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a b s t r a c t

Subdivision Surface provides an efficientway to represent free-form surfaceswith arbitrary
topology. Loop subdivision is a subdivision scheme for triangular meshes, which is C2

continuous except at a finite number of extraordinary vertices with G1 continuous. In this
paper we propose the Truncated Hierarchical Loop Subdivision Surface (THLSS), which
generalizes truncated hierarchical B-splines to arbitrary topological triangular meshes.
THLSS basis functions are linearly independent, form a partition of unity, and are locally
refinable. THLSS also preserves the geometry during adaptive h-refinement and thus
inherits the surface continuity of Loop subdivision surface. Adaptive isogeometric analysis
is performedwith the THLSS basis functions on several complexmodelswith extraordinary
vertices to show the potential application of THLSS.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric analysis (IGA) was originally introduced by Hughes et al. [1] and described in detail in [2]. With IGA,
traditional design-through-analysis procedures such as geometry clean-up, defeaturing, andmesh generation are simplified
or eliminated entirely. Additionally, the higher-order smoothness provides substantial gains to analysis in terms of accuracy
and robustness of finite element solutions [3–5]. However, a global geometric discretization, based on NURBS, is usually
not suitable as a basis for analysis. Many different methods have been developed in these years to define locally refinable
splines, such as the (Truncated) Hierarchical B-splines [6–8], the (Analysis-suitable) T-splines [9–12], the PHT-splines
[13–15], the LR B-splines [16,17] and the Modified T-splines [18]. Truncated hierarchical Catmull–Clark subdivision
(THCCS) [19,20] generalized Truncated Hierarchical B-splines [8] to control grids of arbitrary topology. THCCS provide a
method to define locally refinable splines on quadrilateral meshes with extraordinary nodes.

Recently locally refinable splines on triangular partitions also attract researchers’s interest because of the flexibility and
the popular using in classical finite element analysis of triangular partitions. Hierarchical bivariate splines on regular (type-I
and type-II) triangular partitions were introduced in [21] and applied to numerical solving PDEs. Later, Jüttler et al. [22]
generalized the truncated hierarchical B-splines [8] to hierarchies of spaces that are spanned by generating systems that
potentially possess linear dependencies, a special box splines defined on criss-cross grid called Zwart–Powell (ZP) elements
was discussed as an example. Speleers et al. [23,24] proposed hierarchical Powell–Sabin splines for isogeometric analysis
applications, where Powell–Sabin splines are C1 piecewise quadratic polynomials defined on a special refinement of any
given triangulation.

Loop subdivision [25] is a subdivision scheme for triangular meshes. The limit surface defined by Loop subdivision is C2

continuous except at a finite number of extraordinary vertices (an extraordinary vertex has other than six faces adjacent
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(a) Edge point rule. (b) Vertex point rule.

Fig. 1. Mask for Loop subdivision.

to it) where the surface is G1 continuous. Explicit Loop basis functions were explored by J. Stam [26] and have several
nice properties: linear independence, partition of unity and local support. There recently have been a few works on the
application of Loop subdivision in isogeometric analysis. Loop subdivision surfaces were used for describing the geometry
of shell and the displacement fields in thin-shell finite element analysis [27]. Extended Loop subdivision surfaces were used
in isogeometric analysis in [28], where Poisson equations with the Dirichlet boundary condition were considered and the
approximation properties of extended Loop basis functions were established.

In this paper we introduce the truncation hierarchical mechanism [8] into Loop subdivision surfaces, which are called
Truncated Hierarchical Loop Subdivision Surfaces (THLSS), to be adapted to triangular meshes with arbitrary topology and
support local refinement. THLSS preserve the exact geometry when adaptive h-refinement is performed and inherit the
surface continuity of Loop subdivision surfaces. THLSS basis functions are global linearly independent, form a partition of
unity and have local support.We applied THLSS basis functions in isogeometric analysis on several complex geometries. The
simulation results show potential wide application of the proposed method in integrating design and analysis. Through a
benchmark numerical experiment, we demonstrate its efficiencywith the comparison to the classical finite element analysis
piecewise linear elements.

The paper is organized as follows: Section 2 briefly reviews Loop subdivision scheme including Stam’s explicit basis
functions. Section 3 presents the detail of THLSS construction. Section 4 shows several numerical experiments with the
comparison to the FEA with linear elements and Loop basis functions. Section 5 is the conclusion and future work.

2. Loop subdivision surface

In this section, we briefly review Loop’s subdivision scheme and the explicit basis functions introduced by J. Stam [26].

2.1. Loop subdivision scheme

Loop subdivision scheme is an approximating subdivision scheme. Referring to Fig. 1, let xl and xr be the two wing
neighbor vertices of edge[xixj], then the new edge point added on this edge is defined as

ei,j =
3
8
xi +

3
8
xj +

1
8
xl +

1
8
xr .

And for a vertex xk0 at level kwith neighboring vertices xki , i = 1, 2, . . . , n, where n is the valence of vertex xk0. The old vertex
is updated to xk+1

0 according to

xk+1
0 = (1 − nα)xk0 + α(xk1 + xk2 + · · · + xkn),

whereα =
1
n [

5
8 −( 3

8 +
1
4 cos( 2π

n ))2]. This linear relationship can be expressed by a so-called subdivisionmatrix. The repeated
global refinement generates a sequence of meshes M0, . . . , Mn, where M0 is the initial control grid, and n is the number of
subdivisions. As n goes to infinity, Mn converges to a limit surface. We call this limit surface as Loop subdivision surface.

