spline surface is
constructed by interpolating the Hermitian information at the basis vertices of the T-mesh,
and the Hermitian information is obtained by estimating the geometric quantities on the
underlying surface of the point cloud. We take full advantage of the natural hierarchical
structure of PHT-splines to reconstruct surfaces adaptively, with simple error-guided local
refinements that adapt to the regional geometric details of the target object. Examples
show that our approach can produce high quality reconstruction surfaces very efficiently.
We also present the multi-threaded algorithm of our approach and show its parallel
scalability.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Point-sampled geometry has received an increasing interest in the past decade, and a lot of research has been devoted to
its efficient representation, modeling, processing and rendering. There are two main reasons for this: the needs of industry
and the convenience of acquisition. On one hand, with the development of modern industry, high quality surfaces and aes-
thetics of CAM products are being required in many industries, such as jewelry and automobile industries, where free-form
surfaces are usually used. In order to design these surfaces, some physical media such as clay models are first designed for
data scanning. Meanwhile, some existing models and products with complicated surfaces need to be reproduced. As a first
step in converting a prototype into a computer model for subsequent CAD/CAM processing, point clouds are generated with
the coordinates of each point captured from the surfaces of existing objects. On the other hand, modern three-dimensional
(3D) digital photography systems and 3D range scanning devices acquire geometry of complex and real-world objects con-
veniently. These techniques generate huge volumes of point samples, which constitute the discrete building blocks of 3D
object geometry.

1.1. Related work

Converting a point-sampled representation of an object into a more compact one, such as a triangle mesh, a collection
of parametric patches, or the zero level set of a function, is known as surface reconstruction. The main difficulties of surface
reconstruction in practice come from the potentially complicated topology, regional geometric details, huge numbers, non-
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uniformity and noise of unorganized points. The problem of surface reconstruction from point clouds has received much
attention in the computational geometry and computer graphics communities, and various methods have been developed
to solve the problem that depend on the properties of the input, the desired output, the philosophy of the user, and so on.
A recent survey of the methods is available in the literature of Point-Based Graphics (Gross and Pfister, 2007), which are
mainly classified into Voronoi-based methods, surface evolution methods, and implicit function methods.

Algorithms for surface reconstruction developed in the computational geometry community are based on the Voronoi
diagram (Amenta et al., 1998) that decomposes a 3D space into convex polyhedra. Dual of Voronoi diagram, the Delau-
nay triangulation, establishes topological connections between sample points and then a subset of the resulting simplices
is filtered out to be the reconstructed mesh. These schemes, such as Delaunay triangulations (Boissonnat, 1984), alpha-
shapes (Edelsbrunner and Mücke, 1994), power crust (Amenta et al., 2001), come with theoretical guarantees of correct
reconstruction if the sample meets certain conditions (dense and noiseless). Some recent works (Chazal and Lieutier, 2006;
Dey and Goswami, 2006; Hornung and Kobbelt, 2006) addressed the issue on noisy and non-uniform samples.

The level-set method was applied to surface reconstruction in Zhao et al. (2001), where the problem is formulated in
terms of a partial differential equation (PDE) describing the surface evolution. In Yang et al. (2006), Yang and Jüttler (2008),
evolution of T-spline level sets with distance field constraints is developed to reconstruct a base surface from unorganized
data points. From the extracted mesh of the base surface, an additional evolution process which combines a data-driven
velocity and a bilateral filtering, is employed to reproduce detailed features of the target shape. Recently, Gauss–Newton
type method for fitting implicitly defined curves and surfaces to given data is presented in Aigner and Jüttler (2009), which
can also be viewed as the discrete iterative version of a time-dependent evolution process.

