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Abstract—Radio-frequency (RF) based human sensing tech-
nologies, due to their great practical value in various applications
and privacy-preserving nature, have gained tremendous attention
in recent years. However, without fully exploiting the character-
istics of radio signals, the performance of existing methods are
still limited. First, RF features of the moving human body have
different representations in dimensions such as channel and scale,
which is challenging when performing feature fusion. Besides,
the human body is specularly reflective with respect to the radar,
which means the human body cannot be fully captured by a single
RF snapshot. Therefore, the radar signal reflected by the human
body is sparse and incomplete, which is difficult to extract high-
quality features for 3D human pose estimation. In this paper, we
present the RF-based Pose Machines (RPM), a novel framework
which can generate 3D skeletons from RF signals. Considering
the characteristics of RF signals, RPM includes several modules
to overcome the challenges. Firstly, a Multidimensional Feature
Fusion (MFF) backbone is designed to effectively fuse radio
signals based on the channels’ correlation and maintain high-
quality feature via a multi-scale fusion block. A Spatio-Temporal
Attention network is then designed to reconstruct 3D skeletons by
modeling the non-local spatio-temporal relationships. To evaluate
the performance of our RPM framework, we construct a large-
scale dataset of synchronized 3d skeletons and RF signals,
RFSkeleton3D. Our experimental results show that RPM locates
3D key points of the human body with an average error of
5.71cm and maintains its performance in new environments with
occlusion or bad illumination. The dataset and codes will be made
in public.

Index Terms—RF sensing, 3D Human Pose Estimation, Deep
Learning, Smart Homes.

I. INTRODUCTION

HUMAN pose estimation (HPE) has drawn increasing
attention due to its various application scenarios such as

smart homes, enterprise security, virtual reality, and medical
care. The 3D HPE based on visual images or videos has made
tremendous progress with the recent advances of deep learn-
ing. However, capturing 3D human skeletons via cameras still
has some drawbacks. Firstly, camera-based 3D HPE methods
can not be well adapted to complex scenarios in practice, such
as occlusion, bad illumination, blurry, etc. In addition, privacy
issues cannot be ignored, especially in smart home and health
care application scenarios, where the extensive use of cameras
can bring privacy concerns.

Considering the aforementioned drawbacks, significant re-
search efforts have been spent on advanced sensing technolo-
gies, which aim to perceive and understand human activities
through radio signals. Recent pioneer studies [1], [2] demon-
strate that RF signals carry an impressive amount of informa-
tion about people which can be used to generate 2D and 3D
skeletons of human bodies. However, the representations of
the reflected RF signals have different distributions in terms
of channel and scale, leading to the difficulty of feature fusion.
Furthermore, a single RF snapshot cannot capture the whole
human body due to the specularity of the human body with
respect to RF, which leads to the sparsity and incompleteness.
The above limitations make RF-based human pose estimation
a challenging task.

Our contributions: In this paper, we propose RF-based
Pose Machines (RPM), to locate and reconstruct accurate 3D
human skeletons from RF signals. Considering the characteris-
tics of RF signals, RPM includes several modules to overcome
a series of challenges. Firstly, an effective Multi-dimensional
Feature Fusion (MFF) backbone network is designed to com-
bine horizontal and vertical RF features with channel-wise
attention and maintain scale-insensitive feature representations
via a deformable multi-stage convolution module. Then, a
Spatio-Temporal Attention (STA) network is proposed to con-
struct 3D skeletons with multi-head attention from the sparse
and incomplete RF features, in which the spatial attention
module is designed to model non-local joint relationships and
the temporal attention module is designed to refine 3D skeleton
sequences with temporal coherency.

To evaluate the proposed RPM framework, we collect a
large-scale dataset of synchronized 3D skeletons and RF
signals, named RFSkeleton3D. The evaluation results show
that RPM locates key points of the human body with an
average error of 5.71cm, achieving state-of-the-art accuracy,
and maintains its performance in new environments with
occlusion or bad illumination.

