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Scale-Space Analysis of Discrete Filtering over Arbitrary Triangulated Surfaces∗

Chunlin Wu†, Jiansong Deng‡, Falai Chen‡, and Xuecheng Tai§

Abstract. Discrete filtering of information over triangulated surfaces has proved very useful in computer graph-
ics applications. This technique is based on diffusion equations and has been extensively applied to
image processing, harmonic map regularization and texture generating, etc. [C. L. Bajaj and G. Xu,
ACM Trans. Graph., 22 (2003), pp. 4–32], [C. Wu, J. Deng, and F. Chen, IEEE Trans. Vis. Com-
put. Graph., 14 (2008), pp. 666–679]. However, little has been done on analysis (especially quan-
titative analysis) of the behavior of these filtering procedures. Since in applications mesh surfaces
can be of arbitrary topology and the filtering can be nonlinear and even anisotropic, the analysis of
the quantitative behavior is a very difficult issue. In this paper, we first present the discrete linear,
nonlinear, and anisotropic filtering schemes via discretizing diffusion equations with appropriately
defined differential operators on triangulated surfaces, and then use concepts of discrete scale-spaces
to describe these filtering procedures and analyze their properties respectively. Scale-space proper-
ties such as existence and uniqueness, continuous dependence on initial value, discrete semigroup
property, grey level shift invariance and conservation of total grey level, information reduction (also
known as topology simplification), and constant limit behavior have been proved. In particular,
the information reduction property is analyzed by eigenvalue and eigenvector analysis of matrices.
Different from the direct observation of the local filtering to the diffusion equations and other in-
terpretation methods based on wholly global quantities such as energy and entropy, this viewpoint
helps us understand the filtering both globally (information reduction as image components shrink)
and locally (how the image component contributes to its shrink rate). With careful consideration
of the correspondence between eigenvalues and eigenvectors and their features, differences between
linear and nonlinear filtering, as well as between isotropic and anisotropic filtering, are discussed.
We also get some stability results of the filtering schemes. Several examples are provided to illustrate
the properties.
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1. Introduction. Triangular mesh surfaces have become more and more popular in com-
puter graphics applications for their advantages over parametric and implicit surfaces such as
being easy to render, convenient to store, and able to model geometric objects with arbitrary
topology. There is a huge volume of literature on modelling and processing of mesh surfaces
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such as rendering [30], subdivision [6, 66], compression and simplification [15, 54], fairing
[10, 12] and editing [1, 63], parametrization and texture mapping [50, 65], and flow simula-
tion on surfaces [49, 53]. In particular, filtering of information defined over surfaces based
on diffusion equations has been studied recently and applied to many fields such as image
processing, harmonic map regularization and texture generating, and regularization [4, 61].
However, little analysis (especially quantitative analysis) has been done on the behavior of
these filtering techniques. Since in applications mesh surfaces can be of arbitrary topology and
the filtering can be nonlinear and even anisotropic, the analysis of their quantitative behavior
is a hard problem. In this paper, we use discrete scale-space concepts to describe and analyze
the linear, nonlinear, and anisotropic filtering procedures, respectively.

Scale-spaces are a basic concept in multiscale representations and analysis of images and
have been widely studied in recent decades. The basic idea is to introduce a family of images,
namely, the scale-space of the initial image, which progressively become simpler in the sense
that significant structures remain while unimportant details vanish. Scale-space representa-
tions of images are useful for compression, transmission, segmentation, feature detection, and
classification, as well as image matching [21, 28, 29, 36, 38, 44, 45, 52]. The scale-space con-
cept and the multiscale representations of planar images were first introduced for Gaussian
convolution by Witkin [60] and were further developed in [3, 13, 14, 18, 23, 24, 26, 27, 28,
32, 33, 34, 35, 36, 42, 48, 51, 64] with deeper discussions and generalizations such as affine
scale-space and scale invariant image descriptors; see also a very recent overview [37] and the
references therein. Other techniques, such as wavelets, fractals, PDEs, etc., have also been
proposed to construct scale-spaces for planar images in recent decades. Among them, PDE-
based methods attracted much attention in the past decade for their generality and flexibility
[18, 21, 23, 44, 58]. For example, data adaptive multiscale representations of images can be
constructed with nonlinear PDEs [44]. Anisotropic scale-spaces [55] can be constructed by
introducing a diffusion tensor in PDEs. Besides, PDE-based methods can be relatively eas-
ily generalized to nonplanar images, that is, images painted on nonflat manifolds [5, 22]. In
the following, we briefly review the scale-space concepts and their properties for PDE-based
methods.

The solution of a PDE is defined as the scale-space of the original image (initial data), and
the time at which the solution stands is the scale. Different PDEs give different scale-spaces
and have different scale-space properties. The linear heat equation determines linear scale-
spaces of images. In [23], Koenderink showed that linear scale-spaces satisfy the properties
of causality, homogeneity, and isotropy. Causality requires that no additional structure is
produced along increasing scale. This is just the information reduction, which can be derived
by Fourier analysis. The latter two properties require the spatial invariance of the scale-
spaces, which is ensured by the isotropy of the Laplacian operator. Other properties of linear
scale-spaces include linearity, grey shift invariance, and the semigroup property [33, 34, 35],
scale theorems for zero crossings [64], critical point theory [14, 26, 27, 28, 32], and the entropy
property of scale-spaces [51], as well as the global and local topological structure property [48].
However, in linear scale-spaces, edges of images are blurred due to the homogeneity and
isotropy criteria, which bring difficulties for posterior edge detection and other applications.
By noticing such limitations, Perona and Malik proposed a nonlinear diffusion PDE model to
study the multiscale representations (scale-spaces) of images [44]. In that model, an image



672 CHUNLIN WU, JIANSONG DENG, FALAI CHEN, AND XUECHENG TAI

edge strength related diffusion coefficient (diffusivity) c(|∇u|) is introduced. Different diffusion
rates are assigned to different locations. Since the diffusion coefficient c is designed to be a
decreasing function of the gradient of the image intensity, blurring is much less at image edges
than at other locations. This results in a relative edge enhancement effect. Furthermore,
the homogeneity and isotropy criteria are no longer satisfied and are replaced by two new
ones, i.e., immediate localization and piecewise smoothing. This is a general framework where
the diffusivity c(|∇u|) = c(s) can be chosen according to concrete applications. In their
paper, Perona and Malik gave two classical diffusivities. The Perona–Malik models were
later analyzed and improved by some other researchers [7, 62]. Although the models were
discovered to be ill-posed, they have great success in numerical experiments. This is the so-
called Perona–Malik paradox. Many authors have tried to explain this paradox; see [20] and
the references in [2]. At present, “This phenomenon is still unexplained.” [2] In spite of this,
it seems that smoothing/enhancement diffusivities behave quite safely and successfully in real
calculations. Hence researchers have designed many diffusivities for different applications; see
[2, 19] and the references therein. Another well-known nonlinear processor is total variation
(TV) minimization [47]. Different from the Perona–Malik framework, TV minimization, or
TV regularization, was proposed originally as a variational model, although it is usually finally
transformed into a PDE (Euler–Lagrange equation) to solve. TV has shown its power in image
processing and was studied extensively; see [8, 9, 43] and the references therein. By introducing
a diffusion tensor, Weickert discussed scale-spaces determined by an anisotropic diffusion
equation and their properties [55]. Since in applications signals are mostly discrete and scale-
space evolutions are computed at exclusively finite number of scales, discrete scale-spaces were
proposed in [31, 33] and have become more and more favorable. Various discrete versions
of linear scale-spaces were studied in [11]. Weickert and Benhamouda derived semidiscrete
and discrete nonlinear scale-spaces and the corresponding properties [56, 57]. A systematic
study and analysis of continuous, semidiscrete, and discrete scale-spaces of planar images
can be found in [58]. Under some assumptions, the author established a series of scale-space
properties such as existence and uniqueness, continuous dependence on initial data, average
grey level invariance, information reduction, and constant limit behavior. It should be noticed
that these ordinary assumptions for planar images defined on regular grids do not hold for
data on general triangulated surfaces.

In this paper, we focus on the analysis of discrete linear, nonlinear, and anisotropic filtering
techniques over triangulated surfaces using discrete scale-space concepts. We first give some
notation in section 2. In section 3 we present the diffusion models over smooth manifolds.
After defining differential operators on triangulated surfaces, we derive our discrete filtering
schemes in section 4. The derivation is actually equivalent to the finite volume method (FVM)
used in [61]. These discrete filtering schemes are then expressed in section 5 as discrete scale-
spaces, from which we study the scale-space properties such as existence and uniqueness,
continuous dependence on initial value, the grey level shift invariance property, the discrete
semigroup property, information reduction, and limit behavior. As one will see, the proofs of
these properties are much more difficult than those of scale-spaces for planar images due to
the irregularity of triangular meshes. Examples and discussions are provided in section 6 to
support our analysis. We finally conclude the paper with some future work.
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2. Notation. Assume that M is a triangulated surface with arbitrary topology in R
3.

The set of vertices, the set of edges, and the set of face triangles of M are denoted as {vi :
i = 0, 1, . . . ,V − 1}, {ei : i = 0, 1, . . . ,E − 1}, and {τi : i = 0, 1, . . . ,T − 1}, respectively.
Here V, E, and T are the numbers of vertices, edges, and triangles of the triangulated surface,
respectively. We explicitly denote an edge e whose endpoints are p, q as [p, q]. Similarly, a
triangle τ whose vertices are p, q, r is denoted as [p, q, r]. If v is an endpoint of an edge e, then
we denote it as v ≺ e. Similarly, that e is an edge of a triangle τ is denoted as e ≺ τ ; that v
is a vertex of a triangle τ is denoted as v ≺ τ (see [16]). For a given triangle τ , its barycenter
is denoted by BC(τ). The barycenter of an edge e is denoted by BC(e), while the barycenter
of a vertex v is itself (BC(v) = v). Let N1(i) be the 1-neighborhood of vertex vi. It is the set
of indices of vertices that are connected to vi. Let D1(i) be the 1-disk of the vertex vi. D1(i)
is the set of triangles with vi being one of their vertices. It should be pointed out that the
1-disk of a boundary vertex is topologically just a half-disk.

For each vertex vi, we define a piecewise linear function φi such that φi(vj) = δij , i, j =
0, 1, . . . ,V − 1, where δij is the Kronecker delta. {φi : i = 0, 1, . . . ,V − 1} has the following
properties:

1. local support: suppφi = D1(i);
2. nonnegativity: φi ≥ 0, i = 0, 1, . . . ,V − 1;
3. partition of unity:

∑
0≤i≤V−1 φi ≡ 1.

