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We apply six-point variant on the Lane-Riesenfeld algorithm to obtain a new family of subdivision schemes. We also determine the
support, smoothness, Hölder regularity, magnitude of the artifact, and the shrinkage effect due to the change of integer smoothing
parameter that characterizes the members of the family. The degree of polynomial reproduction also has been discussed. It is
observed that the proposed schemes have less shrinkage effect and as a result better preserve the shape of control polygon.

1. Introduction

TheLane-Riesenfeld algorithm [1] is a competent subdivision
algorithm for subdividing uniform B-splines. To subdivide
a B-spline curve, the algorithm is composed of two phases.
The first phase doubles the control point by simply taking
each control point twice. This step is followed by a sequence
of smoothing operators which is midpoint averaging. By
applying this subdivision process recursively, a sequence
of piecewise linear curves is generated that in the limit
converges to the uniform B-spline defined by the original
control points. We may refer the articles [2–4] to the readers
for further insight about subdivision schemes. However, for
smoothness of the schemes, we may refer to [5–7].

In literature, there are different variants which are applied
on the Lane-Riesenfeld algorithm. For example, Schaefer et
al. [8] replaced the linear smoothing operator by nonlin-
ear averaging rule in the Lane-Riesenfeld algorithm. They
replaced the arithmetic mean with geometric mean to pro-
duce a subdivision scheme. Hormann and Sabin [9] offered a
family of subdivision schemes by the convolution of uniform
B-spline with kernel. Schaefer and Goldman [10] presented
an algorithm for subdividing nonuniform B-splines of arbi-
trary degree in a manner similar to the Lane-Riesenfeld

subdivision algorithm for uniform B-splines of arbitrary
degree. Cashman et al. [11] presented generalized Lane-
Riesenfeld algorithm; they used same operator to define the
refine and each smoothing stage.They applied four-point [12]
variant on the Lane-Riesenfeld algorithm to introduce new
family of schemes.

The best choice of smoothing operator is the one which
keep the sense of balance among different properties of the
schemes. For example, some of the smoothing operators give
high degree of smoothness but very low degree of polynomial
reproduction. So, choosing smoothing operator is a challeng-
ing task. One of the advantages of the proposed smoothing
operator in this paper is that it keeps the balance among
different properties of the schemes.

In this paper, we apply six-point variant on the Lane-
Riesenfeld algorithm to introduce family of subdivision
schemes. Proposed family of schemes comprises two stages,
that is, refine and smoothing, similar to the Lane-Riesenfeld
algorithm, but the only difference is that we have used refine
stage to introduce newpoints in the sameway as each smooth-
ing stage.We also show how the support, smoothness, Hölder
regularity, magnitude of the artifact, and the shrinkage effect
change with the change of integer smoothing parameter
that categorizes the members of the family. Moreover, we
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find that each member of the family has quintic polynomial
reproduction. We have the following findings.

(i) The proposed smoothing operator keeps a balance
among different properties of the schemes. It also
gives best degree of polynomial reproduction.

(ii) For the fixed number of control points, the number
of smoothing stages is reciprocal to the magnitude of
the artifacts.

(iii) Level of continuity of the schemes does not increase
in general by increasing the smoothing stage. How-
ever, there are upper and lower bounds on Hölder
continuity which grow gradually with the increase of
smoothing stage.

(iv) The proposed schemes have less shrinkage effect
and as a result better preserve the shape of control
polygon.

(v) The smoothing stages affect the shrinkage in the limit
curve while refine stages are not the factor of this
effect.

2. The 𝑞-Schemes

Lane-Riesenfeld algorithm performs on an input sequence
𝑃 = {𝑝

𝑖
}
𝑖∈𝑍

by using a refine stage 𝑊 followed by 𝑚
smoothing stages 𝑆. A subdivision step 𝑄 is therefore 𝑄 =
𝑆
𝑚
𝑊, where𝑊 = 𝑊

𝐿
is defined as refine stage in which each

control point is doubled. 𝑆 = 𝑆
𝐿
is the smoothing stage in

which midpoint averaging is used to compute new control
points; that is,

(𝑆
𝐿
𝑝)
𝑖
=
1

2
{𝑝
𝑖
+ 𝑝
𝑖+1
} . (1)

The 6-point scheme [13] samples a local quintic interpolant to
every 6 adjacent values just like the Lane-Riesenfeld smooth-
ing operator 𝑆

𝐿
which samples a local linear interpolant

between every two adjacent values. This offers smoothing
operator as

(𝑆
𝑞
𝑝)
𝑖
=
1

256
{3𝑝
𝑖−2
− 25𝑝

𝑖−1
+ 150p

𝑖
+ 150𝑝

𝑖+1

− 25𝑝
𝑖+2
+ 3𝑝
𝑖+3
} .