II. RELATED WORK

A. Camera-based 3D Human Pose Estimation

Camera-based 3D HPE methods aim to estimate 3D human
joint locations from images or videos. Recently, with the devel-



Fig. 1. The proposed RPM framework for RF-based 3D human pose estimation. Horizontal and vertical RF siganls are concatenated as input to the MFF
backbone, in which features are fused cross different channels and feature scales. Then Spatial Attention Module models non-local skeleton relationships
from input joint queries with masks to construct body parts that cannot be captured by RF snapshots. Temporal Attention Module refines 3D poses based on
temporal coherency learned from partially masksed frame queries.

opment of deep learning, CNN-based solutions have improved
the pose estimation performance significantly. Specifically,
Pavlakos et al. [3] proposed a volumetric representation for 3D
human pose and predicted 3D pose from coarse to fine. Zhou
et al. [4] predicted 3D poses by maintaining 2D heatmaps
and depth regression. Some methods attempt to obtain a 3D
skeleton from 2D poses produced by 2D HPE methods. Choi et
al. [5] proposed a graph convolutional neural network-based
system to estimate 3D pose from the 2D pose. Hybrik [6]
transformed 3D pose to mesh and refined the mesh estimation
and pose estimation at the same time.

Despite impressive performance achieved by camera-based
approaches, the accuracy and robustness of these methods
can be impaired by occlusion, bad illumination, and blurry.
Furthermore, privacy issues cannot be ignored when cameras
are deployed to monitor human subjects. The RPM framework,
on the other hand, achieves the HPE through RF signals, which
breaks the limitation of existing camera-based HPE methods.

B. Wireless Sensing

Considering the aforementioned drawbacks of camera-based
approaches, significant research efforts [7]–[9] have been
spent on advanced sensing technologies via radio signals.
WiPose [10] encoded skeleton prior knowledge and took 3D
velocity profile as input to generate 3D skeletons with an
RNN network. Wang et al. [11] constructed CSI images that
contain both pose and position information and designed a
neural network to predict 3D pose from CSI features.

Compared with WiFi, RF signals can achieve better resolu-
tion due to the larger bandwidth and more antennas. Zhao et
al. [1], [2] proposed a neural network to predict 2D/3D human
pose via RF signals. Sengupta et al. [12] proposed a network,
mm-Pose, to estimate 3D human pose via point cloud data
from mmWave radars.

In this paper, we propose RPM, a novel framework to
estimate the 3D human skeleton with mmWave radars. RPM
consists of a powerful Multi-dimensional Feature Fusion back-
bone network to extract scale-insensitive high-resolution fea-
ture representations, and a Spatio-Temporal Attention model
to model non-local spatio-temporal relationships. Without bells
and whistles, our RPM achieves state-of-the-art performance
in the 3D HPE task.

III. THE PROPOSED RPM

A. Overview

The overview of the proposed RPM framework is shown in
Fig. 1. Horizontal and vertical RF signals are concatenated and
fed into the proposed MFF backbone to maintain high-quality
feature vectors. Next, a Spatial Attention Module (SAM)
models non-local skeleton relationships to predict "hard" body
parts using masked feature vectors. Finally, a Temporal At-
tention Module (TAM) outputs refined 3D skeletons based on
feature sequences with frame-wise masks. We describe each
component in detail as below.

B. Multidimensional Feature Fusion backbone

To achieve RF-based human pose estimation, we need to
extract fine-grained features from RF signals. Horizontal RF
heatmaps are projections of RF signals on a plane parallel
to the ground, which can provide the human body position,
whereas vertical RF heatmaps are projections of RF signals on
a plane perpendicular to the ground, which contains informa-
tion about body parts. Considering the interdomain differences
of RF signals, we propose a Multidimensional Feature Fusion
backbone network to effectively fuse features at different
scales and channels in the horizontal and vertical directions.
First, a channel fusion block, extracts channel-wise fused
features from concatenated RF signals. Next, considering the
scale difference of horiziontal and vertical RF signals, we
design a multi-scale fusion block to adaptively adjust the size
of the receptive field, in which deformable convolution layers
are applied to a multi-resolution feature extraction network
motivated by [13]. Finally, a light weight multilayer perceptron
(MLP) network is adopted as a classification head to transform
the extracted feature into vector which will be fed to the
Spatio-Temporal Attention network for the regression task.