We can use {φi : i = 0, 1, . . . ,V − 1} to build piecewise linear functions on M when function
values are known only at the vertices of M (this is the most common case). Suppose u
reaches value ui at vertex vi, i = 0, 1, . . . ,V − 1. Then u(p) =

∑
0≤i≤V−1 uiφi(p) for any

p ∈ M . Similarly, piecewise linear vector-valued functions (u1(p), u2(p), . . . , ud(p)) on M can
be defined. In some applications, we also have piecewise constant function (vector) over M ;
that is, a single value (vector) is assigned to each triangle of M [16].

We now introduce two concepts called dual mesh and control cell, which help to build
divergence operators on triangle meshes. For the mesh M , a barycentric dual is formed by
connecting the barycenter and the middle point of each edge in each triangle, as illustrated in
Figure 1(a). The original mesh M consists of black lines, while the dual mesh is in blue. Based
on the concept of dual meshes, one can assign a control cell Ci to each vertex vi of M [41]. The
control cell of a vertex vi is part of its 1-disk which is near to vi in the dual mesh. Figure 1(b)
shows the control cell Ci for an interior vertex vi of the original mesh, while Figure 1(c) shows
the control cell for a boundary vertex. For the interior vertex vi, the boundary of Ci is

(2.1) ∂Ci =
⋃

τ∈D1(i)

⋃
vi≺e≺τ

[BC(e), BC(τ)].

For the boundary vertex, the boundary of the control cell is

(2.2) ∂Cj =

⎛
⎝ ⋃

τ∈D1(j)

⋃
vj≺e≺τ

[BC(e), BC(τ)]

⎞
⎠⋃

⎛
⎝ ⋃

vj≺e⊆∂M

[BC(vj), BC(e)]

⎞
⎠ ,

where ∂M is the boundary of M . We point out that orientations of intervals such as
[BC(e), BC(τ)] should be considered in a consistent way as the clockwise or counterclock-
wise orientation of the control cell.
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Figure 1. Dual mesh and control cells.

3. Diffusion equations on smooth 2-manifolds. In this section we first introduce some
basic concepts for general smooth 2-manifolds, such as tangent space, integration, and differ-
ential operators [4, 40, 59]. We then present several diffusion equations on smooth manifolds,
which will be discretized in the next section to construct our discrete filtering schemes on
triangulated surfaces.

3.1. Integration, gradient, and divergence on smooth 2-manifolds. Assume that M ⊂
R

3 is a 2-dimensional smooth manifold and that {Uα, xα}α∈A for some index set A is the
differential structure. {Uα, xα}α∈A can be viewed as a piecewise parametrization of M. We
explicitly denote the local coordinate Uα as (ξ1, ξ2). For a given point x ∈ xα(Uα) ⊂ M,
the tangent space TxM is spanned by { ∂

∂ξ1 , ∂
∂ξ2}. It should be pointed out that the space

TxM does not depend on parametrization, although its basis { ∂
∂ξ1 , ∂

∂ξ2 } does. Different
parametrizations (or different differential structures) give different bases of TxM. We use
TM = {X = X(x) : x ∈ M, X(x) ∈ TxM} to denote the set of tangent vector fields.

As M is embedded in Euclidean space, the differential structure {Uα, xα}α∈A gives a
natural (induced) Riemannian metric tensor g on M as follows:

(3.1) g = (gij) =
(〈

∂

∂ξi
,

∂

∂ξj

〉
x

)
,

where 〈, 〉 (in this paper we sometimes also use ·) is the inner product in Euclidean space,
R

3. The tensor g, which is a symmetric and positive definite matrix depending on x ∈ M,
determines a bilinear form on the tangent space TxM. One can calculate the inner product
of any two vectors on TxM using the bilinear form.

With the Riemannian metric g, we can define integration on M. Let f be a function
on M, and let {ϕα}α∈A be a partition of unity on M with support ϕα ⊂ Uα. Then the
integration on M is defined as

(3.2)
∫
M

fdM =
∑
α

∫
Uα

ϕαf(xα)
√

detgdξ1dξ2,

where
√

detgdξ1dξ2 is the volume form of M. Based on (3.2), we can further define inner
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products of two functions f1, f2 on M and two vector fields X1,X2 on TM:

(f1, f2)M =
∫
M

f1f2dM,

(X1,X2)TM =
∫
M
〈X1,X2〉dM.

Moreover, we can express the integration along a curve (a 1-dimensional submanifold) N ⊂ M
using local coordinates. Let {Vα, ξα}α∈A be the piecewise parametrization of the local coordi-
nates of N in Uα, where Vα is an open set in R. Vα is possibly empty for some α. We denote
the local coordinate of Vα as η, that is, ξα = (ξ1

α(η), ξ2
α(η)). Then the integration of f along

N is

(3.3)
∫
N

fdN =
∑
α

∫
Vα

ϕαf(xα(ξα))

√
gij

∂ξi
α

∂η

∂ξj
α

∂η
dη =

∑
α

∫
Vα

ϕαf(xα)
∣∣∣∣∂xα

∂η

∣∣∣∣ dη,

where |∂xα
∂η | =

√
〈∂xα

∂η , ∂xα
∂η 〉 =

√
∂xα
∂η · ∂xα

∂η . Here (and below) we use the Einstein summation
notation.

In the following we introduce the gradient and divergence operators ∇M and divM on
M, which will be used to construct our diffusion equations. Suppose f ∈ C1(M) (meaning
f(x) = f(xα(ξ1, ξ2)) is C1 differentiable with respect to ξ1, ξ2). Let (gij) be the inverse of the
metric tensor (gij). The gradient of f is then defined to be

(3.4) ∇Mf = gij ∂f

∂ξj

∂

∂ξi
;

that is,

(∇Mf)i = ∂if = gij ∂f

∂ξj
.

The component (∇Mf)i along ∂
∂ξi is the change rate of f with respect to ξi [4].

We similarly have the divergence of a vector field X = Xi ∂
∂ξi in local coordinates as

(3.5) divMX =
1√
detg

∂

∂ξi
(
√

detgXi).

Note that ∇Mf and divMX do not depend on the local coordinates, although we use the
coordinates to express them. On manifolds, we also have the divergence theorem. Suppose
M has a boundary ∂M; then

(3.6)
∫
M

divMXdM =
∫

∂M
〈X,
n〉d∂M

for any vector field X, where 
n is the intrinsic outward normal vector of ∂M on the tangent
space.
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3.2. Diffusion equations on smooth manifolds. We now present several diffusion equa-
tions on M via the above defined differential operators. We assume that the initial function
defined on M is f(x). Also we set Neumann boundary conditions in the following equations.
If M has no boundary, these boundary conditions are ignored automatically.

3.2.1. Linear diffusion. The linear diffusion equation is as follows:

(3.7)

⎧⎪⎨
⎪⎩

∂u
∂t = divM∇Mu,
∂u
∂�n |∂M = 0,
u(x, 0) = f(x).

If M degenerates to a planar domain, the corresponding linear equation is just the classical
heat equation which is widely applied in planar image processing, especially linear scale-space
construction of planar images [11, 18, 23].

3.2.2. Nonlinear diffusion. A general nonlinear diffusion model is

(3.8)

⎧⎪⎨
⎪⎩

∂u
∂t = divM(g(|∇Mu|)∇Mu),
∂u
∂�n |∂M = 0,
u(x, 0) = f(x),

where g(·) is a bounded nonnegative continuous and monotonically descending function. There
are many choices for the diffusivity g = g(s) which have been widely used in planar image
processing; see [2, 8, 9, 19, 43, 44, 47] and the references therein. In Table 1 we list several
frequently used diffusivities, together with g(s)+sg′(s) for each g(s). All of them benefit from
the good edge-preserving (or even edge-enhancement) property and have had great success in
image restoration.

Table 1
Several choices for g and corresponding g + sg′, where β is a small positive number.

Name (Regularized) Perona–Malik 1 Perona–Malik 2 (Regularized)
TV [47] [44] [44] BFB [19]

g(s) 1√
s2+β

1
1+( s

K
)2

exp(− 1
2
( s

K
)2) 1

s2+β

g(s) + sg′(s) β

(
√

s2+β)3

1−( s
K

)2

(1+( s
K

)2)2
1−( s

K
)2

exp( 1
2 ( s

K
)2)

β−s2

(s2+β)2

We now offer some comments on the choice of diffusivities. As revealed in many works
on planar image processing (e.g., [2, 19]), g(s) describes the diffusion coefficient along the
tangential directions of the level sets of the image, while g(s) + sg′(s) gives the diffusion
along the normal directions. Therefore, one can design the form of g(s) according to the
concrete problem in hand. The considerations on g(s) may include lims→0 g(s), lims→0 g(s)+
sg′(s), lims→∞ g(s), lims→∞ g(s) + sg′(s), and even lims→0

g(s)
g(s)+sg′(s) and lims→∞

g(s)
g(s)+sg′(s) ,

indicating the behavior of the diffusion for different image features; see [2] for details. Since
negative diffusion is not stable, the PDE (3.8) associated with the latter three diffusivities in
the table is actually ill-posed. However, numerical schemes are demonstrated to be stable, as
mentioned in the introduction.
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3.2.3. Anisotropic diffusion. The anisotropic diffusion model generalizes the linear and
nonlinear diffusion models. Assume that {e1(x), e2(x)} ⊂ TM are two orthonormal vector
fields in the tangent space. The anisotropic diffusion equation reads as

(3.9)

⎧⎨
⎩

∂u
∂t = divM(g1(|∇Mu|)(∇Mu · e1)e1 + g2(|∇Mu|)(∇Mu · e2)e2),
(g1(|∇Mu|)(∇Mu · e1)e1 + g2(|∇Mu|)(∇Mu · e2)e2) · 
n|∂M = 0,
u(x, 0) = f(x),

where the functions g1, g2 are bounded, nonnegative, and monotonically descending continu-
ous, indicating diffusion rates along e1, e2. One can similarly borrow the diffusivities from the
planar image processing for g1 and g2. Since in many applications (such as texture generat-
ing [61] and the image anti-aliasing on triangulated surfaces; see the examples in section 6)
the geometry of the surface plays the primary role for designing the vector fields e1, e2, we
assume for simplicity of description in this work that e1, e2 depend only on the geometry of
the surface and thus remain fixed. Note here that “anisotropic” means that the flux of the
PDE may not be parallel to ∇Mu.

