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In this paper, we discuss the bicubic C2 spline spaces over hierarchical T-meshes in detail. 
The topological explanation of the dimension formula is further explored. We provide 
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constructed. The basis functions are linearly independent and complete, which provides a 
solution for the defects in the former literature.
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1. Introduction

Splines, which can be adaptively locally refined, are an effective tool for both surface modeling and isogeometric analysis. 
Because of the special structure of T-mesh, adaptive local refinement is possible for splines defined on this type of mesh. 
The study of this type of splines appeared early. In 1988, hierarchical B-splines (Forsey and Bartels, 1988) were introduced 
by Forsey and Bartels. With the advent of isogeometric analysis, the study of this type of splines has increased.

In 2003, Sederberg et al. (2003) introduced T-splines. T-splines are a useful tool in surface modeling (Sederberg et al., 
2004, 2008), and they have been used in isogeometric analysis (Bazilevs et al., 2010; Dorfel et al., 2010). However, in 2010, 
Buffa et al. (2010) discovered that the blending functions of T-splines are linearly dependent on some special T-meshes. Li 
et al. (2012), Li and Scott (2014) introduced analysis-suitable T-Splines (ASTS) to solve this problem. However, because of 
the refinement rule of T-splines, they act badly in the locality of the refinement (Dorfel et al., 2010). Therefore, researchers 
have begun to pay attention to other splines defined on T-meshes for isogeometric analysis.

PHT-splines (Deng et al., 2008), which usually refer to bicubic C1 polynomial splines defined on hierarchical T-meshes, 
have been used both in surface modeling (Li et al., 2007; Wang et al., 2011a) and isogeometric analysis (Nguyen-Thanh et al., 
2011a, 2011b; Wang et al., 2011b). The main drawback of PHT-splines is that they are only C1 continuous, which restricts 
their applications somewhere. For example, in geometric modeling, G2 continuity is required usually. In 2013, a new type 
of splines, LR-splines (Dokken et al., 2013), was constructed, and they have been used in IGA (Johannessen et al., 2014). 
However, their linear independence cannot be guaranteed. In Dokken et al. (2013), the authors provide some strategies 
to solve this problem. Hierarchical B-splines are also used in isogeometric analysis (Vuong et al., 2011). For the partition 
of unity, THB-splines are introduced in Giannelli et al. (2012). Because hierarchical B-splines are generated directly from 
the T-meshes rather than the spline spaces, the completeness cannot be guaranteed generally. Therefore, several articles 
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Fig. 1. A nested sequence of domains (a) and the resulting hierarchical T-mesh (b). The spline space is S(3, 3, 2, 2, T ). (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

(Berdinsky et al., 2014, 2015; Giannelli and Jüttler, 2013; Mokriš et al., 2014; Mokriš and Jüttler, 2014) were published to 
discuss this question.

However, these discussions are somewhat complex, and the rules that guarantee the completeness demand many addi-
tional cells to be refined beyond the ones we actually need. Actually, the choice of the basis functions of the traditional 
hierarchical B-splines leads to the incompleteness. In Fig. 1, we show the procedure of generating a hierarchical T-mesh T
with the dyadic refinement in Giannelli et al. (2012), Vuong et al. (2011). There is a tensor-product B-spline defined on 
the tensor-product submesh consisting of the red lines. However, this B-spline is not considered in Giannelli et al. (2012), 
Vuong et al. (2011). Therefore, the hierarchical B-spline space is not complete in this simple hierarchical T-mesh. We believe 
adding this B-spline is reasonable.

In this paper, we consider this question directly from the spline spaces. As we know, cubic splines are the most consid-
erable splines in both theory (Deng et al., 2008; Li et al., 2012; Li and Scott, 2014) and applications (Bai and Wang, 2010;
Desquilbeta and Mariottib, 2010; Li, 2012; Mohanty and Gopal, 2011). We focus on the bicubic C2 spline spaces over hier-
archical T-meshes in this paper as well. This question has been discussed preliminarily in Wu et al. (2012). In that paper, 
the T-mesh is a special hierarchical T-mesh denoted by T3,3 and a basis function may be the sum of several tensor-product 
B-splines. In this paper, the hierarchical T-mesh is more general and all of the basis functions are tensor-product B-splines. 
Unlike the traditional hierarchical B-splines in Vuong et al. (2011), the basis functions concerned include the B-splines 
we discussed in the last paragraph. We explore the topological explanation of the dimension formula of bicubic C2 spline 
spaces, which also cues the completeness of the traditional hierarchical B-splines. We give three rules of refinement to 
guarantee the completeness, and a basis is constructed.

The remainder of this paper consists of eight sections. In Section 2, we review the definitions and some results regarding 
T-meshes and spline spaces over T-meshes. Then, we review the dimension formula of bicubic C2 spline spaces over hier-
archical T-meshes. In Section 4, the topological explanation of the dimension formula is further explored and the rules of 
refinement are elaborated. The basis is constructed in Section 5. In Section 6, we compare the new splines with HB-splines 
and T-splines. We give the proof of the linear independence in Section 7. Section 8 provides a number of applications. We 
end the paper with conclusions and future work in Section 9.

2. T-meshes and spline spaces

2.1. T-meshes and hierarchical T-meshes

Definition 2.1. Given two finite strictly increasing sequences of numbers {x1, x2, . . . , xm}, {y1, y2, . . . , yn}, we obtain mn
vertices vi, j (1 � i � m, 1 � j � n) in R2, where the coordinate of vi, j is (xi, y j). Connecting vi, j and vi+1, j (1 � i � m − 1)

with line segment, and connecting vi, j and vi, j+1 (1 � j � n − 1) with line segment, we obtain a mesh, which is called a
tensor-product mesh.

A T-mesh is a rectangular grid that allows T-junctions.

Definition 2.2. (See Deng et al., 2006, 2013.) Suppose T is a set of axis-aligned rectangles and the intersection of any 
two distinct rectangles in T either is empty or consists of points on the boundaries of the rectangles. Then, T is called a
T-mesh. Furthermore, if the entire domain occupied by T is a rectangle, T is called a regular T-mesh. If some edges of T
also form a T-mesh T ′ , T ′ is called a submesh of T .

In this paper, we only consider regular T-meshes. The definitions of vertex, edge and cell are the same as in Deng et al.
(2006). A T-junction is a vertex of one rectangle that lies in the interior of an edge of another rectangle. A crossing-vertex is 
a vertex of four rectangles. An l-edge is a line segment that consists of several edges. It is the longest possible line segment, 
the interior edges of which are connected and the two end points are T-junctions or boundary vertices. If an l-edge consists 
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Fig. 2. The construction of a hierarchical T-mesh.

Fig. 3. A hierarchical T-mesh T .

of some boundary edges, then it is called a boundary l-edge; otherwise, it is called an interior l-edge. Apparently, a regular 
T-mesh has four boundary l-edges.

A hierarchical T-mesh (Deng et al., 2008) is a special type of T-mesh that has a natural level structure. It is defined 
recursively. Generally, we start from a tensor-product mesh T 0, which can be non-uniform and the elements (vertices, 
edges, cells and l-edges) of which are called the level 0 elements. Then, some cells at level k are each divided into 2 × 2
subcells equally, where the new vertices, the new edges, the new cells and the new l-edges are of level k + 1, and the 
resulting T-mesh is called T k+1. Continuing this process several times, finally, we obtain a T-mesh T , which is called a 
hierarchical T-mesh. Fig. 2 illustrates the process of generating a hierarchical T-mesh.

