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A high-resolution handheld millimeter-wave
imaging system with phase error estimation and
compensation
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Despite the enormous potential of millimeter-wave (mmWave) imaging, the high cost of

large-scale antenna arrays or stringent prerequisites of the synthetic aperture radar (SAR)

principle impedes its widespread application. Here, we report a portable, affordable, and high-

resolution 3D mmWave imaging system by overcoming the destructive motion error of

handheld SAR imaging. This is achieved by revealing two important phenomenons: spatial

asymmetry of motion errors in different directions, and local similarity of phase errors

exhibited by different targets, based on which we formulate the challenging phase error

estimation problem as a tractable point spread function optimization problem. Experiments

demonstrate that our approach can recover high-fidelity 3D mmWave images from severely

distorted signals and augment the aperture size by over 50 times. Since our system does not

rely on costly massive antennas or bulky motion controllers, it can be applied for diverse

applications including security inspection, autonomous driving, and medical monitoring.
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Recent years have witnessed an increasing adoption of
millimeter-wave (mmWave) imaging across various critical
applications, including security scanning1,2, non-

destructive testing3,4, and structural health monitoring5–7,
among others. The impetus for this growth can be attributed to
several advantages that render mmWave a more appealing ima-
ging modality. In contrast to optical cameras, mmWave is more
privacy-preserving, robust to illumination changes, and capable
of penetrating various materials8,9. Furthermore, the non-
ionizing nature of mmWave radiation allows for safer and
broader usage compared to X-rays. To date, plenty of mmWave
imaging systems have been deployed at major airports worldwide,
where they play a pivotal role in detecting concealed threats.
Additionally, promising breakthroughs have also showcased the
ability of mmWave imaging to provide non-invasive diagnostic
information pertaining to skin cancer10,11 and breast cancer12,13.

The fundamental capability that empowers various applica-
tions of mmWave imaging lies in its spatial resolution, which is
intrinsically constrained by the aperture size (the number of
antennas with a spacing of half of the wavelength)14. Existing
high-resolution mmWave imaging systems are mainly built on
the principles of either massive multiple-input multiple-output
(MIMO)15–20 or synthetic aperture radar (SAR)21. With MIMO
technology, a N ×N antenna array can be formulated by 2N
transceivers, thus achieving the desired spatial resolution with
fewer antennas22. However, to produce high-resolution 3D
mmWave images, hundreds of transceivers are still required,
which greatly increases the hardware complexity and system cost.
On the other hand, SAR synthesizes a virtual aperture by man-
euvering the radar to transmit signals from different
locations23–25. Nevertheless, bulky mechanical scanners or
expensive tracking devices are indispensable to ensure that
received signals from different locations can be combined
coherently.

Recent advancements in mmWave radar technology have
fostered the development of compact and affordable mmWave
imaging systems by introducing SAR imaging to handheld
settings26. However, the major challenge in handheld SAR ima-
ging is that the fluidity of hand movements introduces non-
linearity and non-uniformity in the virtual apertures, resulting in
phase errors in received signals and severe distortion in the
resultant images. Previous studies26,27 have resorted to expensive
motion capture systems to achieve accurate device tracking dur-
ing handheld scanning, which is not feasible for practical appli-
cations. To reduce system costs, some researchers have
incorporated mobile localization methods for handheld mmWave
SAR imaging. However, since the tracking precision fails to meet
the stringent requirements (less than half a millimeter), they
either necessitate an extended scanning time to accumulate
recognizable images28 or time-consuming registration processes
to obtain more precise positions29. Additionally, all aforemen-
tioned systems are based on time-domain imaging methods,
which are suitable for non-linear motion but impose high com-
putational burdens. To leverage efficient frequency-domain
imaging techniques, which require linear and uniform sam-
pling, several motion compensation methods30–32 have been
proposed to compensate for the phase errors due to irregular
scanning. Nonetheless, these approaches still depend on the
premise of accurate device tracking, which is a non-trivial pro-
blem. In addition to signal processing-based methods, recent
studies29,33,34 have directly input the amplitude image into deep
neural networks to alleviate distortions caused by motion errors.
However, they ignore the signal phase critical for phase error
compensation and simplify it as an image super-resolution pro-
blem. Moreover, these approaches require substantial training
data to ensure the robustness of the deep learning models, leading

to increased deployment costs. Consequently, a low-cost and
efficient phase error correction solution is essential for practical
handheld SAR imaging systems.