Implicit surfaces are very popular in surface reconstruction. In these methods, the reconstructed surface is defined as
the zero level set of a function that is designed to be negative inside and positive outside of the object. The signed distance
function to the underlying surface of a given point set is one possible candidate for the implicit function. In Hoppe et
al. (1992) a signed distance function is estimated as the distance to the tangent plane of the closest point. Curless and
Levoy (1996) blended the directional distance associated with each range scan, using Gaussian weights to form the implicit
function. In Jüttler and Felis (2002), an approach for fitting implicitly defined algebraic spline surfaces to scattered data is
presented, which simultaneously approximate points and associated normal vectors. An improvement of this method is to
adaptively choose the knots such that the reconstructed surface fits point cloud in a gradual refinement process (Song and
Chen, 2009). The PHT-splines (Hu, 2006; Deng et al., 2008; Jin, 2008) have some good properties for the applications of
geometric modeling, such as natural hierarchical structure and local adaptivity. Hu (2006) uses the implicit PHT-spline to
reconstruct surface from point cloud, where the control coefficients of the new basis functions in each level are computed
by solving a local linear equation. In Song et al. (2010), the PHT-spline is used to approximate the signed distance function
of a smooth curve or implicit defined surface. In Turk and O’Brien (1999), Carr et al. (2001), Dinh et al. (2002), Turk and
O’Brien (2002), implicit functions are constructed with polyharmonic radial basis functions (RBFs) (Savchenko et al., 1995),
by placing zero constraints at each input point and also a pair of non-zero constraints at “offset-surface” points. Morse et
al. (2005), Kojekine et al. (2003) and Ohtake et al. (2003b) employed compactly supported RBFs to reduce the computation
and speed up the reconstruction process. Ohtake et al. (2003a) proposed the multi-level partition of unity method called
MPU to reconstruct samples with huge number of data points. The idea is to break the data domain into sub-domains, fit
a local shape function to the data in each sub-domain separately and then blend the local shape functions with auxiliary
weights. MPU is quite fast, but possibly generates extra zero set for noisy data. An improvement is to apply a Laplacian
smoothing for the gradient vector fields of the reconstruction surface to obtain a noise robust surface reconstruction (Nagai
et al., 2009).

Besides signed distance functions, indicator functions are also often used in surface reconstruction. Points equipped with
oriented normals can be viewed as samples of the gradient of an indicator function (Kazhdan, 2005; Kazhdan et al., 2006;
Manson et al., 2008). In Kazhdan (2005), Fourier series are used to represent indicator functions. However, computing Fourier
coefficients requires a summation over all the samples because of the globally supported basis functions, and the method
needs also a huge amount of memory due to the use of uniform grid. The Fourier series approach was then improved in
Kazhdan et al. (2006), where computing the desired indicator function leads to a Poisson problem. The Poisson problem
admits a hierarchy of locally supported functions, and therefore the problem is reduced to solving a sparse linear system.
Poisson reconstruction can create smooth surfaces that robustly approximate noisy data. In Manson et al. (2008), a streaming
surface reconstruction using wavelets to represent the indicator function is proposed. Due to the multiresolution nature of
wavelets, the method can reconstruct surfaces very efficiently and process extremely large data set. The smoothness and the
quality of the reconstructed surface depend on the selected basis functions.

1.2. Contributions

In the current paper, we propose an adaptive surface reconstruction algorithm based on implicit PHT-splines. Similar to
MPU (Ohtake et al., 2003a), our implicit PHT-spline representation could be viewed as an adaptive signed distance fields
(Frisken et al., 2000) with the difference that our representation is globally C1 continuous and of Hermite interpolation.
We approximate the target geometry of a point cloud with an implicit surface of polynomial splines over 3D hierarchical
T-mesh, which is constructed adaptively by error-guided local refinements. In each progressive level, the PHT-spline function
is determined by interpolating the Hermitian information at the basis vertices of the hierarchical T-mesh, and the Hermitian
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information at the basis vertices is obtained from the geometric quantities on the underlying surface of the point cloud. Our
approach has following major advantages:

� A new surface reconstruction framework based on the implicit PHT-spline is presented. The PHT-spline provides a
unified representation in piecewise polynomials that automatically maintains a global C1 continuity, and which is more
convenient for subsequent processing.

� A PHT-spline function in each cell is a tri-cubic polynomial which has strong capability to capture geometric details. The
architecture of PHT-splines holds a natural hierarchical structure that is simple for local refinements and particularly
suitable for adaptive description of the target geometry.

� Our algorithm adaptively produces a hierarchical T-mesh, in which the number of basis vertices is roughly one-third
of the number of cells. In the reconstruction process, we only have to estimate the Hermitian information at the basis
vertices instead of fitting local shape to data points in each cell. Thus our approach is very efficient both in spatial and
temporal cost.

� Our algorithm uses the normal information only for orientation, i.e., inside–outside orientation of the surface. Thus it
has less dependency on the normal information and is robust in the presence of noisy normals.

� Our approach holds the data parallelism property. It is scalable for multi-core systems and almost reaches the ideal
speed-up ratio in multi-threads.