(2)

The new algorithm uses refine stage

(𝑊
𝑞
𝑝)
2𝑖
= 𝑝
𝑖
,

(𝑊
𝑞
𝑝)
2𝑖+1
=
1

256
{3𝑝
𝑖−2
− 25𝑝

𝑖−1
+ 150𝑝

𝑖
+ 150𝑝

𝑖+1

− 25𝑝
𝑖+2
+ 3𝑝
𝑖+3
} .

(3)

So, the subdivision operator for new family of schemes is
given by

𝑄
𝑞
= S𝑚
𝑞
𝑊
𝑞
, (4)

where refine stage𝑊
𝑞
is pursued by 𝑚 smoothing stages 𝑆

𝑞
.

We call this family of schemes as the 𝑞-schemes. When we

take 0th smoothing stage, then it reduces to the novel six-
point scheme [13]. By increasing the number of smoothing
stages, that is, 𝑚, we get new subdivision schemes. We can
easily derive mask of the 𝑞-schemes for different values of 𝑚
as follows.

The factored formof the smoothing operator 𝑆
𝑞
and refine

stage𝑊
𝑞
can be written as

𝑊
𝑞 (𝑧) = (

1 + 𝑧

2
)

6

(
3𝑧
−2
− 18𝑧

−1
+ 38 − 18𝑧 + 3𝑧

2

4
) ,

𝑆
𝑞 (𝑧) = (

1 + 𝑧

2
)(
3𝑧
−2
− 28𝑧

−1
+ 178 − 28𝑧 + 3𝑧

2

128
) .

(5)

So, it is clear from (4) that the symbol of the 𝑞-schemes with
𝑚 smoothing stages can be written as

𝑎 (𝑧) = (
1 + 𝑧

2
)

𝑚+6

𝑒 (𝑧) , (6)

with

𝑒 (𝑧) = 𝑐(𝑧)
𝑚
𝑑 (𝑧) , (7)

where

𝑐 (𝑧) =
1

128
{3𝑧
−2
− 28𝑧

−1
+ 178 − 28𝑧 + 3𝑧

2
} ,

𝑑 (𝑧) =
1

4
{3𝑧
−2
− 18𝑧

−1
+ 38 − 18𝑧 + 3𝑧

2
} .

(8)

In Table 1, we present the mask 𝛼𝑁
𝑚

and complexity of the
proposed schemes corresponding to𝑚 = 0, 1, 2 and 3.

Remark 1 (support of the 𝑞-schemes). The basis function is
the map from positions in the domain to the limit curve of
the refinement corresponding to a single old vertex having a
unit value and all the others zero.

Since the smoothing operator 𝑆
𝑞
makes use of six adjacent

values to insert a new one, the number of nonzero entries in
the mask of 𝑆

𝑞
is 6 and the number of nonzero entries in the

mask of refine stage𝑊
𝑞
is 11; therefore, by following [14], we

conclude that support width of basis limit function for 𝑆
𝑞
and

𝑊
𝑞
is 5 and 10, respectively.
Since the mask of 𝑞-schemes is obtained by applying

refine stage𝑊
𝑞
on initial data followed by𝑚 smoothing stages

𝑆
𝑞
, then the support width of basis limit function for the 𝑞-

schemes is 5𝑚+10. In Table 1, we present supports of some of
the 𝑞-schemes. By applying the algebraic condition (14) and
Lemma 4.2 of [15] on the symbol of 𝑞-schemes (6), we can
prove that the degree of polynomial reproduction of each 𝑞-
scheme is quintic.

3. Continuity Analysis of the 𝑞-Schemes

In this section, we make use of Laurent polynomial (symbol)
formalism [16] to calculate integer class continuity of the 𝑞-
schemes. Lower bounds on Hölder continuity are computed
by using the following theorem and upper bounds are
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Table 1: Complexity, support, andmask of the 𝑞-schemes corresponding to different values of𝑚, and here𝑁 shows complexity of the schemes
(i.e., 6-, 8-, 11-, and 13-point schemes) and 𝑆 stands for support width.