2.2. Loop basis functions

An alternative way to obtain the limit surface takes advantage of the Stam’s basis functions [26]. These basis functions
are analogous to B-spline basis functions, whereas each mesh Ml is served as a control grid. Thus we can express the limit
surface Slimit by a mapping from the parametric domain to the physical domain,

Slimit(v, w) =

N l
i=1

Bl
i(v, w)P l

i , (1)
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Fig. 2. (a) A regular patch (shaded patch) defined by 12 control vertices. (b) The parameter domain is partitioned into a set of triangular tiles. (c) An
irregular triangular patch (shaded patch) defined by N + 6 control vertices. (d) The order of control vertices after one subdivision step. The shaded patches
are regular patches.

where Bl
i(v, w) are Stam’s basis functions, P l

i are the control points for mesh Ml and (v, w) are the local parametric coordi-
nates. Next, we give the details for evaluation of the basis functions.

For any given triangular control grid, after one level of subdivision, all the extraordinary vertices are separated, i.e., each
triangular face contains at most one extraordinary vertex. Here an extraordinary vertex means it has other than six patches
adjacent to it. Such mesh is called a valid control mesh. Thus, all the meshes Ml, l > 0 are valid control meshes.

First, we provide the basis functions Bl
i(v, w) for l > 0 since all the control meshes are valid control meshes. A triangular

patch is called regular if all of its three vertices have a valence of 6, otherwise it is called irregular. A regular patch can be
exactly described by a quartic C2 continuous box spline, which is defined as follows:

S(v, w) = CTb(v, w), (v, w) ∈ Ω, (2)

where C is the control vertices in R3 of the patch ordered as in Fig. 2(a), b(v, w) is a vector containing 12 box spline basis
functions which do not vanish on the patch and Ω = {(v, w) ∈ R2

: v ≥ 0, w ≥ 0, v + w ≤ 1} is an unit triangle.
An irregular patchwith an extraordinary vertex of valenceN is determined by its two-ring neighborhood control vertices,

namely N + 6 control vertices. In the paper [26], they seek a parametrization S(v, w) for an irregular patch. First, the
parameter domain Ω is partitioned n times until the resulting irregular region is small enough, as shown in Fig. 2(b). These
sub-domains are defined more precisely as:

Ωn
1 = {(v, w)|v ∈ [2−n, 2−n+1

], w ∈ [0, 2−n+1
− v]},

Ωn
2 = {(v, w)|v ∈ [0, 2−n

], w ∈ [0, v]},

Ωn
3 = {(v, w)|v ∈ [0, 2−n

], w ∈ [2−n, 2−n+1
− v]}.

Each Ωn
k is a regular patch. Denote the N + 6 control vertices around the irregular patch as a vector CT

0 . Fig. 2(c) shows the
order of N + 6 control points of an irregular patch, where the extraordinary vertex is labeled with 1. Then the surface patch
S(v, w) is defined by its restriction to each of the sub-domains:

S(v, w)|Ωn
k

= CT
0 (PkAAn−1)Tb(tn,k(v, w)), k = 1, 2, 3, (3)

where Pk is a selection matrix to locate which regular patch (Ωn
k , k = 1, 2, 3) contains parametric value (v, w) after n times

of subdivisions, the subdivision matrix A and A can be found in the appendix in [26], and the transformation tn,k maps the
tile Ωn

k onto the unit tile Ω:

tn,1(v, w) = (2nv − 1, 2nw),

tn,2(v, w) = (1 − 2nv, 1 − 2nw),

tn,3(v, w) = (2nv, 2nw − 1).

With the expression of the triangular patch S(v, w) in (2) and (3), we are ready to define Loop basis functions Bl
i(v, w)

at level l.
The Loop basis functions restricted on a regular patch are defined as box splines, according to (2),

Bl(v, w) = b(v, w). (4)

While the Loop basis functions restricted on an irregular patch are defined as follows, according to (3),

Bl(v, w) = (V−1)TΛn−l−1(PkAV )Tb(v, w), (5)

where Λ is the Jordan canonical form of A with A = VΛV−1. Bl(v, w) only depends on the valence number of the vertex.
A Loop basis function restricted on a patch is either a box spline or a linear combination of box splines. Owing to the

properties of box splines and subdivision matrix, Loop basis functions are nonnegative, form a partition of unity and have
global linear independency [29]. A Loop basis function has support on its two-ring neighborhood patches. Fig. 3 shows two
Loop basis functions associated with a regular node and an irregular node, together with their support.
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(a) A Loop basis function associated with a regular node. (b) A Loop basis function associated with an irregular node.

