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ABSTRACT

We present a new shape representation, the implicit PHT-
spline, which allows us to efficiently reconstruct surface mod-
els from very large sets of points. A PHT-spline is a piece-
wise tricubic polynomial over a 3D hierarchical T-mesh, the
basis functions of which have good properties such as non-
negativity, compact support and partition of unity. Given a
point cloud, an implicit PHT-spline surface is constructed by
interpolating the Hermitian information at the basis vertices
of the T-mesh, and the Hermitian information is obtained
by estimating the geometric quantities on the underlying
surface of the point cloud. We use the natural hierarchical
structure of PHT-splines to reconstruct surfaces adaptively,
with simple error-guided local refinements that adapt to the
regional geometric details of the target object. Unlike some
previous methods that heavily depend on the normal infor-
mation of the point cloud, our approach only uses it for
orientation and is insensitive to the noise of normals. Ex-
amples show that our approach can produce high quality
reconstruction surfaces very efficiently.

Categories and Subject Descriptors

1.3.5 [Computer Graphics|: Computational Geometry and
Object Modeling—boundary representations, curve, surface,
solid, and object representations, splines
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1. INTRODUCTION

Point-sampled geometry has received an increasing inter-
est in the past decade, and a lot of research has been devoted
to its efficient representation, modeling, processing and ren-
dering. There are two main reasons for this: the needs of
industry and the convenience of acquisition. On one hand,
with the development of modern industry, high quality sur-
faces and aesthetics of CAM products are being required in
many industries, such as jewelry and automobile industries,
where free-form surfaces are usually used. In order to de-
sign these surfaces, some physical media such as clay models
are first designed for data scanning. Meanwhile, some ex-
isting models and products with complicated surfaces need
to be reproduced. As a first step in converting a prototype
into a computer model for subsequent CAD/CAM process-
ing, point clouds are generated with the coordinates of each
point captured from the surfaces of existing objects. On
the other hand, modern three-dimensional (3D) digital pho-
tography systems and 3D range scanning devices acquire
geometry of complex and real-world objects conveniently.
These techniques generate huge volumes of point samples,
which constitute the discrete building blocks of 3D object
geometry.

1.1 Related work

Converting a point-sampled representation of an object
into a more compact one, such as a triangle mesh, a collec-
tion of parametric patches, or the zero level set of a function,
is known as surface reconstruction. The main difficulties of
surface reconstruction in practice come from the potentially
complicated topology, regional geometric details, huge num-
bers, non-uniformity and noise of unorganized points. The
problem of surface reconstruction from point clouds has re-
ceived much attention in the computational geometry and
computer graphics communities, and various methods have
been developed to solve the problem that depend on the
properties of the input, the desired output, the philosophy of
the user, and so on. A recent survey of the methods is avail-
able in the literature of Point-based Graphics [16], which are
mainly classified into Voronoi-based methods, surface evo-
lution methods, and implicit function methods.

Algorithms for surface reconstruction developed in the
computational geometry community are based on the Voronoi



diagram [2] that decomposes a 3D space into convex polyhe-
dra. Dual of Voronoi diagram, the Delaunay triangulation,
establishes topological connections between sample points
and then a subset of the resulting simplices is filtered out
to be the reconstructed mesh. These schemes, such as De-
launay triangulations [6], alpha-shapes [14], power crust [3],
come with theoretical guarantees of correct reconstruction
if the sample meets certain conditions (dense and noiseless).
Some recent work [8, 12, 18] addressed the issue on noisy
and non-uniform samples.

The level-set method was applied to surface reconstruc-
tion in [42], where the problem is formulated in terms of
a partial differential equation(PDE) describing the surface
evolution. The method is computationally expensive due to
solving a nonlinear PDE. In [39, 40], evolution of T-spline
level sets with distance field constraints is developed to re-
construct a base surface from unorganized data points. From
the extracted mesh of the base surface, an additional evo-
lution process which combines a data-driven velocity and a
bilateral filtering, is employed to reproduce detailed features
of the target shape. Recently, Gauss-Newton type method
for fitting implicitly defined curves and surfaces to given
data is presented in [1], which can also be viewed as the dis-
crete iterative version of a time-dependent evolution process.
Generally, evolution methods are computationally expensive
and the convergence of the evolution is not guaranteed.