4. Discrete filtering over triangulated surfaces. In this section we derive our discrete
filtering schemes on triangulated mesh surfaces according to the diffusion equations (3.7),
(3.8), and (3.9). The schemes include linear filtering, nonlinear filtering, and anisotropic
filtering.

Given M as a triangulated mesh approximation to the manifold M, we use notation
introduced in section 2 in the following. Under this discrete setting, the functions u = u(p)
and f = f(p) are understood as piecewise linear functions. We also assume as in [61] that
e1(p), e2(p) of the anisotropic diffusion equation (3.9) are two orthonormal piecewise constant
vector fields in the tangent space of M (see subsection 4.1). That is, e1(p) and e2(p) are
constant vectors in each triangle of M and constitute an orthonormal basis of the underlying
space of the triangle.

We first define the tangent space, integration, and differential operators on M .

4.1. Integration, gradient, and divergence on triangulated surfaces. M has a natural
piecewise parametrization {Uτi = (ξ1

τi
, ξ2

τi
), τi}0≤i≤T−1, in which each Uτi has a flat Riemannian

metric; i.e., (ξ1
τi

, ξ2
τi

) is a Cartesian coordinate. For a point p ∈ Interior(τi), the tangent space
is nothing but the triangle τi and has a basis { ∂

∂ξ1
τi

, ∂
∂ξ2

τi

}. For other points located on edges of
the triangle mesh M , the tangent space can be defined using interpolation techniques, which
will be reported together with the related geometry in a future work. Here we just omit it
since we do not use these tangent spaces in this paper. It should be pointed out that the choice
of the local coordinate (ξ1

τi
, ξ2

τi
) is flexible, depending on the convenience of the computation.

The integral of a function f on M reads as follows:

(4.1)
∫

M
f(p)dM =

∑
0≤i≤T−1

∫
Uτi

f(p)
√

gdξ1
τi

dξ2
τi

=
∑

τ

∫
τ
f(p)dτ,

where g is the metric tensor determined by the local parametrization. By noticing the tetra-
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hedron of the graph of φi over the triangle, we have

(4.2)
∫

M
f(p)dM =

∑
τ=[vi,vj ,vk]

sτ

3
(fi + fj + fk) =

∑
0≤i≤V−1

fi

∑
τ∈D1(i)

sτ

3
=

∑
0≤i≤V−1

fisi,

where sτ is the area of the triangle τ , and si is the area of the control cell of the vertex vi.
We also have the integration of f along a curve N ⊂ M :

(4.3)
∫

N
f(p)dN =

∑
0≤i≤T−1

∫
Vτi

f(p(η))
∣∣∣∣∂p

∂η

∣∣∣∣ dη =
∑

τ

∫
τ
⋂

N
f(p)dN,

where {Vτi , τi
⋂

N}0≤i≤T−1 is the local parametrization of N .
We now define the gradient operator ∇M on M . Given the piecewise linear function

u = u(p) =
∑

j ujφj(p), its gradient is as follows:

(4.4) ∇Mu(p) =
∑

j

uj∇Mφj(p),

where ∇Mφj(p) will be calculated using the natural piecewise parametrization; see Figure
2(a). Since φj(p) is linear in τ with φj(vj) = 1 and φj(vi) = φj(vk) = 0, we choose the local
coordinate (ξ1

τ , ξ2
τ ) as shown in the figure. We assume the mapping from the local coordinate

to τ is
p = vi + ξ1

τ (vk − vi) + ξ2
τ (vj − O),

where O is the Euclidean projection of vj on the line passing through vi, vk. Then we deduce

g =
(

(vk − vi) · (vk − vi) 0
0 (vj − O) · (vj − O)

)
,

and ∂φj

∂ξ1
τ

= 0, ∂φj

∂ξ2
τ

= 1, yielding

(4.5) ∇Mφj =
vj − O

|vj − O|2 ,

according to (3.4); see the red vector in Figure 2(a). As one can see, ∇Mφj is a piecewise
constant vector, and thus so is ∇Mu.

Given a vector field X ∈ TM , one can similarly calculate the divergence (divMX)(p) for
p ∈ Interior(τ) for some τ according to (3.5) using local coordinates. However, here we are
more interested in the divergence at vertices of M , e.g., (divMX)(vi), since in applications the
functions in the diffusion equations (3.7), (3.8), and (3.9) are usually given by assigning values
on vertices. For vertex vi, we approximate (divMX)(vi) by the average of the divergence in
the control cell Ci as

(divMX)(vi) =
1
si

∫
Ci

divMXdCi.

By the divergence theorem (see (3.6)) and (2.1), (2.2), we have

(4.6) (divMX)(vi) =
1
si

∑
τ∈D1(i)

∫
⋃

vi≺e≺τ
[BC(e),BC(τ)]

X · 
nd∂Ci
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(c) (divMX)vj

Figure 2. Gradient and divergence. (a) The gradient of the basis φj restricted in τ : the red vector. (b) The
divergence of a vector field X at an interior vertex vi: the red vector is X restricted in τ ; the green vector is
the outward normal of [BC(e), BC(τ )] ⊂ ∂Ci. (c) The divergence of a vector field X at a boundary vertex
vj: the red vector is X restricted in τ ; the green vector is the outward normal of [BC(e), BC(τ )] ⊂ ∂Cj or
[BC(vj), BC(e)] ⊂ ∂Cj.

for an interior vertex vi, and

(4.7)

(divMX)(vj) =
1
sj

( ∑
τ∈D1(j)

∫
⋃

vj≺e≺τ
[BC(e),BC(τ)]

X · 
nd∂Cj

+
∑

vj≺e⊂∂M

∫
[BC(vj ),BC(e)]

X · 
nd∂Cj

)

for a boundary vertex vj , where 
n is the outward normal of ∂Ci or ∂Cj; see Figures 2(b) and
2(c).

4.2. Discrete filtering on triangulated surfaces. We can now discretize the diffusion
equations (3.7), (3.8), and (3.9) via approximating the equations at vertices with the differ-
ential operators defined above, to construct our discrete filtering procedures. The derivation
is equivalent to FVM discretization in [61].

It should be pointed out that one can also find a parametric or implicit representation of
the triangulated surface and then use the methods as in [22] or [5] to solve the problem. There
are several issues [61] to be considered in these two approaches. First, the additive operator
splitting (AOS) method [25, 39] as a very fast method for problems on regular grids can be used
in the piecewise parametrization-based method. Also the problem will be solved in a narrow
band near the surface if one first implicitizes the triangular mesh and then uses the level-set
method [5]. Second, in many applications the data are given and should be maintained after
calculations as a triangular mesh. This requires transformations of surface and image data
between triangular meshes and parametric or implicit representations. These transformations
are usually difficult and expensive. Meshes with complex topology such as high genus are very
difficult to parametrize. Besides, the parametrization always brings metric distortions [50]. It
is also not straightforward to transform the image data defined on the triangular mesh to the
parametric domains (for a parametrization-based method) or 3-dimensional (3D) grids (for
a level–set-based method). In the parametrization-based method, whether AOS schemes are
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used or not, one needs to interpolate the data defined on vertices of the mesh and then resample
the interpolation function on regular grids of the parametric domains. In the level–set-based
method, the transformation of the image data from the triangular mesh to the 3D grids is
actually an inverse procedure of data interpolation plus a data extension operation [5]. The
inverse interpolation is not easy or accurate if the grids are too sparse. Also the data extension
(usually based on a PDE) costs CPU time. The third issue is that many triangular meshes in
applications are feature adaptive, and thus the triangles are irregular and nonuniform. This
brings errors and extra memory requirements for parametric and implicit representations.

4.2.1. Discrete linear filtering. We approximate the linear heat equation (3.7) at each
vertex of M . For an interior vertex vi,

(4.8) (ut)(vi) = (divM∇Mu)(vi) =
1
si

∑
τ∈D1(i)

∫
⋃

vi≺e≺τ
[BC(e),BC(τ)]

∇Mu · 
nd∂Ci,

according to (4.6). Since ∇Mu is a constant when restricted in τ , the right-hand side of (4.8)
is actually

1
si

∑
τ∈D1(i)

∇Mu ·
∫

⋃
vi≺e≺τ

[BC(e),BC(τ)]

nd∂Ci.

By exchanging the order of sums, we obtain

(4.9) (divM∇Mu)(vi) =
1
si

⎛
⎝uiωii +

∑
j∈N1(i)

ujωij

⎞
⎠ ,

where

(4.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωij =
∑

τ,[vi,vj ]≺τ

∇Mφj ·
∫

⋃
e,vi≺e≺τ

[BC(e),BC(τ)]

ndl,

ωii = −
∑

j∈N1(i)

ωij.

If vi is a boundary vertex, by a similar derivation, we get the same expression as (4.9) by
noticing the boundary condition of PDE (3.7). Thus (4.9) is a uniform spatial discretization
for all meshes (with or without boundaries).

We then have the following implicit discretization:

(4.11)
un+1

i − un
i

�t
=

1
si

⎛
⎝un+1

i ωii +
∑

j∈N1(i)

un+1
j ωij

⎞
⎠ .

Denoting u(n) = (un
0 , un

1 , . . . , un
V−1)

T , (4.11) is formulated into the following matrix form:

(4.12) (S + �tW )u(n+1) = Su(n),
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where S = diag(s0, s1, . . . , sV−1) and W = (−ωij)V×V. W is a highly sparse and symmetric
matrix since

(4.13) ωij =
1
2
(cot αij + cot βij) = ωji, j ∈ N1(i).

See Figure 3(b) for an illustration and the remarks on computational details in section 4.2.4.

4.2.2. Discrete nonlinear filtering. As for the nonlinear diffusion equation (3.8), a deriva-
tion similar to that of the linear equation can be made. Concretely, we have

(4.14) (ut)(vi) = (divM (g(|∇Mu|)∇Mu))(vi).

By the boundary condition of (3.8), the right-hand side of (4.14) is

1
si

∑
τ∈D1(i)

∫
⋃

vi≺e≺τ
[BC(e),BC(τ)]

g(|∇Mu|)∇Mu · 
nd∂Ci

for any (interior or boundary) vertex vi. Using the fact that ∇Mu is a constant in τ , we
further deduce

(divM (g(|∇Mu|)∇Mu))(vi) =
1
si

∑
τ∈D1(i)

g(|∇Mu|)∇Mu ·
∫

⋃
vi≺e≺τ

[BC(e),BC(τ)]

nd∂Ci.