Fig. 3. Two basis functions together with their local support, where red circles are the associated nodes. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

We can define the basis functions B0
i (v, w) in the similar way. First according to the subdivision rule, there exists a

subdivision matrix S such that P1
= SP0, where P1, P0 are the vectors that contain the vertices in the mesh of M1 and M0

respectively. Notice that both control grids M1 and M0 will define the same limit surface via loop subdivision, thus

Slimit =

N0
i=1

B0
i (ξ , η)P0

i =

N1
i=1

B1
i (ξ , η)P1

i . (6)

This relationship can be written into a matrix form

[B0
1, . . . , B

0
N0 ]P0

= [B1
1, . . . , B

1
N1 ]P1

= [B1
1, . . . , B

1
N1 ]SP0,

thus,

[B0
1, . . . , B

0
N0 ] = [B1

1, . . . , B
1
N1 ]S.

3. Truncated hierarchical loop subdivision surfaces

In this section we are going to construct Truncated Hierarchical Loop Subdivision Surfaces in a similar manner as for
truncated hierarchical B-splines.

3.1. Notations

An initial Loop control mesh is denoted by M0. After performing l times of Loop subdivision on M0, we denote the
resulting control mesh as Ml. A triangular patch(element) in Ml is denoted by Ω l

i , and a Loop basis function associated
with a vertex(node) in Ml is denoted by Bl

i. We also call Ω l
i a patch at level l and Bl

i a Loop basis function at level l.
Let F l be the set of all patches in Ml and B l be the set of all the basis functions at level l,

F l
= {Ω l

i | i = 0, 1, . . . , nl
e}, (7)

B l
= {Bl

i | i = 0, 1, . . . , nl
b}, (8)

where nl
e is the number of patches in Ml and nl

b is the number of basis functions at level l. The domain covers the support of

all basis functions in B0 is denoted by Ω0, where Ω0
= supp B0

=
n0e

i=0 Ω0
i . The refined domain at level l is denoted by

Ω l, l > 0.
Refinability of Loop basis functions. Denote the Loop basis functions over irregular patches Ω l

0 and Ω l+1
0 in Fig. 2(c), (d) as

Bl and Bl+1. According to (5), we have

Bl+1
= (V−1)TΛn−l−2(PkAV )Tb
= (V T )−1Λ−1Λn−l−1(PkAV )Tb
= (ΛV T )−1Λn−l−1(PkAV )Tb.

Recall that AV = VΛ and Λ is a diagonal matrix, so Λ = ΛT and ΛV T
= V TAT . Then we have

Bl+1
= (V TAT )−1Λn−l−1(PkAV )Tb = (AT )−1Bl.

That is

Bl
= ATBl+1. (9)

On a regular patch, relationship equation (9) is obviously valid. Eq. (9) indicates the refinability still holds for Loop basis
functions via the subdivision matrix A. So we can define the truncation mechanism of Loop basis functions as truncated
hierarchical B-splines [8].
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Fig. 4. The marked yellow circles are identified as to be refined. The shaded triangles serve as the fine-level domain Ω l+1 . The basis functions to be
truncated are marked by green circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Definition 1 ([8]). Let β ∈ B l and let

β =


τ∈Bl+1

c l+1
τ (β)τ , c l+1

τ ∈ R,

be its representation with respect to the finer basis of B l+1. The truncation of β with respect to B l+1 and Ω l+1 is defined as

truncl+1β =


τ∈Bl+1,supp τ ⊈Ω l+1

c l+1
τ (β)τ , (10)

where the coefficients c l+1
τ come from the subdivision matrix A according to (9).

3.2. Construction

Now we can construct truncated hierarchical Loop subdivision surface by Definition 2, which is similar to the definition
of truncated hierarchical B-splines [8].

Definition 2. Suppose L is the maximum subdividing step. B l and Ω l are defined as in Section 3.1, then the truncated
hierarchical Loop subdivision surface basis H is recursively constructed as follows:

1. Initialization: H0
= {β ∈ B0

: suppβ ≠ ∅}.
2. Recursive case: H l+1

= H l+1
A ∪ H l+1

B , for l = 0, . . . , L − 1, where

H l+1
A = {truncl+1β : β ∈ H l, supp β ⊈ Ω l+1

},

and

H l+1
B = {β ∈ B l+1

: suppβ ⊆ Ω l+1
}.

3. H = H L.

In the following, we discuss the construction in detail.

• Identification of refinement domains Ω l+1.
From level l to l + 1, suppose a set of basis functions at level l is selected to be refined, denoted as H l

r , according to
the local geometry or simulation error with a given threshold. The fine-level domain Ω l+1 is defined by the support of
all the to-be-refined basis functions,

Ω l+1
= suppH l

r . (11)

The set of to-be-refined elements F l
r contains all the elements inside Ω l+1,

F l
r = {Ω l

i | Ω l
i ∈ F l, Ω l

i ⊆ Ω l+1
}. (12)

If the marked yellow basis functions in Fig. 4(a) are identified as to-be-refined (H l
r ), then all the shaded elements in

Fig. 4(b)–(e) will be identified as to-be-refined elements (F l
r ). In this situation the shaded region will also serve as the

fine-level domain Ω l+1.
• Construction of part H l+1

A .
According to (9), for any basis function β ∈ H l, it can be represented by B l+1,

β =

nl+1
b
i=1

djBl+1
j , dj ∈ R.

