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a b s t r a c t

This paper discusses the dimensions of biquadratic C1 spline spaces and bicubic C2 spline
spaces over hierarchical T-meshes using the smoothing cofactor-conformality method.We
obtain the dimension formula of biquadratic C1 spline spaces over hierarchical T-meshes
in a concise way. In addition, we provide a dimension formula for bicubic C2 spline spaces
over hierarchical T-meshes with fewer restrictions than that in the previous literature. A
dimension formula for bicubic C2 spline spaces over a new type of hierarchical T-meshes
is also provided.
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1. Introduction

Splines are a useful tool for representing functions and surface models, and Non-uniform Rational B-Splines (NURBS),
which are defined on the tensor product meshes, are the most popular splines in the industry. However, due to the tensor
product structure, local refinement of NURBS is impossible; furthermore, NURBS models generally contain a large number
of superfluous control points. Therefore, many splines defined on T-meshes are developed.

There are four main types of splines that are defined on T-meshes. Hierarchical B-splines [1] are polynomial splines de-
fined on hierarchical T-meshes. The definition is improved in [2]. More papers [3–5] are published to discuss the complete-
ness and the partition of unity. T-splines [6,7] are rational splines defined on T-meshes, and they are a piecewise rational
polynomial on every cell of the meshes. The blending functions of T-splines may be linearly dependent, which is adverse
to the application in IGA. Therefore, analysis-suitable T-splines are introduced in [8]. Polynomial splines over hierarchical
T-meshes (PHT-splines) [9] are developed directly from the spline spaces. The bases of PHT-splines are linearly independent
and form a partition of unity. The main drawback of PHT-splines is that they are only C1 continuous. LR-splines [10], which
are defined on a special type of T-meshes, are also polynomial splines. LR-splines are defined with the help of the dimension
formulae, and they are complete. However, the linear independence cannot be guaranteed. Among all of these splines, one
fundamental problem is to understand the spline space of the piecewise polynomials of a given smoothness on a T-mesh,
which is called the spline space over a T-mesh.

The spline space over a T-mesh S(m, n, α, β, T ) is first introduced in [11], which is a bi-degree (m, n) piecewise polyno-
mial spline space over a T-mesh T with smoothness order α and β in two directions. Whenm > 2α + 1 and n > 2β + 1, a
dimension formula has been given in [11], and the bases have been constructed in [9]. However, if we relax the constraints
of m > 2α + 1 and n > 2β + 1, there is not a general dimension formula. In 2011, [12] discovered that the dimen-
sion of the associated spline space has instability over some particular T-meshes, i.e., the dimension is associated not only
with the topological information of the T-mesh but also with the geometric information of the T-mesh. In addition, in [13],
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Fig. 1. A hierarchical T-mesh.

D. Berdinsky et al. give two more examples of S(5, 5, 3, 3, T ) and S(4, 4, 2, 2, T ) for the instability of dimensions. These
results suggest that we should consider the dimension formula for the spline space over some special T-meshes. For this
purpose, weighted T-meshes [14], diagonalizable T-meshes [15], and T-meshes for hierarchical B-spline [16], over which
the dimensions are stable, are developed. The present paper is interested in hierarchical T-meshes, which have a nature tree
structure and have existed in the finite element analysis community for a long time. For a hierarchical T-mesh, [17] derives
a dimension formula for biquadratic C1 spline spaces. And [18] provides the dimension formula for S(d, d, d − 1, d − 1, T )
over a very special hierarchical T-mesh using the homological algebra technique.

In this paper, we present three results:

1. We provide a concise proof of the dimension formula of S(2, 2, 1, 1, T ) over a hierarchical T-mesh.
2. We prove a dimension formula for S(3, 3, 2, 2, T ) over a hierarchical T-mesh with fewer restrictions than that in the

previous literature.
3. We give a dimension formula for S(3, 3, 2, 2, T ) over a new type of hierarchical T-mesh that splits each cell into 3 × 3

parts during the local refinement.

[15,5,18] also discuss the dimensions of S(3, 3, 2, 2, T ). For [15,18], their conclusions are aimed at diagonalizable T-
meshes orweighted T-meshes. In this paper, the T-mesheswe consideredmaybenot of these types. See Fig. 1 for an example.
For [5], the authors present a new type of splines, which is called TDHB-splines. The idea of this paper is to construct the
bases of TDHB-splines first, then to prove the completeness of the bases. That is to say, the dimension of the spline space has
been obtained, which is the number of the bases. For S(3, 3, 2, 2, T ), their conclusion is our third result; moreover, they do
not derive an explicit dimension formula.

The rest of the paper is organized as follows. In Section 2, we review the definitions and some results regarding T-meshes
and spline spaces over T-meshes. In Section 3, the smoothing cofactor-conformality method is explored. In Section 4, we
present some conclusions about homogeneous boundary conditions. We discuss the dimensions of S(2, 2, 1, 1, T ) over
hierarchical T-meshes in Section 5 and the dimensions of S(3, 3, 2, 2, T ) over hierarchical T-meshes in Section 6. Section 7
ends the paper with conclusions and future work.

2. T-meshes and spline spaces

A T-mesh is a rectangular grid that allows T-junctions.

Definition 2.1 ([11,17]). Suppose T is a set of axis-aligned rectangles and the intersection of any two distinct rectangles in
T either is empty or consists of points on the boundaries of the rectangles. Then, T is called a T-mesh. Furthermore, if the
entire domain occupied by T is a rectangle, T is called a regular T-mesh. If some edges of T also form a T-mesh T ′, T ′ is
called a submesh of T .

In this paper, the T-meshes that we consider are regular, and we adopt the definitions of vertex, edge, and cell provided
in [11]. T-meshes are allowed to have T-junctions, or T-nodes, which are the vertex of one rectangle that lies in the interior
of an edge of another rectangle. A valence 4 vertex is called a crossing-vertex.

Vertices, edges and cells can be divided into two parts. If a vertex is on the boundary grid line of the T-mesh, it is called a
boundary vertex. Otherwise, it is called an interior vertex. There are two types of interior vertices: T-junctions and crossing-
vertices. If an edge is on the boundary of the T-mesh, it is called a boundary edge; otherwise, it is called an interior edge.
A cell is called an interior cell if all its edges are interior edges; otherwise, it is called a boundary cell. An l-edge is a line
segment that consists of several edges. It is the longest possible line segment, the interior edges of which are connected and
the two end points are T-junctions or boundary vertices. If an l-edge is comprised of some boundary edges, the l-edge is
called a boundary l-edge; otherwise, it is called an interior l-edge. There are three types of interior l-edges. If the two end
points of an interior l-edge are both T-junctions, the l-edge is called a T l-edge. If the two end points of an interior l-edge
are both boundary vertices, the l-edge is called a cross-cut. If one end point is a boundary vertex and the other one is an
interior vertex, the l-edge is called a ray.
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Fig. 2. A regular T-mesh.