Implicit surfaces are very popular in surface reconstruc-
tion. In these methods, the reconstructed surface is defined
as the zero level set of a function that is designed to be neg-
ative inside and positive outside of the object. The signed
distance function to the underlying surface of a given point
set is one possible candidate for the implicit function. In [17]
a signed distance function is estimated as the distance to
the tangent plane of the closest point. Curless and Levoy [9]
blended the directional distance associated with each range
scan, using Gaussian weights to form the implicit function.
In [19], an approach for fitting implicitly defined algebraic
spline surfaces to scattered data is presented, which simulta-
neously approximate points and associated normal vectors.
This approach is generally not very efficient since a large sys-
tem of linear equations has to be solved. An improvement
of this method is to adaptively select knots such that the
reconstruction surface fits the point cloud adaptively [34].
In [37, 7, 13, 38], an implicit function is constructed with
polyharmonic radial basis functions (RBFs) [31], by plac-
ing zero constraints at each input point and also a pair
of non-zero constraints at “offset-surface” points. However,
the ideal RBF's are globally supported and non-decaying, so
the matrix of the linear system is dense and ill-conditioned.
Morse et al. [27], Kojekine et al. [22] and Ohtake et al. [30]
employed compactly supported RBFs to reduce the com-
putation and speed up the reconstruction process. In [29],
Ohtake et. al. proposed the multi-level partition of unity
method called MPU to reconstruct samples with huge num-
ber of data points. The idea is to break the data domain into
sub-domains, fit a local shape function to the data in each
sub-domain separately and then blend the local shape func-
tions with auxiliary weights. MPU is quite fast, but results
in a reconstruction with complicate expressions and possibly
generates extra zero set for noisy data. An improvement is
to apply a laplacian smoothing for the gradient vector fields
of the reconstruction surface to obtain a noise robust surface
reconstruction [28].
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Besides signed distance functions, indicator functions are
often used in surface reconstruction. Points equipped with
oriented normals can be viewed as samples of the gradient
of an indicator function [20, 21, 25]. In [20], Fourier series
are used to represent indicator functions. However, com-
puting Fourier coefficients requires a summation over all the
samples because of the globally supported basis functions,
and the method needs also a huge amount of memory due
to the use of uniform grid. The Fourier series approach was
then improved in [21], where computing the desired indica-
tor function leads to a Poisson problem. The Poisson prob-
lem admits a hierarchy of locally supported functions, and
therefore the problem is reduced to solving a sparse linear
system. Poisson reconstruction can create smooth surfaces
that robustly approximate noisy data. However, it also has
to solve a large linear system and is sensitive to the noise
of normals. In [25], wavelet bases are used to represent the
indicator function and a streaming surface reconstruction
using wavelets is proposed. Due to the multiresolution na-
ture of wavelets, the wavelet method can reconstruct sur-
faces very efficiently and process extremely large data set.
The smoothness and the quality of the reconstructed surface
depend on the selected basis functions.

1.2 Contributions

In the current paper, we propose an adaptive surface re-
construction algorithm based on implicit PHT-splines. Sim-
ilar to MPU [29], our implicit PHT-spline representation
could be viewed as an adaptive signed distance fields [15]
with the difference that our representation is globally C*
continuous and of Hermite interpolation. We approximate
the target geometry of a point cloud with an implicit surface
of polynomial splines over 3D hierarchical T-mesh, which
is constructed adaptively by error-guided local refinements.
In each progressive level, the PHT-spline function is deter-
mined by interpolating the Hermitian information at the
basis vertices of the hierarchical T-mesh, and the Hermi-
tian information at the basis vertices is obtained from the
geometric quantities on the underlying surface of the point
cloud. Our approach has following major advantages:

o A new shape representation, the implicit PHT-spline
surface, is presented. The PHT-spline provides a uni-
fied representation in piecewise polynomials that auto-
matically maintains a global C* continuity, and which
is more convenient for subsequent processing than other
methods.

o A PHT-spline function in each cell is a tricubic poly-
nomial which has strong capability to capture geomet-
ric details. The architecture of PHT-splines holds a
natural hierarchical structure that is simple for local
refinements and particularly suitable for adaptive de-
scription of the target geometry.

¢ Our algorithm adaptively produces a hierarchical T-
mesh, in which the number of basis vertices is roughly
one-third of the number of cells. In the reconstruction
process, we only have to estimate the Hermitian in-
formation at the basis vertices instead of fitting local
shape to data points in each cell. Thus our approach
is very efficient both in spatial and temporal cost.

