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Abstract—Liveness detection has been widely applied in face
authentication systems to combat malicious attacks. However,
existing methods purely depending on visual frames become
vulnerable once visual perception is not reliable. The emerging
face spoof and forge techniques urge the systems to exploit the de-
fensive potential of non-visual modalities. To tackle this challenge,
we introduce SonarGuard, a system combining ultrasonic and
visual information to achieve robust liveness detection on mobile
devices. More specifically, SonarGuard simultaneously extracts
micro-doppler signatures from ultrasound reflections and motion
trajectories from video frames both corresponding to the user’s
lip movement. To further confirm the collected ultrasonic and
visual information is not derived from malicious audio/video
attacks, we consolidate the system via introducing a cross-modal
matching mechanism, which demands the inherent consistency
between these two modalities. Extensive experiments on a new
dataset collected with existing mobile devices demonstrate that
the proposed system could achieve average classification error
rate of 0.91% under presentation attacks. This result indicates
that SonarGuard can boost the security of face authenfication
systems in real world usage without additional hardware modi-
fication.

Index Terms—Liveness Detection, Ultrasound Signal Process-
ing, Information Fusion.

I. INTRODUCTION

With the development of machine learning and computer
vision techniques, the past decade has witnessed the rapidly
growing application of face authentication systems. While
these systems have gained widespread popularity due to their

Copyright ©2023 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

This work was supported by National Natural Science Foundation of China
under Grant 62201542, fellowship of China Postdoctoral Science Foundation
under grant 2022M723069 and the Fundamental Research Funds for the
Central Universities.

Dongheng Zhang and Yan Chen are with the School of Cyber Science and
Technology, University of Science and Technology of China, Hefei 230026,
China (email: {dongheng, eecyan}@ustc.edu.cn).

Jia Meng, Jian Zhang, Xinzhe Deng and Shouhong Ding are with Tencent
Youtu Lab, Shanghai 200235, China. (email: {jeffmeng, timmmyzhang,
xinzhedeng, ericshding}@tencent.com). Dongheng Zhang was a research
intern at Tencent Youtu Lab.

Man Zhou is with the Hubei Key Laboratory of Distributed System Security,
Hubei Engineering Research Center on Big Data Security, School of Cyber
Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China (E-mail: zhouman@hust.edu.cn).

Qian Wang is with School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China (E-mail: qianwang@whu.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China, and Zhongguancun Laboratory, Beijing
100194, China. (E-mail: qli01@tsinghua.edu.cn).

Shouhong Ding and Yan Chen are corresponding authors.

Fig. 1. Overview of SonarGuard. It actively transmits ultrasound signal,
simultaneously collect and process ultrasound and video data, and finally
outputs the face liveness detection result through the neural network.

convenience, the threat caused by malicious attacks has led to
severe security concerns. As a result, liveness detection, which
verifies whether the captured data is the actual measurement
from live person, has been the most important building block
to prevent face authentication systems from malicious attacks.
Based on the modality utilized, existing liveness detection
methods can be generally categorized into two different cate-
gories: single-modal methods and multi-modal methods.

Due to its simplicity and efficiency, single-modal methods,
which accept video frames recorded by RGB cameras as
input, have been widely adopted in current face authentication
systems. These methods discover discriminative characteristics
unique to attack medium through texture or temporal features.
Although these methods achieve accurate liveness detection
in some scenarios, they are limited in generalization ability
[1]. What is worse, recent white paper figures out the risk the
attacker could bypass these liveness detection modules through
hardware video injection [2]. More specifically, both texture
and temporal based methods are established on the assumption
that there are discrepancies between video frames recorded
by attack mediums and live users. However, [2] proposes to
inject pre-recorded videos directly through the camera serial
interface. The injected video frames in this case are identical
to the ones recorded by live users, which leads to the failure
of all these methods.

Since achieving liveness detection purely depending on the
RGB camera videos is vulnerable, a natural solution to en-
hance the system security is to add other modalities which can
provide complementary information. Benefiting from multi-
view learning process provided by different modalities, multi-
modal methods can achieve impressive performance [3]. How-
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ever, existing multi-modal methods are still limited in vision
modalities, i.e, the term “multi-modal” in contemporary works
refer to different measurement of a single frame: RGB, depth
and infrared image. Since depth and infrared cameras are
unavailable in common mobile devices, the applications of
existing multi-modal methods are restricted to specialized
devices equipped with customized cameras.

To address aforementioned issues, we investigate new
modalities for liveness detection on mobile devices. To achieve
this, a modality candidate should satisfy the following three
requirements:

• Information complement: To achieve liveness detection
with better performance, the new modality should provide
complementary information which may be difficult for
existing modality to capture.

• Hardware reusing: Designing brand-new hardware for
liveness detection is costly, especially for mobile devices.
Hence, the new modality should reuse existing hardware
to make it possible for large scale real-world deployment.