When dj ≠ 0, the basis Bl+1
j is called a child at level l + 1 of β .
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Fig. 5. Construction of the truncated basis function truncl+1Bl
1 . (a) The two-ring neighborhood around a valence-7 extraordinary node at Level l; (b) Bl

2
is to be refined (Case 1); (c) Bl

5 is to be refined (Case 2); (d) Bl
N+14 is to be refined (Case 3); and (e–h) are refinement of (a–d), respectively. Blue dots are

discarded in constructing truncl+1Bl
1 , while green dots are kept. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

In this step, we first identify to-be-truncated basis functions H l
t from the remaining basis functions H l

a = H l
\ H l

r . If
a basis function β ∈ H l

a has a children at level l + 1 with support fully contained in Ω l+1, then it will be truncated. We
have

H l
t = {β | β ∈ H l

a, ∃ chd β s.t. supp chdβ ⊆ Ω l+1
}.

For Loop basis functions, all the two-ring neighboring basis functions aroundH l
r should be truncated. In Fig. 4(b)–(e), the

to-be-truncated basis functions are marked by green circles. Then we truncate each basis function β ∈ H l
t by discarding

its children with support fully contained in Ω l+1, and obtain

truncl+1β =


supp Bl+1

j ⊈Ω l+1

djBl+1
j .

• Construction of part H l+1
B .

This step aims at refining all the elements in F l
r and obtaining all the basis functions whose support is contained in

Ω l+1. All the children basis functions of H l
r are contained in Ω l+1, thus H l+1

B = chdH l
r . The active element set at level l

is F l
a = F l

\ F l
r and the active element set at level l + 1 is F l+1

a = suppH l+1
B .

Finally the THLSS basis functions at level l+ 1 are composed of two parts: H l+1
= H l+1

A ∪ H l+1
B . The active elements for

H l+1 is defined as F l
a ∪ F l+1

a , which form the THLSS control meshes.

3.3. Examples

In the following, we take a valence-7 extraordinary node, Node 1 in Fig. 5(a), as an example to construct the truncated
basis function associatedwith it. For the present case, we only need to consider the two-ring neighborhood elements around
the extraordinary node.

To simplify the exposition, we consider only one basis function to be refined at one time. Particularly, we study three
cases as shown in Fig. 5(b)–(d):

1. Case 1: H l
r = {Bl

2},
2. Case 2: H l

r = {Bl
5},

3. Case 3: H l
r = {Bl

N+14}.

Corresponding to each case, the fine-level domainΩ l+1 is the two-ring neighborhood ofH l
r , which is shaded in Fig. 5(b)–(d).

All the elements in Ω l+1 are identified as to-be-refined elements F l
r .

The two-ring neighborhood basis functions around H l
r are identified as to-be-truncated because they have children

whose support contained in Ω l+1. Without loss of generality, here we study how to construct the truncated basis function
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Fig. 6. (a) Original basis functions associated with extraordinary nodes of valence-7; (b–d) Truncated basis functions corresponding to three truncation
cases.

for Bl
1 in all three cases, see Fig. 5(a), which is a basis function associated with the extraordinary node (red circles). The

other truncated basis functions can be constructed in a similar manner. Fig. 5(e) shows the refinement of all the elements in
Fig. 5(a), where the N + 15 basis functions marked by green circles are the children of Bl

1. B
l
1 can be represented by a linear

combination of its children,

Bl
1 =

N+15
j=1

c1jBl+1
j , (13)

where the coefficients c1j can be obtained from the subdivision matrix A, and are equal to

c1j =


0.656826,

3
8
,
3
8
,
3
8
,
3
8
,
3
8
,
3
8
,
3
8
,
1
8
,

1
16

,
1
8
,

1
16

,
1
8
,

1
16

,
1
8
,

1
16

,
1
8
,

1
16

,
1
8
,

1
16

,
1
8
,

1
16


.

We take Bl
2 (Case 1) as an example to show how to truncate Bl

1, see Fig. 5(f) for a reference. Suppose only Bl
2 is refined.

First, we check all the children of Bl
1 to find out those with support fully contained in Ω l+1 (the shaded region), and mark

them in blue dots. The remaining children are marked in green. All the children basis functions associated with these blue
dots should be discarded in constructing truncl+1Bl

1. We then define an index set I l+1 to include all the blue dots in Fig. 5(f);
we have

Case 1 : I l+1
= {1, 2, 3, 8, 9, 10, 11, 12, 22};

Case 2 : I l+1
= {1, 4, 5, 6, 14, 15, 16, 17, 18}

Case 3 : I l+1
= {20, 21, 22}.

The truncated basis function truncl+1Bl
1 is then derived in each case by setting c1j = 0 in Eq. (13) if j ∈ I l+1.

The truncated basis functions associated with a valence-7 extraordinary node corresponding to Case 1, 2, 3 are plotted in
Fig. 6(b)–(d) and compared with non-truncated ones in Fig. 6(a). From Fig. 4(f)–(h), we can observe that we need to discard
nine, nine and three basis functions (blue dots) for Cases 1, 2 and 3, respectively. As shown in Fig. 6(b)–(d), the more basis
functions discarded in building the truncated basis function, themore truncation.We do not need to truncate basis functions
beyond a two-ring neighborhood (shaded domain) of B l

r .
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3.4. Control vertices update

During the construction from level l to l+1, we perform truncation on the basis set H l
\H l

r , resulting the first part H l+1
A ,

and refinement on the basis set H l
r , resulting the second part H l+1

B . Suppose the THLSS defined at level l is S l =


τ∈H l P l
τ τ ,

where Pτ ∈ R3 are the position of vertices in the control mesh. First we consider the control vertices of the first part H l+1
A .