The paper is organized as follows. In Section 2, a shape representation called implicit PHT-spline surface is introduced
to describe the target geometry. In Section 3, we present the main framework of the adaptive surface reconstruction based
on the implicit PHT-splines. In Section 4, we give implementation details and demonstrate the effectiveness of our approach
through various examples. In Section 5, we present the multi-threaded algorithm of our approach and show its parallel
scalability. Finally, we conclude the paper with some future research problems.

2. Preliminaries

Implicit shape representations are attractive because they provide the capability to describe objects of complex topology
while avoiding a problematic parametrization of the target geometry, and many geometric operations such as intersection
and union, are easy to perform on such models (Bloomenthal and Wyvill, 1997). It is being increasingly recognized that
a set of modeling and animation techniques based on implicit representation exhibit much more advantages over other
representations.

One preferred choice of implicit representations is algebraic spline surfaces which are defined as the zero level set of
a tensor–product spline (Jüttler and Felis, 2002). Such representation offers several advantages, such as a compact and
analytic expression, global smoothness, efficient evaluation and sufficient flexibility for subsequent processing. However,
algebraic tensor–product B-spline surfaces suffer from the difficulties in local refinement and adaptivity. To eliminate su-
perfluous control points in tensor–product B-spline (or NURBS), Sederberg et al. (2003, 2004) invented T-spline, a rational
spline defined over a T-mesh which supports many valuable operations within a consistent framework. Recently, Deng et al.
introduced polynomial splines over hierarchical T-meshes (called PHT-splines) which have more ability in local shape con-
trol (Deng et al., 2006, 2008). The PHT-splines are then used for surface fitting (Hu, 2006; Li et al., 2007; Deng et al., 2008;
Jin, 2008) and the approximation of signed distance field (Song et al., 2010). In this paper, we will apply the implicit
PHT-splines to reconstruction surface from point clouds.

Given a rectangular domain in 2D space, a T-mesh is a rectangular partition of the domain, where T-junctions are
allowed. As a natural extension of 2D T-mesh, a 3D T-mesh is basically a partition of a cube Ω ⊂ R

3, where the partition
planes are parallel to the faces of the cube. Instead of considering general T-meshes, we restrict our attention to hierarchical
T-meshes which have a nested structure. A hierarchical T-mesh starts with a tensor–product mesh T0. Denote the T-mesh
at level k by Tk . For any k � 0, some selected cells of level k are subdivided equally by three planes paralleling to xoy,
yoz and zox, into eight sub-cubes which are labeled as the cells of level k + 1. Fig. 1 shows an example of 2D hierarchical
T-mesh.

Given a 3D hierarchical T-mesh T , denote by Φ the set of all the cells in T . We define a tri-cubic polynomial spline
space over T as

S(3,3,3,1,1,1,T ) := {
s(x, y, z) ∈ C1,1,1(Ω)

∣∣ s(x, y, z)|φ ∈ P3,3,3, ∀φ ∈ Φ
}
, (1)

where P3,3,3 is the space of all polynomials in three variables with tri-degree (3,3,3), and C1,1,1(Ω) is the space con-
sisting of trivariate functions that are C1 continuous along x, y, z directions in Ω , respectively. It is easy to see that
S(3,3,3,1,1,1,T ) is a linear space whose dimension (Deng et al., 2006) is

dim S(3,3,3,1,1,1,T ) = 8
(

V b + V +)
, (2)

where V b and V + represent the number of boundary vertices and interior crossing vertices in the T-mesh T , respectively.
The dimension formula in Eq. (2) gives us a hint on how to construct basis functions of the spline space: each boundary

vertex or interior crossing vertex should associate with eight basis functions. The boundary vertices and the interior cross-
ing vertices are called basis vertices of the T-mesh. The strategy for constructing basis functions presented in Deng et al.
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Fig. 1. A 2D hierarchical T-mesh (from left to right are level 0, level 1 and level 2, the red squares denote the basis vertices). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. A basis function of 2D PHT-spline associated with the vertex (1,1).