¢ Our algorithm uses the normal information only for
orientation, i.e., inside-outside orientation of the sur-



face. Thus it has less dependency on the normal infor-
mation and is robust in the presence of noisy normals.

The paper is organized as follows. In section 2.1, a novel
shape representation called implicit PHT-spline surface is
introduced to describe the target geometry. Then in sec-
tion 2.2, an optimization model is proposed to compute
geometric quantities on the underlying surface of a point
cloud. In section 3, we present the main approach on the
adaptive surface reconstruction algorithm based on implicit
PHT-splines. In section 4, we give implementation and com-
parison details and demonstrate our approach through var-
ious examples to illustrate the effectiveness of the proposed
method. Finally, we conclude the paper with some future
research problems.

2. PRELIMINARIES

Implicit shape representations are attractive because they
provide the capability to describe objects of complex topol-
ogy while avoiding a problematic parametrization of the tar-
get geometry, and many geometric operations such as inter-
section and union, are easy to perform on such models [5].
It is being increasingly recognized that a set of modeling
and animation techniques based on implicit representation
exhibit much more advantages over other representations.

One preferred choice of implicit representations is alge-
braic spline surfaces which are defined as the zero level set
of a tensor-product spline [19]. Such representation offers
several advantages, such as a compact and analytic expres-
sion, global smoothness, efficient evaluation and sufficient
flexibility for subsequent processing. However, algebraic
tensor-product B-spline surfaces suffer from the weakness of
superfluous control coefficients and the difficulties in local
refinement and adaptivity. To eliminate superfluous control
points in tensor-product B-spline (or NURBS), Sederberg
et.al. [33, 32] invented T-spline, a rational spline defined over
a T-mesh which supports many valuable operations within
a consistent framework. Recently, Deng et al. introduced
polynomial splines over hierarchical T-meshes (called PHT-
splines) which have more ability in local shape control [10,
11]. PHT-splines are then applied in surface fitting [11, 23]
and signed distance field approximation of closed parametric
curves [35]. In this paper, we generalize the notion of PHT-
splines to 3D space and apply its implicit form in surface
reconstruction.

2.1 Polynomial splines over 3D hierarchical
T-meshes

Given a rectangular domain in 2D space, a T-mesh is a
rectangular partition of the domain, where T-junctions are
allowed. As a natural extension of 2D T-mesh, a 3D T-
mesh is basically a partition of a cube Q C R3, where the
partition planes are parallel to the faces of the cube. Instead
of considering general T-meshes, we restrict our attention
to hierarchical T-meshes which have a nested structure. A
hierarchical T-mesh starts with a tensor-product mesh .
Denote the T-mesh at level k by J. For any k > 0, some
selected cells of level k are subdivided equally by three planes
parallelling to xoy, yoz and zoz, into eight sub-cubes which
are labeled as the cells of level £ + 1. Figure 1 shows an
example of 2D hierarchical T-mesh.

Given a 3D hierarchical T-mesh 7, denote ® the set of
all the cells in 7. We define a tricubic polynomial spline
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Figure 1: A 2D hierarchical T-mesh (From left to
right are level 0, level 1 and level 2, the red squares
denote the basis vertices).

space over .7 as

S(3,3,3,1,1,1, 7) := )
{5(9571%2) € Cl,l’l(Q)|S(x7yaz)|¢ € ]I1753,3,37v§ZS € ¢} ’

where P33 3 is the space of all polynomials in three vari-
ables with tri-degree (3, 3, 3), and C***(Q) is the space con-
sisting of trivariate functions that are C'! continuous along
z,y, z directions in 2, respectively. It is easy to see that
S(3,3,3,1,1,1,.7) is a linear space whose dimension [10] is

dim$(3,3,3,1,1,1,.7) =8(V' + V1), (2)

where V? and V' represent the number of boundary vertices
and interior crossing vertices in the T-mesh 7, respectively.