• Injection resistance: Since hardware hacking has been a
great challenge for liveness detection, the new modality
should be robust when hardware injection into the camera
is frequently encountered.

In this paper, we introduce SonarGuard, which exploits the
potential of ultrasonic modality for consolidating the security
of liveness detection. As shown in Fig. 1, SonarGuard actively
transmits ultrasound signal, simultaneously collect and process
ultrasound and video data, and finally outputs the face liveness
detection result through the neural network. The core of Sonar-
Gurad lies in the fact that the propagation of ultrasound signal
would be affected by the motion of surrounding reflectors,
which is referred as micro-doppler effect [4]. By requiring the
user to perform lip movement, the ultrasound reflection would
be affected with unique pattern as demonstrated in Fig. 2. On
the contrary, the spoof only performs the lip movement on
the attack medium, which exerts no effort on the ultrasound
signal propagation. The pipeline of SonarGuard is composed
of three modules. The ultrasound signal processing module
enhances received signal caused by lip movement through
a series of beamforming and filtering techniques. The lip
motion extraction module recovers motion trajectory from
facial landmarks. The trajectory not only facilitates ultrasoic
signature segmentation, but also provides a complementary
modality to ultrasound. The ultrasonic-visual transformer mod-
ule aggregates the information from both ultrasound signal and
lip landmarks to achieve accurate liveness detection.

Compared with RGB video, ultrasound acquisition is also
supported by the majority of mobile devices, which has
more promising characteristics. First, ultrasound is much more
sensitive to real lip movements, while vision modality might
be easily deceived once lip movements are pre-recorded and
then presented. As shown in Fig. 2, the lip movement would
modulate the ultrasound signal propagation. Hence, we can
discriminate still or irregular motion from real lip movement
by analyzing the received ultrasound signal. Second, the
ultrasound transmitter and receiver are difficult to hack due to
the self-verification mechanism. Here, the mechanism denotes

(a) Ultrasound signal propagation model (b) Effect of lip movement on
complex signal domain

Fig. 2. Ultrasound propagation model. To acquire ultrasound reflections, we
adapt earpiece speaker and microphone to transmit and receive signal as shown
in (a). During face authentication, we prompt the user to perform lip movement
(open and close mouth). The lip movement would modulate the reflected
signal (change the amplitude and phase of the signal) as shown in (b), which
can be utilized for subsequent liveness detection.

that the received ultrasound should be in accordance with
the transmitted one. Despite all hardware deployed on mobile
devices is exposed to the attackers and thus easily becomes
unreliable if hacked, we can randomly change the signal
modulated frequency or modulation type to perform self-
verification, countering hardware injection in system-level.

The contributions of this paper are summarized as follows:
• To the best of our knowledge, this is the first attempt

towards leveraging the temporal consistency between ul-
trasonic and visual modality to achieve accurate liveness
detection on mobile devices.

• We propose a systematic framework including ultrasound
signal acquisition and processing, lip motion extraction
and cross-modality information fusion, making face au-
thentication system more secure via an active manner.

• Extensive experiments indicates that SonarGuard could
achieve average classification error rate of 0.91% under
presentation attacks and 1.43% under hardware video
injection attacks, which demonstrates the effectiveness of
the proposed framework.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III illustrates the attack
model. Section IV provides the overview of the system.
Section V presents the detailed system design. Section VI
introduces the dataset to evaluate our system. Extensive ex-
perimental results are shown in Section VII. Discussions on
the proposed framework are presented in Section VIII. Finally,
conclusions are drawn in Section IX.

II. RELATED WORK

A. Single-modal liveness detection

According to the cues leveraged for liveness detection,
single-modal methods can be further categorized into texture
and temporal based methods. Texture based methods exploit
the texture discrimination between live faces and spoof ones.
Hand-crafted features such as LBP [5], SIFT [6], HOG [7]
are utilized in traditional texture based methods to capture
spoofing patterns, while recent progress in CNN makes it
possible to achieve face anti-spoofing through a data-driven
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TABLE I
NOTATIONS

Notation Description

f the ultrasound signal frequency
∆f the difference among adjacent frequencies
k the index of ultrasound signal frequency
K the number of frequency for ultrasound signal
t the time index of signal
s the transmitted signal
τ the Time of Flight of the signal
l the index of signal corresponds to lip movement
I the number of paths of irrelevant signals
α the complex signal attenuation coefficient
r the demodulated ultrasound signal
Φ the phase shift among different frequencies
L the vector of lip landmarks
s the time index of mouth open
e the time index of mouth close
W the time window size of STFT
Xv the lip motion trajectory
Xu the segmented ultrasound spectrogram
Tv the time length of lip motion trajectory
Tu the time length of ultrasound spectrogram
Eu the embedding of lip motion trajectory
Ev the embedding of ultrasound spectrogram