C. Spatial-Temporal Attention network

Unlike a camera that captures the projection of all un-
occluded body parts, mmWave radar can only receive the
reflected signal of a subset of limbs at each RF snapshot. We
propose a Spatio-Temporal Attention network to reconstruct
3D skeletons from RF signals with information about an
unknown subset of the body parts. As shown in Fig. 2, the STA



Fig. 2. Architecture of Spatial-Temporal Attention Network: (a) Spatial
Attention Module architecture, (b) Temporal Attention Module architecture,
(c) Multi-head Attention Encoder architecture. Linear layers are inserted
between adjacent Multi-head Attention Encoders to reduce feature dimension
progressively.

network consists of two modules: Spatial Attention Module
(SAM) and Temporal Attention Module (TAM).

1) Spatial Attention Module: Since signal from a single RF
snapshot only has limited information, the goal of the spatial
attention module is to recover the remaining body parts by
modeling non-local skeleton relationships via the multi-head
self-attention mechanism, which includes the following three
steps.

Patch Embedding. Assume the feature from the MFF
backbone is XMFF ∈ RF×K×C , where F is the length of the
video sequence, K is the length of the output feature vector,
and C is the dimension. We use a trainable linear projection
layer to embed each vector to a feature Xembed ∈ RF×J×C ,
where J is the number of 3D joints.

To simulate the specularity of human body with respect
to RF signals, we design a Masked Joint Modeling (MJM)
to fully activate the bi-directional attention in the multi-head
attention encoder, which masks some input queries at random.
Given the embedded feature of each frame x ∈ RJ×C , the
output feature H ∈ RJ×C can be written as:

H = [x1; · · · ;MJM(xi); · · · ;xJ ] +ESPE (1)

where ESPE ∈ RJ×C is the learnable position embedding for
each joint.

We enforce the encoder to regress spatial feature embedding
of all joints from the masked queries, which is in a spirit
similar to simulating scenarios where only a subset of body
parts can be captured by RF signals. As a result, the multi-head
attention encoder will consider spatial features of other joints
for modeling better human skeleton, which encodes non-local
information.

Multi-head Self-attention. Given the embedded feature of
a single frame H , we first compute a query matrix Q, key
matrix K and value matrix V by linear transformations WQ,
WK and WV :

Q = HWQ,K = HWK ,V = HWV . (2)

where Q,K,V ∈ RJ×C , WQ,WK ,WV ∈ RC×C .
The scaled dot-producted attention can be written as:

Attn(Q,K,V ) = Softmax

(
QK>
√
C

)
V (3)

Furthermore, the multi-head attention is the concatenation
of the attention in Eqn. (3) computed by h attention heads.

MHAttn(Q,K,V ) = Concat (O1, · · · ,Oh)Wout (4a)
Oi = Attn (Qi,Ki,Vi) , i ∈ [1, 2, . . . h] (4b)

where Wout ∈ RC×C is the projection matrix.
We can compute the self-attentive feature to model non-

local dependencies of different joints with L-layer multi-head
attention encoder, which can be presented as follows:

H ′l =MHAttn(LayerNorm(Hl−1) +Hl−1 (5a)
Hl =MLP(LayerNorm(H ′l)) +H ′l , l = 1, 2, . . . L (5b)
Y =LayerNorm(HL) (5c)

where H0 = H is the initial embedded feature, the
LayerNorm(·) is the layer normalization [14].