The contribution of triangle τ = [vi, vj , vk] in the summation of the above equation is

g(|∇Mu|τ |)(uicii,τ + ujcij,τ + ukcik,τ ),

where

(4.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cij,τ = ∇Mφj ·
∫

⋃
e,vi≺e≺τ

[BC(e),BC(τ)]

ndl,

cik,τ = ∇Mφk ·
∫

⋃
e,vi≺e≺τ

[BC(e),BC(τ)]

ndl,

cii,τ = −cij,τ − cik,τ .

We then come to the semi-implicit discretization of (3.8) as

un+1
i − un

i

�t
=

1
si

∑
τ=[vi,vj ,vk]∈D1(i)

g(|∇Mu|nτ |)(un+1
i cii,τ + un+1

j cij,τ + un+1
k cik,τ ),

which can be written in matrix form:

(4.16) (S + �tH(u(n)))u(n+1) = Su(n),
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where S and u(n) are defined above and H(u(n)) = (−hij)V×V with

(4.17) hij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
τ,[vi,vj ]≺τ

g(|∇Mu|nτ |)cij,τ , j ∈ N1(i),

∑
τ∈D1(i)

g(|∇Mu|nτ |)cii,τ , j = i,

0 otherwise.

H is also highly sparse and symmetric since

(4.18) cij,τ =
1
2

cot αij = cji,τ .

See Figure 3(b) and the remarks in section 4.2.4.

4.2.3. Discrete anisotropic filtering. Similarly, we approximate the anisotropic diffusion
equation (3.9) as

(4.19) (ut)(vi) = (divM (g1(|∇Mu|)(∇Mu · e1)e1 + g2(|∇Mu|)(∇Mu · e2)e2))(vi).

According to the boundary condition of (3.9), we have a uniform expression for the right-hand
side of (4.19) as

1
si

∑
τ∈D1(i)

∫
⋃

vi≺e≺τ
[BC(e),BC(τ)]

(g1(|∇Mu|)(∇Mu · e1)e1 + g2(|∇Mu|)(∇Mu · e2)e2) · 
nd∂Ci

for all vertices, which can be reformulated into

1
si

∑
τ∈D1(i)

(g1(|∇Mu|)(∇Mu · e1)e1 + g2(|∇Mu|)(∇Mu · e2)e2) ·
∫

⋃
vi≺e≺τ

[BC(e),BC(τ)]

nd∂Ci,

since g1, g2,∇Mu, e1, e2 are all constant in triangle τ . Concretely, the contribution of triangle
τ = [vi, vj , vk] in the above summation is

g1(|∇Mu|τ |)(uic
1
ii,τ + ujc

1
ij,τ + ukc

1
ik,τ ) + g2(|∇Mu|τ |)(uic

2
ii,τ + ujc

2
ij,τ + ukc

2
ik,τ ),

where

(4.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
ij,τ = (∇Mφj · e1)

(
e1 ·

∫
⋃

e,vi≺e≺τ
[BC(e),BC(τ)]


ndl

)
,

c2
ij,τ = (∇Mφj · e2)

(
e2 ·

∫
⋃

e,vi≺e≺τ
[BC(e),BC(τ)]


ndl

)
,

c1
ik,τ = (∇Mφk · e1)

(
e1 ·

∫
⋃

e,vi≺e≺τ
[BC(e),BC(τ)]


ndl

)
,

c2
ik,τ = (∇Mφk · e2)

(
e2 ·

∫
⋃

e,vi≺e≺τ
[BC(e),BC(τ)]


ndl

)
,

c1
ii,τ = −c1

ij,τ − c1
ik,τ , c2

ii,τ = −c2
ij,τ − c2

ik,τ .



SCALE-SPACE ANALYSIS OF DISCRETE FILTERING 683

Therefore, the semi-implicit scheme of the anisotropic equation (3.9) is

un+1
i − un

i

�t
=

1
si

( ∑
τ∈D1(i)

g1(|∇Mu|nτ |)(un+1
i c1

ii,τ + un+1
j c1

ij,τ + un+1
k c1

ik,τ )

+
∑

τ∈D1(i)

g2(|∇Mu|nτ |)(un+1
i c2

ii,τ + un+1
j c2

ij,τ + un+1
k c2

ik,τ )

)

or, in matrix form,

(4.21) (S + �tL(u(n)))u(n+1) = Su(n),

where L(u(n)) = (−lij)V×V with

(4.22) lij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
τ,[vi,vj ]≺τ

(g1(|∇Mu|nτ |)c1
ij,τ + g2(|∇Mu|nτ |)c2

ij,τ ), j ∈ N1(i),

∑
τ∈D1(i)

(g1(|∇Mu|nτ |)c1
ii,τ + g2(|∇Mu|nτ |)c2

ii,τ ), j = i,

0 otherwise.

Similarly, L is also highly sparse and symmetric since

(4.23)

{
c1
ij,τ = 1

2 sin∠k cos θ cos(θ − ∠k) = c1
ji,τ ,

c2
ij,τ = 1

2 sin∠k sin θ sin(θ − ∠k) = c2
ji,τ

as obtained in [61]; see Figures 3(c) and (d) and the following subsection. Here the angle ∠k
is with respect to the vertex vk of τ .

4.2.4. Some computational details. In this subsection we give some remarks on comput-
ing those coefficients defined in (4.10), (4.15), and (4.20), as well as solving the linear systems
(4.12), (4.16), and (4.21).

As one can see, the integrals of the normal vectors over the boundaries of control cells
play an important role. We present here the following theorem from [61].

Theorem 4.1. Let τ = [A,B,C] be a triangle and Γ = Γ(t), t ∈ [0, 1], be an arbitrary curve
within the triangle with endpoints Γ(0) = P and Γ(1) = Q as shown in Figure 3(a); then

(4.24)
∫

Γ(t)

ndl = |PQ|
nPQ,

where 
n is the normal vector of Γ(t) and 
nPQ is the unit vector perpendicular to the line
segment [P,Q] = Γ(1) − Γ(0).

According to Theorem 4.1 and the gradient ∇Mφj in (4.5), one can use basic vector
calculus to obtain the expressions in (4.13), (4.18), and (4.23); see Figure 3.

The highly sparse systems (4.12), (4.16), and (4.21) can be solved by the preconditioned
biconjugate gradient method. There H(u(n)) in (4.16) and L(u(n)) in (4.21) depend not only on
the coefficients {cii,τ , cij,τ , cik,τ , cji,τ , cjj,τ , cjk,τ , cki,τ , ckj,τ , ckk,τ , c

1
ii,τ , c

1
ij,τ , c

1
ik,τ , c

2
ii,τ , c2

ij,τ , c
2
ik,τ ,
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(a) normal vector
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τ
αij

βij

(b) ωij and cij,τ

� �

�
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τ
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(c) c1
ij,τ and c2

ij,τ

� �

�

vi

vj

vk
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θ

(d) c1
ji,τ and c2
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Figure 3. (a) The integral of the normal vector of a curve in τ . (b), (c), (d) Computation of ωij , cij,τ ,
c1
ij,τ , c2

ij,τ , c1
ji,τ , c2

ji,τ . The dotted blue lines, the green arrows, and the red arrows stand for the integrals of the
boundaries of the control cells in τ , outer normal directions of blue lines, and gradients of the basis such as φi,
φj, respectively. θ is the clockwise rotation from ∇Mφj to e1.

c1
ji,τ , c

1
jj,τ , c

1
jk,τ , c

2
ji,τ , c

2
jj,τ , c

2
jk,τ , c

1
ki,τ , c

1
kj,τ , c

1
kk,τ , c

2
ki,τ , c

2
kj,τ , c

2
kk,τ}, but also on the data u(n).

Hence they should be updated dynamically. Fortunately, the updating procedure is very
simple and does not require much CPU time due to their sparseness and inherent sophisti-
cated storage structure from the data structure of the mesh surfaces. Since we are focusing on
the analysis in this paper, the reader is referred to the appendix of [61] for the implementation
details.

5. Scale-space analysis of discrete filtering. In this section, we analyze the three types of
discrete filtering using scale-space concepts. For convenience of description, we first construct
three discrete scale-spaces corresponding to the filtering procedures.

5.1. From discrete filtering to discrete scale-spaces. Each discrete filtering procedure
gives a discrete scale-space.

5.1.1. Linear scale-space. Let f be a given image. From (4.12), with a fixed time step,
one calculates a sequence of images {u(n), n = 0, 1, 2, . . .} as follows:

(5.1)
{

u(0) = f,

(S + �tW )u(n+1) = Su(n).

We call the image sequence {TLD
n f = u(n), n = 0, 1, 2, . . .} the discrete linear scale-space of

f , and n is the discrete scale.

5.1.2. Nonlinear scale-space. Let f be a given image. With a fixed time step, the image
sequence {TND

n f = u(n), n = 0, 1, 2, . . .} calculated from

(5.2)
{

u(0) = f,

(S + �tH(u(n)))u(n+1) = Su(n)

is called the discrete nonlinear scale-space of f , and n is the discrete scale.

5.1.3. Anisotropic scale-space. Assume that f is a given image. The image sequence
{TAD

n f = u(n), n = 0, 1, 2, . . .} calculated from

(5.3)
{

u(0) = f,

(S + �tL(u(n)))u(n+1) = Su(n)
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is called the discrete anisotropic scale-space of f , and n is the discrete scale.

5.2. Scale-space analysis. In this subsection, we discuss several properties of the discrete
filtering procedures by analyzing the image sequences of the discrete scale-spaces. These
properties include existence and uniqueness, continuous dependence on initial value, grey
level shift invariance, the discrete semigroup property, information reduction, and constant
limit behavior.

5.2.1. Existence, uniqueness, and continuous dependence on initial value. We first
analyze the matrices W,H(u(n)), L(u(n)) in (5.1), (5.2), and (5.3).

Theorem 5.1. Let v be any vector and v(p) be the piecewise linear function interpolating
vertex data v on M .

(1) The matrix W in (5.1) is symmetric, and

(5.4) v′Wv =
∫

M
|∇Mv(p)|2dM.

Therefore W is positive semidefinite with rank(W ) = V − 1.
(2) H(u(n)) in (5.2) is also symmetric, and

(5.5) v′H(u(n))v =
∑

τ

g(|∇Mu|nτ |)
∫

τ
|∇Mv(p)|2dτ.