(a) Level 0. (b) Level 1. (c) Level 2.

Fig. 3. A hierarchical T-mesh.

In Fig. 2, v1, v2, v3, v7 and v8 are boundary vertices, v9 and v10 are crossing-vertices, and v4, v5 and v6 are T-junctions;
c1 is a boundary cell, and c2 is an interior cell; the l-edge between v1 and v2 is a cross-cut, the l-edge between v3 and v4 is a
ray, the l-edge between v5 and v6 is a T l-edge, and the l-edge between v7 and v8 is a boundary l-edge.

2.1. Hierarchical T-meshes

A hierarchical T-mesh [9] is a special type of T-mesh that has a natural level structure. It is defined recursively. Generally,
we start from a tensor-product mesh (level 0), the elements (vertices, edges and cells) of which are called level 0 elements.
Then, some cells at level k are each divided intom× n subcells equally, where the new vertices, the new edges and the new
cells are of level k+ 1. The resulting T-mesh is called a hierarchical T-mesh ofm× n division. In the following, the default
division of a hierarchical T-mesh is 2 × 2. Fig. 3 illustrates the process of generating a hierarchical T-mesh. To emphasize
the level structure of a hierarchical T-mesh T , in certain cases, we denote the T-mesh of level k as T k. The maximal level
number that appears is called the level of the hierarchical T-mesh, and is denoted by lev(T ).

For a hierarchical T-mesh T of level n, we use Tk to denote the set of all of the level k l-edges and the level k vertices of
T , and T o

k to denote the set of all of the level k l-edges and all of the vertices on these level k l-edges in T . For any l-edge l
of level j, we use N(l) to denote the number of the cells of T j−1 that l crosses.

Fig. 4 is an example. T is a hierarchical T-mesh and lev(T ) = 2. The level 1 l-edges are labeled with dashed lines, the
level 1 vertices are labeled with ‘‘•’’, and the level 2 vertices are labeled with ‘‘◦’’. Here, N(l1) = 2 and N(l2) = 1 for the two
l-edges l1 (between v1 and v2) and l2 (between v3 and v4).

2.2. Spline spaces over T-meshes

Given a T-mesh T , we use F to denote all of the cells in T andΩ to denote the region occupied by the cells in T . In [11],
the following spline space definition is proposed:

S(m, n, α, β, T ) := {f (x, y) ∈ Cα,β(Ω) : f (x, y)|φ ∈ Pmn, ∀φ ∈ F },

where Pmn is the space of the polynomials with bi-degree (m, n) and Cα,β is the space consisting of all of the bivariate
functions continuous in Ω with order α along the x-direction and with order β along the y-direction. It is obvious that
S(m, n, α, β, T ) is a linear space. In this paper, we only discuss S(d, d, d − 1, d − 1, T ), which is denoted as Sd(T ) for
convenience.
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Fig. 4. Tk and T o
k .

Fig. 5. Smoothing conditions in adjacent cells.

3. Smoothing cofactor-conformality method and conformality vector spaces

In this section, we review the smooth cofactor-conformalitymethod introduced in [19,20] for computing the dimensions
of spline spaces over T-meshes [21,15,18].

Referring to Fig. 5, let fj(x, y), j = 1, 2, 3, 4 be the bivariate polynomials surrounding the interior vertex vi(xi, yi) (if the
vertex vi is a T-junction, some of the polynomials are identical). Then there exist a constant γi ∈ R and two polynomials
a(y) ∈ Pd[y], b(x) ∈ Pd[x], such that

f1(x, y) − f2(x, y) = b(x)(y − yi)d,
f3(x, y) − f2(x, y) = a(y)(x − xi)d,
f4(x, y) − f2(x, y) = a(y)(x − xi)d + b(x)(y − yi)d + γi(x − xi)d(y − yi)d,

where a(y) and b(x) are the edge co-factors associatedwith the corresponding edges, and γi is the vertex co-factor associated
with vertex vi.

There are other constraints for the T l-edges of the T-mesh. For example, given a horizontal T l-edge lj with r vertices
vj1 , vj2 , . . . , vjr , let the x-coordinate of vji be xji , and the vertex co-factors of vji be γji . Then we have

r
i=1

γji(x − xji)
d

= 0.

This equation is equivalent to a linear system denoted by Slj = 0:

r
i=1

γji = 0,

r
i=1

γjixji = 0,

· · · ,
r

i=1

γjix
d
ji = 0.

(1)

Similarly, we can derive the linear system for a vertical T l-edge.
As in [18], we can define the conformality vector space for a set of T l-edges as follows.

Definition 3.1. Suppose L is a set of T l-edges: L = {l1, l2, . . . , ln : li is a T l-edge, 1 6 i 6 n}, v1, v2, . . . , vm are all of the
vertices on l1, l2, . . . , ln, and γj is the co-factor of vj. Then the conformality vector spaceW [L] of L is defined by

W [L] := {γ = (γ1, γ2, . . . , γm)T : Sli = 0, 0 6 i 6 n},

where Sli = 0 is the linear system as Eq. (1) associated with the l-edge li. For some predefined order of the vertex co-factors
and the l-edges, the coefficient matrix for the homogeneous system ofW [L] is called the conformality matrix of L.
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In particular, if L only contains one T l-edge l1 with V0 vertices, dimW [l1] = (V0 − d− 1)+ := max(0, V0 − d− 1). In the
following, we also call such an l-edge an l-edge of order (V0 − d−1)+. When (V0 − d−1)+ = 0, we say l1 is a trivial l-edge.

For an l-edge of order 1, we have the following property.

Proposition 3.2. In a given T-mesh T , suppose l is a T l-edge with d + 2 vertices v0, v1, . . . , vd+1 (from one end point to the
other end point) and the co-factor of vi is γi. Then

γi+k = (−1)kγi


j≠i

di,j
j≠i+k

di+k,j
, (2)

where di,j is the distance between vi and vj, k > 1.

Proof. Suppose l is a horizontal T l-edge, and the x-coordinate of vi is xi. Then the linear system Sl = 0 has the following
form: 

1 1 · · · 1 · · · 1 · · · 1
x0 x1 · · · xi · · · xi+k · · · xd+1
...

...
...

...
...

xd0 xd1 · · · xdi · · · xdi+k · · · xdd+1




γ0
γ1
...

γd+1

 = 0

⇒


1 · · · 1 1 · · · 1
x0 · · · xi−1 xi+1 · · · xd+1
...