(2008) for polynomial splines over 2D hierarchical T-meshes can be directly extended to construct the basis functions of the
spline space S(3,3,3,1,1,1,T ). For each basis vertex, eight bases are constructed, and all the basis functions hold good
properties, such as nonnegativity, local support and partition of unity. Fig. 2 shows a basis function of 2D PHT-spline asso-
ciated with a basis vertex. Let {xi}V

i=1 be the basis vertices of a 3D hierarchical T-mesh T , and {bij(x, y, z)}V ,8
i=1, j=1 be the

basis functions of S(3,3,3,1,1,1,T ). Then a polynomial spline over 3D hierarchical T-mesh T (called a 3D PHT-spline) is
defined by

f (x, y, z) =
V∑

i=1

8∑
j=1

Cijb
i j(x, y, z), (x, y, z) ∈ Ω, (3)

where {Cij} are control coefficients. To efficiently manipulate and evaluate a PHT-spline, we introduce a Hermitian information
operator H:

H f (x, y, z) = ( f , fx, f y, f z, fxy, f yz, f zx, fxyz). (4)

At a fixed basis vertex (x0, y0, z0), Hb(x0, y0, z0) = 0 holds for all the basis functions b(x, y, z) except the eight basis
functions associated with the basis vertex (x0, y0, z0). Since the operator H is linear, for any fixed basis vertex xi0 , we have

H f (xi0) = H
V∑

i=1

8∑
j=1

Cijb
i j(xi0)

=
V∑

i=1

8∑
j=1

Cij Hbij(xi0) =
8∑

j=1

Ci0 j Hbi0 j(xi0)

= Ci0 B, (5)

where Ci0 = (Ci01, . . . , Ci08) is a 1 × 8 control coefficient vector, B = (Hbi01(xi0)
T , . . . , Hbi08(xi0 )

T )T is a 8 × 8 matrix, and
H f (xi0) is the Hermitian information vector of f (x, y, z) at the basis vertex xi0 . Since the matrix B is invertible and we get

Ci0 = H f (xi0)B−1, (6)

which reflects the relationship between the control coefficients of a PHT-spline function and its Hermitian information at
the basis vertices. Thus once we know the Hermitian information at the basis vertices, the PHT-spline representation of the
reconstruction surface can be recovered.
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Fig. 3. Left: a set of points with normals from letter ‘R’; Middle: the signed distance function and the zero level set; Right: the hierarchical T-mesh and the
reconstructed implicit PHT-spline curve.

3. Approach

Given a set of points P = {p1, . . . ,pN } with oriented normals, our goal is to generate a 3D PHT-spline function f (x, y, z)
whose zero level set gives a good approximation to the underlying surface S . Intuitively, we wish the PHT-spline function to
approximate the signed distance field as accurate as possible in the vicinity of S while the approximation can be rough in
regions away from the surface. Our scheme is to recursively construct a hierarchical T-mesh with simple and error-guided
local refinements that adapt to the target geometric details, and to determine the PHT-spline by estimating the Hermi-
tian information at basis vertices. The reconstruction benefits from the properties of PHT-splines, such as the hierarchical
structure for adaptivity, the basis functions with nonnegativity, local support and partition of unity.

3.1. Adaptive implicit PHT-spline surface approximation

The algorithm of an implicit PHT-spline surface approximation is driven by the construction of a hierarchical T-mesh.
At level 0, we start with a tensor–product mesh T0 that encompasses the given point cloud. Suppose that the number of
partitions in three directions along the coordinate axes is mx,my,mz respectively, and m0 = max(mx,my,mz) can be used
to control the size of cells in the initial T-mesh. A small m0 gives a rough approximation while a larger m0 yields a better
initial approximation. In the initial T-mesh T0, all vertices are the basis vertices. By calculating the Hermitian information
at all the basis vertices, an initial PHT-spline function f [0](x, y, z) is determined. From the level k = 0, the procedure repeats
the following two steps until no cell needs to be subdivided or the level counter reaches a preset value:

1) Subdivide the cells of level k in which the approximation errors are larger than some given threshold. The refinement
criterion is specified in Eq. (7). Label the new subcells as the cells of level k + 1, and form a hierarchical T-mesh Tk+1
at level k + 1.

2) Find out all the new basis vertices in Tk+1. Calculate the Hermitian information at each new basis vertex according to
Eq. (8) or Eq. (10). Then the PHT-spline function f [k+1](x, y, z) at level k + 1 is constructed from Eq. (6). Set k := k + 1.

For the first step, the refinement criterion for the subdivision of cells is constructed as follows. Let φ be a cell at level k,
and c be the center and �(k) be the size of the cell. If the number of points contained in the cell is less than Nmin (Nmin = 6
in our implementation), the cell will not be subdivided. Otherwise, a local approximation error is estimated according to
the Sampson distance (Taubin, 1991) and is compared with a user-specified threshold value ε0, i.e.,

max
‖pi−c‖<

√
3

2 �(k)

| f [k](pi)|
‖∇ f [k](pi)‖ > ε0. (7)

If Eq. (7) holds, the cell is subdivided; otherwise, it is not subdivided. Fig. 3 illustrates a 2D curve reconstruction example,
where the resulting hierarchical T-mesh is provided to demonstrate how the error-guided adaptive reconstruction works.
Fig. 4 shows a sequence of implicit PHT-spline surfaces that are reconstructed adaptively.