Therefore H(u(n)) is positive semidefinite. Furthermore, rank(H(u(n))) = V− 1 when
g(·) > 0.

(3) L(u(n)) in (5.3) is symmetric, and

(5.6) v′L(u(n))v =
∑

τ

(
gn
1 |τ
∫

τ
(∇Mv(p) · e1)2dτ + gn

2 |τ
∫

τ
(∇Mv(p) · e2)2dτ

)
,

where gn
1 |τ = g1(|∇Mu|nτ |) and gn

2 |τ = g2(|∇Mu|nτ |). Hence L(u(n)) is positive semi-
definite. Furthermore, rank(L(u(n))) = V − 1 when g1(·) > 0, g2(·) > 0.

Proof. (1) The symmetry of W is obvious since ωij = ωji. On the other hand, for any
vector v,

v′Wv =
∑
i,j

(−ωijvivj) = −
∑

i

ωiiv
2
i −

∑
i

∑
j∈N1(i)

ωijvivj

=
∑

i

∑
j∈N1(i)

ωijv
2
i −

∑
i

∑
j∈N1(i)

ωijvivj

=
∑

e=[vi,vj ]

ωij(v2
i + v2

j ) −
∑

e=[vi,vj ]

2ωijvivj =
∑

e=[vi,vj ]

ωij(vi − vj)2

=
1
2

∑
τ=[vi,vj ,vk]

(cot θi(vj − vk)2 + cot θj(vi − vk)2 + cot θk(vi − vj)2)

=
∑

τ=[vi,vj ,vk]

∫
τ
|∇Mv(p)|2dM =

∫
M

|∇Mv(p)|2dM ≥ 0,



686 CHUNLIN WU, JIANSONG DENG, FALAI CHEN, AND XUECHENG TAI

where v(p) is the piecewise linear function interpolating vertex data v. Here we recall

∇Mv(p)|τ=[vi,vj ,vk] = vi∇Mφi + vj∇Mφj + vk∇Mφk

and the gradient in (4.5). Hence W is positive semidefinite. Moreover, v′Wv = 0 if and only
if v = c (1, 1, . . . , 1) with constant c. This shows rank(W ) = V − 1.

(2) H(u(n)) is symmetric since cij,τ = cji,τ . On the other hand, for any vector v,

v′H(u(n))v =
∑
ij

(−hijvivj) = −
∑

i

hiiv
2
i −

∑
i

∑
j∈N1(i)

hijvivj

= −
∑

i

∑
τ,τ∈D1(i)

g(|∇Mu|nτ |)cii,τv2
i −

∑
i

∑
j∈N1(i)

∑
τ,[vi,vj ]≺τ

g(|∇Mu|nτ |)cij,τvivj

=
∑

e=[vi,vj ]

∑
τ,e≺τ

g(|∇Mu|nτ |)cij,τ (v2
i + v2

j ) −
∑

e=[vi,vj ]

∑
τ,e≺τ

g(|∇Mu|nτ |)cij,τ2vivj

=
∑

e=[vi,vj ]

∑
τ,e≺τ

g(|∇Mu|nτ |)cij,τ (vi − vj)2

=
∑

τ=[vi,vj ,vk]

g(|∇Mu|nτ |)(cij,τ (vi − vj)2 + cik,τ (vi − vk)2 + cjk,τ (vj − vk)2)

=
∑

τ=[vi,vj ,vk]

g(|∇Mu|nτ |)
1
2
(cot θk(vi − vj)2 + cot θj(vi − vk)2 + cot θi(vj − vk)2)

=
∑

τ=[vi,vj ,vk]

g(|∇Mu|nτ |)
∫

τ
|∇Mv(p)|2dτ ≥ 0,

where we thank the fact that |∇Mu|nτ | is constant for each τ . This gives the semidefinite
positiveness of H(u(n)). The reason for rank(H(u(n))) = V − 1 when g(·) > 0 is the same
as (1).

(3) The symmetry of L(u(n)) follows from the fact that c1
ij,τ = c1

ji,τ and c2
ij,τ = c2

ji,τ . For
any v,

v′L(u(n))v =
∑
ij

(−lijvivj) = −
∑

i

liiv
2
i −

∑
i

∑
j∈N1(i)

lijvivj

= −
∑

i

∑
τ,τ∈D1(i)

(gn
1 |τc1

ii,τ + gn
2 |τ c2

ii,τ )v
2
i −

∑
i

∑
j∈N1(i)

∑
τ,[vi,vj ]≺τ

(gn
1 |τc1

ij,τ + gn
2 |τ c2

ij,τ )vivj

=
∑

e=[vi,vj ]

∑
τ,e≺τ

(gn
1 |τ c1

ij,τ + gn
2 |τc2

ij,τ )(v
2
i + v2

j ) −
∑

e=[vi,vj ]

∑
τ,e≺τ

(gn
1 |τc1

ij,τ + gn
2 |τc2

ij,τ )2vivj

=
∑

e=[vi,vj ]

∑
τ,e≺τ

(gn
1 |τ c1

ij,τ + gn
2 |τc2

ij,τ )(vi − vj)2

=
∑

τ=[vi,vj ,vk]

gn
1 |τ (c1

ij,τ (vi − vj)2 + c1
ik,τ (vi − vk)2 + c1

jk,τ (vj − vk)2)

+
∑

τ=[vi,vj ,vk]

gn
2 |τ (c2

ij,τ (vi − vj)2 + c2
ik,τ (vi − vk)2 + c2

jk,τ (vj − vk)2)
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=
∑

τ=[vi,vj ,vk]

(
gn
1 |τ
∫

τ
(∇Mv(p) · e1)2dτ + gn

2 |τ
∫

τ
(∇Mv(p) · e2)2dτ

)
≥ 0,

where the last equality can be verified via vector operations and formulas of trigonometric
functions. This gives the semidefinite positiveness of L(u(n)). Similarly, v′Lv = 0 if and only
if v = c (1, 1, . . . , 1) with constant c, which shows rank(L(u(n))) = V − 1 when g1(·) > 0,
g2(·) > 0.

We can now prove the following theorem.
Theorem 5.2. Given an initial image f , after choosing a time step �t, there exist a

unique discrete linear scale-space {TLD
n f = u(n), n = 0, 1, 2, . . .}, a unique discrete non-

linear scale-space {TND
n f = u(n), n = 0, 1, 2, . . .} and a unique discrete anisotropic scale-space

{TAD
n f = u(n), n = 0, 1, 2, . . .} which depend continuously on the initial image f for every

finite n.
Proof. We need only prove that the coefficient matrices in (5.1), (5.2), and (5.3) are

invertible.
The invertibility of S + �tW , (S + �tH(u(n))), and (S + �tL(u(n))) is obvious since

S is positive definite, and W,H(u(n)), L(u(n)) are all positive semidefinite. The continuous
dependence follows from the continuity of W,H(u(n)), L(u(n)).

5.2.2. Discrete semigroup property. The discrete scale-spaces satisfy the following dis-
crete semigroup property.

Proposition 5.3. For any n1 ≥ 0 and n2 ≥ 0,
(1) TLD

n1+n2
f = TLD

n2
(TLD

n1
f) = TLD

n1
(TLD

n2
f);

(2) TND
n1+n2

f = TND
n2

(TND
n1

f) = TND
n1

(TND
n2

f);
(3) TAD

n1+n2
f = TAD

n2
(TAD

n1
f) = TAD

n1
(TAD

n2
f).

Proof. The proof is by direct verification.

5.2.3. Grey level shift invariance. The discrete scale-spaces all have the grey level shift
invariance property.

Proposition 5.4. Let C = (c, c, . . . , c) be a V-dimensional vector. Then the discrete scale-
spaces satisfy

(1) TLD
n (f + C) = TLD

n (f) + C;
(2) TND

n (f + C) = TND
n (f) + C;

(3) TAD
n (f + C) = TAD

n (f) + C.
Proof. We prove only (1) (the proofs of (2) and (3) are similar). First, we show that

(1) holds for n = 1.
If we can show

(S + �tW )(TLD
1 (f) + C) = S(f + C),

then (1) holds by the uniqueness of the discrete linear scale-space. Since

(S + �tW )TLD
1 (f) = Sf,

we need only prove
(S + �tW )C = SC,
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which is true since the sum of each row of W vanishes.
For general n, (1) follows from the discrete semigroup property.

5.2.4. Reverse contrast invariance. Since W is independent of u, H(−u) = H(u), and
L(−u) = L(u), we have the following proposition.

Proposition 5.5. Let f be an initial image. Then
(1) TLD

n (−f) = −TLD
n f ;

(2) TND
n (−f) = −TND

n f ;
(3) TAD

n (−f) = −TAD
n f .

5.2.5. Conservation of total grey level. We define the total grey level of a function u on
a triangulated surface as its integral. That is,

(5.7) μ(u) =
∫

M
u(p)dM =

∑
i=0,1,...,V−1

uisi,

according to (4.2), where si is the area of the control cell of the vertex vi.
Proposition 5.6. The total grey level μ(f) does not change in the discrete scale-spaces; that

is,
μ(TLD

n f) = μ(TND
n f) = μ(TAD

n f) = μ(f), n = 1, 2, . . . .

Proof. We prove only μ(TLD
n f) = μ(f), n = 1, 2, . . . . The other two equalities are similar.

Let u(n) = TLD
n f and u(n+1) = TLD

n+1f . Then

(S + �tW )u(n+1) = Su(n),

so
u(n+1) = (S + �tW )−1Su(n).

By multiplying S to the two sides of the above equation, we have

Su(n+1) = (I + �tWS−1)−1Su(n).

Denote v(n) = Su(n) and A = (aij) = (I + �tWS−1)−1; then

μ(TLD
n+1f) = μ(u(n+1)) =

∑
i

v
(n+1)
i =

∑
i

∑
j

aijv
(n)
j

=
∑

j

∑
i

aijv
(n)
j =

∑
j

v
(n)
j

∑
i

aij .

By the symmetry and vanishing row sums of W , it is easy to verify that A is of unit column
sums. This gives ∑

i

aij = 1 ∀j.

Thus
μ(TLD

n+1f) =
∑

j

v
(n)
j = μ(u(n)) = μ(TLD

n f) = · · · = μ(f).
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5.2.6. Information reduction, stability, and limit behavior. In this subsection, we dis-
cuss the information reduction property of the discrete scale-spaces as well as their stability
and limit behaviors. There are many ways to understand the information reduction (regu-
larization) of scale-space evolution (or other similar procedures), such as low-pass filtering
in frequency domain, entropy increasing, and energy minimizing, as well as diffusion. Our
interpretation here is based on the eigenvalue and eigenvector analysis of matrices since we
are in discrete settings.