...
...

...

xd0 · · · xdi−1 xdi+1 · · · xdd+1




γ0
...

γi−1
γi+1

...
γd+1


= −γi


1
xi
...

xdi

 .

According to Cramer’s Rule of the linear equation system, we know that γi+k = −γi ·
∆′

∆
. Here

∆ =


1 · · · 1 1 · · · 1
x0 · · · xi−1 xi+1 · · · xd+1
...

...
...

...

xd0 · · · xdi−1 xdi+1 · · · xdd+1

 ,

∆′
=


1 · · · 1 1 · · · 1 1 1 · · · 1
x0 · · · xi−1 xi+1 · · · xi+k−1 xi xi+k+1 · · · xd+1
...

...
...

...
...

...
...

xd0 · · · xdi−1 xdi+1 · · · xdi+k−1 xdi xdi+k+1 · · · xdd+1

 .
∆ and ∆′ are both Vandermonde determinants. Hence, it is easy to verify that Eq. (2) holds. �

Referring to [21], we have the following lemma for the dimensions of the spline spaces over T-meshes.

Lemma 3.3. Given a T-mesh T , suppose it has nc cross-cuts and nv interior vertices and M is the conformality matrix of all of the
T l-edges. Then, it follows that

dim Sd(T ) = (d + 1)2 + nc(d + 1) + nv − rankM.

Remark 3.4. For a given T-mesh T , we use L(T ) to denote the set of all of the T l-edges in T . Then, Lemma 3.3 states that

dim Sd(T ) = dimW [L(T )] + dim Sd(T \ L(T )). (3)

Here, T \ L(T ) is the mesh obtained by deleting L(T ) from T . See Fig. 6 for an example.

Lemma 3.5. For a given T-mesh T , suppose L(T ) is the set of all of the T l-edges in T , and L is a subset of L(T ). Then, the
following statements are equivalent:

1. dimW [L(T )] = dimW [L] + dimW [L(T \ L)].
2. The projection mapping π : W [L(T )] → W [L] is surjective.
3. Suppose the conformality matrix of L is A, the conformality matrix of L(T \ L) is B, and the conformality matrix of T (T ) is

M. Then, rankM = rank A + rank B.
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Fig. 6. Decompose a T-mesh into a semi-cross mesh and the set of all of the T l-edges.

Proof. Suppose L(T ) has V interior vertices and L has V ′ vertices. The matrixM has the form

A
C B


if we define the order

of the vertex co-factors and the l-edges of L(T ) with that of L in front of the others.

1. (1) ⇔ (2):
For the projection mapping π : W [L(T )] → W [L], it is apparent that Kerπ = W [L(T \ L)]. Because dimW [L(T )] =

dimKerπ + dim Imπ , (1) is equivalent to (2).
2. (3) ⇒ (1):

Because rankM = rank A + rank B, we have

dimW [L(T )] = V − rankM
= (V − V ′) − rank B + (V ′

− rank A)

= dimW [L(T \ L)] + dimW [L].

3. (1) ⇒ (3):
Suppose rank M ≠ rank A + rank B. Then, rankM > rank A + rank B. Thus,

dimW [L(T )] = V − rankM
< (V − V ′) − rank B + (V ′

− rank A)

= dimW [L(T \ L)] + dimW [L],

a contradiction. �

From the proof of Lemma 3.5, we know that

dimW [L(T )] 6 dimW [L(T \ L)] + dimW [L]. (4)

Conversely, we have

dimW [L(T )] > dimW [L(T \ L)]. (5)

This is because rankM 6 rank

A
C


+ rank (B) 6 V ′

+ rank B,

dimW [L(T )] = V − rankM
> (V − V ′) − rank B
= dim[L(T \ L)].

Lemma 3.6. For a given T-mesh T1, L1 = {l1, l2, . . . , ln} is a subset of L(T1). We extend li to l′i and get a new mesh T2, such that
l′i is still a T l-edge of T2. Thus, L2 = {l′1, l

′

2, . . . , l
′
n} is a subset of L(T2). As in Fig. 7, L1 = {l1, l3}, L2 = {l′1, l

′

3}. If dimW [L(T2)]
= dimW [L2] + dimW [L(T2 \ L2)], then dimW [L(T1)] = dimW [L1] + dimW [L(T1 \ L1)].

Proof. Suppose the conformality matrices of L1, L2, L(T1) and L(T2) are A1, A2,M1 andM2, respectively. We can arrange the
order of the l-edges and the vertex co-factors such that M1 =


A1
C1 B


, and M2 =


A2
C2 B


. A2 is obtained by adding some

columns to A1 on the vertices added from L1 to L2, and so is C2.
Because dimW [L(T2)] = dimW [L2]+dimW [L(T2\L2)], it follows that the projectionmappingπ ′

: W [L(T2)] → W [L2]
is surjective, i.e., for any x that satisfies A2x = 0, the solution of By = −C2x exists. Then, for any X1 that satisfies A1X1 = 0, we
add 0 entries to X1 on the vertices added from L1 to L2. Supposewe obtain X2 after adding. It is easy to verify that A1X1 = A2X2
and C1X1 = C2X2. Thus, A1X1 = 0 ⇒ A2X2 = 0 ⇒ the solution of BY = −C2X2 = −C1X1 exists. That is, the projection
mapping π : W [L(T1)] → W [L1] is surjective, which proves the lemma. �
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Fig. 7. Figure for Lemma 3.6.

Fig. 8. A T-mesh T and its extended T-mesh T ε for S2(T ).

Lemma 3.7. For a given T-mesh T , L is a subset of L(T ). Suppose L(T \ L) has V vertices and E l-edges. If dimW [L(T \ L)] =

V − (d + 1)E, then dimW [L(T )] = dimW [L] + dimW [L(T \ L)].

Proof. Suppose the conformality matrix of L is A, the conformality matrix of L(T \ L) is B, and the conformality matrix of
L(T ) is M . Then, we can arrange the order of the vertex co-factors and the l-edges such thatM =


A
C B


.

Because rank B = V − dimW [L(T \ L)] = V − (V − (d + 1)E) = (d + 1)E, it follows that B is of full row rank. We have
rank M 6 rank A + rank


C B


6 rank A + (d + 1)E = rank A + rank B. Conversely, rank M > rank A + rank B. Thus,

rankM = rank A+rank B, which is equivalent to dimW [L(T )] = dimW [L]+dimW [L(T \L)] according to Lemma 3.5. �

Using Lemma 3.7, we can obtain the following corollary.