The dimension formula in Eq. (2) gives us a hint on how
to construct basis functions of the spline space: each bound-
ary vertex or interior crossing vertex should associate with
eight basis functions. The boundary vertices and the in-
terior crossing vertices are called basis vertices of the T-
mesh. The strategy for constructing basis functions pre-
sented in [11] for polynomial splines over 2D hierarchical
T-meshes can be directly extended to construct the the ba-
sis functions of the spline space S(3,3,3,1,1,1,.7). For each
basis vertex, eight bases are constructed, and all the basis
functions hold good properties, such as nonnegativity, lo-
cal support and partition of unity. Figure 2 shows a basis
function of 2D PHT-spline associated with a basis vertex.
Let {x; Y . be the basis vertices of a 3D hierarchical T-

Figure 2: A basis function of 2D PHT-spline associ-
ated with the vertex (1,1).

mesh 7, and {b"(z,y, z)}lyz’sl,j:l be the basis functions of
S(3,3,3,1,1,1,.7). Then a polynomial spline over 3D hi-
erarchical T-mesh .7 (called a 3D PHT-spline) is defined
by

\% 8
f@y,2) =Y Cib?(x,y,2), (2,9,2) €9, (3)
i=1 j=1

where {C};} are control coefficients. To efficiently manipu-
late and evaluate a PHT-spline, we introduce a Hermitian



information operator H.:

Hf(l‘,y7 Z) = (f7 fzafyvaafzyu.fyZafzzafryZ)~ (4)

At a fixed basis vertex (zo, Yo, 20), Hb(zo, Yo, 20) = 0 holds
for all the basis functions b(z,y, z) except the eight basis
functions associated with the basis vertex (zo, Yo, 2z0). Since
the operator # is linear, for any fixed basis vertex x;,, we
have

where C;, = (C’iol, -+, Ci8) is a 1 x 8 control coefficient
vector, B = (Hb"!(x;,)7, - , Hb®¥(x;,)T)7T is a 8 x 8 ma-
trix, and Hf(xi,) is the Hermitian information vector of
f(z,y,z) at the basis vertex x;,. Since the matrix B is in-
vertible and we get

Cio = Hf(XiO)B_17 (6)

which reflects the relationship between the control coeffi-
cients of a PHT-spline function and its Hermitian informa-
tion at the basis vertices. Thus once we know the Hermitian
information at the basis vertices, the PHT-spline represen-
tation of the reconstruction surface can be recovered.

2.2 Geometric quantities on the underlying
surface

A point cloud is assumed to imply an underlying shape.
In this subsection, we present an optimization model to
compute the geometric quantities on the underlying surface,
which will be employed in estimating the Hermitian informa-
tion at the basis vertices of T-mesh to construct an implicit
PHT-spline surface.

It is well known that the geometric (differential) quan-
tities provide convenient bases for characterizing the local
behavior of a shape in the vicinity of a particular point.
By using the algorithm of moving parabolic approximation
(MPA) [41], we can compute the location of the underlying
surface of unorganized points and simultaneously estimate
the differential quantities of the surface. The main observa-
tion of MPA is to locally approximate a given point cloud by
an osculating paraboloid, and then recover the differential
properties of its underlying surface. Suppose that S is the
underlying surface of a point cloud P = {p;}}_;. Let r be a
reference point in the close neighborhood of the given point
cloud, and let the foot-point of r on the underlying surface
be denoted as

o=r+¢n, (7)

where n is the unit normal to S, and £ is the signed distance
from r to o along n. We aim to compute the foot-point o
and the differential quantities of the underlying surface at
the foot-point. Let {u(n),v(n)} be the perpendicular unit
basis vectors of the tangent plane, so that {o;u,v,n} forms
a local orthogonal coordinate system. Writing q; = p; —r,
we formulate the MPA model as a constrained optimization:

min - Q(n,¢,a,b,¢) = 3 [afn — £~ 5 (a(a]w’
+2b(qfu)(qfv) + C(Q?V)Q)} 2 G_E;i” (8)

st. nfn—1=0,
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where (n,&,a,b,c) are decision variables and p is a scale
parameter. Figure 3 illustrates the MPA model for curve
case and shows its output and the geometric quantities on
the underlying curve.

Given data points
o Reference point
Normal vector
Tangent line
Osculating parabola
*  Foot—point on the underlying curve
n n n

Figure 3: The MPA model for a 2D curve.

To solve the optimization problem in Eq. (8), we start with
an initial guess provided in [41], and generally the solution
can be obtained within three or four steps of iteration. From
the optimal solution (n*,£*,a*,b",c") of the MPA model,
we immediately get the geometric quantities on the under-
lying surface, such as the foot-point, the normal vector and
the curvature properties. Then we can deduce the Hermi-
tian information at the basis vertices from these geometric
quantities, and thus an implicit PHT-spline is determined.

