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Abstract—Human gesture recognition using millimeter wave
(mmWave) signals provides attractive applications including
smart home and in-car interface. While existing works achieve
promising performance under controlled settings, practical appli-
cations are still limited due to the need of intensive data collection,
extra training efforts when adapting to new domains (i.e. environ-
ments, persons and locations) and poor performance for real-time
recognition. In this paper, we propose DI-Gesture, a domain-
independent and real-time mmWave gesture recognition system.
Specifically, we first derive the signal variation corresponding to
human gestures with spatial-temporal processing. To enhance the
robustness of the system and reduce data collecting efforts, we
design a data augmentation framework based on the correlation
between signal patterns and gesture variations. Furthermore,
we propose a dynamic window mechanism to perform gesture
segmentation automatically and accurately, thus enabling real-
time recognition. Finally, we build a lightweight neural network
to extract spatial-temporal information from the data for gesture
classification. Extensive experimental results show DI-Gesture
achieves an average accuracy of 97.92%, 99.18% and 98.76%
for new users, environments and locations, respectively. In real-
time scenario, the accuracy of DI-Gesture reaches over 97% with
an average inference time of 2.87ms, which demonstrates the
superior robustness and effectiveness of our system.

Index Terms—Gesture recognition, mmWave sensing, data
augmentation, neural network

I. INTRODUCTION

Human gesture recognition plays an important role in
human-computer interface systems, which provides users with
a more natural and convenient way to interact and control
machines and devices. For instance, in smart homes, people
can control household Internet of Things (IoT) devices with
gestures in a contactless way, which provides entertaining user
experiences.

Traditional approaches for gesture recognition are based
on cameras [1] or wearable sensors [2]. Although these
techniques have achieved impressive recognition accuracy,
their deployments in real-world applications still remain chal-
lenges. Camera-based solutions have to deal with illumination
variations and privacy issues while wearable sensors require
physical contact between the human body and device, which is
uncomfortable and not suitable for long-term use. To resolve
these challenges, the recent wireless sensing technique has
demonstrated its ability for contactless sensing, including vital
sign monitoring [3], gait recognition [4] and pose estimation
[5]. Compared with traditional sensing methods, the wireless

sensing technique is more privacy-friendly and robust under
different illumination conditions. In the past years, gesture
recognition based on different wireless mediums, including
WiFi [6–8], acoustic signals [9] and millimeter-wave [10]
has been investigated. Among these mediums, millimeter-
wave draws lots of attention due to its significant advantages.
First of all, the fine-grained range and angle resolution of
mmWave radar enable sensing of subtle motion. Secondly, the
high frequency band of the mmWave signal enables a strong
anti-interference ability.Finally, it is easy to be embedded in
portable devices due to the small size of mmWave radar chip
[11]. Hence, many research efforts have been made to exploit
mmWave signals for gesture recognition [10–15]. For instance,
deep-soli [11] achieves fine-grained gesture recognition with
a compact mmWave radar and deep neural network. RadarNet
[12] designs an efficient neural network and collects a large-
scale dataset including over 4 million samples to train a robust
model. Liu. et al. [16] extract dynamic variation of gestures
from mmWave signals and design a lightweight CNN to rec-
ognize gestures in long-range scenarios. Beyond recognizing
simple gestures, mmASL [17] extracts frequency features from
60GHz mmWave signals and achieves American sign language
recognition with a multi-task deep neural network.

However, the existing methods are limited in three aspects:
(i) Labor intensive data collection. To ensure robustness of
the deep learning model, researchers have to collect sufficient
training data to prevent overfitting, which is tedious and
impractical. (ii) Domain dependence. Deep learning based
approaches achieve high accuracy when training and testing
the model under familiar domains. However, model retraining
or extra-training efforts are still required when adapting to
new domains since the propagation of mmWave signals is
subject to change upon the variations of environment setup,
relative locations and gesture speed of individuals. (iii) Off-
line recognition and poor performance in real-time scenarios.
Most of existing works focus on off-line gesture recognition,
assuming that all gesture samples are well segmented before
passing into the classifier. However, in practical scenarios,
the system operates in real-time, which is more difficult than
the segmented classification task since the radar continuously
receives signals with unknown gesture boundaries. RadarNet
[12] performs the unsegmented recognition task using the slid-
ing window approach. However, its performance is susceptible



to the selection of sliding window size, especially when people
perform gestures with variant speeds.

In this paper, we propose DI-Gesture, a real-time mmWave
gesture recognition system that can generalize to gestures per-
formed by new users, at new locations or in new environments
with high accuracy and low latency. The main contributions
of this paper can be summarized as follows.