Here, we report a handheld mmWave imaging system that
combines the advantages of MIMO technology and SAR princi-
ple, thus augmenting the aperture size of commercial-off-the-
shelf mmWave devices by over 50x on average. Different from
conventional approaches that focus on obtaining more precise
device locations, our objective is to acquire the optimal point
spread function (PSF) of the handheld synthetic array to effec-
tively combat motion errors. Specifically, we first make a deep
investigation into the root cause of phase errors, uncovering its
spatial asymmetry which means that motion errors along differ-
ent directions exert different influences on image quality. More-
over, we observe that the phase errors of different targets exhibit a
local similarity, making it possible to approximate the phase error
of the imaging target with another reference target. Based on
these findings, we focus on the direction most susceptible to
motion errors and estimate the optimal PSF based on the quad-
ratic feature of the ideal phase history. Once obtaining the esti-
mated PSF, we can derive and compensate for the phase errors
caused by manual scanning and reconstruct the target with the
efficient frequency-domain imaging method. Extensive experi-
mental validations demonstrate the efficacy of our proposed
imaging system in restoring targets from heavily distorted initial
measurements, showcasing remarkable enhancements in both
Peak Signal-to-Noise Ratio (PSNR, 4.54 dB) and Structure
Similarity Index Measure (SSIM, 31.19%). As a result, our study
can be deployed in mmWave applications that necessitate high
mobility, cost-effectiveness as well as high-resolution imaging.

Methods
Spatial asymmetry of phase errors. To achieve 3D mmWave
imaging, a 2D planar aperture is required to obtain angle reso-
lution along the azimuth and elevation directions. Combining
MIMO technology with SAR principle makes it possible to syn-
thesize a virtual planar array more efficiently. Figure 1a illustrates
the synthesis of an ideal planar aperture by horizontally moving a
linear MIMO array using a mechanical scanner. After a
multistatic-to-monostatic transformation35, the instantaneous
position of one arbitrary antenna can be denoted as ðx0; y0; 0Þ and
a single point on the imaging target can be represented by (x, y, z)
with a reflectivity function σ(x, y, z). Under the Born approx-
imation for the scattering field and an isotropic antenna
assumption36, the received signal can be expressed as:

sðx0; y0; 0Þ ¼ σðx; y; zÞe�j2kR; ð1Þ
where k ¼ 2πf

c , and f, c, and k represent the frequency, speed of
propagation, and wavenumber, respectively. R is the slant range
between the antenna and the imaging points, which can be
denoted as:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2 þ z2

q
: ð2Þ

Now let’s consider the handheld SAR imaging scenario where
the motion trajectory of the antenna deviates from the ideal
trajectory. In this case, the actual position of the antenna is given
by ðx0 þ Δx; y0 þ Δy;ΔzÞ, and the ideal instantaneous range R
changes to Re as:

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0 � ΔxÞ2 þ ðy � y0 � ΔyÞ2 þ ðz � ΔzÞ2

q
ð3Þ

As a result, the received signal with motion error becomes:

sðx0 þ Δx; y0 þ Δy;ΔzÞ ¼ σðx; y; zÞe�j2kRe : ð4Þ
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Analyzing the influence of motion errors on different axes
reveals that the resultant phase error distribution exhibits a
spatial asymmetry. Specifically, Fig. 1b shows the ideal imaging
result when there is no motion error. However, if we add the
same motion error along different axes, we can find that the
z-axis motion errors have a considerably more significant impact
than the x and y-axis errors, as demonstrated in Fig. 1c, d. This is
because SAR imaging is highly sensitive to localization errors
along the z-axis due to the resultant significant phase errors. For
example, consider a target located 1 m away from a 77 GHz
mmWave device, as depicted in Fig. 1a, a 1 mm shift in the x or
y-axis would only introduce a signal propagation distance change
of 0.0005 mm, resulting in a phase error of ΔΦx/y= 0.092°.
However, a 1 mm deviation in the z-axis would lead to a phase
error of ΔΦz= 184.8°, which is significantly larger and has a
considerable impact on image quality, as demonstrated in Fig. 1f.

This observation makes it possible to relieve the burden of
motion compensation in 3D space and focus only on the
dominant direction (i.e., only considering the motion error in the
z-axis Δz and approximating Δx and Δy as 0). Moreover, in near-
field SAR imaging settings, Re−R can be well approximated by
Δz37. Hence, if the actual positions of the handheld device can be
precisely localized, the signal with a z-axis motion error Δz can be
closely mapped to the ideal one by compensating for the phase
error as37:

sðx0; y0; 0Þ � sðx0; y0;ΔzÞej2kΔz: ð5Þ
Existing mobile localization methods, however, fall short of the

required tracking accuracy. The impact of localization errors can
be observed in Fig. 1e, where the imaging result generated with
the imprecise localization shows a severely defocused and
distorted image compared to the ground-truth SAR image. The
reflections of the target are spread throughout the entire image
area, and the target’s shape is unrecognizable. Hence, the key to
successful handheld SAR imaging lies in accurately estimating
and compensating for phase errors caused by deviations in the
z-axis.