Corollary 3.8. Given a T-mesh T , if there is an order of all of the T l-edges, say l1, l2, . . . , ln, such that nli > d + 1, where nli is
the number of the vertices on li but not on lj, j = 1, 2, . . . , i − 1, then dimW [L(T )] = V − (d + 1)n, where V is the number of
the vertices on all of these l-edges.

Proof. Let L = {l1, l2, . . . , ln−1}. Then, L(T \ L) has nln vertices. Because nln > d+ 1, dimW [L(T \ L)] = (nln − (d+ 1))+ =

nln − (d+ 1). According to Lemma 3.7, we have dimW [L(T )] = dimW [L] + dimW [L(T \ L)] = dimW [L] + nln − (d+ 1).
dimW [L] can be analyzed as dimW [L(T )]. Continuing this process, at last we have

dimW [L(T )] =

n
i=1

(nli − (d + 1)) = V − (d + 1)n. �

For any subset L of L(T ), if it has at least one such order as Corollary 3.8, we say L has a reasonable order.

4. Extended T-meshes and homogeneous boundary conditions

For a T-mesh T of S(m, n,m− 1, n− 1, T ), the extended T-mesh T ε is an enlarged T-mesh by copying each horizontal
boundary l-edge of T n times, and each vertical boundary l-edge of T m times, and by extending all of the l-edges with an
end point on the boundary of T . Fig. 8 is an example of an extended T-mesh for S2(T ).

A spline space over a given T-mesh T with homogeneous boundary conditions (HBC for short) is defined by [17]

S(m, n, α, β, T ) := {f (x, y) ∈ Cα,β(R2) : f (x, y)|φ ∈ Pmn, ∀φ ∈ F , and f |R2\Ω ≡ 0},

where Pmn, F , Cα,β are defined as before. One important observation in [17] is that the two spline spaces S(m, n,m−1, n−

1, T ) and S(m, n,m − 1, n − 1, T ε) are closely related.
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Fig. 9. An example T-mesh for Lemma 4.2.

Theorem 4.1 ([17]). Given a T-mesh T , let T ε be the extended T-mesh associated with S(m, n,m − 1, n − 1, T ). Then

S(m, n,m − 1, n − 1, T ) = S(m, n,m − 1, n − 1, T ε)|Ω ,

dim S(m, n,m − 1, n − 1, T ) = dim S(m, n,m − 1, n − 1, T ε).

In the T-mesh T of S
d
(T ), for any l-edge l, the co-factors of all of the vertices on l satisfy the linear system Sl = 0 as

Eq. (1), which means we have the similar conformality vector spaces W [T ] for all of the l-edges. HBC unifies all types of
l-edges, which will bring convenience to the computation of dimensions. From [18], we know that

S
d
(T ) ∼= W [T ].

Lemma 4.2. Given a T-mesh T , we can construct a tensor-product mesh T with all of the boundary l-edges and some of the
cross-cuts. See Fig. 9 for an example. Let L be the set of all of the l-edges of T that are not contained in T. If T has at least
d + 1 horizontal l-edges and d + 1 vertical l-edges, then

dim S
d
(T ) = dim S

d
(T) + dimW [L].

Proof. Suppose T is anm×n tensor-product mesh. Then dim S
d
(T) = (m−d−1)(n−d−1). Now, we extend all of the

interior l-edges in L to the boundary, where the new l-edges set is denoted as L1, andwe create a newm1×n1 tensor-product
mesh T1. dim S

d
(T1) = (m1 − d − 1)(n1 − d − 1).

Because T has at least d + 1 horizontal l-edges and d + 1 vertical l-edges, it is easy to verify that L1 has a reasonable
order and we have dimW [L1] = m1n1 − mn − (d + 1)((m1 − m) + (n1 − n)), which means that

dim S
d
(T1) = dim S

d
(T) + dimW [L1].

Thus, the lemma is directly derived from Lemma 3.6. �

5. Dimensions of S2(T ) over hierarchical T-meshes

In [17], the dimension formula of S2(T ) over Hierarchical T-meshes is provided,where the analysis is somewhat complex
and the main strategy is to construct a mapping from S2(T ) to S1(T ) and decompose S2(T ) into the direct sum of some
subspaces. In this section, we provide a concise proof for the dimension formula of S2(T ) over a hierarchical T-mesh T .

First, we define some notations. Suppose lev(T ) = n. We use V , V+, and E to denote the numbers of the vertices, the
crossing-vertices, and the interior l-edges of T , respectively. In addition, we use Vi, V+

i , and Ei to represent the numbers of
the vertices, the crossing-vertices, and the interior l-edges in Ti, respectively. Here, Ti is the set of all of the level i l-edges
and the level i vertices of T (see Section 2.1). It follows that

V =

n
i=0

Vi, V+
=

n
i=0

V+

i , E =

n
i=0

Ei.

Then, the key procedure of the proof consists of the following components.

1. Compute dimW [Ti], i = 1, . . . , n;
2. Prove that dim S

2
(T ) = dim S

2
(T 0) + dimW [T1] + dimW [T2] + · · · + dimW [Tn].

Lemma 5.1. If T 0 has at least 3 horizontal l-edges and 3 vertical l-edges, dim S
2
(T 0) = V+

0 − E0 + 1.

Proof. Suppose T 0 is an m × n tensor-product mesh. It follows that V+

0 = (m − 2)(n − 2), E0 = m + n − 4 and

dim S
2
(T 0) = (m − 3)(n − 3) = V+

0 − E0 + 1. �
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Definition 5.2. For a hierarchical T-mesh T , Ti (i > 1) can be divided into several parts, Ti1 , Ti2 , . . . , Timi
, such that the

l-edges of Tir do not intersect with the l-edges of Tis , where r, s ∈ {1, 2, . . . ,mi} and r ≠ s. Tik is called a connected com-
ponent of Ti, k ∈ {1, 2, . . . ,mi}.

For the hierarchical T-mesh in Fig. 3, T1 has 1 connected component, and T2 has 3 connected components.

Lemma 5.3. In a hierarchical T-mesh T , suppose Ti1 , Ti2 , . . . , Timi
are all of the connected components of Ti (i > 1), then we

have

dimW [Ti] =

mi
k=1

dimW [Tik ]. (6)

Proof. This can be directly derived from Lemma 3.5. �

Lemma 5.4. Suppose Ti (i > 1) has δ1i connected components that divide only one cell of T i−1. Then, dimW [Ti] = V+

i −Ei+δ1i.