(1) We extract spatial-temporal changes of gesture patterns
while reducing the influence of environment and user discrep-
ancy. We further design a data augmentation framework for
mmWave signals based on the relationship between DRAI
representations and gesture variations to ease the pain of data
collection and improve the robustness of the classifier. To
the best of our knowledge, we are the first to address the
domain dependence problem of mmWave gesture recognition
in various domains (i.e. environment, person and location).

(2) We present a dynamic window mechanism based on
different characteristics between motion frame and static frame
to detect the starting and ending of gestures, which enables our
system to achieve accurate real-time gesture classification.

(3) We implement DI-Gesture on a commodity mmWave
radar and conduct extensive evaluations. The experiment re-
sults demonstrate the impressive performance of DI-Gesture
in terms of recognition accuracy under cross-domain settings
and real-time scenarios.

(4) We collect and label a comprehensive mmWave gesture
dataset from various domains, consisting of 24050 samples
from 25 volunteers, 5 locations and 6 environments, which has
been public to the research community1. We believe that this
dataset would facilitate future research of mmWave gesture
recognition.

II. SYSTEM DESIGN

A. Signal Processing

As shown in Fig. 1, DI-Gesture employs the Frequency
Modulated Continuous Wave (FMCW) radar to obtain the
Dynamic Range Angle Image (DRAI) for gesture recognition.
Specifically, we first perform 3D-FFT on raw signals to
derive the ranges, velocities and angles of gestures. Then, we
conduct noise elimination to filter environmental interference
and improve the robustness of the classifier.

Fig. 1. The calculation process of DRAI.

(1) Range-FFT: The radar continuously transmits FMCW
signals (i.e. chirps) , which will be reflected after hitting the
detected object and received by receive antennas. Then the
mixer on the radar board will mix the received chirp with
the transmitting chirp to obtain an intermediate frequency (IF)

1https://github.com/DI-HGR/cross domain gesture dataset

signal. The relationship between the frequency of IF signal f
and distance d between radar and object can be denoted as

f = S · τ =
S · 2d
c
⇒ d =

fc

2S
, (1)

where S is the slope of the chirp signal, c is the speed of
the signal. Therefore, the range of the detected object can be
computed using FFT.

(2) Doppler-FFT: To derive the moving speed of the tar-
geted object, the radar transmits a frame that consists of N
chirps. The velocity of the object v can be derived from the
phase difference ∆φ caused by the doppler effect between two
adjacent chirps as

∆φ =
4πvTc
λ
⇒ v =

λ∆φ

4πTc
, (2)

where λ is the wavelength of the signal, Tc is the time interval
between two adjacent chirps. According to Eq. 2, we perform
FFT among N chirps to extract doppler information and obtain
Range Doppler Image (RDI).

(3) Angle-FFT: The Angle of Arrival (AoA) can be com-
puted by cascading multiple RDIs obtained from different an-
tennas according to phase changes between adjacent receiving
antennas. The relationship between the phase differences ∆φ
and AoA θ can be derived as

∆φ =
2πl sin θ

λ
, (3)

where l is the distance between adjacent receiving antennas.
After the Angle-FFT, we have obtained the range-doppler-
angle matrix for further processing.

(4) Noise Elimination: Since moving targets and static
clutters can be discriminated based on doppler frequency, we
simply set doppler frequency lower than a velocity threshold as
0 to remove static clutter. To eliminate multipath reflections,
we sum the averaged range doppler matrix along the range
dimension to obtain the signal intensity of each doppler bin
and experimentally set a threshold. Finally, only doppler bins
whose signal intensity is higher than the threshold will be
counted when summing the range-doppler-angle matrix along
the doppler dimension into 2D matrix to obtain DRAI.

Fig. 2 shows a series of Range Angle Images (RAIs, i.e.
directly summing the range-doppler-angle matrix along the
doppler dimension without noise elimination) and DRAI when
users push at different locations. From Fig. 2(a) and (b) we
have two key observations: Firstly, different gestures result in
different dynamic patterns in RAI and DRAI. For example,
when users perform push, the brightest spot moves vertically
which denotes distance changes of hands. Another observation
is that compared with RAI, features in DRAI are clearer after
static removal and noise elimination.