Notice that a truncated basis function is actually the same as the original basis function over the active elementsF l
a at level l.

And only the basis functions β ∈ H l+1
A have support on F l

a . So in order to preserve geometry we choose the control vertices
P l+1

β = P l
τ , for β ∈ H l+1

A , β = truncl+1τ , τ ∈ H l
\ H l

r .
Next we consider the control vertices of the second part H l+1

B . We take Fig. 2(c) as an example to show how to update
control vertices. The N + 6 control vertices of the shaded patch in Fig. 2(c) are locally labeled and have the matrix form
P l
e = [P l

e,1, . . . , P
l
e,N+6]. Fig. 2(d) shows the N + 12 control vertices P l+1

e = [P l+1
e,1 , . . . , P l+1

e,N+12]
T . We have

P l+1
e = AP l

e, (14)

where A is the subdivision matrix.
Then the THLSS at level l + 1 is updated as

S l+1
=


τ∈H l\H l

r

P l
τ trunc

l+1τ +


β∈H l+1

B

P l+1
β β.

In Proposition 1, we will prove the above method of control vertices update preserves geometry, which means S l+1
= S l.

3.5. Properties

Now we discuss some properties of THLSS basis functions constructed in Section 3.2.

Theorem 1. The THLSS basis functions H constructed in Definition 2 have the following properties:
1. Nonnegativity: β ≥ 0, ∀β ∈ H .
2. Compact support: β ∈ H has compact support.
3. Partition of unity:


β∈H β ≡ 1.

4. Linear independency: the functions in H are linearly independent.
Proof. The first two properties are obvious. The partition of a unity, linear independency and nested property are proved in
Lemmas 1 and 2. �

Lemma 1. The functions in H form a partition of unity:
β∈H l

β = 1 on Ω0, l = 0, 1, . . . , L.

Proof. We recall that Loop basis functions B l form a partition of unity
β∈Bl

β = 1 on Ω0, l = 0, 1, . . . , L. (15)

The partition of unity can be shown by induction on the hierarchical level l. The base case simply follows from (15) with
l = 0. The inductive step

β∈H l

β = 1 ⇒


β∈H l+1

β = 1

can be proved by re-arranging the sums as follows.

1 =


β∈H l

β =


β∈H l


τ∈Bl+1

c l+1
τ (β)τ

=


β∈H l

 
τ∈Bl+1

supp τ⊆Ωk+1

c l+1
τ (β)τ +


τ∈Bl+1

supp τ ⊈Ωk+1

c l+1
τ (β)τ



=


β∈H l

 
τ∈Bl+1

supp τ ⊈Ωk+1

c l+1
τ (β)τ

 +


τ∈Bl+1

supp τ⊆Ωk+1


β∈H l

c l+1
τ (β)

 τ . (16)
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The term in brackets in the first sum of the last equation is just truncl+1τ . Moreover, by (15) and by swapping the order of
sums in the first line of (16), we have


β∈Bl+1

β = 1 as well as 1 =


τ∈Bl+1


β∈H l

c l+1
τ (β)

 τ .

By comparing coefficients and by the linear independence of the Loop basis functions we can conclude that
β∈H l

c l+1
τ (β) = 1

for all τ ∈ B l+1 and in particular for each τ such that supp τ ⊆ Ωk+1. From (16), we then obtain

1 =


β∈H l

truncl+1β +


τ∈Bl+1

supp τ⊆Ωk+1

τ =


τ∈H l+1

A

τ +


τ∈H l+1

B

τ =


τ∈H l+1

τ . �

Lemma 2. The functions in H are linearly independent.

Proof. We use recursion to prove this lemma. It is easy to verify that the basis functions associated withM0 and the domain
Ω0 are linearly independent, since Loop basis functions are linearly independent. Then we assume that the functions in H i

hold for levels up to l, which implies
β∈H l

cβ β = 0 ⇔ cβ = 0, for all β ∈ H l. (17)

For the level l + 1 case, suppose


β∈H l+1 cβ β = 0. According to Definition 2, H l+1
= H l+1

A ∪ H l+1
B , we have

β∈H l+1
A

cβ β +


β∈H l+1

B

cβ β = 0. (18)

Notice that the basis functions β ∈ H l+1
B form the refinement domain Ω l+1, and vanish on the domain Ω0

\ Ω l+1. Hence
on Ω0

\ Ω l+1, Eq. (18) is simplified as
β∈H l+1

A

cβ β = 0. (19)

According to (10), truncl+1τ is different from τ only in the refined domain Ω l+1 and stays the same in Ω0
\ Ω l+1, that is,

β = truncl+1τ = τ on Ω0
\ Ω l+1, for any β ∈ H l+1

A and τ ∈ H l
\ H l

r . By plugging it into (19), we obtain
β∈H l+1

A ,β=truncl+1τ ,τ∈H l\Hr

cβ τ = 0.

In view of the assumption (17), therefore we have cβ = 0, for β ∈ H l+1
A .