Local similarity of phase errors. Estimating z-axis phase error,
however, is challenging for two reasons. First, the received signal
phase is a superimposition of all scatters in the imaging scene,
including the imaging target and other uninterested objects,
which have different impacts on the phase of the final received
signal. Hence, it is difficult to directly estimate phase errors from
such a combination of diverse phase error components. Second,
the distribution of motion errors caused by handheld scanning is
complicated and unclear. Consequently, specific assumptions
about phase error distribution which could reduce the difficulty of
phase error estimation are also impractical.

To tackle these challenges, we propose combating the z-axis
phase errors by leveraging the characteristic of ideal signal phase
variations and the local similarity exhibited by different targets’
phase errors. We start with the analysis of the ideal phase history
of an isolated point target. Suppose the radar moves along a linear
path with a constant velocity v, as illustrated in Fig. 2a, and there
is a single point target (the orange point) in front of the radar
with a position of (x1, z1). For the ith transmitting location, the
received signal of this point target can be expressed as:

sðx0i; z0iÞ ¼ σðx1; z1Þe�j2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�x0iÞ2þðz1�z0iÞ2

p
; ð6Þ

where σ(x1, z1) is the reflection coefficient of target located at
(x1, z1). ðx0i; z0iÞ is the ideal position of ith transmitting antenna.
Hence, the unwrapped phase history H of the point target can be
represented as:

H ¼ U 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0iÞ2 þ ðz1 � z0iÞ2

q� �� �n

i¼1

; ð7Þ

where n is the number of total transmitting locations. U denotes
the phase unwrap function. From Eq. (7), we observe that under
near-field conditions, when the radar moves linearly and
uniformly (xi increases linearly while zi remains unchanged), H
follows a quadratic curve, as illustrated in Fig. 2b. This
fundamental characteristic, actually, can be utilized as a strong
prior to estimate the phase errors of the point target by measuring
its difference with the ideal phase history.

a b c

d e

f= 1 mm

= 1 mm Imprecise tracking

Imaging results with different Pa2D virtual array synthesized by MIMO SAR Phase errors in x and z axes

Fig. 1 The spatial asymmetry of phase errors. a An ideal planar aperture can be synthesized by mechanically moving a linear multi-input-multi-output
(MIMO) array. In handheld synthetic aperture radar (SAR) imaging, the actual positions of the antenna will deviate from the ideal positions. In the
established Cartesian coordinate system, the x-axis, y-axis, and z-axis denote the horizontal scanning, vertical, and depth directions, respectively. Δx and
Δz denote the motion error along the x-axis and z-axis, respectively. b The imaging result obtained using time-domain back-projection53 with the ideal
antenna positions, which appears clear and well-defined (see the experimental setup in Supplementary Note 1). c, d These demonstrate the imaging results
when statistical position errors with a standard deviation (std) of 1 mm (see Supplementary Fig. 1a, b) are added to the x-axis and z-axis, respectively. The
z-axis position errors introduce the image’s most significant distortions and blurring. e The blurred image is generated by the recorded positions of a
tracking camera (see Supplementary Fig. 1c), showcasing the impact of imprecise localization. f The z-axis motion errors result in much larger phase errors
than the x-axis and y-axis motion errors, where d denotes the z-axis distance between the target and the antenna. Overall, these results highlight the
importance of accurate position estimation in handheld SAR imaging, particularly in mitigating z-axis motion errors due to the asymmetry of phase errors
along different directions.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00156-2 ARTICLE

COMMUNICATIONS ENGINEERING |             (2024) 3:4 | https://doi.org/10.1038/s44172-023-00156-2 | www.nature.com/commseng 3

www.nature.com/commseng
www.nature.com/commseng


However, obtaining the phase errors of a specific point target
does not necessarily solve our problem because targets at different
locations usually exhibit different reflected properties and phase
variations. To exploit the correlation of phase errors between
different targets, let’s consider two distinct point targets in the
imaging scene located at (x1, z1) and (x2, z2), respectively, as
depicted in Fig. 2a. For a single virtual antenna, the ideal antenna
position is ðx0i; z0iÞ, while the actual antenna position contains a
z-axis motion error of Δzi and is given by ðx0i; z0i þ ΔziÞ. Hence, we
can represent the difference in the round-trip propagation error
between these two targets as follows:

ΔR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0iÞ2 þ ðz1 � z0iÞ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0iÞ2 þ ðz1 � z0i � ΔziÞ2

q
;

ð8Þ

ΔR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x0iÞ2 þ ðz2 � z0iÞ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x0iÞ2 þ ðz2 � z0i � ΔziÞ2

q
;

ð9Þ

ΔR ¼ jðjΔR1j � jΔR2jÞj; ð10Þ

where ΔR1 and ΔR2 denote the round-trip propagation error of
target (x1, z1) and target (x2, z2), respectively. ΔR represents the
difference between ∣ΔR1∣ and ∣ΔR2∣. Obviously, the smaller the ΔR
is, the closer these two targets’ phase errors will be. Figure 2c, d
illustrates the spatial distribution of ΔR with ∣z1− z2∣ and
∣x1− x2∣, respectively. We can observe that it is easy to find a
region that minimizes ΔR, referred to as the local similarity of
phase errors of different targets. Therefore, by setting a point
target according to the distribution of ΔR, its estimated phase
error can be quite close to the phase error of the imaging target.