B. Data Augmentation

Since the accuracy and robustness of neural networks are
highly dependent on the quantity and quality of training
data, we design a data augmentation framework for mmWave
signals to enrich the training data which makes it contain



Fig. 2. Examples of push at different locations: (a) RAI of push at 60cm;
(b) DRAI of push at 60cm; (c) DRAI of push at 80cm; (d) DRAI of push
at 30◦. Columns represent time series of 5 frames. In RAI and DRAI, pixel
color, horizontal axis and vertical axis correspond to doppler power, AoA and
range, respectively.

sufficient variations of gestures. The intuition behind the data
augmentation is that DRAI representations vary with different
gesture properties. After analysis of various practical scenarios
of gesture executions, we summarize four factors which have
a significant influence on DRAI data as follows:

1) Different Distances: Due to the fine-grained range in-
formation of DRAI, gestures at different distances lead to
variations in DRAI. To measure the impact of the distance
between radar and user, we perform push standing at 60cm and
80cm in front of the radar, respectively. Fig. 2(b) and (c) show
the DRAI sequences, and we can observe vertical offset along
range axis in DRAI sequences which results from different
distances to the radar. Therefore, we can synthesize DRAIs
of gestures performed at different distances by vertically
translating all DRAIs in one sequence.

2) Different Angles: To evaluate the impact of AoA, we
perform push around the radar at different angles (i.e. 60◦and
120◦) with 80cm away from the radar. As illustrated in Fig.
2(c) and (d), we can observe that similarly to situations of
different distances, variations of AoA result in horizontal drifts
of DRAI. Therefore, DRAIs of gestures performed at different
angles can be generated by horizontal translation.

3) Different Speeds: It is clear that gesture samples with
different speeds will have different lengths of produced DRAI
sequences. Therefore, to simulate speed variations when users
perform gestures, we can change the length of the DRAI se-
quence by downsampling and frame interpolation. To achieve
this, we simply use linear frame interpolation that averagely
mixes adjacent two frames to generate a new frame.

4) Different Trajectories: For the simplicity of memory and
execution, we design six pair-wise gestures. Different pair-
wise gestures have unique trajectories while the same pair-
wise gestures have symmetry trajectories. Therefore, the DRAI

sequences can be reversed to produce their pair-wise gesture
data which further increase the amount of data.

C. Gesture Segmentation
To make the system work in real-time and overcome the

limitation of the fixed-length sliding windows, we propose
a dynamic window mechanism to adjust the window size
automatically. The proposed method consists of two parts: a
detection window to detect when a motion starts or ends and
a recognition window to recognize whether it is a predefined
gesture or a random motion. The length of the detection
window is fixed while the recognition window size is exactly
dependent on the gesture duration. To be specific, the first
step is to distinguish whether the current frame is a motion
frame (i.e. human body movement occurs in the detection
range of the radar) or a static frame (i.e. no moving object).
Then, a detection window is sliding along the DRAI stream to
detect motion boundaries. When all frames inside the detection
window are labeled as motion frames for the first time, it
will be considered as the starting of a hand gesture or other
unexpected motions. Once a motion start is detected, the size
of the recognition window begins to increase until all frames
inside the detection window are labeled as static frames, in
other words, the motion ends. After that, frames belonging to
the recognition window are passed into the classifier to decide
whether it is a predefined gesture or not.

(a) Static frame (b) Motion frame

Fig. 3. Difference between the motion frame and static frame.

The classification of motion frame is based on the fact
that energy distributions of DRAI show a great difference in
different situations, as shown in Fig. 3. Specifically, there is
always a series of explicit patterns (i.e. multiple high intensity
peaks) in motion frames caused by gestures, while the static
frames are perturbed by random noise severely. The larger
differences between the energy of the peak cell and the energy
of the background noise, the more likely it would be a motion
frame. The detailed steps of user motion detection are as
follows.

As shown in Fig. 4, assuming that the all cells c of the
DRAI is set C and the signal energy of cell c is E(c), the
energy of the peak cell is calculated as

Epeak = max
c∈C

E(c) (4)

After we find the peak cell, the rest cells surrounding the peak
cell are divided into two groups: guard cells that prevent influ-



Fig. 4. Classification of motion frame and static frame

ence from motion center and background cells for estimating
the average background energy of DRAI as

Ebg =

∑
b∈B(p)E(b)

|B(p)|
, (5)

where B(p) represents the background cells set of the peak
cell p, and |B(p)| denotes the number of elements in set B(p).
The current frame in the DRAI sequence will be marked as a
motion frame if the following equation is satisfied

log(
Epeak

Ebg
+ 1) > Tmotion, (6)

where Tmotion is a preset threshold, and otherwise it will be
marked as a static frame. In the experiments, Tmotion is set
to 1.8 empirically.