For a hierarchical T-mesh T , when T 0 is given, the maximal level number of the cells is called the level of the 
hierarchical T-mesh, which is denoted by lev(T ). Conversely, if lev(T ) is given, T 0 is also determined.

We use Tk to denote the set of all of the level k l-edges. The set Tk (k � 1) can be divided into several subsets, 
Tk,1, Tk,2, . . . , Tk,mk , such that the l-edges of Tk,i do not intersect with the l-edges of Tk, j , where i, j ∈ {1, 2, . . . , mk} and 
i �= j. The subset Tk,r is called a connected component of Tk , r ∈ {1, 2, . . . , mk}. For any l-edge l of Tk (k � 1) and any cell 
c of level k − 1, if l ∩ c is a line segment, we say l crosses c. We use N(l) to denote the number of cells of level k − 1 that 
l crosses. For the convenience of the following discussion, we set N(l) = +∞ for the l-edge l of level 0. In a hierarchical 
T-mesh which has more than one cell, at least one of the four vertices of a cell is a crossing-vertex. For a given crossing-
vertex v , there are four cells c1, c2, c3 and c4 surrounding v . Suppose the smallest level number of the four cells is n. We 
call the level n cells of c1, c2, c3 and c4 the adjacent cells of v .

In Fig. 3, T is a hierarchical T-mesh and lev(T ) = 1; T1 has only one connected component; c1 and c2 are the adjacent 
cells of v1, c3 is the adjacent cell of v2, c4, c5 and c6 are the adjacent cells of v3, and c7, c8, c9 and c10 are the adjacent 
cells of v4; N(l1) = 2 and N(l2) = 3 for the two l-edges l1 (between v5 and v6) and l2 (between v7 and v8).

2.2. Spline spaces over T-meshes

Given a T-mesh T , we use � to denote the region occupied by all of the cells in T , which is called the domain of T . 
In Deng et al. (2006), the following spline space definition is proposed:

S(m,n,α,β,T ) := { f (x, y) ∈ Cα,β(�) : f (x, y)|φ ∈ Pmn,∀φ ∈ T },
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Fig. 4. A T-mesh T and its extended T-mesh T ε associated with S3(T ).

Fig. 5. A special connected component Ti, j .

where Pmn = {p(x, y) : p(x, y) = ∑m
i=0

∑n
j=0 ci j xi y j, ci j ∈ R}, Cα,β is the space consisting of all of the bivariate functions 

continuous in � with order α along the x-direction and with order β along the y-direction, and that φ ∈ T means φ is 
a cell of T . It is obvious that S(m, n, α, β, T ) is a linear space. In this paper, we only discuss S(3, 3, 2, 2, T ), which is 
denoted as S3(T ) for convenience.

For a T-mesh T of S(m, n, m − 1, n − 1, T ), we can obtain an extended T-mesh in the following fashion. Produce a 
tensor-product mesh M with 2(m +1) vertical lines and 2(n +1) horizontal lines, the central rectangle of which is identical 
to the region occupied by T . Then extend the edges with one end point on the boundary of T to the boundary of M . 
The resulting mesh, which is denoted by T ε , is called the extended T-mesh of T associated with S(m, n, m − 1, n − 1, T ). 
Fig. 4 is an example of the extended T-mesh.

A spline space over a given T-mesh T with homogeneous boundary conditions is defined by Deng et al. (2013)

S(m,n,α,β,T ) := { f (x, y) ∈ Cα,β(R2) : f (x, y)|φ ∈ Pmn,∀φ ∈ T , and f |R2\� ≡ 0},
where Pmn, � and Cα,β are defined as before. One important observation in Deng et al. (2013) is that the two spline spaces 
S(m, n, m − 1, n − 1, T ) and S(m, n, m − 1, n − 1, T ε) are closely related.

Theorem 2.3. (See Deng et al., 2013.) Given a T-mesh T , let T ε be the extended T-mesh associated with S(m, n, m − 1, n − 1, T ). 
Then

S(m,n,m − 1,n − 1,T ) = S(m,n,m − 1,n − 1,T ε)|�,

dim S(m,n,m − 1,n − 1,T ) = dim S(m,n,m − 1,n − 1,T ε).

With the above theorem, to consider the spline space over a T-mesh, we need only to consider the corresponding spline 
space with homogeneous boundary conditions over its extended T-mesh. In this paper, we only discuss the spline space 
S3(T ) with homogeneous boundary conditions, which is denoted by S3(T ).

3. Dimension of S3(T )

Definition 3.1. Given a hierarchical T-mesh T with lev(T ) � 1, suppose Ti, j(i, j � 1) is a connected component. If Ti, j only 
divides the 2 × 2 neighbor cells in T i−1 (Fig. 5), we call Ti, j a minimal connected component.

Theorem 3.2. (See Zeng et al., 2015.) Suppose T is a hierarchical T-mesh with V + crossing-vertices and E interior l-edges, lev(T ) = n, 
any l-edge t satisfies N(t) � 2, and there are δ4i minimal connected components in Ti (i � 1), where Ti is the set of all of the level i
l-edges (see Section 2.1). Let δ4 = ∑n

i=1 δ4i . If T 0 has at least 4 horizontal l-edges and 4 vertical l-edges, then

dim S3(T ) = V + − 2E + 4 + δ4.
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Fig. 6. Two hierarchical T-meshes and their CVR meshes.

In the following, the hierarchical T-mesh T we discuss satisfies that T 0 has at least 4 horizontal l-edges and 4 vertical 
l-edges.

In Deng et al. (2013), the following definition is introduced to propose a topological explanation to the dimension 
formulae.

Definition 3.3. (See Deng et al., 2013.) Given a hierarchical T-mesh T , retaining all of the edges that are a part of a line 
segment with two end points that are crossing-vertices and removing the other edges, we obtain a submesh G . From the 
construction, we know that G consists of all of the line segments whose two end points are crossing-vertices in T and the 
vertices of G are the crossing-vertices of T . The submesh G is called the crossing-vertex-relationship mesh (CVR mesh 
for short) of T .

There two examples in Fig. 6.
In G , we can define cell, edge and l-edge similarly to that in the T-mesh. The difference is that a cell of G may not be a 

rectangle.

Proposition 3.4. For a hierarchical T-mesh T , with the restriction of N(t) � 2 for any l-edge t, the CVR mesh is connected (i.e., if we 
treat the CVR mesh as a graph, the graph is connected).

Proof. Suppose lev(T ) = n. Consider a connected component Tn,1 of Tn . Because N(t) � 2, every l-edge t of Tn,1 has at least 
three crossing-vertices. Therefore, t corresponds to a line segment (denoted by t′) whose two end points are both crossing-
vertices. That is, t′ will present in G . Therefore, the number of the l-edges in G is the same as in T , and the l-edges of 
G are also hierarchical. The level number of an l-edge of G is equal to the level number of the l-edge it corresponds to 
in T .