First we give a lemma.
Lemma 5.7. For the matrices S,W,H(u(n)), L(u(n)) in (5.1), (5.2), (5.3), the following

hold:
(1) The eigenvalues of S−1W are 0 = μLD

1 < μLD
2 ≤ · · · ≤ μLD

V with complete correspond-
ing eigenvectors {(1, 1, . . . , 1) = bLD

1 , bLD
2 , . . . , bLD

V }. Furthermore,

(5.8) μLD
i =

∫
M |∇MbLD

i (p)|2dM

(bLD
i )′SbLD

i

for each i. Here bLD
i (p) is the piecewise linear interpolation of bLD

i .
(2) The eigenvalues of S−1H(u(n)) are 0 = μND

1 ≤ μND
2 ≤ · · · ≤ μND

V with complete
corresponding eigenvectors {(1, 1, . . . , 1) = bND

1 , bND
2 , . . . , bND

V }. Furthermore,

(5.9) μND
i =

∑
τ g(|∇Mu|nτ |)

∫
τ |∇MbND

i (p)|2dτ

(bND
i )′SbND

i

for each i. And if the function g(·) > 0, then μND
1 < μND

2 , and therefore (1, 1, . . . , 1)
is the unique eigenvector of μND

1 .
(3) The eigenvalues of S−1L(u(n)) are 0 = μAD

1 ≤ μAD
2 ≤ · · · ≤ μAD

V with complete
corresponding eigenvectors {(1, 1, . . . , 1) = bAD

1 , bAD
2 , . . . , bAD

V }. Furthermore,

(5.10) μAD
i =

∑
τ (g

n
1 |τ
∫
τ (∇M bAD

i (p) · e1)2dτ + gn
2 |τ
∫
τ (∇MbAD

i (p) · e2)2dτ)
(bAD

i )′SbAD
i

for each i. And if the functions g1(·) > 0, g2(·) > 0, then μAD
1 < μAD

2 , and therefore
(1, 1, . . . , 1) is the unique eigenvector of μAD

1 .
Proof. We prove only (1). The proofs for (2) and (3) are similar by Theorem 5.1.
Since

S−1W =
√

S−1
√

S−1W ∼ (
√

S−1)−1
√

S−1
√

S−1W
√

S−1 =
√

S−1W
√

S−1,

by the symmetry of W , S−1W is similar to
√

S−1W
√

S−1, which is symmetric. This shows
that all the eigenvalues of S−1W are real and the set of eigenvectors is complete.

Now assume μ is an eigenvalue of S−1W with corresponding eigenvector b. Then

S−1Wb = μb ⇒ Wb = μSb ⇒ b′Wb = μb′Sb ⇒ μ =
b′Wb

b′Sb
=

∫
M |∇Mb(p)|2dM

b′Sb

by Theorem 5.1. μLD
1 = 0 and bLD

1 = (1, 1, . . . , 1) follow immediately.
With the same notation as in the above lemma, we have the following proposition.
Proposition 5.8. In the linear, nonlinear, and anisotropic scale-spaces, the following hold:
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(1) The eigenvalues of (I +�tS−1W )−1 are 1 = λLD
1 > λLD

2 ≥ λLD
3 ≥ · · · ≥ λLD

V > 0 with
complete corresponding eigenvectors {(1, 1, . . . , 1) = bLD

1 , bLD
2 , . . . , bLD

V }. In addition,

(5.11) λLD
i = (1 + �tμLD

i )−1.

(2) The eigenvalues of (I+�tS−1H(u(n)))−1 are 1 = λND
1 ≥ λND

2 ≥ λND
3 ≥ · · · ≥ λND

V >
0 with complete corresponding eigenvectors {(1, 1, . . . , 1) = bND

1 , bND
2 , . . . , bND

V }, and

(5.12) λND
i = (1 + �tμND

i )−1.

Furthermore, if the function g(·) > 0, then λND
1 > λND

2 and (1, 1, . . . , 1) is the unique
eigenvector of λND

1 .
(3) The eigenvalues of (I+�tS−1L(u(n)))−1 are 1 = λAD

1 ≥ λAD
2 ≥ λAD

3 ≥ · · · ≥ λAD
V > 0

with complete corresponding eigenvectors {(1, 1, . . . , 1) = bAD
1 , bAD

2 , . . . , bAD
V }, and

(5.13) λAD
i = (1 + �tμAD

i )−1.

Furthermore, if the functions g1(·) > 0, g2(·) > 0, then λAD
1 > λAD

2 and (1, 1, . . . , 1)
is the unique eigenvector of λAD

1 .
Proof. The assertion follows from the relationship between the eigenvalues and corre-

sponding eigenvectors of A and (I + �tA)−1 by Lemma 5.7. Here the matrix A is any of
S−1W, S−1H(u(n)), S−1L(u(n)).

Let us interpret the information reduction property of discrete scale-spaces, or the dis-
crete filtering procedures, from Proposition 5.8. For a given initial image, it can be written
into a linear combination of eigenvectors. As the scale n increases, the components shrink
along eigenvectors whose corresponding values are less than 1. Since all eigenvalues are less
than or equal to 1, the only retained part is the component corresponding to the maximal
eigenvalue 1. The maximal eigenvalue 1 corresponds to an eigenvector (1, 1, . . . , 1) which is
the zero frequency of the signal. This zero frequency information will be preserved.

A careful investigation of the relationship between eigenvalues and their corresponding
eigenvectors as shown in (5.8), (5.11), (5.9), (5.12), (5.10), and (5.13) gives us more deeper
understanding. As for the linear scale-space, let us consider two components along eigenvectors
bLD
i and bLD

j with eigenvalues λLD
i > λLD

j . Then the component along eigenvector bLD
j shrinks

faster than that along bLD
i . On the other hand, we have μLD

j > μLD
i from (5.11); hence

∫
M |∇MbLD

j (p)|2dM

(bLD
j )′SbLD

j

>

∫
M |∇MbLD

i (p)|2dM

(bLD
i )′SbLD

i

.

After normalization (and using the original notation), we have∫
M

|∇MbLD
j (p)|2dM >

∫
M

|∇MbLD
i (p)|2dM,

which shows that the bLD
j component is more irregular (or of higher frequency or larger

Dirichlet energy) than the bLD
i component. Therefore, irregular components in the eigen-

decomposition of the image shrink faster than regular components.
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Similar discussions for the discrete nonlinear scale-spaces point out some differences com-
pared to the linear scale-spaces. Let us consider two components along eigenvectors bND

i and
bND
j with λND

i > λND
j . On one hand, the component along eigenvector bND

j shrinks faster
than that along bND

i . On the other hand, we have μND
j > μND

i , which implies

∑
τ

g(|∇Mu|nτ |)
∫

τ
|∇MbND

j (p)|2dτ >
∑

τ

g(|∇Mu|nτ |)
∫

τ
|∇MbND

i (p)|2dτ

after normalization. Note that the function g is chosen to be decreasing with respect to the
image intensity gradient. Unlike the linear scale-spaces, it is not necessary that components
with larger Dirichlet energy shrink faster than those with lower Dirichlet energy. Besides
the Dirichlet energy, the pixel spatial location contributing to the Dirichlet energy deter-
mines the shrink rate. Components with large Dirichlet energy contributed mainly by image
edges and few oscillations (such as piecewise constant approximations of the image u(n)) will
shrink slowly. Meanwhile, those components with large Dirichlet energy contributed mainly
by information of nonedges of the image such as spatially uniformly distributed small swing
oscillations (noise, small scale textures) will shrink fast. Here we provide an explanation for
the edge preserving of nonlinear filters via both global and local image structure analysis.

As for the anisotropic scale-spaces, the choice of e1, e2 and g1, g2 controls the information
reduction effect of the discrete filter. Unlike the former two scale-spaces, here information
can reduce anisotropically. From the expression of μAD

i in (5.10), one may choose appropriate
g1, g2 to obtain the desired regularization effect. The analysis is similar to the above discussion
but with one difference: the information reduction may be nonlinear as well as directional.

From Proposition 5.8 we can derive the following two results on the computational stability.
Corollary 5.9. Assume f is an initial image defined on a triangulated surface M . Then
(1) ‖TLD

n+1f‖2 ≤ ‖TLD
n f‖2 for any n = 0, 1, . . . ;

(2) ‖TND
n+1f‖2 ≤ ‖TND

n f‖2 for any n = 0, 1, . . . ;
(3) ‖TAD

n+1f‖2 ≤ ‖TAD
n f‖2 for any n = 0, 1, . . . .

Proof. The statement follows immediately from Proposition 5.8, since ‖Ax‖2 ≤ ‖A‖2‖x‖2

and ‖A‖2 = maxi |λi|, where λi is the eigenvalue of A.
The above corollary gives the L2 stability of linear, nonlinear, and anisotropic scale-spaces,

while the following proposition shows that the gradient of the image in the scale-spaces remains
bounded.

Proposition 5.10. Given f as an initial image, there exists a constant C > 0 such that
|∇MTLD

n f | ≤ C, |∇MTND
n f | ≤ C, and |∇MTAD

n f | ≤ C for n = 1, 2, . . . .
Proof. We consider only the linear scale-space. The arguments for the other two are

similar by Corollary 5.9. We first recall∫
M

|∇M (TLD
n f)(p)|2dM =

∑
τ=[vi,vj ,vk]

sτ |∇M (TLD
n f)|2τ = (TLD

n f)′W (TLD
n f)

from Theorem 5.1, where sτ is the area of triangle τ . Since W is a symmetric matrix, W
is orthogonally similar to a diagonal matrix. Assume μ1, μ2, . . . , μV are the eigenvalues of
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W and b1, b2, . . . , bV are their corresponding eigenvectors. {b1, b2, . . . , bV} form an orthogonal
basis. Therefore, TLD

n f can be decomposed as

TLD
n f =

∑
1≤i≤V

α
(n)
i bi.