𝑚 𝑁 𝑆 Mask

0 6 10 𝛼
0

6
=
1

256
[3, 0, −25, 0, 150, 256, 150, 0, −25, 0, 3]

1 8 15 𝛼
1

8
=
1

2562
[9, −75, 375, 1075, −3375, −6723, 17175, 57075, 57075, 17175, −6723, −3375, 1075, 375, −75, 9]

2 11 20
𝛼
2

11
=
1

2563
[27, −450, 4350, −16050, 7775, 283608, −135000, 1798600, 399750, 9920100,

16223412, 9920100, 399750, 1798600, −135000, 283608, 7775, −16050, 4350, −450, 27]

3 13 25
𝛼
3

13
=
1

2564
[81, −2025, 28350, −220350, 1008900, −1087220, −8846550, 42100950, 68212925,

−277340325, −404933940, 1216712500, 3659334000, 3659334000, 1216712500, −404933940,
−277340325, 68212925, 42100950, −8846550, −1087220, 1008900, −220350, 28350, −2025, 81]

calculated by using Rioul’smethod [7].Moreover, exact upper
bounds on Hölder continuity can also be derived by using
Floater and Muntingh algorithm [5].

Theorem 2. The lower bound on the Hölder continuity of
the limit curves produced by the 𝑞-schemes with 𝑚 smoothing
stages is

(𝑚 + 6) − log
2
(1 + 10(

15

8
)

𝑚

) . (9)

Proof. Since by (6)

𝑎 (𝑧) = (
1 + 𝑧

2
)

𝑚+6

𝑒 (𝑧) , (10)

then by Rioul [7] the Hölder continuity of the limit curves is
bounded from below by

(𝑚 + 6) − log
2
‖𝑒‖ . (11)

Since 𝑐(𝑧) and 𝑑(𝑧) both are alternating symbols (i.e., its
even coefficients are nonnegative and its odd coefficients are
nonpositive), then 𝑒(𝑧) = 𝑐(𝑧)𝑚𝑑(𝑧) is also alternating and

‖𝑒‖ = max (𝑒𝑒, 𝑒𝑜) , (12)

where 𝑒𝑒 and 𝑒𝑜 are sum of even and odd coefficients of 𝑒(𝑧),
respectively. Since by [11]

(
𝑒
𝑒

𝑒
𝑜) = (

𝑐
𝑒
𝑐
𝑜

𝑐
𝑜
𝑐
𝑒)

𝑚

(
𝑑
𝑒

𝑑
𝑜) , (13)

then

(
𝑒
𝑒

𝑒
𝑜) = (

23

16
−
7

16

−
7

16

23

16

)

𝑚

(
11

−9
) . (14)

By eigenvalue decomposition, we have

(
𝑒
𝑒

𝑒
𝑜) =

1

2
(
−1 1

1 1
)(

15

8
0

0 1

)

𝑚

(
−1 1

1 1
)(
11

−9
) . (15)

Table 2: Comparison of continuity of the 𝑞-schemes.

𝑚 Continuity Hölder continuity
Lower bound Upper bound

0 2 2.540 2.830
1 3 2.696 3.246
2 3 2.823 3.649
3 3 2.935 4.040
4 3 3.038 4.421
5 4 3.137 4.795

This implies that

(
𝑒
𝑒

𝑒
𝑜) = (

1 + 10(
15

8
)

𝑚

1 − 10(
15

8
)

𝑚). (16)

Thus, we have

‖𝑒‖ = 1 + 10(
15

8
)

𝑚

. (17)

Consequently, the Hölder continuity of the limit curves
produced by the 𝑞-schemes with 𝑚 smoothing stages is
bounded from below by

(𝑚 + 6) − log
2
(1 + 10(

15

8
)

𝑚

) . (18)

Table 2 summarizes the continuity analysis of the 𝑞-
schemes. We observe that the order of continuities achieved
by 𝑞-schemes is reasonable, but it does not increase by
increasing smoothing stages. However, there are upper and
lower bounds on Hölder continuity which grow gradually
with𝑚.

Remark 3. Actually, the anonymous reviewer’s suggested
smoothing operator 𝑆

𝑞
= ((1 + 𝑧)/2)((1 + 𝑧)/2)

2
((𝑧
−1
+ 3 +
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Table 3: Limit stencils of the 𝑞-schemes.