Moreover, for two l-edge t1 and t2 in T , if t1 intersects with t2 at a crossing-vertex, then t′
1 intersects with t′

2, where 
t′

1 and t′
2 are the l-edges that t1 and t2 corresponds to in G , respectively. Since T 0 has at least 4 horizontal l-edges and 

4 vertical l-edges, the CVR mesh G 0 of T 0 is a tensor-product mesh which has at least 2 horizontal l-edges and 2 vertical 
l-edges. That is, G 0 is a connected mesh. For any l-edge l at level 1, because N(l) � 2, l intersects with at least one l-edge 
l0 of level 0 at a crossing-vertex. Therefore, l′ intersects with l′0, where l′ and l′0 are the l-edges that l and l0 correspond to 
in G , respectively. That is, the CVR mesh of the mesh obtained by adding l to T 0 is a connected mesh. Similarly analyzing 
for other l-edges at level 1, we obtain that T 1 is connected.

By induction on the level of the T-mesh, we know the conclusion is right. �
In the following, the hierarchical T-mesh T we discussed is with the restriction of N(t) � 2 for any l-edge t .
We use VG to denote the number of the vertices of the CVR mesh. Therefore, VG = V + . In G , a vertex is the intersection 

of two l-edges. We distinguish vertices of G into six types as follows:
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Fig. 7. A hierarchical T-mesh and its CVR mesh.

1. Type 1: a boundary vertex of G , which is an end point of an l-edge and an interior vertex of another l-edge,
2. Type 2: a boundary vertex of G , which is the end points of two l-edges,
3. Type 3: a boundary vertex of G , which is the interior vertices of two l-edges,
4. Type T: an interior vertex of G , which is a T-junction of G ,
5. Type +: an interior vertex of G , which is a crossing-vertex of G ,
6. Type L: an interior vertex of G , which is the end points of two l-edges.

The six types of vertices have been marked in Fig. 6. We use V 1
G , V 2

G , V 3
G , V T

G , V +
G and V L

G to denote the numbers of the 
six types of vertices, respectively. For the T-mesh T2 in Fig. 6, we have V 1

G2
= 10, V 2

G2
= 8, V 3

G2
= 4, V T

G2
= 2, V +

G2
= 7, 

V L
G2

= 2, where G2 is the CVR mesh of T2. Every crossing-vertex v of T corresponds to a vertex in the CVR mesh. If the 
corresponding vertex is type x, x ∈ {1, 2, 3, T , +, L}, we say v is a type x point in the CVR mesh for convenience.

Theorem 3.5. (See Zeng et al., 2015.) Suppose T is a hierarchical T-mesh, lev(T ) = n, N(t) � 2 for any l-edge t, its CVR mesh is G , 
and there are δ4i minimal connected components in Ti (i � 1). Let δ4 = ∑n

i=1 δ4i . If T 0 has at least 4 horizontal l-edges and 4 vertical 
l-edges, then

dim S3(T ) = V +
G − V L

G + δ4. (1)

4. Rules of the refinement and algorithm

There are several ways to construct a basis, such as the smoothing co-factor method (Wang, 2001), B-net method 
(Schumaker and Wang, 2012), and finding B-splines over local tensor-product meshes (Deng et al., 2008; Dokken et al., 2013;
Sederberg et al., 2003). From the viewpoint of application, the last method is the best choice. Therefore, the first task is 
to determine the configuration of the hierarchical T-mesh to guarantee that all the tensor-product B-splines can span the 
whole spline space.

4.1. Three rules

A tensor-product B-spline in S3(T ) is defined on a 5 × 5 tensor-product submesh whose CVR mesh is a 3 × 3 tensor-
product mesh. We want to construct the basis with the help of the CVR mesh of T . We call the 3 × 3 tensor-product 
submesh of G a basic mesh, and call the center vertex of the basic mesh an anchor. We use A to denote the set of all the 
anchors of G . A vertex may be the anchor of several basic meshes.

In Fig. 7, there are 5 basic meshes; v1, v2, v3 and v4 are all of the anchors; v1 is the anchor of 2 basic meshes.
Every 5 × 5 tensor-product submesh of T corresponds to a basic mesh of G , whereas a basic mesh of G does not 

necessarily correspond to a 5 × 5 tensor-product submesh of T . See Fig. 8 for an example. For the basic mesh in red in G , 
we cannot find a 5 × 5 tensor-product submesh corresponding to it in T .

The reason is that the level-difference of some adjacent cells is bigger than 1. In Fig. 8, the cell in light-gray is of level 0, 
while one of its adjacent cells in blue is of level 2. The level-difference of the two adjacent cells is 2. We have the following 
lemma.

Lemma 4.1. For a hierarchical T-mesh T , if the level-difference of the adjacent cells is at most one, a basic mesh of G corresponds to a 
5 × 5 tensor-product submesh of T .

Proof. To clarify this fact, we should classify the basic meshes.
We consider the basic mesh in the refinement process. Suppose the old T-mesh is T ; we refine some cells of T and 

obtain a new mesh T ′ . The anchor of the new basic mesh could be the center of a cell of T , the center of an edge of 
T or a crossing-vertex of T . With the restriction of the level-difference less than 2, all types of basic meshes and their 
corresponding 5 × 5 tensor-product meshes are discussed in the following. In Figs. 9, 10 and 11, the basic meshes are 
bounded by the red lines and the corresponding 5 × 5 tensor-product meshes are bounded by the dashed lines.



C. Zeng et al. / Computer Aided Geometric Design 38 (2015) 1–23 7
Fig. 8. A hierarchical T-mesh and its CVR mesh. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 9. The anchor is the center of a cell of T . (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 10. The anchor is the center of an edge of T . (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

Fig. 11. The anchor is a crossing vertex of T . (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

1. The anchor is the center of a cell of T . See Fig. 9.
(a) If cells 1, 2, 3 and 4 are not all refined, the situation is as in Fig. 9.a.
(b) If cells 1, 2, 3 and 4 are all refined, the situation is as in Fig. 9.b.

2. The anchor is the center of an edge of T . See Fig. 10.A. Here we only consider the horizontal edge; the vertical edge 
can be discussed similarly.
(a) If cells 3, 4, 5 and 6 are all refined, the situation is as in Fig. 10.a.
(b) If cells 5 and 6 are both refined, cells 3 and 4 are not both refined, and cell 1 is refined, then the situation is as in 

Fig. 10.b.
If cells 5 and 6 are not both refined, cells 3 and 4 are both refined, and cell 2 is refined, the situation is similar.

(c) If cells 5 and 6 are not both refined, cells 3 and 4 are not both refined, and cells 1 and 2 are both refined, then the 
situation is as in Fig. 10.c.

3. The anchor is a crossing vertex of T , the situation is as in Fig. 11. �
A basic mesh is a 3 × 3 tensor-product mesh, and its edges belong to 6 l-edges in G . The maximal level number of the 

6 l-edges is called the level of the basic mesh, and so is its corresponding 5 × 5 tensor-product submesh in T . For example, 
in Fig. 9, if cells 1, 2, 3 and 4 are of level k, then the new basic meshes are of level k + 1.
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Fig. 12. The submesh T0 for case 1(a).