Proof. According to Lemma 5.3, we can only consider dimW [Ti1 ]. Suppose Ti1 has Vi1 vertices, V+

i1
crossing-vertices and Ei1

l-edges. Then Vi1 = V+

i1
+ 2Ei1 . Let t1, t2, . . . , tk, tk+1, . . . , tr be all of the l-edges in Ti1 , where N(tm) = 1,m ∈ {1, 2, . . . , k}

and N(tn) > 2, n ∈ {k + 1, . . . , r}.
If t1, t2, . . . , tk do not intersectwith each other, t1, t2, . . . , tk, . . . , tr forma reasonable order of Ti1 . Actually, for any j, if j 6

k, the number of the vertices on tj but not on tl, l < j, is exactly 3 and for j > k, because tj crosses at least two cells in the upper
level, the number of the vertices on tj but not on tl, l < j, is at least 3. Hence, we have dimW [Ti1 ] = Vi1 − 3Ei1 = V+

i1
− Ei1 .

Otherwise, Ti1 only divides one cell of T i−1, and it is easy to determine that dimW [Ti1 ] = 0 = V+

i1
− Ei1 + 1. Therefore,

dimW [Ti1 ] =


V+

i1
− Ei1 + 1, Ti1 only divides one cell of T i−1,

V+

i1
− Ei1 , otherwise.

Suppose there are δ1i connected components of Ti that divide only one cell of T i−1. Then,

dimW [Ti] = V+

i − Ei + δ1i. �

Let T = T o
1 ∪ T o

2 ∪ · · · ∪ T o
n , T

′
= T o

2 ∪ · · · ∪ T o
n , where T o

i has the same meaning as in Section 2.1. For the second step

of the proof, we only have to prove that dim S
2
(T ε) = dim S

2
(T 0) + dimW [T ] and dimW [T ] = dimW [T1] + dimW [T ′

].
First, we have the following lemma.

Lemma 5.5. For S
2
(T ), with the definition above, we have

dimW [T ] =

n
i=1

dimW [Ti].

Proof. We only need to prove that dimW [T ] = dimW [T1] + dimW [T ′
]. According to Lemma 5.4, we suppose T1 has only

two connected components T1 and T1. T1 divides only one cell of T 0, while T1 divides more. Correspondingly, T also has two
connected components; say they are T andT . T ′ is divided into two parts; say they are T ′ and T ′, where T ′ ⊆ T , T ′ ⊆ T .

Because dimW [T1] = V+

1 −E1, whereV+

1 andE1 are the numbers of the crossing-vertices and the l-edges of T1, respec-
tively, according to Lemma 3.7, we have dimW [T ] = dimW [T1] + dimW [T ′]. For T1, we consider the mesh T ′ generated
by T and the edges of the cell of T 0 divided by T1. Then, we have

dimW [T ′] = dim S
2
(T ′) 6 dimW [T ] 6 dimW [T ′] + dimW [T1] = dimW [T ′].

That is, dimW [T ] = dimW [T ′] = dimW [T ′] + dimW [T1], which proves the lemma. �

Now, we can give a new proof for the dimension formula of S
2
(T ) provided in [17].

Theorem 5.6 ([17]). Suppose T is a hierarchical T-mesh with V+ crossing-vertices, E interior l-edges and δ1i connected compo-
nents in Ti (i > 1) that divide only one cell of T i−1. Denote δ1 =

n
i=1 δ1i. If T 0 has at least 3 horizontal l-edges and 3 vertical

l-edges, then

dim S
2
(T ) = V+

− E + δ1 + 1.
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Fig. 10. An example of a T-mesh.

Proof. According to Lemma 5.1, Lemma 5.4, Lemma 4.2 and Lemma 5.5, we have

dim S
2
(T ) = dim S

2
(T 0) + dimW [T ]

= V+

0 − E0 + 1 +

n
i=1

dimW [Ti]

= V+

0 − E0 + 1 +

n
i=1

(V+

i − Ei + δ1i)

= V+
− E + δ1 + 1. �

Theorem 5.7. Suppose T is a hierarchical T-mesh with V+ crossing-vertices, V b boundary vertices, E interior l-edges and δ1i
connected components in Ti (i > 1) that divide only one interior cell of T i−1. Denote δ1 =

n
i=1 δ1i. Then

S2(T ) = 2V b
+ V+

− E + δ1 + 1.

Proof. According to Theorem 4.1, we have only to compute dim S
2
(T ε). It is easy to check that T ε has 2V b

+ V+
+ 8

crossing-vertices, E + 8 interior l-edges and δ1i connected components in T ε
i (i > 1) that divide only one cell of T εi−1

.
We should notice that T ε is not a hierarchical T-mesh of 2 × 2 division if any boundary cell of T is divided. However,

after extending, every l-edge of T εi(i > 1) has more vertices than the original l-edge. Therefore, Theorem 5.6 holds for T ε .
Using the conclusion of Theorem 5.6 on T ε , we complete the proof. �

6. Dimensions of S3(T ) over hierarchical T-meshes

The difficulty in generalizing the abovemethod to S3(T ) over a hierarchical T-mesh is the fact that the equation dimW [T ]

= dimW [T1]+ dimW [T ′
] is not always true. For example, as indicated in Fig. 10, it is easy to compute that dimW [T1] = 0,

dimW [T2] = 6, but dimW [T ] 6 5. This tells us that we cannot compute the dimension of S3(T ) level by level if we con-
sider general hierarchical T-meshes of 2 × 2 division. Thus, we consider hierarchical T-meshes with some restrictions. In
Section 6.1, we consider hierarchical T-meshes with N(t) > 2 for any l-edge t of T , and in Section 6.2, we consider hierar-
chical T-meshes of 3 × 3 division. The symbols in this section have the same meanings as in Section 5.

6.1. Hierarchical T-meshes with N(t) > 2

Lemma 6.1. If T 0 has at least 4 horizontal l-edges and 4 vertical l-edges, then dim S
3
(T 0) = V+

0 − 2E0 + 4.

Proof. Suppose T 0 is an m × n tensor-product mesh. Then, V+

0 = (m − 2)(n − 2), E0 = m + n − 4, and dim S
3
(T 0) =

(m − 4)(n − 4) = V+

0 − 2E0 + 4. �

Lemma 6.2. Suppose Ti (i > 1) has δ4i connected components that only divide the 2 × 2 neighbor cells in T i−1 (see Fig. 11(a)).
Then, dimW [Ti] = V+

i − 2Ei + δ4i.

Proof. Similar to the discussion in the last section, we only consider dimW [Ti1 ]. Suppose Ti1 has Vi1 vertices, V+

i1
crossing-

vertices and Ei1 l-edges. Then Vi1 = V+

i1
+ 2Ei1 . We also assume t1, t2, . . . , tk, . . . , tr are all of the l-edges of Ti1, where

N(ti) = 2 when i 6 k; N(ti) > 2 when i > k + 1. For i = 1, 2 . . . , k, if there is an order, say tj1 , tj2 , . . . , tjk , such that tjp only
intersectswith atmost one l-edge of tjq , q < p, then tj1 , tj2 , . . . , tjk , tk+1, . . . , tr forma reasonable order. Hence, dimW [Ti1 ] =

Vi1 − 4Ei1 = V+

i1
− 2Ei1 .