𝑚 Limit stencils
0 𝑙

0
= [1]

1 𝑙
1
= [0.00000012323, −0.00000041069, −0.000039800, −0.00088283, 0.016736, −0.10701, 0.59120, 0.59120, −0.10701, 0.016736,
−0.00088283, −0.000039800, −0.00000041069, 0.00000012323]

2
𝑙
2
= [0.000000000000026, 0.00000000044399, 0.000000023348, −0.0000024738, 0.00023116, 0.00086974, −0.0097205,

0.027417, 0.96241, 0.027417, −0.0097205, 0.00086974, 0.00023116, −0.0000024738, 0.000000023348, 0.000000023348,
0.00000000044399, 0.000000000000026]

3
𝑙
3
= [−0.000000000003485, 0.0000000011645, 0.00000031630, 0.000014667, 0.000074973, −0.0020474, 0.020295, −0.11208,

0.59374, 0.59374, −0.11208, 0.020295, −0.0020474, 0.000074973, 0.000014667, 0.00000031630, 0.0000000011645,
−0.000000000003485]

𝑧)/5) significantly improve the smoothness of the schemes.
That is, we get 𝐶2,𝐶6,𝐶8, and𝐶8 smoothness for𝑚 = 0, 1, 2,
and 3, respectively, but with only linear degree of polyno-
mial reproduction. While by using our proposed smoothing
operator, we get up to quintic degree of reproduction with
𝐶
2, 𝐶3, 𝐶3, and𝐶3 smoothness for 𝑚 = 0, 1, 2, and 3,

respectively.

4. Analysis of the Limit Curve

In this section,we present limit behavior, artifact analysis, and
shrinkage effect of the 𝑞-schemes.

4.1. Limit Behavior of the 𝑞-Schemes. The limit behavior of
the subdivision scheme can be analyzed by examining the
eigenstructure of subdivision matrix 𝑀. For a nondefective
matrix𝑀, if there is 𝑛 linearly independent eigenvectors ]

𝑗

corresponding to the eigenvalues 𝜇
𝑗
, then it is possible to

diagonalize 𝑀 by transforming it by the eigenvectors and
their inverse; that is,𝑀 = 𝑅𝐴𝑅−1. If the subdivision curve is
𝐶
0 (i.e., if all the rows of𝑀 sum to one, then𝑀 will have one

eigenvector consisting of all ones and at least one eigenvalue
must be one. If 1 = 𝜇

0
> 𝜇
𝑗
, then subdivision scheme is

𝐶
0.), then all the vertices in the local neighborhood 𝑃∞ will

shrink to the same point and thus we obtain limit stencil of
the subdivision scheme mathematically

𝑃
∞
= lim
𝑗→∞

𝑃
𝑗
= 𝑀
∞
𝑃
0
= 𝑅𝐴
∞
𝑅
−1
𝑃
0
. (19)

The subdivisionmatrices for the 𝑞-schemes corresponding to
themasks 𝛼0

6
, 𝛼1
8
, 𝛼2
11
, and 𝛼3

13
presented in Table 1 have order

11, 15, 21, and 23, respectively. The limit stencils of these 𝑞-
schemes for some smoothing stages are presented in Table 3.
By applying limit stencil on consecutive control points in
local neighborhood, we get limit position of the central one.
Moreover, these stencils are useful to compute the magnitude
of artifacts presented in the polygon.

4.2. Artifact Analysis of the 𝑞-Schemes. An artifact is defined
to be any characteristic which is undesirable and cannot
be separated by movement of control points which means
that the curve holds spatial frequencies above the Shannon
limit [17] relative to the density of the control polygon

because features of the spatial frequency below this limit
are removable by movements of the control points [18].
By definition, spatial frequency is the reciprocal of the
number of control points per cycle and artifact magnitude
is the function of the spatial frequency. We measure the
amount of artifact presented in the polygon after the first
subdivision level by using the following strategy. First, take
the product of symmetric mask/symbol with symmetric limit
stencil/symbol and then represent this product as polynomial
in 𝜎 = (1 + 𝑧)/2𝑧1/2. Then, the magnitude of artifact
can be calculated by substituting sin(𝜋𝜔/2) for 𝜎 in that
polynomial, where 𝜔 is the spatial frequency. The magnitude
of the artifact presented in the limit curve is given by 𝐺(𝜔) =
(1/2)𝐻(sin(𝜋𝜔/2)) with the understanding that the data is
sampled from a sinusoid with 𝑘 = 1/𝜔 samples per cycle,
where 𝑘 is the number of control points.