Estimation of phase errors. PSF, the impulse response of an ideal
point target, is usually utilized to characterize the capability of an
imaging system. For SAR systems, the 1D PSF of a linear array or 2D
PSF of a planar array reflects the angle resolution and focusing ability
of the antenna array, and higher-quality PSFs correspond to
improved imaging performance. In the context of this study, Fig. 3a–e
visually demonstrates the notable contrast between the PSFs derived
from mechanical scanning and the PSFs obtained through handheld
scanning. Evidently, the PSFs resulting from handheld scanning
experience considerable distortion due to motion errors.

To tackle the motion errors caused by manual scanning, we
propose to optimize and restore a high-fidelity PSF to obtain a reliable
estimation of phase errors. This is achieved based on previous
findings, namely: (i) when the radar moves linearly and uniformly,
the phase history of a single point target follows a quadratic curve,
and (ii) in the x-z plane, targets located at different distances can
exhibit similar phase errors. Accordingly, we first manually designate
a point target within the imaging scene as a reference, ensuring both
reference and imaging targets are observed by the radar. Subse-
quently, we attempt to obtain the optimized PSF by fitting the phase
history of this point target with the corresponding ideal quadratic
phase history. Through this process, we can measure the phase error
of this point target by quantifying the discrepancy between its actual
and ideal phase history. Finally, the estimation can be utilized to
compensate for the phase history of the imaging target and generate
the corrected SAR image. Figure 3c, f shows the PSF optimization
results, which appear clear and well-focused (see the estimated
deviation from a regular acquisition and phase error in Supplemen-
tary Fig. 2). It is noteworthy that our approach requires neither
expensive tracking devices, nor iterative optimization processes,
which reduces the system cost and imaging time. This enables a more
affordable and efficient handheld SAR imaging system, which can be
highly beneficial in various applications, such as security checks,
SLAM, and industrial inspections.

Actual path

x
z

......

Ideal path

a b

c d

Fig. 2 The local similarity of phase errors. a The changes in propagation distances of the ideal array and the impact of z-axis motion error on different
point targets. (x1, z1), (x2, z2), and ðx0i ; z0iÞ represent the coordinate of two point targets and ith ideal antenna, respectively. b The simulated phase histories of
point target (x1, z1) with different d, where d ¼ z1 � z0i . For uniform and linear virtual arrays, the phase histories follow quadratic curves, and the curvature
decreases as the distance between the antenna and the target increases. c illustrates the distribution of ΔR (the difference in the round-trip propagation
error between these two targets) with ∣z1− z2∣, assuming x2= 300mm, ðx0i ; z0i Þ ¼ ð0;0Þ, and (x1, z1)= (0, 1000) mm. Δzi is the motion error along the
z-axis. d illustrates the distribution of ΔR with ∣x1− x2∣, assuming z2= 3000mm, ðx0i ; z0iÞ ¼ ð0;0Þ, and (x1, z1)= (0, 300) mm. It reveals that the phase
errors of two targets can exhibit considerable similarity even if they are far from each other.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00156-2

4 COMMUNICATIONS ENGINEERING |             (2024) 3:4 | https://doi.org/10.1038/s44172-023-00156-2 | www.nature.com/commseng

www.nature.com/commseng


System architecture. Based on the above discussions, we build
our handheld imaging system with three key components: signal
resampling, PSF optimization, and SAR imaging, as depicted in
Fig. 4. Specifically, Fig. 4a illustrates the data collection setup. The
operational flow begins with resampling the collected signals to
uniform spacing to apply the efficient FFT-based imaging
methods, as shown in Fig. 4b. This is achieved by oversampling
the radar frames and tracking the radar’s motion using a cost-
effective visual tracking device. Subsequently, to address the non-
linearity along the z-axis, we employ the previously described PSF
optimization and obtain the compensated SAR echoes, as shown
in Fig. 4c. Finally, the Range Migration Algorithm (RMA)38,39, a
fast frequency-domain near-field imaging method, is utilized to
reconstruct the SAR image, as depicted in Fig. 4d. Figure 4a also
highlights its potential for application in security checks, where
handheld scanning and high-quality imaging are essential. Tra-
ditional approaches rely on metal detectors which can only detect
the presence of metal objects while we can reconstruct the exact
shapes of hidden objects, enabling accurate identification of
potential threats.