3.2. Hermitian information estimation

For the second step of the adaptive implicit PHT-spline surface approximation, we are required to obtain the Hermitian
information at the newly generated basis vertices of the hierarchical T-mesh. Our strategy to estimate the Hermitian infor-
mation will be in accordance with the distance from the basis vertex to the underlying surface. If the basis vertex is far
away from the underlying surface, then the Hermitian information is estimated by using planar fitting technique; Otherwise,
Moving Parabolic Approximation (MPA) (Yang and Kim, 2007) technique is applied. The two techniques respectively provide
a first order and a second order approximation to the signed distance function. The aforementioned simple strategy will
reduce in theory the potential approximation order of the PHT-spline which is a tri-cubic polynomial in each cell. However,
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Fig. 4. Adaptive reconstruction of Igea model, from left to right are the intermediate results at level 0 to level 5. The leftmost is the T-mesh at level 0 with
which there is no surface generated.

Fig. 5. Hermitian information estimation by using the MPA algorithm.

due to the numerical unreliability of estimation of high order differential quantities, this is probably a compromise way in
practice.

To estimate the Hermite information vector at xi , we first compute its nearest point ri ∈ P and denote di = xi − ri .
If ‖di‖ > δ, the basis vertex xi is considered to be far away from the surface; Otherwise, xi is assumed to be close to
the surface. Here δ is a preset distance which is usually set to be 2% of the diagonal length of the domain Ω in our
implementation. Let h = (h,hx,hy,hz,hxy,hyz,hzx,hxyz) be the Hermitian information vector at a basis vertex xi . For a far-
away basis vertex xi , the mixed derivatives in the Hermitian information vector are set to zero because of little effect on
the reconstructed surface. So we get

⎧⎨
⎩

h = sign(xi)‖di‖,
(hx,hy,hz) = sign(xi)di/‖di‖,
hxy = hyz = hzx = hxyz = 0.

(8)

In order to check if the vertex xi is inside (sign(xi) < 0) or outside (sign(xi) > 0) of the surface, we choose the Nfar (usually
set Nfar = 7 in our implementation) nearest points in P of ri and fit them to a plane passing through ri using principal
component analysis (PCA). The orientation of plane is determined such that the oriented plane normal is consistent (has
positive inner product value) with most normals of the nearest points. Finally, we denote by sign(xi) the sign of the inner
product between the vector di and the oriented plane normal.

The Hermite information at a near-by basis vertex xi is required to be accurately estimated. We employ the MPA al-
gorithm (Yang and Kim, 2007) to compute geometric quantities of the underlying surface and then deduce theoretically
the Hermitian information from the obtained geometric quantities. It is well known that the differential quantities provide
convenient bases for characterizing the local behavior of a shape in the vicinity of a particular point. The main observation
of MPA is to locally approximate a given point cloud by an osculating paraboloid, and then recover the differential proper-
ties of its underlying surface. We search Nnb (usually set Nnb = 20 in our implementation) nearest points in P for a given
reference ri . By using the MPA algorithm, we can compute the location of the underlying surface of unorganized points
and simultaneously estimate the differential quantities of the surface. As shown in Fig. 5, the output of MPA consists of
the foot-point oi of ri , a local right-handed coordinate system {oi;u(n),v(n),n}, and an osculating paraboloid with shape
parameters (a,b, c). In the local coordinates (s, t, w) = (x − oi)

T (u,v,n), the osculating paraboloid of the underlying surface
can be expressed as

w = ψ(s, t) = 1

2

(
as2 + 2bst + ct2). (9)

Thus, we obtain the Hermitian information at the near-by basis vertex xi as follows:



J. Wang et al. / Computer Aided Geometric Design 28 (2011) 463–474 469
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h = wi − 1

2

(
as2

i + 2bsiti + ct2
i

)
,

hx = n1 − (asi + bti)u1 − (bsi + cti)v1,

hy = n2 − (asi + bti)u2 − (bsi + cti)v2,

hz = n3 − (asi + bti)u3 − (bsi + cti)v3,

hxy = −(au2 + bv2)u1 − (bu2 + cv2)v1,

hyz = −(au3 + bv3)u2 − (bu3 + cv3)v2,

hxy = −(au1 + bv1)u3 − (bu1 + cv1)v3,

|hxyz = 0,

(10)

where (si, ti, wi) = (xi − oi)
T (u,v,n). The normal n from the MPA could be opposite to the orientation of the surface. To

address this issue, a reorientation of the Hermitian information is needed here. Compute the inner product (denoted by σ )
between n and the average of normal vectors around ri , if σ is negative then we inverse the Hermitian information vector.
After the Hermitian information is estimated at the basis vertices, the implicit PHT-spline surface is constructed according
to Eq. (6).