Dimensionality Reduction. Our task is to regress the 3D
coordinates of the human skeleton from the RF features. It
is not appropriate to apply a multi-head attention encoder
directly, since the dimensionality of the hidden embedding
remains constant. Therefore, our Spatial Attention Module
(SAM) applies a progressive dimensionality reduction scheme,
i.e., adding a multi-head attention encoder for self-attention
and a learnable linear layer for dimensionality reduction in an
alternating manner. For a module with a depth of N , the final
output is

Zn = Linear(Yn) + Linear(Zn−1), n = 1, 2, . . . N (6)

where Yn is the output of the multi-head attention encoder.
2) Temporal Attention Module: It is difficult to generate

accurate 3D skeleton based on information from a single
frame. Therefore we propose a Temporal Attention Module
(TAM) to model temporal dependencies across the 3D skeleton
sequences. The TAM shares the same design philosophy as
the SAM, which also includes several multi-head attention
encoders followed by a linear layer for dimension reduction.
One of the major differences is the input. For the output
feature embedding of SAM Xspatial ∈ RF×J×C′

, the input
feature embedding of TAM is Xtemporal ∈ RF×(J·C′) , in
which all spatial features of each frame are concatenated to
a vector xt ∈ R1×(J·C′). The other change is the Masked
Frame Modeling (MFM). Unlike MJM, we masked the input
queries of random frames to make the multi-head encoder to
predict all 3D skeleton sequences, which enforces the module
to facilitate non-local interactions in the time dimension. The
procedure can be formulated as:

Xtemporal = [x1
t ; · · · ;MFM(xi

t); · · · ;xF
t ] +ETPE (7)

where ETPE ∈ RF×(J·C′) is the learnable position embed-
ding for each frame.



TABLE I
THE MPJPE METRIC (UNIT: mm) COMPARISONS ON RFSKELETON3D DATASET AMONG STATE-OF-THE-ART METHOD AND OUR FRAMEWORK. BOLD

FONTS REPRESENT THE BEST RESULTS.

Method Nose Neck Sho Elb Wri Hip Knee Ank Mean (↓)
RFPose3D [2] 81.4 52.0 90.1 120.4 135.1 89.9 144.9 167.4 116.3
mm-Pose [12] 165.8 67.3 203.3 233.8 261.6 138.6 162.3 169.9 183.7
RPM (ours) 57.5 37.2 49.1 64.9 68.2 46.5 58.1 65.1 57.1

Fig. 3. Qualitative results under various scenarios: (a) basic environment, (b) occluded by a carton (c) occluded by foam, (d) occluded by a whiteboard, (e)
low illumination. Note that the ground truth under occlusion is only of reference because some cameras are also occluded. Besides, the multi-camera system
cannot generate ground truth in dark scenes.

D. Loss Function

Let P̂ denote the ground truth 3D joint locations, P
denote the 3D pose predictions, P root and P̂ root are the
coordinates of the center point of the human torso calculated
from predicted and ground truth 3D poses, respectively. The
training procedure aims to minimize the Euclidean or L2
distance between predictions and labels for all skeletons of
each sequence. The location loss function is defined as:

Lloc =
1

F

F∑
i=1

∥∥∥P root
i − P̂ root

i

∥∥∥
2

(8)

where F is the sequence length. And the pose estimation
loss function is the average L2 distance between normalized
predicted 3D skeletons and ground truth skeletons, which is
defined as:

Lpose =
1

FJ

F∑
i=1

J∑
k=1

∥∥∥(P k
i − P root

i )− (P̂ k
i − P̂ root

i )
∥∥∥
2

(9)
where J is the number of joints.

Our overall objective function is written as:

L = Lloc + Lpose (10)

IV. EVALUATION

We first evaluate the performance of RPM and existing state-
of-the-art methods [2], [12] on the RFSkeleton3D dataset.
Then we demonstrate the effectiveness of each module through
ablation experiments and provide insights for the non-local
interactions and temporal attention.

A. Experimental Setup

Baseline: RFPose3D [2] is the state-of-the-art RF-based
3D HPE method. We implement the RFPose3D model as
our baseline, which regards the 3D HPE task as a joint
classification problem. Besides, we also implement mm-Pose
[12] as the other baseline method.

Data: Inspired by prior work [2], we implement a portable
and robust data collection testbed, in which two Frequency
Modulated Continuous Wave (FMCW) radars are adopted to
capture horizontal and vertical RF signals and a multi-camera
system is designed to obtain ground truth 3D skeletons by



TABLE II
ANALYSIS ON DIFFERENT BACKBONES.