manner [8]–[11], [11]–[17]. However, they both suffer from
poor generalization to unseen attacks and complex lighting
conditions, especially when RGB sensors are of low resolution
or quality. To improve the robustness of face authentication,
various face hallucination algorithms have also been proposed
to enhance low-resolution facial images [18]–[20]. Temporal
based methods concentrate on the temporal difference between
live faces and spoof ones. [21] and [22] propose to achieve
liveness detection by recognizing spontaneous eyeblinks and
remote photoplethysmography (rPPG), respectively. [23] pro-
poses to extract temporal features from visual dynamics to
achieve liveness detection. In [24], the authors propose a
challenge-response method using face reflections as in-band
digital watermarking to address replay attacks for face recog-
nition on consumer devices. Inspired by Captcha, Uzun et
al. propose rtCaptcha, a real-time Captcha for face liveness
detection in [25]. In [26], Liu et al. propose to utilize skin
reflection to distinguish live user and pre-recorded video.
Nevertheless, only relying on the captured video would result
in a overconfidence judgement once RGB sensors are hacked
and certain generated video is injected into the system [2].

To overcome the limitation of vision modality, perform-
ing face authentication using ultrasonic signals has been
explored [27]. EchoFace proposed in [28] utilizes human
face reflections to distinguish live user and media attack. A
recent work [29] utilizes lip motion patterns built upon well-
designed ultrasonic signals to enhance the security of face
liveness detection. However, the security of the system with
only ultrasound signal for liveness detection is still limited. To
break aforementioned limitations, we introduce a cross-modal
matching framework to detect attacks by judging whether the
lip movement is performed by live user.

(a) Spoof with laptop screen (b) Captured image on smart-
phone

Fig. 3. Demonstration of video replay attack. By replaying the user video
with required action, video replay attack can spoof the challenge-response
protocol.

B. Multi-modal liveness detection

Multi-modal methods achieve liveness detection with im-
pressive accuracy by fusing complementary information from
different modalities [30]–[34]. Compared with single modal
based methods, multi-modal could leverage the complemen-
tary information among different modalities to achieve better
accuracy. Leveraging the complementary information among
different modalities, multi-modal machine learning could
achieve impressive performance [35]–[38]. [39] releases a
dataset and benchmark for large scale multi-modal liveness
detection. [3] proposes to fuse multi-modal features with a
central difference network. Although recent advances demon-
strate multi-modal methods are promising solutions to liveness
detection, the application of these methods are limited to
customized devices due to the fact that these methods require
specialized hardware for depth and infrared imaging.

Our work also seeks new modality to strengthen existing
systems. However, existing methods are still limited in vi-
sual modality, i.e., “multi-modal” in existing works refer to
different visual sensors including RGB, depth and infrared
cameras. On the contrary, we propose to combine ultrasonic
and visual modalities, which raises more challenges since
these modalities are totally different. In addition, the proposed
framework could be deployed on existing mobile devices,
while existing methods require customized hardware for data
acquisition.

III. ATTACK MODEL

Based on the medium utilized for generating malicious
data, existing attacks for facial authentication systems can
be generally categorized into presentation attack [40] and
hardware injection attack [2].

Presentation attacks can be further categorized into static
and dynamic attacks. Static attacks adopt 2D photos or 3D
models of a authorized user to spoof authentication systems.
To combat these attacks, a natural solution is to design a
challenge-response protocol where the user is asked to respond
a challenge such as read a word, open mouth or blink. Since it
is difficult to utilize static mediums to respond the challenge,
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the challenge-response protocol can effectively detect static
attacks. To spoof the challenge-response protocol, as shown in
Fig. 3, dynamic attacks replay a video of authorized user with
required action. With advanced face forgery techniques, the
video of user with required action has been easily accessible,
which makes the challenge-response protocol be vulnerable.

Hardware injection attack is recently proposed in [2], which
injects user video directly through the hardware Camera Serial
Interface (CSI). In this case, the injected video frames are
identical to the ones recorded by live users, which makes all
existing vision based methods fail to detect the attack. As a
result, hardware injection attack has been a severe threat for
existing face authentication systems

In this paper, we aim to prevent face authentication systems
from dynamic presentation attack and hardware injection at-
tack leveraging the consistency between ultrasonic and visual
modality. Our design is under the assumption that high-quality
user video with lip movement has been accessed by the
attackers and utilized for spoofing, which is a common threat
for existing face authentication systems.