Thus we have ∫
M

|∇M (TLD
n f)(p)|2dM

= (TLD
n f)′W (TLD

n f) =
∑

1≤i≤V

μi(α
(n)
i )2 ≤ max

1≤i≤V
μi

∑
1≤i≤V

(α(n)
i )2

= max
1≤i≤V

μi‖TLD
n f‖2

2 ≤ max
1≤i≤V

μi‖TLD
n−1f‖2

2 ≤ · · · ≤ max
1≤i≤V

μi‖f‖2
2

for any n. Therefore,

|∇M (TLD
n f)|2 ≤ max1≤i≤V μi‖f‖2

2

minτ sτ

.= C1.

Choose C =
√

C1.
Note that Corollary 5.9 and Proposition 5.10 indicate the stability of our method, in spite

of the possible ill-posedness of the PDE with special diffusivities such as Perona–Malik models.
The information reduction effect is particularly evident in the linear scale-space and in

the nonlinear and anisotropic scale-spaces when g(·) > 0, g1(·) > 0, g2(·) > 0. In these
cases, the retained component is along direction (1, 1, . . . , 1), which is the unique eigenvector
corresponding to the eigenvalue 1. It serves as a constant function and results in a limit
behavior of the discrete scale-spaces.

Proposition 5.11. For an initial image f , let μ(f) be the total grey defined in (5.7) and si

be the area of the control cell of vi. Then
(1) limn→∞ TLD

n f = μ(f)∑
i=0,1,...,V−1 si

(1, 1, . . . , 1);

(2) if g(·) > 0, limn→∞ TND
n f = μ(f)∑

i=0,1,...,V−1 si
(1, 1, . . . , 1);

(3) if g1(·) > 0, g2(·) > 0, limn→∞ TAD
n f = μ(f)∑

i=0,1,...,V−1 si
(1, 1, . . . , 1).

Proof. (1) By Proposition 5.6, one need only prove that the limit of TLD
n f is a constant

function. From Proposition 5.8, the components of f corresponding to eigenvectors whose
eigenvalues are less than 1 will shrink and vanish eventually. The only retained part is the
component corresponding to eigenvector (1, 1, . . . , 1), which is unique to the eigenvalue 1. This
demonstrates that the limit is a constant function.

(2) Although g(·) > 0, we cannot obtain the result using the same argumentation as
in (1) by Proposition 5.8. In the nonlinear scale-space, the eigenvalues and eigenvectors are
variational along with the iteration since H(u(n)) depends on u(n). We reformulate the scale-
space evolution (5.2) to be

(
√

S + �t
√

S−1H(u(n)))u(n+1) =
√

Su(n),

from which we further have

(5.14)
√

Su(n+1) + �t
√

S−1H(u(n))
√

S−1
√

Su(n+1) =
√

Su(n).
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Let y(n) =
√

Su(n). The above equation is actually

(5.15) (I + �t
√

S−1H(
√

S−1y(n))
√

S−1)y(n+1) = y(n).

In the following we find out the limit of y(n), from which the limit of u(n) can be deduced.
We first show the structure of the eigenvalues and eigenvectors of

√
S−1H(u(n))

√
S−1

(or
√

S−1H(
√

S−1y(n))
√

S−1). By the symmetry,
√

S−1H(
√

S−1y(n))
√

S−1 is orthogonally
similar to a diagonal matrix. We then assume the eigenvalues and corresponding eigenvec-
tors are λ

(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
V and b

(n)
1 , b

(n)
2 , . . . , b

(n)
V . Since

√
S−1H(

√
S−1y(n))

√
S−1 ∼

S−1H(
√

S−1y(n)), we know 0 = λ1 = λ
(n)
1 < λ

(n)
2 ≤ · · · ≤ λ

(n)
V and b

(n)
1 =

√
S(1, 1, . . . , 1)′ = b1,

by Lemma 5.7. Note that b
(n)
1 and λ

(n)
1 are independent of n and are sometimes written as b1

and λ1.
Moreover, we further demonstrate that the second smallest eigenvalue λ

(n)
2 > C for some

constant C independent of n. Our strategy is to compare the eigenvalues of
√

S−1H(u(n))
√

S−1

and
√

S−1W
√

S−1 via their Rayleigh quotients [17], since the eigenvalues of
√

S−1W
√

S−1 ∼
S−1W are independent of iterations and greater than or equal to zero by Lemma 5.7. In
addition,

√
S−1W

√
S−1 has the unique eigenvector b1 corresponding to the smallest eigenvalue

λ1, just like
√

S−1H(u(n))
√

S−1. Consider the Rayleigh quotients

R√
S−1H(u(n))

√
S−1(x) =

x′√S−1H(u(n))
√

S−1x

x′x

and

R√
S−1W

√
S−1(x) =

x′√S−1W
√

S−1x

x′x
,

where x is a vector. According to equation (4.2.7) on page 178 of [17], we have

λ2(
√

S−1H(u(n))
√

S−1) = min
x 
=0,x⊥b1

x′√S−1H(u(n))
√

S−1x

x′x

and

λ2(
√

S−1W
√

S−1) = min
x 
=0,x⊥b1

x′√S−1W
√

S−1x

x′x
,

where λ2(A) stands for the second smallest eigenvalue of A. Note that the second smallest
eigenvalues of both

√
S−1H(u(n))

√
S−1 and

√
S−1W

√
S−1 are the minimal values of their

Rayleigh quotients restricted in the same subset, respectively.
On the other hand, we know the gradient of the image in the scale-space is bounded from

Proposition 5.10. Denoting the bound as C1, that is, |∇Mu(n)| ≤ C1 for any n, we have

g(C1)x′√S−1W
√

S−1x ≤ x′√S−1H(u(n))
√

S−1x ≤ g(0)x′√S−1W
√

S−1x.

This shows that

(5.16) λ
(n)
2 = λ2(

√
S−1H(u(n))

√
S−1) ≥ g(C1)λ2(

√
S−1W

√
S−1) .= C,

where C > 0, since λ2(
√

S−1W
√

S−1) > 0 and g(·) > 0.
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We then come back to the scale-space evolution. y(n) can be decomposed as

y(n) =
∑

1≤i≤V

α
(n)
i b

(n)
i .

By (5.15), we obtain∑
1≤i≤V

α
(n+1)
i b

(n+1)
i = y(n+1) =

∑
1≤i≤V

(1 + �tλ
(n)
i )−1α

(n)
i b

(n)
i ,

where {b(n+1)
1 , b

(n+1)
2 , . . . , b

(n+1)
V } are the eigenvectors of

√
S−1H(u(n+1))

√
S−1 for the scale-

space evolution from y(n+1) to y(n+2). Hence we deduce α
(n+1)
1 = α

(n)
1 since b

(n+1)
1 = b

(n)
1 = b1

and b1 is orthogonal to other vectors. We also have

‖y(n+1)‖2 = (α(n)
1 )2 +

∑
2≤i≤V

(1 + �tλ
(n)
i )−2(α(n)

i )2,

yielding

0 ≤ ‖y(n+1)‖2 − (α(n+1)
1 )2 ≤ (1 + �tC)−2(‖y(n)‖2 − (α(n)

1 )2)

≤ (1 + �tC)−4(‖y(n−1)‖2 − (α(n−1)
1 )2)

≤ · · ·
≤ (1 + �tC)−2(n+1)(‖f‖2).

Sending n → ∞ and taking into account that α1 corresponds to the eigenvector b1, we see
the limit of y(n) is along b1. Therefore the limit of u(n) is along (1, 1, . . . , 1), from which the
assertion follows.

(3) The statement can be verified in a similar way with the above procedure by noticing

v′L(u(n))v =
∑

τ

(
gn
1 |τ
∫

τ
(∇Mv(p) · e1)2dτ + gn

2 |τ
∫

τ
(∇Mv(p) · e2)2dτ

)

≥
∑

τ

min(gn
1 |τ , gn

2 |τ )
(∫

τ
(∇Mv(p) · e1)2dτ +

∫
τ
(∇Mv(p) · e2)2dτ

)

=
∑

τ

min(gn
1 |τ , gn

2 |τ )
∫

τ
|∇Mv(p)|2dτ

as calculated in Theorem 5.1.
The above proposition predicts a constant limit behavior of these scale-spaces or the

corresponding filtering procedures when the scale n → ∞. It gives users some suggestions.
First, some fidelity terms have to be added into the filtering models to preserve some particular
and valuable features of the original images just as is done in most of our applications [61].
Second, to avoid the constant limit direction, one can carefully design the functions g1, g2

and the piecewise vector fields e1, e2. For example, one can set g1 or g2 to be zero or very
small to keep the features along e1 or e2. This explains the configurations of diffusion models
when applied to directional texture generating [61] and anisotropic image anti-aliasing and
denoising (see the examples in section 6).
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5.2.7. Maximum-minimum principle. In this subsection, we will prove the maximum-
minimum principle for the discrete linear and nonlinear scale-spaces if there are no obtuse
triangles in the triangulated surface M .

Proposition 5.12. Suppose that there are no obtuse triangles in the triangulated surface M .
Let f be an initial image and

m(f) := min
j=0,1,...,V−1

fj,

M(f) := max
j=0,1,...,V−1

fj;

then
(1) m(f) ≤ (TLD

n f)i ≤ M(f) for i = 0, 1, . . . ,V − 1, n = 1, 2, . . . ;
(2) m(f) ≤ (TND

n f)i ≤ M(f) for i = 0, 1, . . . ,V − 1, n = 1, 2, . . . .
Proof. We prove only (1) ((2) can be proved similarly). Let u(n) = TLD

n f and u(n+1) =
TLD

n+1f ; then

(S + �tW )u(n+1) = Su(n),

so

u(n+1) = (S + �tW )−1Su(n)

= (I + �tS−1W )−1u(n) := Au(n),

where A = (aij)V×V. Since M does not have obtuse triangles and W is positive semidefinite, it
is obvious that I +�tS−1W is an M-matrix [46]. Therefore elements of A are all nonnegative.
On the other hand, one can easily verify that the sum of each row of I + �tS−1W is unit,
and hence of A. Therefore,

u
(n+1)
i =

∑
j

aiju
(n)
j ≤

∑
j

aij max
j

u
(n)
j ≤ max

j
u

(n)
j

and

u
(n+1)
i =

∑
j

aiju
(n)
j ≥

∑
j

aij min
j

u
(n)
j ≥ min

j
u

(n)
j

hold for all i and n. The assertion follows this immediately.
It should be pointed out that the maximum-minimum principle may not hold for the

discrete anisotropic scale-spaces, since they depend on the choice of e1, e2 and g1, g2.