Backbone MPJPE (↓)
ResNet18 65.4
ResNet50 59.7

MFF backbone (ours) 57.1

TABLE III
ANALYSIS ON SPATIAL-TEMPORAL ATTENTION NETWORK.

Method SAM TAM MPJPE (↓)

RPM
# # 99.2
! # 75.5
! ! 57.1

performing triangulation on 2D poses. We randomly ask 9
volunteers to collect data in 10 scenarios such as rooms with
different shading or lighting conditions so that the network
cannot learn the correlation between the subject and the
scenario. The dataset, which is named RFSkeleton3D, contains
174050 3D skeleton frames and 348100 RF frames. We split
the RFSkeleton3D dataset into two parts: the training dataset
and the validation dataset. The training dataset includes 80%
of RF data. The validation dataset includes the remaining RF
frames. All models are evaluated on the same training and
validation sets. The length of the input RF sequences is 20
frames. The sliding window method with a window length
of 10 is applied for data augmentation during the training
procedure.

Evaluation metric: We use the most common evaluation
metric Mean Per Joint Position Error (MPJPE) to evaluate the
performance of RPM and baseline methods. MPJPE is a metric
for evaluating 3D human pose, which measures the Euclidean
distances between the ground truth joints and the predicted
joints.

Implement Details: We train the baseline methods and our
RPM on 2 NVIDIA V100 GPUs. For RPM, the batchsize
is 16. We adopt cosine annealing with warmup 40 epochs
as the learning rate scheduler. The maximum learning rate is
3× 10−4. The total number of training epochs is 200.

B. Results

General Performance: Table I shows the performance
of two baseline methods and our RPM framework. Several
important observations can be obtained from Table I. First of
all, our RPM performs significantly better than the baseline
methods, achieving 57.1mm while RFPose3D and mm-Pose
achieve 116.3mm and 183.7mm, respectively. Secondly, all
of the methods show some degradation in performance when
estimating joint points with large motion amplitudes such as
elbow, wrist, and ankle. This may be due to the small size
and rapid movement of these body parts, making it difficult
for radar to accurately locate them.

Performance Under Occlusion or Low Illumination:
Occlusion and low illumination are very challenging for
traditional camera-based 3D HPE methods. Nevertheless, the
characteristics of RF signals make it possible to estimate 3D

TABLE IV
ANALYSIS ON HYPERPARAMETERS.

Input Length 10 14 20 30 40
MPJPE (↓) 61.5 60.3 57.1 60.1 61.1

MJM Percentage 10% 20% 30% 40% 50%
MPJPE (↓) 58.2 61.9 57.9 57.1 59.1

MFM Percentage 0% 10% 20% 30% 40%
MPJPE (↓) 57.3 57.1 57.9 59.1 59.7

human poses accurately. In these challenging cases, quantita-
tive evaluation cannot be conducted since multi-camera sys-
tems cannot produce accurate labels. Therefore, we only show
the qualitative results. As shown in Fig.3, RPM works well
in such scenarios, which demonstrates the advantage of our
framework over the camera-based solutions. It is worth noting
that the performance of all methods are severely affected when
a large metal whiteboard is used to obscure the mmWave
radar. In the fourth row, we observe that RFPose3D does
not produce a reasonable human skeleton, and mm-Pose also
produces substantial deviations. However, our RPM, thanks
to powerful network design and the novel spatial-temporal
attention mechanism, can still produce a reasonable human
skeleton within the error tolerance.

C. Ablation Study

To evaluate the contribution of the individual components
of our RPM and the impact of hyperparameters, we conduct
extensive ablation experiments on the RFSkeleton3D dataset.

Analysis on Model Design. We first study the behavior of
different CNN backbone architectures. ResNet [15] is picked
for this experiment. In Table II, we observe that our framework
achieves a competitive performance of 59.7mm even when
using a pre-trained ResNet50 backbone. When changing the
backbone to our proposed MFF network, we observe further
improvement, achieving 57.1mm, which demonstrates the
effectiveness of the MFF backbone.