On the domain Ω l+1, Eq. (17) is left with one term


β∈H l+1
B

cβ β = 0 because of the truncation. Now the basis functions

in H l+1
B are standard Loop basis functions, so it is obvious that they are linearly independent. Thus we have cβ = 0, for

β ∈ H l+1
B .

To sum up, we obtain cβ = 0, for β ∈ H l+1. The lemma is thus proved. �

In the following, we theoretically study the geometry preservation of THLSS during h-refinement. THLSS construction
starts with an initial Loop control mesh, denoted as M0. We define a sequence of Loop control meshes M0, . . . , MN .
Ml(0 ≤ l ≤ N) is generated by l subdivisions of M0, and we denote the surface obtained from M0 as S0loop. Recall that
evaluation of each Ml gives the same Loop surface, S lloop = S0loop(l = 0, . . . ,N). After recursive construction, THLSS contains
hierarchical levels up to N . Denote the surface evaluated with the THLSS basis functions as SNTHL. Geometry preservation
means that SNTHL = SNloop = S0loop.

Proposition 1. Given an initial valid Loop control mesh M0 and corresponding Loop surface S0loop, the THLSS surface obtained at
levels up to N (SNTHL) is exactly the same as the Loop surface evaluated after N subdivisions (SNloop). We have SNTHL = SNloop = S0loop.

Proof. We prove the proposition using recursion as in [19]. It is trivial to verify the initial step since no local refinement is
performed. The THLSS basis functions and control mesh are exactly the same as the Loop basis functions and control mesh
M0, we have S0THL = S0loop.
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Nowweassume that the proposition holds for Level l, 0 ≤ l ≤ N . This assumptionmeans that the THLSS surface evaluated
with levels up to l is the same as the Loop surface evaluated after l times of subdivision with the control mesh Ml, we have

S lTHL = S lloop =


i∈I l

P l
iB

l
i = S0loop, (20)

where I
l
is an index set denoting all the Loop basis functions in Ml and Bl

i is the ith Loop basis function at level l. Among
them, the THLSS basis functions H l at level l are denoted as an index set I l ⊆ I

l
. The set I

l
\ I l denotes the basis functions in

Ml that are not the level l THLSS basis functions. Eq. (20) can be rewritten as

S lTHL =


i∈I l

P l
iB

l
i +


i∈I l\I l

P l
iB

l
i. (21)

During the construction of THLSS from level l to l + 1, we perform refinement on the to-be-refined basis functions (H l
r

with the index set Rl) and truncation on the to-be-truncated basis functions (H l
t with the index set K l). We have Rl

⊆ I l and
K l

⊆ I l. Therefore in (21) only the first term on the right needs to be updated. Then, the THLLS surface is evaluated as

S l+1
THL =


j∈I l+1

P l+1
j Bl+1

j +


i∈K l

P l
i trun

l+1Bl
i +


i∈I l\(K l∪Rl)

P l
iB

l
i +


i∈I l\I l

P l
iB

l
i,

=


j∈I l+1

P l+1
j Bl+1

j +


i∈K l

P l
i trun

l+1Bl
i +


i∈I l\(K l∪Rl)

P l
iB

l
i, (22)

where I l+1 is the index set of all the THLSS basis functions at level l + 1 (denoted as H l+1
a ).

In the following, we check each term in (22). In the first term on the right, P l+1
j at level l + 1 can be derived from P l

i via
the subdivision matrix A in (14) and we have

P l+1
j =


i∈I l

cijP l
i for j ∈ I l+1. (23)

Note that (23), cij = 0 if i ∈ I
l
\ (K l

∪ Rl). We now check the children term of (22) on the right. According to (9), we can
represent Bl

i using their children,

Bl
i =


j∈I l+1

\I l+1

cijBl+1
j for i ∈ I

l
\ (K l

∪ Rl). (24)

This implies that for the basis function Bl
i with i ∈ I

l
\ (K l

∪Rl), its children are not active THLSS basis functions at level l+1.
The other Bl

i with i ∈ K l
∪ Rl can be either to-be-refined or truncated basis functions. The truncated basis functions in the

second term of (22) can be expressed as

truncl+1Bl
i =


j∈I l+1

\I l+1

cijBl+1
j for i ∈ K l. (25)

Note that in (25) also holds when i ∈ Rl because all the children Bl+1
j = 0 when j ∈ I

l+1
\ I l+1. Therefore in (25), we replace

i ∈ K l with i ∈ K l
∪ Rl. Then, we plug Eqs. (23)–(25) into (22) and obtain

S l+1
THL =


j∈I l+1


i∈I l

cijP l
iB

l+1
j +


i∈K l∪Rl


j∈I l+1

\I l+1

P l
i cijB

l+1
j +


i∈I l\(K l∪Rl)


j∈I l+1

\I l+1

cijBl+1
j P l

i

=


j∈I l+1


i∈I l

cijP l
iB

l+1
j +


i∈I l


j∈I l+1

\I l+1

cijBl+1
j P l

i

=


j∈I l+1


i∈I l

cijP l
iB

l+1
j

=


j∈I l+1

P l+1
j Bl+1

j = S l+1
loop = S0loop. (26)

Eq. (26) indicates that the proposition also holds for level l + 1. Therefore, it holds for all the level up to N , and we have
SNTHL = SNloop = S0loop. �
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Based on this proposition, we can conclude that THLSS preserves geometry and a THLSS surface inherits the continuity
of the Loop subdivision surface, namely C2-continuity everywhere except G1 around extraordinary nodes.