Fig. 13. Type L point. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Every 5 × 5 tensor-product submesh T0 is divided into 16 parts by its edges, which are called the cells of T0. Fig. 12 is 
the mesh of case 1(a), and the 16 cells have been marked 1, 2, . . . , 16. Every basic mesh G0 is divided into 4 parts, which 
are called the cells of G0. In Fig. 12, the four cells are the cells 6, 7, 10 and 11.

If T0 is of level k +1, we can see that a cell of T0 is a cell of T at level k, consists of two cells of T at level k +1, or is a 
cell of T at level k + 1. We call the three types of cells of T0 are of level k, level k + 1/2, level k + 1, respectively. In Fig. 12, 
the cells 1, 4, 13, 16 are of level k, and all the cells 2, 3, 5, 8, 9, 12, 14, 15 are of level k + 1/2. For the case 1(b), the 16 cells 
of T0 are all of level k + 1. A cell of G0 consists of two cells of T at level k + 1, or is a cell of T at level k + 1. We call the 
two types of cells of G0 are of level k + 1/2, level k + 1, respectively. In Fig. 12, the cells 6, 7, 10, 11 are of level k + 1. For 
the case 2(c), all of the 4 cells of G0 are of level k + 1/2. We call the 5 × 5 tensor-product mesh that consists of 16 cells at 
the same level a standard tensor-product mesh. For example, the 5 × 5 tensor-product meshes of case 1(b), case 2(b), and 
case 3 are all standard tensor-product meshes. The tensor-product B-spline defined on the standard tensor-product mesh is 
called a standard B-spline, and the CVR mesh of a standard tensor-product mesh is called a standard basic mesh.

Remark 4.2. For the hierarchical B-splines in Vuong et al. (2011), all of the basis functions are standard B-splines.

With the restriction of the level-difference less than 2, we discuss when the type L points appear. In Fig. 13, dividing 
the cell c0 (bounded by red lines), we want the vertex v to be a type L point in the CVR mesh. Cell c0 must be an interior 
cell, whose adjacent cells are c1, c2, c3 and c4. When c1 and c2 are divided and c3 and c4 are not divided, or c2 and c3 are 
divided and c4 and c1 are not divided, or c3 and c4 are divided and c1 and c2 are divided, or c4 and c1 are divided and c2
and c3 are not divided, v is a type L point in the CVR mesh.

Our first rule is: the level-difference of the adjacent cells is at most one. In the following, the hierarchical T-mesh we 
discuss satisfies this rule.

We have the following two facts about the CVR mesh.

1. The adjacent points of a type L point are type + or type 3 points of G ;
2. A type + point is either an anchor or the adjacent point of some type L points.

Definition 4.3. L chain: the longest chain consisting of v0, v1, . . . , v2n , where v0, v2, . . . , v2n are type + or type 3 points, 
v1, v3, . . . , v2n−1 are type L points, and vi+1 is adjacent to vi . Because the level-difference is less than 2, the vertices in an 
L chain are of the same level.

Because an L chain is the longest chain, a type + or type 3 point could only be in one L chain.
If v0 or v2n is type 3, the chain is called a boundary L chain; otherwise it is called an interior L chain.
For a boundary L chain, if v0 and v2n are both type 3, the chain is called a type 1 chain; otherwise, it is called a type 2 

chain. For an interior L chain, if v0 = v2n , it is called a type 3 chain; otherwise, it is called a type 4 chain.
If two L chains have the same vertices, we regard the two chains as the same chain. For example, v0, v1, . . . , v2n and 

v2n, v2n−1, . . . , v0 are the same chain.
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Fig. 14. L chain.

Fig. 15. Figure for the proof of Lemma 4.4.

In Fig. 14, there are 6 L chains: v20, v21, v22 and v30, v31, v32, v33, v34 are type 1 chains; v50, v51, v52 is a type 2 chain; 
v40, v41, . . . , v48 is a type 3 chain; v00, v01, v02 and v10, v11, . . . , v16 are type 4 chains.

Lemma 4.4. Type 1 chains and type 3 chains appear if and only if they are in the basic meshes corresponding to the minimal connected 
components (Fig. 5).

Proof. This fact could be proved by analyzing the mesh. We only prove the conclusion for type 3 chains, and the case of 
type 1 chains could be proved similarly.

The sufficiency is obvious. For the necessity, consider a part of a hierarchical T-mesh in Fig. 15.a. Suppose all of the cells 
c1, c2, . . . , c16 are of level k. We divide some of them to construct a type 3 chain of level k + 1. From the analysis above, 
the type L points in the CVR mesh appear at the center of the cells that will be divided. Suppose the top-right type L point 
v L of the type 3 chain appears at the center of c7. Here “top-right” means that in this type 3 chain, there is not a type L
point above v L , and among all of the type L points which are in the same height as v L is, v L is the rightmost one. Then c6, 
c7 and c11 will be divided, and c3 and c8 will not be divided. See Fig. 15.b. Because we will construct a type 3 chain, the 
center of c6 will also be a type L point in the CVR mesh, otherwise, this chain will terminate. Then c10 will be divided, and 
c2 and c5 will not be divided. See Fig. 15.c. Similarly, the center of c10 and c11 will also be type L points in the CVR mesh, 
then c9, c14, c15 and c12 will not be divided.

Therefore, the connected component in Fig. 15.c is just the connected component that the type 3 chain corresponds to, 
which is a minimal connected component. �
Theorem 4.5. Suppose T is a hierarchical T-mesh, N(t) � 2 for any l-edge t, the level-difference of the adjacent cells is at most one, 
and the numbers of type 3 chains and type 4 chains in G are C3 and C4 , respectively, where G is the CVR mesh of T . Then,

dim S3(T ) = #A+ C3 + C4, (2)

where #A is the number of the elements of A.

Proof. Suppose the numbers of type 1 chains and type 2 chains in G are C1 and C2, respectively. By Lemma 4.4, we have

δ4 = C1 + C3, (3)

where δ4 has the same meaning as in Theorem 3.5.
For a type 2 chain or a type 3 chain, the numbers of type + and type L points are the same. For a type 1 chain, there is 

one more type L point than type + points. For a type 4 chain, there is one less type L point than type + points. Therefore,
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Fig. 16. A hierarchical T-mesh and its CVR mesh.

Fig. 17. The refinement style.

V +
G − V L

G = #A+ C4 − C1. (4)

Combining Equations (1), (3) and (4), we obtain Equation (2). �
We want all of the basis functions to be tensor-product B-splines. From Equation (2), we know that every type 4 chain 

must correspond to a basic mesh, that is, every type L point should be in a basic mesh. To explain this phenomenon simply, 
consider the hierarchical T-mesh T2 in Fig. 6. By Equation (1) or Equation (2), we have dim S3(T2) = 5. However, there are 
only 4 basic meshes in the CVR mesh of T2. That is, all of the tensor-product B-splines cannot span the space of S3(T2). 
Therefore, our second rule is: every type 4 chain must correspond to a basic mesh.