3. APPROACH

Given a set of points P = {p1,---,pn} in R3, our goal
is to generate a 3D PHT-spline function f(z,y,z) whose
zero level set gives a good approximation to the underlying
surface S. Intuitively, we wish the PHT-spline function to
approximate the signed distance field as accurate as possible
in the vicinity of S, while the approximation can be rough
far away from S. Our scheme is to recursively construct a
hierarchical T-mesh with simple and error-guided local re-
finements that adapt to the target geometric details, and
to determine the PHT-spline by estimating the Hermitian
information at basis vertices. The reconstruction benefits
from the properties of PHT-splines, such as the hierarchical
structure for adaptivity, the basis functions with nonnega-
tivity, local support and partition of unity.

3.1 Adaptive implicit PHT-spline surface
approximation

The algorithm of constructing an implicit PHT-spline sur-
face approximation is driven by the construction of a hier-
archical T-mesh. At level 0, we start with a tensor-product
mesh %) that encompasses the given point cloud. Sup-
pose that the number of partitions in three directions along
the coordinate axes is mgs,my, m. respectively, and mg
max(mg,my, m.) can be used to control the size of cells in
the initial T-mesh. A small mo gives a rough approxima-
tion while a larger mo yields a better initial approximation.
In the initial T-mesh .7, all vertices are the basis vertices.



Figure 5: Adaptive reconstruction of Igea model, from left to right are the intermediate results at level 0 to
level 5. The leftmost is the T-mesh at level 0 with which there is no surface generated.

Figure 4: Left: a set of points with normals from
letter ‘R’; Middle: the signed distance function and
the zero level set; Right: the hierarchical T-mesh
and the reconstructed implicit PHT-spline curve.

By calculating the Hermitian information at all the basis
vertices, an initial PHT-spline function f[o](a:, y, z) is deter-
mined. From the level £ = 0, the procedure repeats the
following two steps until no cell needs to be subdivided or
the level counter reaches a preset value:

1) Subdivide the cells of level k in which the approxima-
tion errors are larger than some given threshold. The
refinement criterion is specified in Eq. (9). Label the
new subcells as the cells of level k + 1, and form a hi-
erarchical T-mesh Z%41 at level k + 1.

Find out all the new basis vertices in J5+1. Calculate
the Hermitian information at each new basis vertex ac-
cording to Eq. (10) or Eq. (12). Then the PHT-spline
function f*+(z,y, 2) at level k41 is constructed from
Eq. (6). Set k:=k + 1.

For the first step, the refinement criterion for the sub-
division of cells is constructed as follows. Let ¢ be a cell
at level k, and c be the center and A% be the size of the
cell. If the number of points contained in the cell is less
than Nmin (Nmin = 6 in our implementation), the cell will
not be subdivided. Otherwise, a local approximation error
is estimated according to the Sampson distance [36] and is
compared with a user-specified threshold value ¢y, i.e.,

L™ ()

max e > €. (9)
||pich<§A(k‘) ||Vf[k] (pl)”

If Eq. (9) holds, the cell is subdivided; Otherwise, it is not
subdivided. Figure 4 illustrates a 2D curve reconstruction
example, where the resulting hierarchical T-mesh is provided
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to demonstrate how the error-guided adaptive reconstruc-
tion works. Figure 5 shows a sequence of implicit PHT-
spline surfaces that are reconstructed adaptively.

3.2 Hermitian information estimation

For the second step of the adaptive implicit PHT-spline
surface approximation, we are required to obtain the Hermi-
tian information at the newly generated basis vertices of the
hierarchical T-mesh. Our strategy to estimate the Hermitian
information will be in accordance with the distance from the
basis vertex to the underlying surface. If the basis vertex is
far away from the underlying surface, then the Hermitian
information is approximated by using planar fitting tech-
nique; otherwise, Moving Parabolic Approximation(MPA)
algorithm is applied. The two techniques respectively pro-
vide a first order and a second order approximation of the
signed distance function.

Given a preset distance § which is usually set to be 2%
of the diagonal length of the domain 2 in our implementa-
tion, for a basis vertex x; in the hierarchical T-mesh, we first
compute its nearest point r; € P in the point cloud, and let
d; = x; —r;. If ||ds]| > 6, the basis vertex x; is considered
to be far away from the surface. Otherwise, x; is assumed
to be close to the surface. At a far-away basis vertex x;, we
denote h = (h, ha, hy, hz, hay, hyz, hze, haoyz) be the approx-
imate Hermitian information vector. Because of little effect
on the reconstruction surface, the mixed derivatives in the
Hermitian information vector is set to zero, i.e.,

h = sign(x;)||d;]|,

(ha, hy, h) = sign(x;)d;/||d: |l
haoy = hy. =h

(10)

zx — hxyz =0

In order to check if the vertex x; is inside (sign(x;) < 0)
or outside (sign(x;) > 0) of the surface, we choose the Ngar
(usually set Niar = 7 in our implementation) nearest points
in P of r; and fit them to a plane using principal compo-
nent analysis(PCA). The plane normal is used to orient the
Hermitian information vector.