4. Numerical experiment

In this section, we perform adaptive isogeometric analysis using THLSS basis functions. First we briefly introduce the
model problem, then give several numerical examples to demonstrate the approximation power of THLSS on solving
PDEs. We compare the error estimate from FEM with linear elements, Loop basis functions and THLSS in the first three
examples.

4.1. PDE model problem

Themodel problemweconsidered is a Poisson equationdefinedon amanifold surface S ⊆ R3 with theDirichlet boundary
condition, which is defined as follows:

−1Su = f on S
u = g on Γ (27)

where Γ = ∂S and f ∈ L2(Ω).
Suppose the physical domain S is parameterized by THLSS, defined as

G(v, w) = (x, y, z)T =

m
i=1

Piβi(v, w), (28)

where (v, w) ∈ Ω , (x, y, z) ∈ S, Pi ∈ R3 and βi, i = 1, 2, . . . ,m are THLSS basis functions. The numerical solution uh is
expressed as

uh(x, y, z) =

m
i=1

ci βi ◦ G−1
=

m
i=1

ciĜi(x, y, z), (29)

where ci ∈ R, i = 1, 2, . . . , n (n < m) are fixed coefficients and ci ∈ R, i = n + 1, 2, . . . ,m are unknown. Then the IGA
approximation of problem (27) is to find uh such that for all v ∈ V h

a(uh, v) = F(v), (30)

where a(u, v) =

S ∇u · ∇v ds, F(v) =


S f v ds and V h is a finite dimensional subspace defined as

V h
= span{Ĝi(x, y, z)| Ĝi(x, y, z) = βi ◦ G−1, i = n + 1, . . . ,m}.

Problem (30) is equivalent to solving the following linear system

LC = R, (31)

where L is a (m − n) × (m − n) matrix with the element Lij = a(Ĝi, Ĝj), R is a (m − n)-dimensional column vector with the
element Rj = F(Ĝj) − a(

n
i=1 ciĜi, Ĝj), j = n + 1, . . . ,m, and C = (cn+1, . . . , cm)T .

The L2-norm error between the exact solution u and the numerical solution uh defined as in (29) is defined as eh =

(

S |uh − u|2ds)1/2. Q. Pan et al. [28] gave a L2-norm error estimate of IGA method with Loop subdivision

∥u − uh∥L2(S) ≤ Ch2, (32)

where C is a constant independent of u and h, and h indicates the global mesh size h = max{hT |T ∈ Ml
}, hT is the diameter

of the element T . The convergence rate is defined by CR =
elh

el+1
h

, where elh is the L2-norm error at level l. If uniform refinement

is performed, according to (32), the optimal convergence rate of IGA method with Loop subdivision should be four.
From (32), we see that the IGA method with Loop subdivision has the same order of the L2-norm error estimate as that

of the FEAmethod with linear elements, which is O(h2). Additionally, FEA with linear elements is the most common used in
industry. So in the following numerical examples, we always compare the error estimate and convergence rate at each level
from THLSS, Loop subdivision and FEA with linear elements. We start from the same initial mesh. Uniform refinement is
performed on Loop subdivision and FEAwith linear elements, while adaptive refinement is performed on THLSS. Four Gauss
points integral scheme is used for integral over elements.
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Fig. 7. (a) L-shape domain. (b) Convergence rate plot.

Table 1
Comparison of linear elements and Loop subdivision.

Vertices eh (linear) CR eh (loop) CR

119 0.09127 5.3965e−2
429 0.03318 2.7510 7.727e−3 6.9840

1625 0.01031 3.2182 1.6699e−3 4.6272
6321 0.002861 3.6027 4.0729e−4 4.1000

4.2. Convergence rate test

In the following, we give an example to compare the convergence rates of linear element space and THLSS (Loop) spline
space. We consider the Poisson equation on a planar L-shape domain as shown in Fig. 7(a). The exact solution u is chosen as
u(x, y) = sin(πx) sin(πy) and the right term f is derived by the problem (27).

Fig. 7(b) shows the convergence plot of Loop subdivision and FEA with linear elements. As in the planar domain case, the
approximation error from Loop subdivision is much smaller than that from FEMwith linear elements with the same degree
of freedom. The convergence rate of Loop subdivision is faster than FEA with linear elements. Table 1 shows the results of
L2-norm error estimate.