From Equation (2), we know that different interior L chains should correspond to different basic meshes. In Fig. 16, the 
L chain v0, v1, v2 and the L chain v ′

0, v
′
1, v

′
2 are in the same basic mesh. By Theorem 3.5, we have dim S3(T ) = 7, but we 

can only find 6 basic meshes.
To prevent the occurrence of such a situation, we set the third rule: two different L chains cannot be in the same 

(standard) basic mesh.
Now we collect all the restrictions of the hierarchical T-mesh here:

1. the hierarchical T-mesh T is regular;
2. the initial tensor-product mesh T 0 has at least 4 horizontal l-edges and 4 vertical l-edges;
3. N(t) � 2 for any l-edge t;
4. the level-difference of the adjacent cells is at most one;
5. every type 4 chain corresponds to a basic mesh;
6. two different L chains are not in the same (standard) basic mesh.

Then we can define the multiplicity of the anchor under these restrictions. For an anchor v , if there are m type 3 and 
type 4 chains, the anchors of which are all v , then the multiplicity of v is m + 1, denoted by mul(v) = m + 1. Combining 
with Equation (2), we have

dim S3(T ) =
∑
v∈A

mul(v). (5)

For example, in Fig. 7, mul(v1) = 2, mul(v2) = mul(v3) = mul(v4) = 1.

4.2. Algorithm for the refinement

In this section, we introduce the algorithm for the refinement briefly. Usually, we choose a 5 × 5 tensor-product mesh 
as T 0, no matter whether it is uniform or not.
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Fig. 18. The first rule.

Fig. 19. The third rule. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

4.2.1. Refinement style for the second rule
To ensure the second rule, we set the refinement style: we refine the mesh around the crossing vertices. If we want to 

refine around a crossing vertex v0, we divide the adjacent cells of v0. In Fig. 17, the crossing vertices of T that will be 
refined around have been marked and T ′ is the resulting T-mesh. Under this refinement style, every type 3 or type 4 chain 
is in a standard basic mesh. We call the anchor of the basic mesh the anchor of this L chain. With this refinement style, 
we have N(t) � 2 for any l-edge t as well.

Different from other types of splines, we refine the mesh based on crossing-vertices instead of cells. Now we give the 
algorithm for finding the crossing-vertices that will be refined around.

We compute the error around every crossing vertex. For a given crossing vertex v0, suppose the adjacent cells of v0 are 
of level k. There are four cells of level k in T k that are around v0. For example, in Fig. 17, the four cells are in light-gray 
for the crossing vertex v . We compute the error on the area occupied by the four cells. If the error is greater than a given 
tolerance ε, this crossing-vertex should be refined around.

4.2.2. Algorithm for the first rule
To guarantee that the level-difference is at most one, we should refine around more crossing-vertices.
See Fig. 18. There are three situations that we should refine around more crossing-vertices. If we want to refine 

around v1, because either the cell c1 or c2 is not divided, we should refine around v ′
1 first. If we want to refine around v2, 

because neither of the cell c2 and c3 is divided, we should refine around v ′
2 first. If we want to refine around v3, because 

the cell c5 is not divided, we should refine around v ′
3 or v ′′

3 first. Our principle is to divide as few cells as possible. Therefore, 
if the cell c4 has been divided already, we choose v ′

3 to refine around, which means we should only divide c5. Similarly, if 
the cell c4 has not been divided and the cell c6 has been divided already, we choose v ′′

3 to refine around, which means we 
should only divide c5 as well. If neither of c4 and c6 has been divided, we can choose either of v ′

3 and v ′′
3 to refine around.

4.2.3. Algorithm for the third rule
A standard basic mesh can have one, two, three or four type L points. The situation where two different L chains appear 

in the same (standard) basic mesh occurs only when the standard basic mesh has two type L points that are not in two 
different L chains.

We use Fig. 19 to illustrate when this situation occurs. The red lines correspond to the boundary lines of a standard 
basic mesh in the CVR mesh. We pay attention to the four vertices v1, v2, v3, v4 that can be type L points. It is easy to 
check that this situation occurs when v1 and v3 are both type L points and neither of v2 and v4 is a type L point, or v2
and v4 are both type L points and neither of v1 and v3 is a type L point.
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Here we suppose v1 and v3 are both type L points in the CVR mesh and neither of v2 and v4 is a type L point in 
the CVR mesh. Therefore, none of the cells a, b, e and f is divided, c or d is divided, and g or h is divided. To avoid this 
situation, we divide more cells to change v1 or v3 to a type + point or a type T point. The refinement style tells us that 
we should refine around the crossing vertex. We choose an appropriate crossing vertex to avoid dividing more cells. For 
example, in Fig. 19, c is divided. Therefore, we choose v0 to refine around. Then, we should only divide b.

4.2.4. Algorithm
If we want to refine around a vertex v , Algorithm 1 is a simple process for finding a sequence of cross-vertices that 

should be refined around to ensure the first rule and the third rule. Here we use the recursion of functions. This algorithm 
is always guaranteed to terminate, because the worst case is that the mesh will become a tensor-product mesh after refining 
around all the crossing-vertices in RefineListAt(v).

In the actual operation, we should refine around more than one cross-vertex. Algorithm 2 is a simple process of the 
refinement of a hierarchical T-mesh.

Algorithm 1 Finding a sequence of cross-vertices for refining around a crossing-vertex.
Input: A cross-vertex v0 that will be refined around
Output: A sequence of cross-vertices S that should be refined around to ensure the first rule and the third rule

1: function RefineListAt(v0)
2: push v0 to a vector S
3: if v0 does not satisfies the third rule then
4: find out a crossing-vertex v ′ should be refined around
5: push v ′ to S
6: RefineListAt(v ′)
7: end if
8: if v0 does not satisfies the first rule then
9: find out a crossing-vertex v ′′ should be refined around

10: push v ′′ to S
11: RefineListAt(v ′′)
12: end if
13: erase the repetitive elements in S
14: return S
15: end function

Algorithm 2 Refinement of a hierarchical T-mesh.
Input: A hierarchical T-mesh T and a tolerance ε
Output: A refined hierarchical T-mesh T ′

1: for each crossing-vertex v of T do
2: compute the error e[v] around v
3: if e[v] > ε then
4: push v to a vector R
5: end if
6: end for
7: for each crossing-vertex v ∈ R do
8: if v has not been refined around in the process of this algorithm then
9: S[v] ← RefineListAt(v)

10: for each crossing-vertex v ′ ∈ S[v] do
11: refine around v
12: end for
13: end if
14: end for
15: return T ′

5. Construction of the basis

In this section, we provide a detailed construction process for the bicubic hierarchical basis. Suppose lev(T ) = N . Now 
that we refined around a crossing vertex v , we divide some cells at level k + 1. The chosen cells are the adjacent cells of v .

5.1. The basis functions at level k + 1

In Fig. 20, we divide the cell bounded by red lines. The crossing vertices (if they exist) upon this cell that will be 
influenced have been marked v1, v2, . . . , v7. We only consider these crossing vertices, and the crossing vertices in other 
directions can be dealt with in the same manner.
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Fig. 20. Figure for the construction of the basis. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 21. Delete a basis function. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

We can analyze every vertex of v1, v2, . . . , v7 as the classification of anchors in Section 4. If the vertex satisfies one of the 
cases, we add the corresponding tensor-product B-spline to the original basis. After treating all of the vertices surrounding 
the divided cell, we deal with the crossing vertex v0.