We also conduct an ablation study on our Spatial-Temporal
Attention network. We implement a modified network that
includes only the MFF backbone and several linear layers to
demonstrate the effect of the STA network. Furthermore, we
also implement a network in which only the Spatial Attention
Module (SAM) is followed by the MFF backbone to evaluate
the effect of the Spatial Attention Module (SAM).

The output results are regressed into 3D poses via a small
regression head which includes 2 linear layers. As shown
in Table III, we observe degradation in the performance of
the network after removing the Spatial-Temporal Attention
network, but it still yields competitive results (99.2mm).

When the SAM is combined, the overall performance of
RPM is improved, achieving 75.5mm, which demonstrates
that the non-local joint relationships are beneficial to 3D HPE
task. Since TAM refines 3D skeletons based on temporal
attention, RPM’s performance is further improved after adding
TAM, achieving 57.1mm.

Analysis on Architecture Parameters. We explore the
various hyperparameter settings to find the optimal architecture



Fig. 4. Visualization of spatio-temporal attention in RPM: (a) spatial attention,
(b) temporal attention. We visualize the spatial attention between specific
joints and all other joints. Note that the temporal attention shown is relative
to the human body at the moment of T (the blue skeleton in the middle).
Brighter color indicates stronger attention.

parameters. First of all, we report the ablation experiment
results regarding the RF sequence length. From the first sub-
table in Table IV we can observe that when the sequence
length is 20 frames, which is actually the data collected during
1 second by mmWave radar, the performance is the best.
Too long or too short RF sequences will lead to performance
degradation.

To better model non-local relationships in spatial and tem-
poral domains, we propose two technologies, which are named
Masked Joint Modeling (MJM) and Masked Frame Modeling
(MFM). We also report the ablation experiment results of
these two technologies. As shown in the second sub-table in
Table IV, when we gradually increase the MJM ratio from
0% to 40%, the performance of RPM improves. However,
when the ratio exceeds 50%, the performance of the model
starts to degrade. This is because too many missing spatial
queries caused by the specularity of the human body with
respect to RF and the artificial masking would increase the
learning difficulty of our model. Similarly, from the third sub-
table in Table IV, we can observe that RPM achieves the
best performance when 10% temporal queries are randomly
masked.

D. Attention Visualization

To further understand the effect of RPM in learning spatial-
temporal interactions among joints and RF sequences, we
visualize spatial and temporal attention in our model.

Fig. 4 shows the visualization of the spatio-temporal at-
tention. The brighter color indicates stronger interaction. As
shown in the first row in Fig. 4, RPM tends to predict
specific joints based on relevant non-local joints. For example,
RPM attends to the upper parts of the human body when
predicting joints like the nose and shoulder. For the wrist
position prediction, however, RPM attends to both upper and
lower parts like the shoulder, elbow, and knee. It is reasonable
that those joints provide strong cues to the 3D pose and
subsequently the wrist position.

Furthermore, we visualize the temporal attention the tem-
poral attention relative to a specific moment of T (the middle
blue skeletons). As indicated in the second row in Fig. 4, RPM
attends more to the feature at T − 2 and T + 1 moments.
Note that RPM focuses on features at different moments in

different sequences. This is because the movement of the
human body changes at different moments. RPM adaptively
models temporal dependencies based on specific sequences.

V. CONCLUSION

In this paper, we proposed RPM, a novel framework for
accurately reconstructing the 3D human skeleton using RF
signals. RPM consists of a Multi-dimensional Feature Fusion
backbone network to extract scale-insensitive high-resolution
feature representations from horizontal and vertical RF sig-
nals, a Spatio-Temporal Attention network to model non-local
spatio-temporal 3D skeleton relationships. Furthermore, we
constructed a large-scale dataset of synchronized 3d skeletons
and RF signals, named RFSkeleton3D, to facilitate further
research in RF sensing. The experimental results demonstrated
that RPM could locate 3D key points of the human body with
an average error of 5.71cm and maintain its performance in
new environments with occlusion or bad illumination.
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