4. Implementation and results

The implicit PHT-spline surface reconstruction algorithm has been implemented on a PC with an Intel Core2 Dual
@2.8 GHz processor and 4.0 GB of memory. We will now present the implementation details and test its performance
on a set of typical examples. Comparisons with other methods and discussions are also made in this section.

4.1. Implementation details

Given a set of unorganized points, a kd-tree is built using the ANN library (Mount and Arya, 2006). A hierarchical T-mesh
is initialized with a user-specified tensor–product grid (level 0) which is the cube Ω in most examples. Similar to an octree
implementation, the hierarchical T-mesh data structure maintains the adjacency information of the cells, parent–children
relationship and cell–vertices relationship.

A PHT-spline function is a tri-cubic polynomial in each cell of the T-mesh and it can be represented by the Bézier
form, which is more convenient and efficient for operations such as subdivision and evaluation. By using the de Casteljau
algorithm, evaluating the reconstructed function takes about 250 multiplications. In our implementation, a matrix storing
the Bézier ordinates is maintained for each cell. When a cell φ at level k is subdivided into eight subcells of level k + 1,
we get eight new matrices corresponding to the eight subcells at level k + 1. Then we use the Hermitian information at the
newly generated basis vertices in Tk+1 to update the Bézier ordinates around these new basis vertices.

There are two typical choices for isosurface extraction from an implicit function: Marching Cube method (Lorensen
and Cline, 1987) and Bloomenthal’s method (Bloomenthal, 1994). In our implementation, we employ the Bloomenthal’s
polygonizer to extract the isosurface with the same strategy used in MPU method (Ohtake et al., 2003a).

4.2. Results and discussions

When the target shapes have rich geometric details, it requires that the reconstruction methods are fully self-adaptive
and have sufficient capacity for describing the details. Global methods become inefficient for such problems due to large-
scale data sets. For example, the RBF method is global and has to solve a large linear system, consuming more time and
memory (Carr et al., 2001; Ohtake et al., 2003b). On the contrary, the local method is generally more efficient, but it
must take into account the overall smoothness. Usually some strategies should be employed to achieve an overall smooth
reconstruction. MPU is such an example where the local shape functions are blended to form an overall reconstruction with
a complicated expression. With the help of PHT-splines, our approach has achieved a balance between global smoothness
and efficiency, and overcomes some of the deficiencies by previous methods. To evaluate our approach, we have tested it on
a variety of models with different features and made comparisons with MPU (Ohtake et al., 2003a) and Poisson (Kazhdan
et al., 2006) reconstruction methods. The performance statistics are summarized in Table 1.

4.2.1. Computational time and efficiency
As mentioned above, our algorithm adaptively produces a hierarchical T-mesh, in which the number of basis vertices is

roughly one-third of the number of cells. In the reconstruction process, we only need to estimate the Hermitian informa-
tion at basis vertices rather than to fit local shape to data points in each cell. As described in Section 3.2, the Hermitian
information at a basis vertex is obtained by using least squares plane fitting or MPA algorithm. Therefore, the time cost of
our algorithm is equal to the average computational time of calling the MPA algorithm multiplied by the number of basis
vertices in the generated hierarchical T-mesh. We summarize the performance of our approach, MPU method and Poisson
reconstruction method on a variety of data models in Table 1, including the spatial and computational cost (the timing in
the table includes the contouring time). By statistics, our algorithm is several times faster than MPU method, and is much
more efficient than the Poisson method.
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Table 1
The performance statistics.

Model #Points Rel.
error

IPHT MPU Poisson

Time Mem. #Tris. Time Mem. #Tris. Time Mem. # Tris.