As depicted in Fig. 4a and Supplementary Fig. 6, we prototype
our imaging system with the TI four-chip cascaded mmWave
radar operating within the frequency range of 76-81 GHz. With
the MIMO technique, the radar can formulate a virtual linear
array consisting of 86 elements. This arrangement enables the
creation of a 2D planar array by moving the radar along the
orthogonal direction of its linear array dimension. As a result, the
system can reconstruct specific objects through a single scanning
process, thereby reducing the scanning time and improving users’
experience. The radar is co-located with the Intel RealSense T265
tracking camera, which captures the radar’s movement along the
x-axis and is utilized to resample the collected data to uniform
spacing. Since our focus lies solely on recording the x-axis
movement, which exhibits a higher tolerance for tracking errors,
alternative cost-effective mobile localization methods may also be
suitable.

Implementation details
PSF optimization. Suppose a monostatic antenna moves in a
handheld configuration and transceives Frequency Modulated

Fig. 3 The optimization results of 1D and 2D point spread function (PSF) (see the experimental setup in Supplementary Note 1–3). a represents the 2D
PSF obtained from mechanical scanning, while (d) displays the corresponding 1D PSF. Notably, the PSFs of handheld scanning, depicted in (b) and (e) for
2D and 1D, respectively, suffer from distortion and blurring caused by motion errors (see Supplementary Fig. 2). However, the proposed optimization
technique successfully mitigates the impact of motion errors on the PSFs. c, f These demonstrate the optimized 2D and 1D PSFs of handheld scanning,
respectively. These optimized PSFs effectively combat the distortions induced by motion errors, leading to substantially improved image quality.

Data acquisition Signal resampling Phase error estimation FFT-based imaginga b c d

Radar samples

Resampling

x

X-axis velocity

Target’s raw
phase history

Target’s corrected
phase history

Phase compensation

Fig. 4 The framework of the handheld mmWave imaging system. a A multi-input-multi-output radar and a co-located tracking camera are used to collect
radar signals and device trajectory with manual scanning. b The collected radar frames are resampled to uniform spacing along the x-axis using the velocity
recorded by the camera. c The point spread function optimization is subsequently employed to estimate and compensate for the target’s phase history.
d Images are generated with the Fast Fourier Transform (FFT)-based synthetic aperture radar imaging method.
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Continuous Wave (FMCW) signals. The imaging object and the
reference target are situated at different distances from the center
of the antenna’s trajectory. By leveraging the principles of
FMCW, we can separate the two targets in the range domain by
performing FFT (range-FFT) along each reflected pulse, assuming
the distance between them is larger than the device’s range
resolution. Based on the previous discussion that the phase his-
tory of a point target for an ideal trajectory follows a quadratic
curve, we can proceed to estimate the ideal phase variation of the
reference point target by optimizing the following function:

ϕ̂i ¼ argmin
α;β;γ

∑
n

i¼1
ðαi2 þ βiþ γ� ϕiÞ2; ð11Þ

where ϕ̂i represents the estimated ideal phase variation of the
reference point target from the received signal at ith location. ϕi is
the corresponding disturbed phase variation extracted with
range-FFT. n is the number of received pulses. α, β, and γ are the
coefficients of the target curve. This function finds the optimal
α, β, and γ values which can minimize the difference between the
actual phase variations of the reference and its ideal phase var-
iations. Once the estimated ideal phase history has been obtained,
the phase error induced by handheld motion can be compensated
as:

ŝi ¼ sie
jðϕ̂i�ϕiÞ; ð12Þ

where ŝi and si denote the compensated and the motion error
corrupted ith received signal, respectively.

Notably, in this paper, a linear array is employed to facilitate
MIMO SAR imaging. Hence, at each time step i, there will be
multiple phase variations corresponding to multiple antennas.
Although it is possible to estimate the phase error for each
antenna, such an approach would increase computational costs
and exacerbate the impact of incorrect estimations. To address
this issue, we make the reasonable assumption that the primary
phase error arises from translational motion error, considering
that the device only needs to be moved along a single direction for
a distance of approximately 20 cm to 30 cm. As a result, the
antennas at the same timestep exhibit similar phase errors, which
can be obtained by selecting the phase history of a single antenna
to optimize in Eq. (11). Moreover, in the experiments, we find
that if the x-axis position of the reference point target deviates
from the x-axis center of the scanning trajectory, setting α as 0
would lead to better performance due to the incomplete quadratic
feature of the ideal phase history.