4.3. Adaptive refinement with THLSS

Now, we perform the framework for adaptive refinement with THLSS. We start from an initial valid control mesh M0.
The Poisson equation is defined on the limit Loop surface S of M0. Adaptive refinement is performed. Since THLSS preserve
geometry, the domain S will not change during the refinement. At each refinement step the basis function with the largest
error is identified to be refined. Its two-ring neighboring elements are then identified and refined. Hereweuse the basis-wise
error Err(β l

i ) instead of element-wise error, which is defined as,

Err(β l) =


Ω l

j⊆suppβ l

Err(Ω l
j ), (33)

where β l is a THLSS basis function at level l and Err(Ω l
j ) is the error on a element which is obtained with the aid of so-called

bubble functions [8].
We consider the Poisson equation on a planar L-shape domain as shown in Fig. 7(a). The exact solution u is chosen as

u(x, y) = (x3−x)(y3−y)/((x+0.5)2+(y+0.5)2+0.001) and the right term f is derived by the problem (27). The considered
L-shape domain is a planar domain with boundary. The Loop basis functions defined on an open surface should be carefully
treated because of the boundary. We omit the detailed construction and refer the reader to [28] for a reference. We start
from an initial valid control mesh shown in Fig. 8(a), which clearly has a lot of sharp triangles which are not welcomed in
FEA. The valence of the control vertices varies from 4 to 9. The exact solution for this example is also a smooth function, but
it decays quickly away from the peak, thus it has a large gradient near (−0.5, −0.5). We approximate it by solving problem
(27) based on FEA with linear elements, Loop subdivision and THLSS. Fig. 8(b) and (d) show the three adaptive refinement
levels of THLSS, where the red triangles form the refinement area. It is worth noting that the numerical solutions quickly
capture the peak as the refinement proceeds. The number of basis functions and corresponding error at four levels are shown
in Table 2. we see that the error range is decreased quickly as the mesh refinement procedure going on.

The L2-norm error estimate statistics from FEA with linear elements, Loop subdivision and THLSS is shown in Table 2.
Fig. 9 shows the plot of L2-norm error with respect to the degree of freedom. For this example, the error from IGA with
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Fig. 8. Adaptively refined control meshes when solving Poisson equation over a planar L-shape domain. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Convergence rate plot for THISS.

Table 2
Error comparison of three kinds of spaces.

Level Vertices eh (linear) CR (linear) eh (loop) CR (loop) DOF (THLSS) eh (THLSS)

0 119 1.40375 1.65121 119 1.65121
1 429 1.00925 1.3909 1.00325 1.6459 167 0.89298
2 1625 0.438298 2.3027 0.498471 2.0127 242 0.42071
3 6321 0.0635495 6.8970 0.0958274 5.2018 464 3.50611e−3

Loop subdivision is similar with that from the FEM with linear elements at the same level and the two convergence plot
almost overlap. But the error from IGA with THLSS is much smaller than that of both linear elements and Loop subdivision.
Furthermore, to achieve the samemagnitude of error estimate, THLSS needs much fewer basis functions. From Fig. 9, THLSS
have a much faster convergence rate owing to the adaptive refinement. This example indicates that THLSS can improve the
numerical solution significantly when the given mesh is not good enough or with extraordinary vertices.

4.4. Complex models

Finally the Poisson problem on complex geometries without boundary is solved. For convenience, we restrict ourself
to the case f = 0 of problem (27), which is called Laplace equation. We imposed Dirichlet boundary conditions on several
patches to obtain a non-zero numerical solution.We consider the Poisson equationwith right term f = 0 (Laplace equation)
on three models: kitten model (genus-1 model) (Fig. 10), hand model (Fig. 11) and bunny model (Fig. 12).

Table 3 summarizes the statistics of each model. In Figs. 10–12(a), the areas where the Dirichlet boundary conditions are
applied are indicated by the arrows. Figs. 10–12(b) display the simulation results on the initial valid controlmeshes, whereas
Figs. 10–12(c) show the results after global refinement steps. Figs. 10–12(d) shows the results after local refinement. Invalid
elements exist in these three models and the input meshes need to be preprocessed. From Figs. 10–12, we can observe
that the proposed THLSS method works robustly for complex geometries, which provides a potential wide application in
isogeometric analysis with extraordinary nodes involved.
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Fig. 10. Solving Laplace equation over a Kittenmodel. (a) Input quadrilateral meshwith boundary conditions; and (b, c, d) simulations results on the initial
valid control mesh and the control mesh after three levels refinement.

Fig. 11. Solving Laplace equation over a Handmodel. (a) Input quadrilateral mesh with boundary conditions; and (b, c, d) simulations results on the initial
valid control mesh and the control mesh after three levels refinement.

Fig. 12. Solving Laplace equation over a Bunny model. (a) Input quadrilateral mesh with boundary conditions; and (b, c, d) simulations results on the
initial valid control mesh and the control mesh after three levels refinement.

Table 3
Statistics of all the tested models.

Models Nodes Elements Extra Levels

Kitten 400 800 55 3
Hand 402 800 62 3
Bunny 1002 2000 166 3

5. Conclusion and future work

In this paper we propose Truncated Hierarchical Loop Subdivision Surface (THLSS), which generalizes truncated
hierarchical B-splines to triangular mesh of arbitrary topology. THLSS basis functions are linearly independent, form a
partition of unity and support local refinement. THLSS also preserves geometry during adaptive h-refinement and thus
inherits the surface continuity of Loop subdivision surface. Adaptive isogeometric analysis is performed with THLSS basis
functions on several complex models with extraordinary vertices. From the numerical results, it shows IGA with THLSS
has a faster convergence rate than both FEA using linear elements and Loop basis functions owing to the local refinement.
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Furthermore, THLSS can significantly reduce the degree of freedomwhen obtaining the samemagnitude of error estimate. In
the future, wewill address the numerical integral scheme over irregular patch and extend themethod of THLSS construction
to tetrahedral elements.
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