Asian dragon 3,609,455 2.0e−4 41.342 s 738 M 2,470,784 199.707 s 850 M 2,449,768 706.0 s 1058 M 7,422,418
Neptune 2,003,932 1.0e−4 25.686 s 494 M 1,733,460 142.688 s 736 M 1,734,896 306.8 s 505 M 3,211,190
Elephant 1,512,290 3.0e−4 22.713 s 390 M 2,056,288 89.945 s 492 M 2,032,128 229.6 s 537 M 2,577,824
Armadillo 172,974 5.0e−4 3.544 s 88 M 238,592 17.644 s 229 M 240,012 16.2 s 163 M 204,302
Noisy Armadillo 172,974 5.0e−4 3.544 s 88 M 238,592 64.148 s 240 M 240,204 17.2 s 163 M 189,436
Gargoyle 863,210 5.0e−4 10.583 s 239 M 853,136 53.313 s 320 M 645,420 112.3 s 370 M 1,332,000
Filigree 514,300 5.0e−4 6.861 s 168 M 505,320 34.129 s 293 M 501,136 61.4 s 238 M 668,760
Bunny 362,272 8.0e−4 10.219 s 212 M 347,712 40.513 s 280 M 320,932 84.8 s 243 M 783,112

Fig. 6. Reconstruction of different models (Filigree model with 514,300 points, Gargoyle model with 863,210 points and Asian dragon model with 3,609,455
points.

Table 2
Our hierarchical T-mesh vs. MPU’s octree.

Model # cells # vts. # b-vts. # cells (MPU)

Asian dragon 593,121 1,018,078 183,105 2,421,025
Neptune 582,785 1,063,984 162,441 3,292,233
Elephant 219,929 374,898 68,404 896,809
Gargoyle 251,649 453,453 72,349 1,329,209
Filigree 233,201 400,605 73,601 700,625
Armadillo 113,089 170,545 44,940 512,145

4.2.2. Global continuity and geometric description power
Owing to the good properties of basis functions, the PHT-splines provide a unified representation in piecewise polynomi-

als that automatically maintains a global C1 continuity. On the other hand, a PHT-spline function in each cell is a tri-cubic
polynomial which has strong capability to capture the geometric details. The construction of PHT-splines is a dynamic pro-
cess and is particularly suitable for adaptive description of the target geometry (see Fig. 4). Our algorithm reconstructs
high-quality surfaces with very fine details, as shown in Fig. 6. Compared with MPU method, our approach needs less num-
ber of spatial subdivision (with about one fourth of the cells) as shown in Table 2, to achieve the same approximation
accuracy. Here the approximation accuracy is measured by the maximum distance of the point cloud to the implicit surface.
This again confirms that our approach has a better ability to describe the geometry. Furthermore, our approach results in a
piecewise polynomial while the MPU method has more complicated expression.

4.2.3. Memory costs
In our algorithm, the memory is mainly used for storing the Bézier ordinates for all the cells in the hierarchical T-

mesh. Because the representation of implicit PHT-splines has excellent self-adaptability and strong geometric description
capability, the algorithm produces a hierarchical T-mesh not containing superfluous cells. Table 2 shows the number of
cells, vertices and basis vertices of our hierarchical T-mesh and the number of cells of MPU method for several examples
(see Figs. 6–8) under the same error. Since the number of cells by our approach is much less than that of the MPU method
(about one-fourth), our approach has a slight advantage in total memory requirements (see Table 1).

4.2.4. Raw scan data and non-uniform sampling data
Our approach is able to reconstruct raw scan data by increasing the number of neighboring vertices in Hermite informa-

tion estimation. Fig. 7(a) shows the reconstruction result of raw Stanford bunny scan data. Here the oriented normals are
estimated using the connectivity information within each individual range scan. The reconstruction approach is also robust
for non-uniform sampling data sets as demonstrated in Fig. 7(b).
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Fig. 7. (a) Reconstruction of raw scan data bunny; (b) Reconstruction results from a non-uniform sampling set of points.

Fig. 8. Reconstruction of Elephant model with 1,512,290 points and Neptune model with 2,003,932 points.

4.2.5. Large datasets
We have reconstructed fine details from large sets of points, as summarized in Table 1. Fig. 6 shows the result of Asian

dragon model with 3,609,455 points, and the output surface has 2,470,784 triangles with a relative error 1.0e−4. Fig. 8
shows another two examples: Neptune model with 2,003,932 points and 1,733,460 triangles, Elephant model with 1,512,290
points and 2,056,288 triangles.