The Hermitian information at a near-by basis vertex x; is
required to be accurately estimated. So we deduce theoreti-
cally the Hermitian information from the geometric quanti-
ties on the underlying surface. We search the Ny (usually
set Npp = 20 in our implementation) nearest points in P of
r; and employ the MPA algorithm to compute the differen-
tial quantities of the surface. As shown in Fig. 6, the output
of the MPA consists of the foot-point o; of r;, a local right-
handed coordinate system {0;;u(n),v(n),n}, and an oscu-
lating paraboloid with shape parameters (a,b,c). Within
the local coordinates (s,t,w) = (x —0;)” (u, v, n), the oscu-



Figure 6: Hermitian information estimation by us-
ing the MPA algorithm.

lating paraboloid of the underlying surface can be expressed
as

(11)

Thus, we obtain the Hermitian information at the near-by
basis vertex x; as follows:

w=1Y(s,t) = %(as2 + 2bst + ct?).

h =w; — %(as? + 2bs;t; + ct?),

hz =n1 — (asi + bti)’lu — (bsi + cti)vl,

hy = N2 — (asi + bti)’l,tz — (bsl + ct,-)vz,

h. =nsg — (asi —+ bti)U,3 — (bsl —+ Cti)’U3, (12)
hey = —(auz + bv2)ur — (buz + cva)vn,

hy. = —(aus + bvs)us — (bus + cvz)va,

hey = —(au1 + bui)ug — (bur + cv1)vs,

hmyz = 07

where (s;,t;, w;) = (x; — 0;)7(u,v,n). The normal n from
the MPA model could be opposite to the orientation of the
surface. To address this issue, a reorientation strategy is
needed here. Compute the inner-product (denoted by o)
between n and the average of normal vectors around r;,
if o is negative then we inverse the Hermitian information
vector. After the Hermitian information is estimated at the
basis vertices, the implicit PHT-spline surface is constructed
according to Eq. (6).

4. IMPLEMENTATION AND RESULTS

The implicit PHT-spline surface reconstruction algorithm
has been implemented on a PC with an Intel Core2 Dual
@2.8GHz processor and 4.0Gb of memory. We will now
present the implementation details and test its performance
on a set of typical examples. Comparisons with other meth-
ods and discussions are also made in this section.

4.1 Implementation details

Given a set of unorganized points, a kd-tree is built using
the ANN [26] library. A hierarchical T-mesh is initialized
with a user-specified tensor-product grid (level 0) which is
the cube 2 in most examples. Similar to an octree imple-
mentation, the hierarchical T-mesh data structure maintains
the cells’ neighbor information, parent-children relationship
and cell-vertices relationship.

A PHT-spline function is a tricubic polynomial in each cell
of the T-mesh and it can be represented by the Bézier form,
which is more convenient and efficient for operations such
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as subdivision and evaluation. By using the de Casteljau
algorithm, evaluating the reconstructed function takes about
250 multiplications. In our implementation, a matrix storing
the Bézier ordinates is maintained for each cell. When a cell
¢ at level k is subdivided into eight subcells of level k41, we
get eight new matrices corresponding to the eight subcells
at level k4 1. Then we use the Hermitian information at the
newly generated basis vertices in 9541 to update the Bézier
ordinates around these new basis vertices.

There are two typical choices for isosurface extraction
from an implicit function: Marching Cube method [24] and
Bloomenthal’s method [4]. In our implementation, we em-
ploy the Bloomenthal’s polygonizer to extract the isosurface
with the same strategy used in MPU method [29].