Theorem4. Theamount of artifact presented in the limit curve
produced by the 6-point binary scheme (i.e.,𝑚 = 0) is

𝐺 (𝜔) =
1

2
{12𝜂
10
− 30𝜂

8
+ 20𝜂

6
} , (20)

where 𝜂 = sin(𝜋𝜔/2).

Proof. By substituting 𝑚 = 0 in (6) and (7), we get 6-
point binary scheme whose symbol in symmetric form can
be written as

𝑎 (z) = 1
256
{3𝑧
−5
− 25𝑧

−3
+ 150𝑧

−1
+ 256

+ 150𝑧 − 25𝑧
3
+ 3𝑧
5
} .

(21)

This can be manipulated as

𝑎 (𝑧) =
1

256
{
3(1 + 𝑧)

10

𝑧5
−
30(1 + 𝑧)

8

𝑧4
+
80(1 + 𝑧)

6

𝑧3
} .

(22)

Since the symbol of the limit stencil 𝑙
0
(as given in Table 3) of

6-point binary scheme is 𝑙
0
(𝑧) = 1𝑧

0, this implies that

𝑎 (𝑧) = 𝑎 (𝑧) 𝑙0 (𝑧)

=
1

256
{
3(1 + 𝑧)

10
2
10

210𝑧5
−
30(1 + 𝑧)

8
2
8

28𝑧4
+
80(1 + 𝑧)

6
2
6

26𝑧3
} .

(23)
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Figure 1: Artifact behavior of the 𝑞-schemes.

By representing it as polynomial in 𝜎 = (1 + 𝑧)/2𝑧1/2, we get

𝐻(𝜎) = 12𝜎
10
− 30𝜎

8
+ 20𝜎

6
. (24)

Since the magnitude of the artifact presented in the limit
curve is given by 𝐺(𝜔) = (1/2)𝐻(sin(𝜋𝜔/2)), then, by
substituting sin(𝜋𝜔/2) for 𝜎 in above polynomial, we get

𝐺 (𝜔) =
1

2
{12𝜂
10
− 30𝜂

8
+ 20𝜂

6
} , (25)

where 𝜂 = sin(𝜋𝜔/2), 𝜔 = (1/𝑘), and 𝑘 is the number of
control points of the polygon.

Similarly, we can prove the following theorems.

Theorem5. Theamount of artifact presented in the limit curve
produced by the 8-point binary scheme (i.e.,𝑚 = 1) is

𝐺 (𝜔) =
1

2
{0.00454𝜂

28
− 0.04505𝜂

26
+ 0.11351𝜂

24

+ 0.16850𝜂
22
+ 0.9078𝜂

20
− 17.721𝜂

18

+ 82.710𝜂
16
− 199.84𝜂

14
+ 281.50𝜂

12

− 220.79𝜂
10
+ 75.003𝜂

8
} .

(26)

Theorem6. Theamount of artifact presented in the limit curve
produced by the 11-point binary scheme (i.e.,𝑚 = 2) is

𝐺 (𝜔) =
1

2
{0.0000000028754𝜂

36
+ 0.000012238𝜂

34

+ 0.0000061307𝜂
32
− 0.0053021𝜂

30

+ 0.15761𝜂
28
− 1.3285𝜂

26
+ 5.6356𝜂

24

− 13.040𝜂
22
+ 14.009𝜂

20
+ 1.8945𝜂

18

− 8.3782𝜂
16
− 49.664𝜂

14
+ 147.25𝜂

12

− 156.89𝜂
10
+ 62.358𝜂

8
} .

(27)

Theorem7. Theamount of artifact presented in the limit curve
produced by the 13-point binary scheme (i.e.,𝑚 = 3) is

𝐺 (𝜔) =
1

2
{−0.00000014453𝜂

42
+ 0.000014495𝜂

40

+ 0.00060407𝜂
38
− 0.0017688𝜂

36

− 0.042638𝜂
34
+ 0.36221𝜂

32
− 0.76351𝜂

30

− 4.8648𝜂
28
+ 45.306𝜂

26
− 191.67𝜂

24

+ 534.46𝜂
22
− 1071.8𝜂

20
+ 1583.8𝜂

18

− 1708.5𝜂
16
+ 1288.1𝜂

14
− 611.30𝜂

12

+ 137.94𝜂
10
} .