Otherwise, Ti1 only divides the 2 × 2 neighbor cells in T i−1. Then, we can obtain dimW [Ti1 ] = 1 according to [18]. In
this case, dimW [Ti1 ] = 1 = V+

i1
− 2Ei1 + 1. Thus, if δ4i is the number of the connected components that only divide the

2 × 2 neighbor cells in T i−1, then dimW [Ti] = V+

i − 2Ei + δ4i. �
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a b

Fig. 11. The special connected component Ti (a) and the new mesh T ′ (b).

Lemma 6.3. For S
3
(T ), let T = T o

1 ∪ T o
2 ∪ · · · ∪ T o

n . If N(t) > 2 for any l-edge t, we have

dimW [T ] =

n
i=1

dimW [Ti].

Proof. Let T ′
= T o

2 ∪· · ·∪T o
n . Then,we have only to prove that dimW [T ] = dimW [T1]+dimW [T ′

]. According to Lemma6.2,
we suppose T1 has only two connected components T1 and T1. T1 only divides the 2 × 2 neighbor cells in T 0, while T1 does
not. Correspondingly, T also has two connected components; say they are T andT . T ′ is divided into two parts; say they are
T ′ and T ′, where T ′ ⊆ T , T ′ ⊆ T .

Because dimW [T1] = V+

1 −2E1, whereV+

1 ,E1 are the numbers of the crossing-vertices and the l-edges of T1, respectively;
according to Lemma 3.7, we have dimW [T ] = dimW [T1] + dimW [T ′]. For T1, we consider the mesh T ′ (Fig. 11(b) is the
mesh excluding T ′) generated by T and the edges of the cells of T 0 divided by T1. Then, we have

1 + dimW [T ′] = dim S
3
(T ′) 6 dimW [T ] 6 dimW [T ′] + dimW [T1] = dimW [T ′] + 1.

That is, dimW [T ] = dimW [T ′] + 1 = dimW [T ′] + dimW [T1], which proves the lemma. �

Theorem 6.4. Suppose T is a hierarchical T-mesh with V+ crossing-vertices, E interior l-edges, and any l-edge t of T satisfies
N(t) > 2. There are δ4i connected components in Ti that only divide the 2 × 2 neighbor cells in T i−1. Let δ4 =

n
i=1 δ4i. If T 0

has at least 4 horizontal l-edges and 4 vertical l-edges, then

dim S
3
(T ) = V+

− 2E + 4 + δ4.

Proof. According to Lemma 6.1, Lemma 6.2, Lemma 4.2 and Lemma 6.3, we have

dim S
3
(T ) = dim S

3
(T 0) + dimW [T ]

= V+

0 − 2E0 + 4 +

n
i=1

dimW [Ti]

= V+

0 − 2E0 + 4 +

n
i=1

(V+

i − 2Ei + δ4i)

= V+
− 2E + δ4 + 4. �

Similar to Theorem 5.7, we have the following theorem.

Theorem 6.5. Suppose T is a hierarchical T-mesh with V+ crossing-vertices, V b boundary vertices, E interior l-edges, and any
l-edge t of T satisfies N(t) > 2. There are δ4i connected components in Ti that only divide the 2 × 2 interior neighbor cells in
T i−1. Let δ4 =

n
i=1 δ4i. Then

dim S3(T ) = 3V b
+ V+

− 2E + 4 + δ4.

Now, we give an example for the dimension computation.

Example 6.6. In Fig. 12, there are 20 crossing-vertices (labeled with ‘‘•’’), 16 boundary vertices (labeled with ‘‘◦’’), and 12
interior l-edges (labeled with dashed lines). δ42 = 1, δ41 = 0. Hence, dim S3(T ) = 3 × 16 + 20 − 2 × 12 + 4 + 1 = 49.

6.1.1. The topological explanation
In [17], the following structure is introduced to propose a topological explanation to the dimension formula.

Definition 6.7 ([17]). Given a hierarchical T-mesh T , we can construct a graph G by retaining the crossing-vertices and the
edges with two end points that are crossing-vertices and removing the other vertices and the edges in T . G is called the
crossing–vertex-relationship graph (CVR graph for short) of T .
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Fig. 12. A hierarchical T-mesh T .

Fig. 13. A hierarchical T-mesh and its CVR graph.

It should be noted that, when N(t) > 2 for any l-edge of t in a hierarchical T-mesh T , the CVR graph of T is connected.
See Fig. 13 for an example. In addition, in [17], the following conjecture is stated:

Conjecture 6.8. Suppose T is a hierarchical T-mesh whose CVR graph is G . When m, n > 2, it follows that

dim S(m, n,m − 1, n − 1, T ) = dim S(m − 2, n − 2,m − 3, n − 3, G ),

where S(m, n, α, β, G ) is defined in a similar way to the spline space over a T-mesh.

In [17], the conjecture is proved to hold as m = n = 2. Now, we will prove that it also holds as m = n = 3 over a
hierarchical T-mesh specified in Theorem 6.4.

In G , we can define boundary vertex, interior vertex, crossing-vertex, T-junction, edge, l-edge, and so on in the same
way as in T . We use VG to denote the number of the vertices of the CVR graph. Therefore, VG = V+. In G , a vertex is the
intersection of two l-edges. We distinguish the vertices of G into six types as follows:

1. Type 1: a boundary vertex of G , which is an end point of an l-edge and an interior vertex of another l-edge,
2. Type 2: a boundary vertex of G , which is the end points of two l-edges,
3. Type 3: a boundary vertex of G , which is the interior vertices of two l-edges,
4. Type T: an interior vertex of G , which is a T-junction of G ,
5. Type +: an interior vertex of G , which is a crossing-vertex of G ,
6. Type L: an interior vertex of G , which is the end points of two l-edges.

The six types of vertices have been marked in Fig. 13. We use V 1
G , V 2

G , V 3
G , V T

G , V+

G , V L
G to denote the numbers of the six

types of vertices, respectively.

Lemma 6.9. V 2
G = V 3

G + 4.

Proof. The CVR graph G is connected. We choose a vertex v as the starting point on the boundary of G , and run through the
boundary of G in the clockwise direction. When we meet a vertex of type 2, the direction rotates 90° clockwise; and when
we meet a vertex of type 3, the direction rotates 90° anti-clockwise. Finally, we return to v, and the direction rotates 360°
clockwise. Therefore,

90V 2
G − 90V 3

G = 360.