We use lev( f ) to represent the level of the basis function f and F0
i to represent the set of all of the basis functions at 

level i, and F0 = ⋃N
i=0 F0

i , where F0
0 is the tensor-product basis functions of S3(T 0) as in Vuong et al. (2011).

5.2. Deleting some of the basis functions at level k

An anchor can be the center of several basic meshes at different levels.
We delete the basis function at level k if the domain of its basic mesh is covered by the domains of the basic meshes 

of some basis functions at level k + 1. Because the level difference is less than 2, this only occurs to the standard basis 
functions (i.e., standard B-splines). Now we discuss when this situation appears.

In Fig. 21.a, the 5 × 5 tensor-product mesh is the domain of a standard B-spline g at level k. First, the cells a, b, c and d
should all be divided. This is because the cells of the basic mesh at level k + 1 are at least at level k + 1/2. In Fig. 21.b, the 
four cells have been divided. In Fig. 21.c, the red lines compose the CVR mesh of the mesh in Fig. 21.b.

Second, the four crossing vertices v1, v2, v3 and v4 should all be anchors. It is easy to verify that when this is true, the 
domain of the basic mesh of g is covered. To prove the necessity, look at the CVR mesh in Fig. 21.c. The edge li or li+1, 
where i = 1, 3, 5, 7, should exist in the CVR mesh. Otherwise, suppose neither of l1 and l2 exists. Then, there is a cell (the 
light-gray cell) that is neither at level k + 1/2 nor at level k + 1, thus it cannot be contained in any basic mesh of level 
k + 1, a contradiction. When l1 or l2 exists, and l7 or l8 exists, v1 is an anchor. Similarly, v2, v3 and v4 are all anchors. This 
conclusion is equivalent to none of v ′

1, v ′
2, v

′
3 or v ′

4 is a type L point.
After deleting, we use Fi to represent the basis functions remaining at level i. The final basis we obtain is denoted by 

F = ⋃N
i=0 Fi .

Lemma 5.1. After the process above, we have

dim S3(T ) = #F . (6)

Proof. After this process, for ∀ anchor v , we claim that there are mul(v) basis functions whose anchor is v .
We use Fig. 21 to prove this claim. The crossing-vertex v0 is an anchor. Without losing generality, we can assume v0 is 

of level 0. There is one basis function f0 whose anchor is v0 in F0. After dividing the cells a, b, c and d, v is the anchor 
of a basic mesh of level 1. If f0 is not deleted, then at least one of v ′

1, v ′
2, v

′
3, v

′
4 is a type L point. That is, this basic mesh 

corresponds to a type 3 or type 4 chain of level 1. Therefore, mul(v0) = 2 in T 1. If f0 is deleted, none of v ′
1, v

′
2, v

′
3, v

′
4 is 

a type L point. That is, this basic mesh does not correspond to a type 3 or type 4 chain of level 1. Therefore, mul(v0) = 1
in T 1. By induction on the level, we know this claim is right.
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Combing with Equation (5), we complete the proof. �
5.3. An example

In this section, we give an example to illustrate the process above. We use N[x0, x1, x2, x3, x4](x) to denote the cubic 
B-spline basis function associated with the knot vector [x0, x1, x2, x3, x4] in x-direction, N[y0, y1, y2, y3, y4](y) to denote 
the cubic B-spline basis function associated with the knot vector [y0, y1, y2, y3, y4] in y-direction, and f i

v to denote the 
basis function at level i whose anchor is v .

In Fig. 22, T is the initial T-mesh and G is its CVR mesh. The vertices v0
1, v

0
2, v

0
3, v

0
4 are all the anchors. Therefore, 

#F0
0 = 4. The basis function whose anchor is v0

1 is

f 0
v0

1
= N[0,1,2,3,4](x)N[1,2,3,4,5](y).

Now we refine around v0
4, v

0
5, v

0
6 and obtain a new mesh T ′ whose CVR mesh is G ′ . By Lemma 4.1, three basis functions 

whose anchors are v0
4, v

0
5, v

0
6 are added for case 3, one basis function whose anchor is v1

3 is added for case 2(a), one basis 
function whose anchor is v1

2 is added for case 2(b), and one basis function whose anchor is v1
1 is added for case 2(c). 

Because the adjacent cells of v0
1 are not all divided in the refinement process, f 0

v0
1

will not change. So do f 0
v0

2
and f 0

v0
3
. 

For v0
4, because the vertex v ′ is a type L point, mul(v0) = 2 and f 0

v0
4

will not change as well. We have

f 0
v0

4
= N[1,2,3,4,5](x)N[0,1,2,3,4](y),

f 1
v0

4
= N[2,2.5,3,3.5,4](x)N[1,1.5,2,2.5,3](y).

Now we refine around v0
7 and obtain a new mesh T ′′ whose CVR mesh is G ′′ . By Lemma 4.1, one basis function whose 

anchor is v0
7 is added for case 3, one basis function whose anchor is v ′ is added for case 1(a), two basis functions whose 

anchors are v1
4, v

1
5 are added for case 2(b). Because v ′ is no longer a type L point in G ′′ , mul(v0) = 1 and f 0

v0
4

will be 
deleted.

Finally, we have F0 = { f 0
v0

1
, f 0

v0
2
, f 0

v0
3
}, F1 = { f 1

v0
5
, f 1

v0
6
, f 1

v0
7
, f 1

v0
4
, f 1

v1
1
, f 1

v1
2
, f 1

v1
3
, f 1

v1
4
, f 1

v1
5
, f 1

v ′ }.

6. Properties

In this section, we discuss some properties of the basis obtained in Section 5. The support set of any function f is

supp( f ) = {(x, y) ∈ � : f (x, y) �= 0},
where � is the region occupied by the cells in T .

6.1. Linear independence

First, we give three lemmas about the basis.

Lemma 6.1. For two basis functions f1 and f2 , suppose T1 and T2 are the tensor-product meshes which f1 and f2 are defined on, 
respectively. In Fig. 23, T1 and T2 are bounded by solid lines and dashed lines, respectively. The points A1, A2, A3 and A4 are the four 
corner points of T1 . If supp( f1) ∩ supp( f2) �= ∅, supp( f1) � supp( f2) and supp( f2) � supp( f1), then Ai cannot be the corner point 
of T2 , where i = 1, 2, 3, 4.

Proof. This lemma can be proved by checking all of the types of the basis functions. If lev( f2) > lev( f1), suppose A1 is 
also the corner point of T2. Then, supp( f2) ⊆ supp( f1), a contradiction. Conversely, if lev( f2) < lev( f1), then supp( f1) ⊆
supp( f2), also a contradiction.

If lev( f1) = lev( f2), this conclusion is also correct. We omit the proof here. �
Lemma 6.2. Suppose F0

k = { f1, f2, . . . , fm}. For any basis function f at level k + 1, ∃ i, i ∈ {1, 2, . . . , m}, such that supp( f ) ⊆
supp( f i).

Proof. We should check this conclusion for all of the types of the basis functions. Here, we only check this lemma for the 
first type (in Fig. 9.a) of the basis functions. The others can be verified similarly.