(28)

Similarly, we can determine the amount of artifact pre-
sented in the limit curves for other values of 𝑚. The amount
of artifacts of the 𝑞-schemes for four (i.e., 𝑚 = 0, 1, 2, 3)
smoothing stages 𝑆

𝑞
is shown in Figure 1. The magnitude of

the artifact in the limit curve is plotted against the number of
control points 𝑘. It is noticed that when the smoothing stages
increase the magnitude of the artifact decreases for the same
number of control points.

4.3. Shrinkage Effect of the 𝑞-Schemes. A control polygon
is a sequence of points in space that is commonly used to
manage the shape of an object. We apply subdivision scheme
on closed control polygons to create visually smooth limit
curves. Figure 2 shows limit curves generated by the 𝑞-
schemes with different number of smoothing stages. Note
that, as we increase the number of smoothing stages, final
limit curve has larger distance from the control polygon.
Since this shrinkage effect is only due to the smoothing
stages, it is clear that the refine stage is not a factor of this
effect.Therefore, we canmeasure this shrinkage effect by only
examining smoothing stage. We can represent smoothing
stage for a closed 𝑘-point polygon as the matrix

1

256

(
(
(
(

(

−25 150 150 −25 3 0 ⋅ ⋅ ⋅ 0 0 3

3 −25 150 150 −25 3 ⋅ ⋅ ⋅ 0 0 0

0 3 −25 150 150 −25 ⋅ ⋅ ⋅ 0 0 0

... d d d d d d
...

−25 3 0 0 0 0 ⋅ ⋅ ⋅ −25 150 150

150 −25 3 0 0 0 ⋅ ⋅ ⋅ 3 −25 150

150 150 −25 3 0 0 ⋅ ⋅ ⋅ 0 3 −25

)
)
)
)

)

∈ R
𝑘×𝑘
. (29)
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Figure 2: Limit curves generated by the 𝑞-scheme by applying 0, 1, 2, and 3 smoothing stages.
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Figure 3: Rate of shrinkage plotted for the 𝐶-schemes [11] and proposed 𝑞-schemes against the number of smoothing stages𝑚, for polygons
having 4, 8, and 16 points.



Journal of Applied Mathematics 7

Since the above matrix is circulant, by [19], its eigenvalues are

𝜇
𝑗
=
1

256
(−25 + 150𝑒

2𝜋𝑖𝑗/𝑘
+ 150𝑒

4𝜋𝑖𝑗/𝑘
− 25𝑒
6𝜋𝑖𝑗/𝑘

+ 3𝑒
8𝜋𝑖𝑗/𝑘
+ 3𝑒
−2𝜋𝑖𝑗/𝑘

) ,

(30)

where 𝑗 = 0, 1, . . . , 𝑘 − 1.
Here, we can determine that the dominant eigenvalue

𝜇
0
= 1 and its corresponding eigenvector is also a column

vector consisting of all ones.This shows a dominant behavior
that as we increase the smoothing stages, say 𝑚 → ∞,
the whole configuration falls down towards barycenter of the
original control polygon.

The subdominant eigenvalues 𝜇
1
and 𝜇

𝑘−1
are complex

conjugate of each other and shrinkage of the polygon towards
its barycenter as well as a phase shift is decided by them.
Disregarding this rotation, the rate of shrinkage for each
smoothing stage is |𝜇

1
| = |𝜇
𝑘−1
|.We plot this rate of shrinkage

against the number of smoothing stages 𝑚 in Figure 3.
From Figure 3, it is apparent that the 𝑞-schemes bear less
shrinkage when the number of smoothing stages increases
and as a result better preserve the shape of control polygon
as compared to 𝐶-schemes [11].

5. Summary

In this paper, we have applied 6-point variant on Lane-
Riesenfeld algorithm [1] to generate a new family of schemes,
whichwe call the 𝑞-schemes. Furthermore, we have evaluated
the relation among support, smoothness, Hölder continuity,
and number of smoothing stages. The degree of polynomial
reproduction also has been discussed. We have evaluated
the rate of shrinkage of limit curve from original control
polygon at different number of smoothing stages and make
comparison with 𝐶-schemes [11]. Artifact and limit stencil
analysis of proposed schemes is also carried out.
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