5.2.8. Remark. In the analysis so far, we have assumed that in the anisotropic diffusion
model the vector fields e1, e2 are kept fixed. We want to emphasize that the analysis is still
true if e1, e2 depend on time t and the solution u, i.e., e1 = e1(x, t, u), e2 = e2(x, t, u). How-
ever, the computation is much more complicated since the coefficients {c1

ii,τ , c
1
ij,τ , c

1
ik,τ , c

2
ii,τ ,

c2
ij,τ , c

2
ik,τ , c

1
ji,τ , c

1
jj,τ , c

1
jk,τ , c

2
ji,τ , c

2
jj,τ , c

2
jk,τ , c

1
ki,τ , c

1
kj,τ , c

1
kk,τ , c

2
ki,τ , c

2
kj,τ , c

2
kk,τ} should be updated

in each iteration.
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6. Examples and discussion. In this section, several examples are provided to illustrate
the differences for the different discrete filtering procedures on triangulated surfaces. In par-
ticular, we make comparisons between linearity and nonlinearity, as well as isotropic and
anisotropic procedures.

In the first and second examples, we compute discrete linear and nonlinear scale-spaces of
the initial image of Lena defined on an open mesh surface (a discrete manifold with a boundary
where boundary conditions of diffusion equations should be considered) and a color image
painted on a bunny surface (which is closed and complex and has genus zero) as illustrated
in Figures 4, 5, 6, 7, 8, and 9, respectively. For the nonlinear scale-spaces, we choose three
diffusivities for the function g(s) from Table 1. They are 1√

s2+β
, 1

1+( s
K

)2
, and 1

s2+β
. In each

figure, the images from top left to bottom right represent increasing scales. As one can see,
topologies of images in the scale-spaces get simpler when scales get larger regardless of linearity
and nonlinearity. This information reduction property is basic for the scale-spaces of planar
images and is preserved for images over mesh surfaces. In addition, other properties such
as the constant limit behavior and the maximum-minimum principle can also be observed.
However, there are still many differences between the linear and nonlinear filtering or their
corresponding discrete scale-spaces. They both simplify topologies of images but behave in
different ways. In the linear scale-space, the initial image is smoothed isotropically, while
in the nonlinear scale-space the initial image is smoothed nonlinearly and locally. Hence
different effects appear. In images of linear scale-spaces, different objects are syncretized, and
they become more and more indistinguishable. In images of nonlinear scale-spaces, texture-
like finer details disappear gradually and piecewise constant functions form. If the scale gets
even larger (see our second example in which there are no details at all in the initial image),
the piecewise constant functions will become more simplified in such a way that patches with
similar grey levels merge with each other, and patches with large sizes swallow nearby small
patches. This is to be expected since the chosen g function is decreasing with respect to the
image intensity gradient, and the total (or weighted average) grey level is preserved as proved
in Proposition 5.6. One even can observe clearly the differences between the nonlinear filterings
with different diffusivities from Figures 5, 6, and 7. According to Table 1, the regularized TV
flow is a pure diffusion procedure, whereas the Perona–Malik and balanced forward-backward
(BFB) diffusivities are smoothing/enhancing models. In other words, Perona–Malik and BFB
models sharpen image edges when smoothing homogeneous regions of the image. The BFB
model even generates false image edges as shown in Figure 7. In spite of this, the image
sequence in the scale-spaces will tend to a constant function. The speed of this procedure
depends on the diffusivity g or, more precisely, g(s)

g(s)+sg′(s) , the ratio of the diffusion coefficients
along the tangential and normal directions of the level sets of the image intensity. From this
ratio one can figure out why the image sequence in Figure 6 approaches the constant limit
much faster than that in Figure 7. Actually, this fact demonstrates that in image restoration
problems the BFB model sometimes behaves better than other models, especially for images
containing multiscale edges.

Examples about anisotropic discrete filtering procedures with different constant diffusion
rates are provided in Figures 10, 11, 12, 13, and 14. In the sphere example, we chose e1 to
be the longitude and e2 the latitude of the sphere. We calculated three discrete anisotropic
scale-spaces with low, middle, and high anisotropies, respectively, as shown in Figures 10, 11,
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Figure 4. Discrete linear scale-space of Lena on an open surface. From top left to bottom right, the discrete
scales are 0, 1, 3, 5, 7, 9, 11, 13, 16, respectively.

and 12. As demonstrated in our analysis, information of the initial image is reduced when
the scale increases. And if g1 > 0, g2 > 0, the initial image will tend to a constant limit.
If one wishes to keep image features along some direction, one just sets the diffusion rate
of that direction to be zero. Figure 12, in which g1 = 0, is such an example. This results
in no filtering along the e1 direction, the longitude of the sphere. Along the latitude of the
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Figure 5. Discrete nonlinear scale-space (g(s) = 1√
s2+β

with β = 10−10, regularized total variation flow)

of Lena on an open surface. From top left to bottom right, the discrete scales are 0, 1, 3, 5, 7, 9, 11, 13, 16,
respectively.

sphere e2, the choice of g2 = 1 smoothes out the zigzag edge and gives an anti-aliasing effect.
These observations can also be found in the Utah teapot example (see Figure 13). A careless
colorization yields a zigzag edge between the white cover and the grey body; see the zoom-in
in Figure 13. We computed three filtering procedures for the zigzag removal as shown in
Figure 14.
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Figure 6. Discrete nonlinear scale-space (g(s) = 1
1+( s

K
)2

with K = 1, one of the Perona–Malik diffusivities)

of Lena on an open surface. From top left to bottom right, the discrete scales are 0, 1, 3, 5, 7, 9, 13, 20, 50,
respectively.

The last example shows the anisotropic discrete filtering applied to simultaneously anti-
aliasing and denoising; see Figure 15. The first row is the noisy image with zigzag aliasing
along the latitude direction. Again we choose the longitude to be e1 and the latitude to be
e2. Three anisotropic scale-spaces with different g1, g2 as stated in the figure are computed
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Figure 7. Discrete nonlinear scale-space (g(s) = 1
s2+β

with β = 10−5, a regularized BFB diffusivity) of
Lena on an open surface. From top left to bottom right, the discrete scales are 0, 1, 3, 20, 50, 100, 500, 1000,
2000, respectively.

and compared. As one can see, the results are quite different between different scale-spaces.
In the anisotropic filtering for pure anti-aliasing (second row), the zigzag disappears very
quickly, whereas the noise tends to be directional. In the pure denoising procedure (third
row), the image noise is removed quite quickly, but the zigzag aliasing changes slowly (for the
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Figure 8. Discrete linear scale-space of an image on the bunny. From top left to bottom right, the discrete
scales are 0, 3, 6, 9, 12, 15, 18, 21, 30, respectively.

edge-preserving diffusivity). By combining these two procedures, we can get the much better
result as shown in the fourth row, in which the noise and zigzag aliasing vanish simultaneously.
Actually, this is philosophically reasonable since we know the information of both the noise
and the aliasing in this example.
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Figure 9. Discrete nonlinear scale-space (g(s) = 1√
s2+β

with β = 10−10, regularized TV flow) of an image

on the bunny. From top left to bottom right, the discrete scales are 0, 3, 6, 9, 12, 15, 18, 21, 30, respectively.
Note the color change on the body and feet of the bunny, when compared with the linear scale-space in Figure 8.

7. Conclusions and future work. In this paper, we provide scale-space analysis for dis-
crete linear, nonlinear, and anisotropic filtering procedures over triangulated surfaces. We
start by presenting diffusion equations on smooth manifolds. Using appropriately defined
differential operators on triangulated surfaces, we then derive the discrete filtering schemes.
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Figure 10. Discrete anisotropic scale-space of an image on a unit sphere. e1: the longitude. e2: the
latitude. g1 = g2 = 1. From top left to bottom right, the discrete scales are 0, 1, 2, 5, 10, 100, respectively.

Figure 11. Discrete anisotropic scale-space of an image on a unit sphere. e1: the longitude. e2: the
latitude. g1 = 0.1, g2 = 1. From top left to bottom right, the discrete scales are 0, 1, 2, 5, 10, 100, respectively.
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Figure 12. Discrete anisotropic scale-space of an image on a unit sphere. e1: the longitude. e2: the
latitude. g1 = 0, g2 = 1. From top left to bottom right, the discrete scales are 0, 1, 2, 5, 10, 100, respectively.

Figure 13. An image on the Utah teapot model and its zoom-in.

These filtering schemes are analyzed with discrete scale-space concepts. Several properties
are discussed and proved, such as existence and uniqueness, continuous dependence on initial
value, the discrete semigroup property, information reduction, and limit behavior, as well as
computational stability. In particular, we use eigenvalue and eigenvector analysis of matrices
to interpret the information reduction property and the limit behavior. Linear and nonlinear
filtering, as well as isotropic and anisotropic filtering, are compared by considering the eigen-
values and eigenvectors of the discrete scale-space matrices. Experiments support our analysis
and interpretation.

Some problems are left open. The first is to extend the three types of scale-spaces to
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Figure 14. Discrete anisotropic scale-spaces of an image on the Utah teapot model. Here e1 is chosen
to be the top-bottom direction on the tangent space of the teapot surface. e2 is orthogonal to e1. First row:
g1 = g2 = 1. Second row: g1 = 0.1, g2 = 1. Third row: g1 = 0, g2 = 1. Left to right: with scales 9, 100,
respectively.

discrete filtering procedures of vector-valued data in order to construct and understand multi-
resolution representations of coupled multichannel information. Also, similar analysis can
be applied to filtering of the mesh point coordinates of triangulated surfaces, that is, various
mesh motions such as mean curvature flow and anisotropic geometric diffusion of mesh surfaces
used in many discrete geometry processing and modelling applications. Another future work
is the construction of discrete filtering and its analysis for images over other types of mesh
surfaces although the nonsimplicial structure will bring some difficulties. In addition, the
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Figure 15. Discrete anisotropic scale-spaces for anti-aliasing and denoising. The first row is the initial
image containing noise and zigzag aliasing, while the other three rows are three anisotropic scale-spaces. e1: the
longitude. e2: the latitude. Second row: g1(s) = 0, g2(s) = 0.1. Third row: g1(s) = g2(s) = 1√

s2+β
, β = 10−10.

Fourth row: g1(s) = 1√
s2+β

, g2(s) = 0.1, β = 10−10. From left to right: with scales 2, 5, 7, respectively.

examples of the anisotropic filtering exhibit an anti-aliasing effect which is very useful in 3D
painting applications. We also call for new discrete filtering operators satisfying the maximum-
minimum principle for any triangulated surfaces.
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