D. Gesture Recognition

The input of the classifier is a sequence of DRAI, of
which each single DRAI depicts the doppler power distribution
over the spatial location during a short time interval. Hence,
the consecutive DRAIs describe how the distribution changes
corresponding to a particular kind of gesture. Therefore, to
fully extract the inherent characteristics of DRAI data, as
shown in Fig. 5, we design a neural network consisting of
a frame model which employs Convolutional Neural Network
(CNN) to extract spatial features from each single DRAI and
a sequence model which utilizes Long Short-Term Memory
(LSTM) to learn the temporal dependencies of the entire
sequence.

The frame model has 3 convolutional layers with kernel
size 3x3, 1 fully connected layer with 128 units and batch
normalization. The number of filters of the three convolutional
layers increases from 8, 16 to 32. The sequence model
consisting of 1 LSTM layer with 128 hidden units and 1
fully connected layer to obtain gesture probability. We set the
activation function as ReLU and the dropout rate as 0.5. The
network is trained with Adam optimizer with a learning rate
of 0.0001 and a batch size of 64. The loss function of our
model can be expressed as

Loss(Y, c) = −log(
exp(Y [c])∑C−1

j=0 exp(Y [j])
)

= −Y [c] + log(

C−1∑
j=0

exp(Y [j]))

(7)

where Y refers to the output of the last fully connected layer,
and C is the number of gesture classes.

Fig. 5. Network architecture: the frame model employs CNN for spatial
features extraction and the sequence model utilizes LSTM for temporal
modeling.

III. EXPERIMENTS

A. Data collection

Fig. 6. Environment setup Fig. 7. Five anchor locations

To evaluate the performance of DI-Gesture, we collect ges-
ture data from 25 volunteers, 6 environments and 5 locations.
Fig. 6 shows one of the evaluation environments and Fig. 7
illustrates the setup of 5 locations in each environment. We
select six common gestures as the predefined gestures, includ-
ing push (PH), pull (PL), left swipe (LS) right swipe (RS),
clockwise turning (CT) and anticlockwise turning (AT). To
improve the robustness of the classifier and filter unexpected
motions in real-time application scenarios, we also collect
other human actions as negative samples (NG). In total, we
have collected 24050 samples, consisting of 10650 gesture
samples and 13400 negative samples.



Fig. 8. Comparison of new user test Fig. 9. Comparison of new room test Fig. 10. Comparison of new location test

B. Device Configuration

We have implemented our gesture recognition system using
TI AWR1843 mmWave radar and DCA1000 real-time data
acquisition board. Each radar frame has 128 chirps and each
chirp has 128 sample points. We set the chirp and frame
parameters of the radar to achieve a frame rate of 20fps,
a range resolution of 0.047m, and a velocity resolution of
0.039m/s. We activate 2 transmitting antennas and 4 receiving
antennas to obtain an approximately angular resolution of 15◦.

TABLE I
ACCURACY(%) OF IN-DOMAIN RECOGNITION

Model Fold. 1 Fold. 2 Fold. 3 Fold.4 Fold. 5 Avg.

RadarNet [12] 96.79 98.26 98.63 98.19 97.11 97.80
DI-Gesture 99.22 99.43 99.68 99.64 99.41 99.48

C. Ability of In-Domain Recognition

To demonstrate the superior performance of DI-Gesture,
we implement the state-of-the-art RadarNet proposed in [12]
with the same TI-AWR1843 board for comparison. We first
compare the ability of in-domain recognition with RadarNet.
We take 80% data from each domain for training and then
test the remaining 20% by 5-fold cross-validation. As shown
in Table I, both two methods work quite well on familiar
domains.

D. Ability of Cross-Domain Recognition

We now compare the overall accuracy of RadarNet and DI-
Gesture on different domain factors, including environment,
user and location.

1) Person variety: To evaluate the person-independent per-
formance of DI-Gesture, we train models with gesture data
from User A-G and test with the data of the resting 18 persons.
The recognition accuracy for each gesture of new user test is
presented in Fig. 8. As a result, RadarNet’s performance on
new users significantly drops to 88.64% while DI-Gesture-Lite
can still preserve an impressive accuracy of 97.92%.

2) Environment diversity: To investigate the cross-
environment performance of DI-Gesture, we adopt leave-one-
environment-out test meaning that taking data collected in 1
room as the test set and the other 5 rooms as the training set.

As Fig. 9 depicts, The recognition accuracy of DI-Gesture
outperforms RadarNet in all different unseen environments.