The set supp( f ) consists of 9 cells at level k, which have been marked in Fig. 24.a. The cells at level k are obtained by 
dividing the cells at level k − 1. Therefore, the cells 1, 2, 4 and 5, or 2, 3, 5 and 6, or 4, 5, 7 and 8, or 5, 6, 8 and 9 are from 
the same cell at level k − 1. Here, we suppose the cells 4, 5, 7 and 8 are from the same cell at level k − 1. In Fig. 24.b, the 
cells at level k − 1 have been bounded by red lines. The standard B-spline whose support is occupied by the four cells at 
level k − 1 is the one we are looking for. �
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Fig. 22. An example for constructing basis functions.

Fig. 23. Figure for Lemma 6.1.

Fig. 24. Figure for Lemma 6.2. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 25. Figure for Lemma 6.3.

Lemma 6.3. Suppose f ∈Fk, f1, f2, . . . , fm are all of the basis functions at level k + 1 whose support is a subset of supp( f ). Then,

supp( f )\
m⋃

i=1

supp( f i) �= ∅

Proof. If f is not a standard basis function, supp( f ) consists of at least one cell at level k − 1. However, the support set of 
the basis functions at level k +1 cannot contain the cells at level k −1. Therefore, the conclusion is correct for this situation.

If f is a standard basis function, see Fig. 25.a. If not all of the cells c1, c2, c3 and c4 are divided, we can suppose c1 is 
not divided. Then we can check that the cell a �

⋃m
i=1 supp( f i). If all of c1, c2, c3 and c4 are divided, see Fig. 25.b. Because 

f is not deleted in the refinement, at least one of v1, v2, v3 or v4 is a type L point in the CVR mesh. Suppose v1 is a type 
L point in the CVR mesh. Then, both c5 and c6 are not divided. We can also check that the cell a �

⋃m
i=1 supp( f i). �

Theorem 6.4. The functions in F are linearly independent.

Proof. Suppose F0
0 = { f1, f2, . . . , fm, fm+1, . . . , fn}, F0 = { f1, f2, . . . , fm}, and lev(T ) = N .

For any function f at level 1, from Lemma 6.2, we know that supp( f ) is a subset of the support sets of some func-
tions at level 0. We only choose one of them and call it the mother function of f , which is denoted by mot0( f ). 
Similarly, we can define moti−1( f ′) for a function f ′ at level i, where 1 � i � N . For a function g at level k, we denote 
mot0(mot1 · · · (motk−1(g)) · · ·) as mot0(g).

Suppose∑
f ∈F

c( f ) f = 0, c( f ) ∈R (7)

We should only prove c( f ) = 0 for all the f ∈F .
Let

gi =
{

c( f i) f i + ∑
f ∈F1,mot0( f )= f i

c( f ) f + · · · + ∑
f ∈Fn,mot0( f )= f i

c( f ) f , 1 � i � m,∑
f ∈F1,mot0( f )= f i

c( f ) f + · · · + ∑
f ∈Fn,mot0( f )= f i

c( f ) f , m + 1 � i � n.

Equation (7) becomes

n∑
i=1

gi = 0. (8)

From the definition, we know supp(gi) = supp( f i). Consider the bottom-left cell α of the mesh T . Here “bottom-left” 
means that there is not a cell whose bottom edge is below α, and among the cells whose bottom edges are in the same 
horizontal line as α is, α is the leftmost cell. From Lemma 6.1, there is only one function f j ∈ F0

0 satisfying α ∈ supp( f j), 
namely α ∈ supp(g j). Therefore, g j is the only non-zero function acting on α. By Equation (8), we obtain g j = 0.

Excluding g j from Equation (8), we consider the bottom-left cell of the region given by T \α. Also from Lemma 6.1, 
there is only one function of gk, k �= j that can be non-zero on this cell, and it is zero. Continuing this argument, we obtain 
gl = 0 for all 1 � l � n.

From the definition, we know that 
⋃

f ∈F0
k+1,mot0( f )= f i

supp( f ) ⊆ ⋃
f ∈F0

k ,mot0( f )= f i
supp( f ). Therefore, by Lemma 6.3, we 

have

supp( f i)\
N⋃ ⋃

supp( f )

k=1 f ∈Fk,mot0( f )= f i
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⊇ supp( f i)\
N⋃

k=1

⋃
f ∈F0

k ,mot0( f )= f i

supp( f )

= supp( f i)\
⋃

f ∈F0
1 ,mot0( f )= f i

supp( f )

�= ∅,

where 1 � i � m. Because gi = 0, we obtain c( f i) = 0, 1 � i � m.
Now every gi has become:

gi =
∑

f ∈F1,mot0( f )= f i

c( f ) f + · · · +
∑

f ∈Fn,mot0( f )= f i

c( f ) f .

We can repeat the discussion on every gi , and obtain c( f ) = 0 when f ∈F1, mot0( f ) = f i .
Continuing this process, we prove this theorem. �

6.2. Other properties

The basis functions are all tensor-product B-splines, so they inherit some properties, such as nonnegativity and local 
support. From Equation (6) and the linear independence, we know they are complete. Therefore, F is a basis of S3(T ).

7. Comparing with HB-splines and T-splines

Our new splines are somewhat similar to HB-splines in Vuong et al. (2011), but the two types of splines are different in 
essence:

1. The starting points are different. The starting point of HB-splines is that we first construct the basis, and then add some 
restrictions to guarantee the completeness. The starting point of our new splines is that we first analyze the spline 
spaces and the topological explanation of the dimension formula, and then construct the basis.

2. The basis is different. We have discussed this difference in Section 4. The tensor-product mesh that a basis function is 
defined on in HB-splines consists of cells from the same level, while the tensor-product mesh that a basis function is 
defined on in our new splines may consist of cells from different levels.

The starting point of T-splines is the same as HB-splines. The basis (blending functions for more accurate) were con-
structed as early as in 2003 (Sederberg et al., 2003), while the analysis of the basis begun from 2010 (Buffa et al., 2010). 
The biggest difference between T-splines and our new splines is that the method of the construction is different. For the 
same (hierarchical) T-mesh, every vertex is an anchor for T-splines, while only a small part of the vertices are anchors for 
our new splines.

8. Applications

8.1. Finite element analysis

In this section, we attempt to solve a two-dimensional elliptic boundary value problem (BVP) −�u = f defined on 
[0, 1] × [0, 1] with homogeneous conditions. Here f = −{40 000[(2x − 1)2(y2 − y)2 + (x2 − x)2(2y − 1)2] + 400(y2 − y +
x2 − x)}e200(x2−x)(y2−y) . The exact solution is u = e200(x2−x)(y2−y) − 1.

The exact solution is depicted in Fig. 26. Fig. 27 shows the adaptive hierarchical T-meshes after 1, 4, 9 and 13 refine-
ments. Fig. 28 gives the convergence results for S3(T ) over hierarchical T-meshes and for S3(T ) over tensor-product 
meshes. In Table 1 we show the iteration number (n), dimensions of the spline spaces, the CPU time, and the error 
‖uexact − uh‖L2/‖uexact‖L2 for S3(T ) over hierarchical T-meshes and for S3(T ) over tensor-product meshes.

8.2. Isogeometric analysis

In this section, we give two examples of the application on IGA.