Hardware configuration. Our imaging system is implemented
with the TI four-chip cascaded mmWave radar, which consists of
12 transmitting antennas and 16 receiving antennas. We activate
all the transceivers to achieve an 86-element virtual linear array.
To collect the reflected signals in real-time, we attach a data
capture board to the radar, which can transfer the collected data
to a laptop through an Ethernet cable. The mmWave radar
transmits FMCW signals which have the following parameters:
start frequency, 77 GHz; ADC sampling rate, 8 Msps; chirp slope,
38.5 MHz/μs; chirp duration, 40 μs; the number of ADC samples,
256; frame periodicity, 10 ms for manual scanning and 50 ms for
mechanical scanning, respectively. The mmWave radar is co-
located with the Intel RealSense T265 camera, which has two fish
eye cameras and one inertial motion unit to track the device’s
motion. Since the camera’s pose updating rate (approximately 30
Hz) is lower than the radar’s frame rate, we employ cubic
interpolation on the trajectory obtained by the camera, to get the
radar’s position for each transmitted frame.

Scanning settings. The mechanical scanning is achieved by mov-
ing the MIMO radar over a distance of 200 mm along the x-axis
with a motion controller. The moving speed is 20 mm/s, resulting
in 200 sampling pulses with a spacing of 1 mm.

The users are instructed to hold and move the MIMO radar
over a distance of ~20 cm along the x-axis (see the experimental
setup in Supplementary Fig. 6). The radar’s frame rate is set at
10 ms, while the user’s movement speed is restricted to no more
than 0.2 m/s, in order to satisfy the Nyquist-Shannon sampling
theorem. It is worth noting that by increasing the frame rate, we
can achieve higher scanning speeds; however, this comes at the
expense of heavier data processing.

Results
Aperture size augmentation. To evaluate the ability to augment
the aperture size of our handheld imaging system, we employ the
3 dB beamwidth of the 1D PSF as a measure and compare it to
different lengths of apertures generated by mechanical scanning.
In this evaluation, we position two corner reflectors in front of the
imaging device: one serves as the imaging target, located at a
range of 0.65 m, and the other as the reference target, positioned
at a range of 1.8 m. A total of 100 manual scanning samples are
collected from two different users, with each user having
50 samples (see how we calculate the estimated deviation from a
regular acquisition in Supplementary Note 5 and the histogram of
estimated deviation in Supplementary Fig. 4a). While the length
of each manual scanning is ~200 mm, it does not necessarily
mean that a 200 mm handheld scanning aperture is directly
comparable to a 200 mm mechanical scanning aperture. This is
because even after applying the proposed phase error compen-
sation approach, residual phase errors may still be present. To
determine the equivalent mechanical scanning imaging perfor-
mance, we compute the normalized 3 dB beamwidth for different
aperture lengths of mechanical scanning, as illustrated in the blue
line of Fig. 5. Then we mark the average (plus/minus a standard
deviation) 3 dB beamwidth of the PSFs associated with the 100
manual scanning samples as red to evaluate the imaging perfor-
mance of handheld scanning. As a result, Fig. 5a shows that the
average and best imaging performance of 200 mm handheld
scanning is approximately equivalent to 100 mm and 175 mm
mechanical scanning, respectively. Moreover, Fig. 5b–g depicts
the 2D PSFs obtained from mechanical scanning and handheld
scanning, respectively, which demonstrates that the proposed
approach can effectively combat motion errors.

Comparison with baseline. To evaluate the imaging performance
of our system, we collect 200 samples from four different users
imaging ten different metal letters, with each user having
50 samples (see the histogram of estimated deviation from a
regular acquisition in Supplementary Fig. 4(b)). To demonstrate
the superiority of our approach, we make a comparison with the
method in ref. 32. It is noteworthy that the core of ref. 32 lies in
compensating the squiggle path to the uniform path in the x-y
plane and assuming there is no z-axis motion error, which
essentially functions the same as the signal resampling in our
system. As demonstrated in Fig. 6a, even when compensating for
the non-uniform motion error using the camera, the resulting
SAR images still exhibit significant distortion due to z-axis
motion error. Conversely, by mitigating phase errors through PSF
optimization, the targets can be well-focused with high fidelity.
The ECDF of PSNR and SSIM, presented in Fig. 6b, respectively,
reveal a noteworthy improvement in image quality after applying
phase correction. Furthermore, our PSF optimization does
not necessitate iterative or computationally intensive processes.
As a result, the average time required to estimate and compensate
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for the phase errors of a single image is approximately 60 ms
using an Intel Core i7-11700K CPU (see Supplementary Note 4),
demonstrating its superior efficiency and potential for real-time
applications.

Different reference positions. As described in Fig. 2c, it is
straightforward to find a position for the reference to make the
phase error of the two objects fairly close. Moreover, the differ-
ence in z-axis positions between the imaging object and the
reference object does not significantly impact the imaging

performance. Figure 7a exhibits the reconstruction results for
various reference positions, demonstrating that the imaging
object in each scenario can be successfully refocused (see quan-
titative analysis in Supplementary Fig. 5). Hence, our approach
can be flexible and easy to be employed in practical scenarios.