4.2 Results and discussions

When the target shapes have rich geometric details, it re-
quires that the reconstruction methods are fully self-adaptive
and have sufficient capacity for describing the details. Global
methods become inefficient for such problems due to large-
scale data sets. For example, the RBF method is global
and has to solve a large linear system, consuming more time
and memory [7, 30]. On the contrary, the local method is
generally more efficient, but it must take into account the
overall smoothness. Usually some strategies should be em-
ployed to achieve an overall smooth reconstruction. MPU is
such an example where the local shape functions are blended
to form an overall reconstruction with a complicated ex-
pression. With the help of PHT-splines, our approach has
achieved a balance between global smoothness and efficiency,
and overcomes some of the deficiencies by previous methods.
To evaluate our approach, we have tested it on a variety of
models with different features and made comparisons with
MPU [29] and Poisson [21] reconstruction methods. The
performance statistics are summarized in Table 1.

Global continuity and geometric description power
Owing to the good properties of basis functions, the PHT-
splines provide a unified representation in piecewise polyno-
mials that automatically maintains a global C' continuity.
On the other hand, a PHT-spline function in each cell is
a tri-cubic polynomial which has strong capability to cap-
ture the geometric details. The construction of PHT-splines
is a dynamic process and is particularly suitable for adap-
tive description of the target geometry (see Fig. 5). Our
algorithm reconstructs high-quality surfaces with very fine
details, as shown in Fig. 7. Compared with MPU method,
our approach needs less number of spatial subdivision (with
about one fourth of the cells) as shown in Table 2, to achieve
the same approximation accuracy. Here the approxima-
tion accuracy is measured by the maximum distance of the
point cloud to the implicit surface. This again confirms that
our approach has a better ability to describe the geometry.
Furthermore, our method results in a piecewise polynomial
while the MPU method has more complicated expression.

Memory costs In our algorithm, the memory consump-
tion is mainly used for storing the Bézier ordinates for all the
cells in the hierarchical T-mesh. Because the representation
of implicit PHT-splines has excellent self-adaptability and
strong geometric description capability, the algorithm pro-
duces a hierarchical T-mesh not containing superfluous cells.
Table 2 shows the number of cells, vertices and basis vertices
of our hierarchical T-mesh and the number of cells of MPU
method for several examples (see Fig. 7-8) under the same



Figure 7: Reconstruction of different models(Filigree model with 514,300 points, Gargoyle model with 863,210
points, Asian dragon model with 3,609,455 points and Elephant model with 1,512,290 points.

Table 1: The performance statistics

IPHT MPU Poisson
Model #Points  Rel. error Time Mem. #Tris. Time Mem. #Tris. Time Mem. #Tris.
Asiandragon 3,609,455 2.0e-4 41.342s  738M 2,470,784 | 199.707s 850M 2,449,768 | 706.0s 1,058M 7,422,418
Neptune 2,003,932 1.0e-4 25.686s 494M 1,733,460 | 142.688s T736M 1,734,896 | 306.8s 5056M 3,211,190
Elephant 1,512,290 3.0e-4 22.713s  390M 2,056,288 89.945s  492M 2,032,128 | 229.6s 537TM 2,577,824
Armadillo 172,974 5.0e-4 3.544s 88M 238,592 17.644s  229M 240,012 16.2s 163M 204,302
Noisy Armadillo 172,974 5.0e-4 3.544s 88M 238,592 64.148s  240M 240,204 17.2s 163M 189,436
Gargoyle 863,210 5.0e-4 10.583s  239M 853,136 53.313s  320M 645,420 | 112.3s 370M 1,332,000
Filigree 514,300 5.0e-4 6.861s  168M 505,320 34.129s  293M 501,136 61.4s 238M 668,760
Bunny 362,272 8.0e-4 10.219s 212M 347,712 40.513s  280M 320,932 84.8s 243M 783,112
. o . , Reconstruction from data with unreliable normals
Tabll\? Oﬁélou h;fcrzlalgchlcal#’{/‘t-sr.n es#bxlst.s.l\/lgguz(&cgg)ae In the 'data.u acquisition of an object, the surface norrpal in-
Asiandragon | 593,121 1,018,078 183,105 2,421,025 formation is often more difficult to accurately obtain and
Neptune 582,785 1,063,084 162,441 3,292,233 contains much noise. Most of existing surface reconstruction
Elephant 219,929 374,898 68,404 896,809 methods heavily depend on the normal information of the
Gargoyle 251,649 453,453 72,349 1,329,209 given data. In our algorithm we only use the normal infor-
Filigree 233,201 400,605 73,601 700,625 mation for orientation, i.e., inside-outside determination. It
Armadillo 113,089 170,545 44,940 512,145 is conceivable that our algorithm is robust in the presence of

error. Since the number of cells by our approach is much less
than that of the MPU method (about one-fourth), our ap-
proach has a slight advantage in total memory requirements
(see Table 1).