8.2.1. Linear elasticity: plate with a circular hole
This problem is a benchmark problem: an infinite plate with a circular hole under constant in-plane tension in the 

x-direction in IGA and can be described as follows. The infinite plate is modeled by a finite quarter plate. The setup is 
illustrated in Fig. 29. The exact solution evaluated at the boundary of the finite quarter plate is applied as a Neumann 
boundary condition. Here, Tx is the magnitude of the applied stress for the infinite plate case (we let Tx = 10 here), R is 
the radius of the hole, L is the length of the finite quarter plate, E is Young’s modulus, and ν is Poisson’s ratio.
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Fig. 26. The exact solution.

Fig. 27. Resulting meshes after 1, 4, 9, 13 refinements.

Fig. 28. Comparison of the convergence results for S3(T ) over T-meshes and S3(T ) over tensor-product meshes.

At the initial tensor-product mesh, the geometry is represented exactly with two patches by rational bicubic B-splines. 
The geometrical representation remains the same as divisions are being performed. Fig. 30 shows the adaptive hierarchi-
cal T-meshes after 1, 5, 10, 14 and 18 refinements. Fig. 31 is the xy-direction stress error ‖σexact − σ h‖L2 after 1, 5 and 
10 refinements. Fig. 32 gives the convergence results for S3(T ) over hierarchical T-meshes and for S3(T ) over tensor-
product meshes. In Table 2, we show the iteration number (n), the dimensions of the spline spaces, the CPU time and the 
xy-direction stress error ‖σexact − σ h‖L2 for S3(T ) over T-meshes and S3(T ) over tensor-product meshes.
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Table 1
Experiment data.

Spline over hierarchical T-meshes B-splines over tensor-product meshes

n dim t(s) error n dim t(s) error

1 25 0.501 3.41164 × 10−6 1 25 0.501 3.41164 × 10−6

2 53 0.877 3.94374 × 10−7 2 81 1.751 3.79702 × 10−7

5 141 2.547 2.00426 × 10−8 3 289 5.299 1.94915 × 10−8

13 585 15.214 7.66092 × 10−10 4 1089 31.569 7.59877 × 10−10

Fig. 29. Elastic plate with a circular hole: problem definition.

Fig. 30. Resulting meshes after 1, 5, 10, 14, 18 refinements.

Fig. 31. The xy-direction stress error after 1, 5, 10 refinements.

Fig. 32 and Table 2 both show that the adaptive refinement reaches a given tolerance with slightly fewer degrees of 
freedom than the uniform refinement with NURBS. This phenomenon has be shown in Dorfel et al. (2010), Vuong et al.
(2011), Wang et al. (2011b).

8.2.2. Stationary heat conduction: L-domain
We consider a conduction equation in this part. The geometry of the domain is illustrated in Fig. 33, where � = [−1, 1] ×

[−1, 1]\[0, 1] × [0, 1]. The heat conduction equation is −�u = 0 in � with a homogeneous condition on �D, and Neumann 
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Fig. 32. Comparison of the L2 error.

Table 2
Experiment data.

Spline over hierarchical T-meshes B-splines over tensor-product meshes

n dim t(s) error n dim t(s) error

1 49 0.359 0.50037 1 49 0.359 0.50037
2 121 0.639 0.10634 2 121 0.639 0.10634
8 268 2.857 0.013747 3 361 1.543 0.01238

18 913 17.194 0.0017056 4 1225 20.816 0.00177236

Fig. 33. Figure for the stationary heat conduction.

boundary condition ∂u
∂n = ∂ f

∂n on �N, where n is outer normal direction, f is an exact solution of the problem and is given 
here for reference.

f =
{

(x2 + y2)
1
3 sin ((2θ − π)/3), (x, y) �= (0,0),

0, (x, y) = (0,0),

where

θ =
{arccos(x/r), x ≤ 0 and y ≥ 0,

π − arcsin(y/r), x ≤ 0 and y ≤ 0,

2π + arcsin(y/r), x ≥ 0 and y ≤ 0.

Fig. 34 shows the adaptive hierarchical T-meshes after 1, 6 and 12 refinements. Fig. 35 gives the convergence results for 
S3(T ) over hierarchical T-meshes and for S3(T ) over tensor-product meshes. In Table 3, we show the iteration number 
(n), the dimensions of the spline spaces, the CPU time and the error ‖uexact − uh‖L2 for S3(T ) over T-meshes and S3(T )

over tensor-product meshes.
For this example, the advantage of the adaptive refinement is distinct. From the two examples of the application on IGA, 

we know that whether the advantage of the adaptive refinement is distinct or not is based on the property of the solution.
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Fig. 34. Resulting meshes after 1, 6, 12 refinements.

Fig. 35. Comparison of the L2 error.

Table 3
Experiment data.

Spline over hierarchical T-meshes B-splines over tensor-product meshes

n dim t(s) error n dim t(s) error

1 49 0.358 0.00690528 1 49 0.358 0.00690528
3 121 0.691 0.00185187 2 121 0.544 0.00185187
6 226 1.538 0.000602485 3 361 1.260 0.00055188

12 370 4.237 0.000231736 4 1225 18.686 0.000224806

8.3. Surface fitting

Given an open surface triangulation with vertices V j , j = 1, . . . , N in 3D space, the corresponding parameter values 
(u j, v j), j = 1, . . . , N are obtained from shape-preserving parametrization in Floater (1997), and the parameter domain is 
assumed to be [0, 1] ×[0, 1]. To construct a spline to fit the given surface, we need only to compute all the control points Pi , 
i = 1, . . . , m associated with all the basis functions bi , i = 1, . . . , m. We denote the fitting spline 

∑m
i=1 Pibi(u, v) as S(u, v). 

To find the control points, we just need to solve an over-determined linear system S(u j, v j) = V j , j = 1, . . . , N using least 
squares fitting. The surface fitting scheme repeats the following two steps until the fitting error in each cell is less than the 
given tolerance ε:

1. Compute all the control points for all the basis functions.
2. Find all the V j whose errors are greater than the given error tolerance ε and the nearest crossing vertices in the T-mesh 

of (u j, v j). Refine around these crossing vertices to form a new mesh, and construct the basis for the new mesh. We 
use ‖S(u j, v j) − V j‖ to define the fitting error of V j .

Fig. 36 is the fitting result of the female head. The iteration number (n), the dimensions of the spline spaces, the max 
error and the CPU time are shown in Table 4.
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Fig. 36. Fitting female head with S3(T ) over a hierarchical T-mesh.

Table 4
Experiment data.

n dim max error t(s)

1 49 0.913 0.328
3 148 0.388 2.464
6 205 0.175 8.176
9 594 0.065 32.715

12 1036 0.025 96.130

9. Conclusions and future work

We discuss the completeness of the bicubic spline spaces over hierarchical T-meshes. The rules of refinement to guar-
antee the completeness are obtained. Under these rules, the basis are constructed, which have many useful properties for 
application. The new splines are compared with HB-splines and T-splines. We give three examples for the preliminary 
applications, which show the efficiency of the new basis.

Although we only discuss bicubic splines in this paper, with the conclusions in Deng et al. (2013), we can analyze 
biquadratic splines similarly. The difference is that the anchors of the basis functions of biquadratic splines are cells.

In the future, more applications will be explored. The 3-variate case is also a considerable question.
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