3) Location variation: To investigate the performance of
DI-Gesture at different locations, we conduct leave-one-
location-out test, which denotes that one location as the test
set and the rest four locations as the training set. As shown in
Fig. 10, RadarNet is able to perform well at location 2, 3 and
5 but cannot generalize to location 1 and 3, This is because
that location 2, 3 and 5 have different angles relative to radar
while location 1 and 3 are at different ranges away from the
radar. Therefore, gestures performed at location 1 and 3 show
significant differences due to the fine-grained range resolution
of RDI. Instead, DI-Gesture solves this problem by the data
augmentation technique which can synthesize gesture data at
different locations thus achieving high accuracy on different
locations.

4) Analysis: From the above cross domain evaluations, we
believe that DI-Gesture performs better than RadarNet for two
reasons: (i) DI-Gesture successfully filters signals reflected
from the human torso and static objects in the environment
while preserving the inherent characteristics of gestures. (ii)
The proposed data augmentation methods indeed provide more
quality data to reduce the influence of gesture inconsistency in
different domains and improve the robustness of the system.

E. Performance in Real-time Scenario

1) Recognition Ability: In unsegmented recognition tasks,
we use two metrics for performance evaluation, including con-
tinuous recognition accuracy (CRA) and multiple prediction
rate (MPR). For CRA, the recognition result is wrong when
the gesture is misclassified or there is no prediction. Besides,
the MPR requires the system to make only one prediction for
each gesture. Suppose that P is the number of predictions that
the system output, the MPR can be expressed as

MPR = 1− N

P
(8)

To validate the real-time recognition ability of DI-Gesture,
we train DI-Gesture with data collected from 6 environments,
4 locations and 20 users. Then we ask 4 familiar users
standing at the rest 1 unseen location in a new environment,
which is a more practical and challenging situation. The users
continuously perform each predefined gesture for 10 times and



TABLE II
COMPARISON OF CONTINUOUS RECOGNITION ACCURACY (CRA) AND

MULTIPLE PREDICTION RATE (MPR) FOR NEW ROOM AND NEW LOCATION
TEST

Method CRA (%) MPR (%)

Fixed-length sliding window 95 34.25
Dynamic window mechanism 97.08 2.83

the system uses the dynamic window mechanism to segment
gestures. We also implement the fixed-length sliding window
approach similar to [12] and use the same classifier for a fair
comparison. The results are shown in Table II. We can observe
that the proposed dynamic window mechanism achieves higher
CRA and much lower MPR compared with the fixed-length
sliding window. We believe this is because that fixed-length
sliding windows can not handle situations that people perform
gestures at different speeds. To be specific, if the frame length
of fast gesture is shorter than the step size of the sliding
window, it is more difficult to detect. Besides, slow gestures
are more often recognized as multiple gestures when their
duration is larger than the window size, resulting in an increase
of MPR. In contrast, the proposed dynamic window resolves
this problem by accurately detecting the start and end of the
gesture, and adjusting the size of the recognition window
dynamically. The result also demonstrates that DI-Gesture can
work well when crossing multiple different domains.

TABLE III
MODEL SIZE AND INFERENCE TIME OF DI-GESTURE

Model Model size (MB) Inference time (ms)

DI-Gesture 0.69 2.87

2) Computational Consumption: To demonstrate the effi-
ciency of our system, we evaluate the model size and inference
time of DI-Gesture. We implement DI-Gesture on a laptop
with CPU only and measure the inference time by taking
the average inference time over 1000 runs. As shown in
Table III, the model size and inference time of DI-Gesture
are only 0.69MB and 2.87ms, respectively. Therefore, the
computational cost of DI-Gesture is small enough for real-
time implementation.

IV. CONCLUSION

In this paper, we proposed DI-Gesture, a real-time mmWave
gesture recognition system that worked well across new users,
new environments and new locations. DI-Gesture outper-
formed the state-of-the-art in two aspects: (i) The proposed
signal processing pipeline and a series of data augmentation
techniques enabled an impressive cross-domain accuracy with-
out collecting extra data or model retraining; (ii) The dynamic
window mechanism helped DI-Gesture achieve a more sat-
isfying performance when the system worked in real-time.
Furthermore, we collected the first cross-domain mmWave
gesture dataset consisting of 24050 gesture samples from 25

volunteers, 6 environments and 5 locations and made it public
to the research community. We believe that the proposed
methods and released dataset not only push the mmWave
gesture recognition into real-world applications, but also can
be applied to other wireless sensing tasks and inspire more
researchers to investigate this ubiquitous sensing technique.
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