Non-line-of-sight imaging. Compared with optical imaging,
mmWave can penetrate diverse non-metallic materials, making it
suitable for Non-Line-of-Sight (NLoS) imaging to detect hidden
objects. To illustrate the see-through ability of our imaging
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Fig. 5 Effect of aperture size augmentation by comparing the point spread function (PSF) between mechanical and handheld scanning (see the
experimental setup in Supplementary Note 1–3). a The blue line shows the 3 dB beamwidth for different aperture lengths of mechanical scanning
normalized to the value when the aperture length is 10mm. The red markers show the average (plus/minus a standard deviation (std)) 3 dB beamwidth of
the PSFs associated with the 100 manual scanning of 20 cm normalized to the same value as the blue line. b, c, d These depict the 2D PSFs obtained from
different aperture lengths of 200mm, 100mm, and 40mm, respectively. e, f, and g These illustrate the 2D PSFs resulting from handheld scanning. These
handheld PSFs are specifically chosen to match the 3 dB beamwidth values equivalent to the point of mean-std, mean, and mean+std in (a). Considering
that half of the wavelength of the mmWave device is 1.9 mm and the interval of two adjacent pluses during mechanical scanning is 1 mm, we can draw the
conclusion that our approach can achieve imaging performance equivalent to a 50-antenna linear array with only one antenna. In other words, the
mmWave device’s aperture size is augmented by 50 times on average with our method.
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Fig. 6 Comparison with baseline32 (see the experimental setup in Supplementary Note 1–3). a Qualitative reconstruction results of different structural
similarity index measure (SSIM) improvements (see more qualitative results in Supplementary Fig. 3). The empirical cumulative distribution functions of
peak signal-to-noise ratio (b) and SSIM (c) are employed to quantitatively evaluate the resulting images, which demonstrate that our method brings a
noteworthy average enhancement of 4.54 dB in peak signal-to-noise ratio and a substantial 31.19% improvement in SSIM.
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system, we cover the imaging object with various materials (i.e.,
paper, plastic, and cloth), then perform handheld scanning to
reconstruct the concealed objects. Figure 7b illustrates the suc-
cessful reconstruction of hidden objects using our handheld
imaging system, despite the presence of different types of occlu-
sions. This outcome demonstrates the system’s potential in non-
destructive testing and security inspections, where it can facilitate
the detection of concealed items.

Imaging with multi-scanning. Previous experiments have suc-
cessfully demonstrated the ability of our imaging system to
reconstruct certain objects through a single scanning process.
However, the highly specular nature of mmWave signals causes
them to exhibit mirror-like reflections from targets, particularly
those with flat surfaces, such as the metal target used in our
experiments. Consequently, for large targets, not all reflections
from the target propagate back to the mmWave receiver, and some
parts of the target are absent in the image. To address this, we
propose to reconstruct different parts of the target individually and
then combine these images to recover the whole target. Specifically,
we employ a multi-scanning strategy. Firstly, the user performs a
zig-zag scanning pattern to ensure complete coverage of the ima-
ging target shown in Fig. 7c. Next, the entire scanning trajectory is
divided into several sub-trajectories based on the x-axis motion.
For instance, the trajectory in Fig. 7d is segmented into four sub-
trajectories, each moving along the x-axis for about 40 cm. For each
sub-trajectory, we conduct imaging and estimate the phase error of
the collected signals, which yields a partial image of the target, as
shown in Fig. 7e. Finally, we stitch together the partial images to
reconstruct the entire target, as depicted in Fig. 7f.

Imaging without point references. In this paper, we utilize a
point target with a known ideal phase history (a quadratic curve)

for phase error estimation. However, when such a point-like
target is not present or cannot be observed by the radar due to
occlusion, we can utilize other detectable targets, such as the
imaging targets themselves, to estimate phase error. The key
insight is that while the ideal phase histories of these non-point
targets may not precisely follow a quadratic curve, their overall
trend still exhibits quadratic-like behavior, as shown in Fig. 8a.
Therefore, it is feasible to approximate these non-point targets as
point targets and fit their actual phase history with a standard
quadratic curve to obtain the phase errors (see the results of phase
correction for multiple nearby targets in Supplementary Fig. 7).
Although this approximation introduces estimation errors, these
errors are significantly smaller compared to the phase errors
caused by handheld scanning. Consequently, employing this
phase error estimation approach still yields better imaging results
compared to not employing any phase error estimation at all, as
demonstrated in Fig. 8b, c.

Discussion
In this study, we focus on overcoming the fundamental limitation
of spatial resolution of mmWave devices by realizing handheld
SAR imaging. Our proposed handheld system is capable of
turning commercial-off-the-shelf mmWave radars into portable,
affordable, and high-resolution imaging systems that can see
through things, which has great potential in mobile applications,
emergency situations, and limited-cost scenarios.