That is V 2
G = V 3

G + 4. �

Theorem 6.10. SupposeT is a hierarchical T-meshwith N(t) > 2 for any l-edge t, and its CVR graph is G . There are δ4i connected
components as in Fig. 11(a) in Ti. δ4 =

n
i=1 δ4i. Then

dim S
3
(T ) = V+

G − V L
G + δ4.
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a b

Fig. 14. Figure for the proof of Theorem 6.11.

Fig. 15. A hierarchical T-mesh of 3 × 3 division.

Proof. The end points of every l-edge in G could be the types of 1, 2, T , L. Running through all of the l-edges of the CVR
graph, we get 2E = V 1

G + 2V 2
G + V T

G + 2V L
G . Then,

V+
− 2E + 4 = VG − V 1

G − 2V 2
G − V T

G − 2V L
G

= V+

G − V L
G + V 3

G − V 2
G + 4.

According to Lemma 6.9, we know the theorem holds. �

Now, we prove Conjecture 6.8 holds for S
3
(T ) over a hierarchical T-mesh with N(t) > 2 for any l-edge t .

Theorem 6.11. Suppose T is a hierarchical T-mesh with N(t) > 2 for any l-edge t. If the CVR graph of T is G , we have

dim S
3
(T ) = dim S

1
(G ).

Proof. G has a natural hierarchical structure, and we use the same notations in Section 2.1.
First, we have dimW [Gi] = dimW [Ti]. Suppose all of the l-edges of Ti are t1, t2, . . . , tm. Every vertex of tj, j = 1, 2,

. . . ,m, excluding the two end points, is a crossing-vertex. Because N(tj) > 2, tj has at least 5 vertices. Therefore, Gi also has
m l-edges t ′1, t

′

2, . . . , t
′
m, where t ′j is derived from tj and has two less vertices than tj. t ′l intersects with t ′k when tl intersects tk,

where k ≠ l, k, l ∈ {1, 2, . . . ,m}. Using the method similar to the computation of dimW [Ti], we can get dimW [Gi] easily,
and we have dimW [Gi] = dimW [Ti].

Second, we have dimW [G] =
n

i=1 dimW [Gi], where G = Go
1 ∪Go

2 ∪ · · ·∪Go
n. We can suppose that n = 2. When T1 only

divides the 2 × 2 neighbor cells in T 0, according to Lemma 3.6, we should only prove this conclusion when all of the cells
of level 1 are divided (see Fig. 14(a)). Fig. 14(b) is the corresponding CVR graph, in which G2 consists of the thick lines and
G consists of the thick lines and the dashed lines. From the first part, we know dimW [G1] = 1, dimW [G2] = 24. To com-
pute dimW [G], we consider the mesh G ′ of Fig. 14(b). It is easy to determine that dim S

1
(G ′) = 25. We have dimW [G] =

dim S
1
(G ′) = 25. Therefore, dimW [G] = dimW [G1] + dimW [G2]. When T1 divides more cells, G1 has a reasonable order,

we also have dimW [G] = dimW [G1] + dimW [G2].
Third, we have dim S

1
(G ) = dim S

1
(G 0) + dimW [G]. This is a generalization of Lemma 4.2. If any boundary cell of T 0

is divided, the bound of G may be not a rectangle. In this situation, we can use the same method as in the second part to
change G into a regular mesh. We omit the proof process here.

Combining the three parts, we have proved this theorem. �

6.2. Hierarchical T-meshes of 3 × 3 division

In this section we consider hierarchical T-meshes of 3 × 3 division. See Fig. 15 for an example.
Before discussing the dimension ofW [Ti], we first introduce some notations. Suppose Ti only has one connected compo-

nent, and all of the l-edges are t11, . . . , t1r , t21, . . . , t2s, t1, . . . , tm, where N(t1j) = 1,N(t2k) = 2,N(tl) > 3, j ∈ {1, . . . , r},
k ∈ {1, . . . , s}, l ∈ {1, . . . ,m}. Then, Ti can be the following several types:
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a b c

d e

f

Fig. 16. Special cases of Ti .

1. m > 0,
2. m = 0, s > 0. This case includes five possible sub-cases:

(a) The connected component refines two cells in the i − 1th level, see Fig. 16(a).
(b) The connected component refines three cells in the i − 1th level, see Fig. 16(b).
(c) The connected component refines four cells in the i − 1th level which are the 2 × 2 neighbor cells, see Fig. 16(c).
(d) The connected component refines four cells in the i− 1th level which are not the 2× 2 neighbor cells, see Fig. 16(d).
(e) The connected component refines more than four cells in the i − 1th level, see Fig. 16(e).

3. m = s = 0, see Fig. 16(f).

Lemma 6.12. Suppose Ti (i > 1) has δ1i connected components of case 3, δ2i connected components of case 2(a), δ3i connected
components of case 2(b) and δ4i connected components of case 2(c). Then dimW [Ti] = V+

i − 2Ei + 4δ1i + 2δ2i + δ3i + δ4i.

Proof. Suppose Ti only has one connected component. We discuss every case of Ti discussed above.
1. m > 0:

First, we should mention that we can remove all of t11, . . . , t1r without changing the dimension. For the other l-edges, if
s = 0, it is obvious that t1, . . . , tm have a reasonable order. If s > 0, we define the order of the l-edges such that it is a rea-
sonable order. First, select any l-edge as t21. If there is an l-edge t withN(t) = 2 intersectingwith t21, we choose t as t22. If
there is an l-edge t ′ withN(t ′) = 2 intersectingwith t22, we choose t ′ as t23. Repeat this process until all of the l-edges that
cross two cells on the upper level have been sorted. In this case, t11, . . . , t1r , t21, . . . , t2s, t1, . . . , tm is a reasonable order.

2. m = 0, s > 0. This case includes five possible sub-cases:
(a) The connected component refines two cells in the i − 1th level.

It is evident that dimW [Ti] = 0 = V+

i − 2Ei + 2.
(b) The connected component refines three cells in the i − 1th level.

It is evident that dimW [Ti] = 1 = V+

i − 2Ei + 1.
(c) The connected component refines four cells in the i − 1th level that are the 2 × 2 neighbor cells.

It is evident that dimW [Ti] = 9 = V+

i − 2Ei + 1.
(d) The connected component refines four cells in the i − 1th level that are not the 2 × 2 neighbor cells.