Computational time and efficiency As mentioned above,

our algorithm adaptively produces a hierarchical T-mesh, in
which the number of basis vertices is roughly one-third of
the number of cells. In the reconstruction process, we only
need to estimate the Hermitian information at basis vertices
rather than to fit local shape to data points in each cell.
As described in Section 3.2, the Hermitian information at a
basis vertex is obtained by using moving least squares plane
fitting or MPA algorithm. Therefore, the time cost of our
algorithm is equal to the average computational time of call-
ing the MPA algorithm multiplied by the number of basis
vertices in the generated hierarchical T-mesh. We summary
the performance of our approach, MPU method and Pois-
son reconstruction method on a variety of data models in
Table 1, including the spatial and computational cost (The
timing in the table includes the contouring time). By statis-
tics, our algorithm is several times faster than MPU method,
and is much more efficient than Poisson method.
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certain noise of normals. Figure 9 shows the reconstruction
surfaces of Armadillo model with noisy normals by different
methods. For the MPU reconstruction, more time is spent
and some extra sheets are generated near the ears, hands
and feet due to the noise of normals. For the Poisson re-
construction, the noise makes some parts thinner and some
parts fatter as the normal vectors are used to approximate
the gradient field. We can see that our approach obtains the
correct reconstruction result without any preprocessing and
is almost free from the noise of normals.

Our approach can even reconstruct surfaces from data
points without normal information if a good initial shape is
specified. In this case the Hermitian information of Eq. (12)
at a basis vertex is oriented by the gradient inherited from
the former level PHT-spline function.

Raw scan data Our approach is able to reconstruct raw
scan data by increasing the number of neighboring vertices
in Hermite information estimation. Figure 10 shows the
reconstruction result of raw stanford bunny scan data.

Large datasets We have reconstructed fine details from
large sets of points, as summarized in Table 1. Figure 8
shows the result of Neptune model with 2,003,932 points,
and the output surface has 1,733,460 triangles with a rel-
ative error 1.0e-4. Figure 7 shows another two examples:




Figure 9: Reconstruction of data with noisy normals(60 degrees rotational deviation in the origin normal
direction) by different methods. From leftmost to rightmost are: Armadillo model with noisy normals, MPU
reconstruction, Poisson reconstruction and our result.

Figure 8: Reconstruction of Neptune model with
2,003,932 points.

Asiandragon model with 3,609,455 points and 2,470,784 tri-
angles, Elephant model with 1,512,290 points and 2,056,288
triangles.

Reconstruction from non-uniform sampling data
and incomplete data Our adaptive reconstruction method
is robust to non-uniform sampling data sets as demonstrated
in Figure 11. It can also robustly reconstruct surfaces from
incomplete data. Figure 12 shows the reconstruction result
of the incomplete Squirrel model with holes in the back and
the head.

Limitation Our approach can handle point data with
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Figure 10: Reconstruction of raw scan data bunny.

Figure 11: Reconstruction results from a non-
uniform sampling set of points. Left: the Venus_half
point set, Right: the reconstructed Venus_half
model.

light position noise as the MPA algorithm has certain smooth-
ing effect on noise. But for the data with heavy position
noise, the algorithm may generate some superfluous sheets
in the vicinity of reconstruction surface. In that case a pre-
processing step is needed.

S. CONCLUSION

We have presented an adaptive surface reconstruction ap-
proach based on a novel shape representation, the implicit
PHT-splines. Due to the nature of PHT-splines, the recon-
struction surface has a unified representation of piecewise
polynomials and is globally C* continuous. Such represen-



Figure 12: Reconstruction of incomplete data. Left:
the incomplete Squirrel data with holes on the head
and the body. Right: the reconstructed Squirrel
with holes filled.

tation can be effectively applied to subsequent geometric
processing, such as function evaluation, derivative calcu-
lation, subdivision and CSG operations. Our scheme has
strong adaptability for describing geometric details, and at
the same time is very efficient. From theoretical analysis and
practical examples, we have shown that our algorithm can
reconstruct high-quality surfaces several times faster than
the competitive methods in the current state of art.

There are still some interesting problems for future re-
search. One is to exploit GPU implementation of our algo-
rithm. The other is to further improve the approach so that
it can handle point clouds with heavy position noise.
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