Estimating motion errors from raw radar signal, referred to as
the autofocus technique40, is a well-studied field in airborne
SAR41,42. Generally, typical autofocus methods can be classified
into three categories: MapDrift43, phase gradient autofocus44, and
image optimization approaches45–48. The MapDrift-based auto-
focus divides the whole aperture into two or more sub-apertures
and estimates motion parameters by cross-correlating the

Cloth Paper PlasticLoS ground truthb c Imaging target Scanning trajectory

a Without point spread function optimization

1 m 2 m 3 m 1 m 2 m 3 m

Line-of-sight (LoS) ground truthWith point spread function optimization

d

e f

Fig. 7 Experimental results in different scenarios (see the experimental setup in Supplementary Note 1–3). a The reconstruction results for various
reference positions. In this experiment, a knife serves as the imaging object and is positioned at a distance of 0.3 m from the virtual planar array.
Meanwhile, the reference is chosen at 1 m, 2 m, and 3m, respectively. b Non-line-of-sight imaging results for diverse occlusions. In this context, a scissor
acts as the imaging object, positioned 0.35m away from the virtual planar array. The reference is chosen at a distance of 2 m. To simulate non-line-of-sight
scenarios, three distinct materials—cloth, paper, and plastic—are employed to cover the scissors. The first row represents the imaging result after signal
resampling, while the second row depicts the imaging result achieved through point spread function optimization. c–f These show the multi-scanning
reconstruction results. c Optical image of the target, with a width of 25 cm and a height of 25 cm. d The handheld scanning trajectory is along the x and y
axes, showcasing the path of data collection. e The imaging results for each individual scanning after point spread function optimization. f The fused image
generated from multiple scanning with point spread function optimization.
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resulting sub-images. The phase gradient autofocus-based
approaches extract phase gradient from dominant scatters in
the imaging scene and apply phase corrections that simulta-
neously sharpen all scatters. The image optimization autofocus
approach searches for the optimal compensated phase to improve
the image quality based on specific metrics. While these methods
have been proven effective in space-borne and air-borne SAR,
they cannot be directly applied to near-field 3D mmWave SAR
systems for various reasons. First, the MapDrift-based autofocus
can only cope with second-order phase error caused by incorrect
speed estimation for linear motion. Second, the phase gradient
autofocus-based techniques are based on a far-field assumption
that all row pixels of SAR images are at an effectively equivalent
range from the radar, which is not valid for near-field 3D SAR.
Finally, for 3D SAR that has considerably more optimized vari-
ables, the image optimization approaches are also not suitable due
to the increasing optimization difficulty and computational
burden.

While the reconstruction performance of our system is pro-
mising, it does exhibit certain limitations. Specifically, residual
phase errors stemming from rotational motion error and
imprecise phase error estimation may still degrade the resulting
images. To further refine the image quality, one can employ well-
established image enhancement techniques, including learning-
based49,50 and optimization-based approaches51,52, which have

garnered advancements in the realm of image processing.
Moreover, exceeding the maximum allowed motion errors may
also lead to the failure of PSF optimization and image recon-
struction. Despite this, we believe that this study represents a
substantial stride forward in handheld 3D SAR imaging and will
ignite further exploration within this promising field.

In our experiments, we anticipate users to move the radar in a
near-straight line to emulate traditional strip-map SAR, which
may not be a flexible operating pattern. In future work, we aim to
explore techniques that enable handheld imaging with squiggle
scanning paths, as well as investigate other SAR imaging tech-
niques such as circular SAR or cylinder SAR. These advance-
ments will further enhance the versatility and applicability of
handheld mmWave SAR imaging.

In conclusion, this paper presented a practical handheld
mmWave SAR imaging system. With the portability, afford-
ability, and high-resolution 3D imaging ability, we believe that
our design has the potential to become a standard component of
subsequent handheld imaging systems, allowing more creative
real-world applications in the future.

Data avaliability
The data that support the findings of this study are available from
the corresponding author upon reasonable request.
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Fig. 8 The performance of phase error estimation without the reference target. The experiments are conducted on the 200 handheld scanning samples
illustrated in Fig. 6. a The phase history of non-point imaging targets (specifically, the letters Y, H, and M) that are obtained using mechanical scanning and
handheld scanning. The overall trends in the phase history still exhibit quadratic-like behavior. b Qualitative comparison of handheld scanning images when
performing no phase correction, phase correction without the reference target, and phase correction with the reference target. c Comparison of the phase
history of the handheld scanning image in (b). It demonstrates that correcting the phase history without a reference target can reduce the phase error
present in the original handheld scanning. d Empirical cumulative distribution functions in terms of peak signal-to-noise ratio and structural similarity index
measure. Although the results may not be as optimal as with a reference target, phase correction without a reference target can still reduce phase errors
and improve image quality compared to not applying any phase correction.
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