4.2.6. Reconstruction from data with unreliable normals
In the data acquisition of an object, the surface normal information is often more difficult to accurately obtain and

contains much noise. Unlike some previous methods that heavily depend on the normals of the point cloud, our approach
only uses them to orient the Hermitian information vectors. Therefore it is conceivable that our algorithm is robust in the
presence of certain noise of input normals. Fig. 9 shows the reconstructed surfaces of Armadillo model with noisy normals
by different methods. For the MPU reconstruction, more time is spent and some extra sheets are generated near the ears,
hands and feet due to the noise of normals. For the Poisson reconstruction, the noise makes some parts thinner and some
parts fatter as the normal vectors are used to approximate the gradient field. We can see that our approach obtains the
correct reconstruction result without any preprocessing and is almost free from the noise of normals. Our approach can
even reconstruct surfaces from data points without normal information if a good initial shape is specified. In this case the
Hermitian information of Eq. (10) at a basis vertex is oriented by the gradient inherited from the former level PHT-spline
function.
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Fig. 9. Reconstruction of data with noisy normals (60 degrees random rotational deviation in the origin normal direction) by different methods.

Fig. 10. Reconstruction of incomplete data. Left: the incomplete Squirrel data with holes on the head and the body. Right: the reconstructed Squirrel with
holes filled.

4.2.7. Reconstruction from incomplete data
Our adaptive algorithm can also robustly reconstruct surfaces from incomplete data. Fig. 10 shows the reconstruction

result of the incomplete Squirrel model with holes in the back and the head.

4.2.8. Limitation
Our approach can handle point data with light position noise as the MPA algorithm has certain smoothing effect on

noise. But for the data with heavy position noise, the algorithm may generate some superfluous sheets in the vicinity of
reconstruction surface. In that case a preprocessing step is needed.

5. Scalable parallel reconstruction via multi-threads

A striking feature of our proposed method is its data parallelism. The adaptive surface reconstruction using implicit PHT-
splines involves three primitive operations: approximation error calculation, cell subdivision, and Hermitian information
estimation. At each level, these three operations are called multiple times. The calculations of approximation errors in the
cells of current level are independent and can be carried out simultaneously, so do the operations of cell subdivision and
Hermitian information estimation. Consequently, massive calls of above mentioned operations are simply parallelized at
each level. The parallel computing for each level is described as follows:

1) Collect cells of current level and compute the approximation error for each cell in parallel.
2) Collect the cells in which the approximation error is bigger than a specified threshold value and subdivide them in

parallel.
3) Collect new basis vertices and estimate the Hermitian information at each new basis vertex in parallel.
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Table 3
Multi-threaded parallel.

Model 1 thread 2 threads 4 threads

T (Err.) T (Sub.) T (Her.) T (Err.) T (Sub.) T (Her.) T (Err.) T (Sub.) T (Her.)

Asian dragon 21.858 s 8.032 s 3.782 s 13.212 s 5.100 s 1.932 s 6.832 s 3.302 s 1.112 s
Elephant 9.969 s 2.926 s 1.671 s 5.484 s 1.610 s 0.890 s 2.983 s 1.189 s 0.500 s
Gargoyle 5.384 s 2.563 s 1.437 s 3.312 s 1.656 s 0.749 s 2.626 s 1.298 s 0.389 s

We have tested our parallel reconstruction algorithm using multi-threaded implementation on a multi-core computer
system (Intel Quad-Core 3.0 GHz). Experiments demonstrate that the algorithm is scalable. Table 3 shows the running time
for the three primitive operations (approximation error calculation, cell subdivision, and Hermitian information estimation)
in the parallel reconstruction with multi-threads. Besides the extra cost, the running time of 4-threads is about a quarter of
single-threaded, which almost reaches the ideal speed-up ratio.

6. Conclusion

We have presented an adaptive surface reconstruction approach based on a novel shape representation, the implicit PHT-
splines. Due to the nature of PHT-splines, the reconstruction surface has a unified representation of piecewise polynomials
and is globally C1 continuous. Such representation can be effectively applied to subsequent geometric processing, such as
function evaluation, derivative calculation, subdivision and CSG operations. Our scheme has strong adaptability for describing
geometric details, and at the same time is very efficient. From theoretical analysis and practical examples, we have shown
that our algorithm can reconstruct high-quality surfaces several times faster than the competitive methods in the current
state of art.

Utilizing the available parallelism, we have presented the multi-threaded implementation of the algorithm and showed
its scalable potential in parallel. There are still some interesting problems for future research. One is to exploit GPU im-
plementation of our approach. The other is to further improve the approach so that it can handle point clouds with heavy
position noise.
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