We delete t1r and get the mesh Si in Fig. 17.
First, we prove that the projection mapping π : W [Si] → W [t] is surjective. Because t is an l-edge of order one, we
only need to verify that the co-factors of the vertices on t could be nonzero in W [Si]. Let W [t1] = W [t2] = 0. Then
we change Si to S ′

i (see Fig. 17) as with the mesh in case 2(b). Because dimW [S ′

i ] = 1, the co-factor of every vertex
on S ′

i is nonzero. Thus, the mapping π is surjective. We have dimW [Si] = dimW [S ′′

i ]+ 1, where S ′′

i is the mesh Si \ t
(see Fig. 17). According to Eq. (5), we have dimW [S ′′

i ] > dimW [S ′

i ] = 1. Therefore, dimW [Si] > 2.
For the upper bound, we let γ (v0) = γ (v′

0) = 0, where γ (v0), γ (v′

0) are the co-factors of v0 and v′

0, respectively.
Then, Si is changed into S ′′′

i (see Fig. 17). Suppose the lengths of the four edges of t1 are l, d, d, d, respectively. We will
prove that dimW [S ′′′

i ] = 0. Let γ (v1) = x; according to Eq. (2), we can obtain that

γ (v2) = ax, a = −
d + l
2d + l

, − 1 < a < 0.

Similarly, we have
γ (v3) = abx, γ (v4) = abcx, b ∈ R, −1 < c < 0.

We can get γ (v1) = acx from γ (v4). Thus, we have x = acx. Because 0 < ac < 1, we get x = 0, which means that
dimW [S ′′′

i ] = 0. Therefore, {γ (v0), γ (v′

0)} is the determining set ofW [Si]. Then, dimW [Si] 6 2.
Combining the former two parts, we have dimW [Si] = 2; and it is easy to check that dimW [Si] = V+

i − 2Ei.
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Fig. 17. Figure for the case 2(d).

a b

Fig. 18. Figure for the proof of Lemma 6.13.

(e) The connected component refines more than four cells in the i − 1th level.
This case is illustrated in Fig. 16(e). Suppose it refines p connected cells in the i− 1th level. Asm = 0, so after remov-
ing all of t11, . . . , t1r , Ti can be regarded as a mesh that is generated by adding two l-edges of order one to the mesh
refining p−1 connected cells in the i−1th level. For example, Fig. 16(e) is themesh generated by adding two l-edges
of order one to the mesh Si in Fig. 17. Continuing this process until the T-mesh follows the case 2(d), and according
to Lemma 3.7, we know that dimW [Ti] = V+

i − 2Ei.
3. m = s = 0.

It is evident that dimW [Ti] = 0 = V+

i − 2Ei + 4.

Combining the above discussion, we obtain this lemma. �

Lemma 6.13. For S
3
(T ) over a hierarchical T-mesh of 3 × 3 division, we have

dimW [T ] =

n
i=1

dimW [Ti].

Proof. Suppose T1 has only one connected component. We will prove this lemma for all of the possible cases of T1. For case
1, case 2(d), and case 2(e), the conclusion is right according to Lemma 3.7. For case 2(a), case 2(b), case 2(c), and case 3, we
can use the samemethod in the proof of Lemma 6.2. Here, we only prove this conclusion for case 2(b). In the sameway as in
the proof of Lemmas 5.5 and 6.3, we construct a new mesh T ′ (Fig. 18(a) is the mesh excluding T ′) generated by T and the
edges of the 2 × 2 neighbor cells. We choose the mesh in Fig. 18(b) as T ′, and use L to denote the set of all of the l-edges
of T not contained in T ′. T ′ is a subset of L. According to Lemma 4.2 and Eq. (5), we have

dim(T ′) = 1 + dimW [L] > 1 + dimW [T ′
].

Conversely,

dim(T ′) 6 dimW [T ] 6 dimW [T1] + dimW [T ′
] = 1 + dimW [T ′

].

Therefore, dimW [T ] = 1 + dimW [T ′
] = dimW [T1] + dimW [T ′

]. �

Theorem 6.14. Suppose T is a hierarchical T-mesh of 3× 3 division with V+ crossing-vertices, E l-edges, and there are δ1i, δ2i,
δ3i, δ4i connected components of case 2(a), case 2(b), case 2(c), and case 3 in Ti, respectively. δk =

n
i=1 δki, k = 1, 2, 3, 4.
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Fig. 19. A hierarchical T-mesh T .

Then, we have

dim S
3
(T ) = V+

− 2E + 4 + 4δ1 + 2δ2 + δ3 + δ4.

Proof. This is directly derived from the above lemmas. �

Similar to Theorem 5.7, we have the following theorem.

Theorem 6.15. Suppose T is a hierarchical T-mesh of 3 × 3 division with V+ crossing-vertices, V b boundary vertices and E
interior l-edges. There are δ1i, δ2i, δ3i, δ4i connected components of case 2(a), case 2(b), case 2(c), and case 3 in T ε

i , respectively,
where T ε

i is the ith level of the extended mesh T ε . δk =
n

i=1 δki, k = 1, 2, 3, 4. Then, we have

dim S3(T ) = 3V b
+ V+

− 2E + 4 + 4δ1 + 2δ2 + δ3 + δ4.

Now, we give an example for the dimension computation.

Example 6.16. In Fig. 19, V+
= 29, V b

= 20, E = 18, δ31 = 1. Hence, dim S3(T ) = 3 × 20 + 29 − 2 × 18 + 4 + 1 = 58.

7. Conclusions and future work

In this paper, the smoothing cofactor-conformalitymethod is explored.We present a newproof of the dimension formula
of S(2, 2, 1, 1, T ) over hierarchical T-meshes and obtain the dimension formula of S(3, 3, 2, 2, T ) over hierarchical T-
meshes under the condition that N(t) > 2. As an application of this method, we give the dimension formula of S(3, 3, 2,
2, T ) when T is a hierarchical T-mesh of 3 × 3 division.

Although most contents in this paper are discussing hierarchical T-meshes, many conclusions also apply to the general
T-meshes. For a general T-mesh, it is not very easy to determine whether all the l-edges have a reasonable order. Therefore,
these conclusions only make sense for some special T-meshes. For a hierarchical T-mesh, this method is effective when we
can compute the dimensions level by level. Althoughwe only discuss S(2, 2, 1, 1, T ) and S(3, 3, 2, 2, T ), it is not very diffi-
cult to compute dim S(m, n,m−1, n−1, T ) over hierarchical T-mesheswith some restrictions. However, if we cannot com-
pute the dimensions level by level, thismethod is invalid.We have discussed this phenomenon at the beginning of Section 6.

For the dimension of S(3, 3, 2, 2, T ) over hierarchical T-meshes without any restrictions, the proposed smoothing
cofactor-conformality method may be invalid. The solution to this problem will be left to future study.
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