IV. SYSTEM OVERVIEW

The overview of the proposed system is shown in Fig.
4. Our system is based on a challenge-response protocol,
i.e, it requires the user to perform lip movement during
liveness detection. Compared with existing methods which
only take camera frames as input, the security of our system is
guaranteed by enabling the challenge and detect whether the
challenge is finished by a live user leveraging the consistency
between ultrasound and vision modality. The reason that
we choose ultrasound modality is three-fold. First, the lip
movement would modulate ultrasound signal, which leads to
unique patterns which could be utilized for liveness detection.
Second, ultrasound signal acquisition can be achieved with
earpiece speaker and micrphone, which is avaliable on most
mobile devices. Third, different from RGB cameras which pas-
sively capture video frames, the ultrasound signal is actively
generated, which provides a self-verification mechanism, i.e.,
we can verify whether the signal is generated by authorized
device or attacker. However, introducing such a modality is
non-trivial. Specifically, despite of these advantages, the new
ultrasound modality has totally different characteristics com-
pared with vision modality, which poses three main challenges
to its application for liveness detection.

• Ultrasound signal acquisition and processing. Due
to the limited signal power reflected by human lip,
extracting signal corresponding to lip movement from
ultrasound reflections is non-trivial. To consolidate the
system security, the signal acquisition and processing
must be effective, secure and inaudible simultaneously.

• Visual lip motion extraction. Our design aims to lever-
age the consistency between visual and ultrasonic modal-
ities to achieve liveness detection. Hence, we need to
extract the lip motion information appropriate for cross-
modal information fusion from captured videos.

• Cross-modal information fusion. The micro-doppler
signature and lip motion trajectory come from different

modalities, which leads to misalignment problems includ-
ing inconsistent sampling rate, different sequence lengths,
etc. Such misalignment poses challenges to effectively
fuse the cross-modal information.

In the following sections, we would introduce how we tackle
these challenges in detail.

V. METHOD

The pipeline of the proposed system is illustrated in Fig. 4,
which is composed of three modules to resolve aforementioned
challenges. We provide detailed introductions of these modules
in the following section.

A. Ultrasound Signal Acquisition and Processing Module

1) Signal Acquisition.: The proposed system relies on
transmitting ultrasound signal and receiving its reflections
from user or spoof medium presented in front of the mo-
bile device. To achieve this, we adapt earpiece speaker for
signal transmitting and microphone for signal receiving. The
transmitted signal should satisfy three requirements. First,
the signal should be inaudible to avoid annoyance to users.
Second, due to the multi-path propagation effect in wireless
systems [41], simply transmitting signal with single frequency
would suffer from severe multi-path fading, which leads
to Signal-to-Noise Ratio (SNR) degradation in the received
signal. The signal modulation scheme should be capable of
alleviating this problem. Third, similar to vision based replay
attacks, an attacker may hack the received ultrasound signal
of the authorized user to perform ultrasound replay attack. To
avoid such risk, the signal modulation scheme should be self-
encrypted.

To satisfy aforementioned requirements, we transmit signal
with frequency higher than 18kHz, which is inaudible to
adults [42]. To alleviate the multi-path fading problem, we
transmit signal with Multi Carrier Modulation (MCM), which
has been widely adopted in sonar and radar systems [43]–
[45] to enhance signal of interest based on the signal Time of
Flight (ToF). The transmitted signal is composed of multiple
frequency components, which can be expressed as

s(t) =

K∑
k=1

ej2πfkt, (1)

where f denotes the signal frequency, K denotes the number
of frequencies we adopt for signal transceiving, k, t denote
the frequency and time index, respectively. To avoid the
risk of ultrasound replay attack, we randomly update fk for
every new authentication. In this case, the received ultrasound
signal would be uncoupled with the expected frequency under
ultrasound replay attack, which results in further demodulation
and processing failure.

2) Signal Processing.: To extract the signal corresponding
to lip movement, we design a four-step signal processing
pipeline, as shown in the bottom left part of Fig. 4. We first
perform complex demodulation on the raw received signal to
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Fig. 4. Pipeline of the proposed system. The proposed system is composed of three modules. The ultrasound signal acquisition and processing module actively
transmits and receives signals, extracts the signal correlated to lip movement from raw samples. The lip motion extraction module detects landmarks on the
lip to judge the start and end of lip movement and segments ultrasound samples correspondingly. The ultrasonic-visual transformer module accepts the output
of ultrasound signal processing and lip motion extraction module to classify whether the input stems from live user or spoof.

extract the complex baseband signal from the carrier wave.
The demodulated signal can then be expressed as

rk(t) =

I∑
i=1

αie
−j2πfkτi + αle

−j2πfkτl(t), (2)

where l denotes the index of signal corresponding to lip move-
ment, while i corresponds to index of irrelevant signals. τ , k, α
the signal Time of Flight (ToF), the index of carrier frequency
and the complex signal attenuation coefficient, respectively.
Since rk(t) is the mixture of lip reflection and irrelevant
signals, we need to extract the lip reflection first. Hence,
we adopt a conventional beamformer [46] with pre-defined
ToF bins to separate the reflected signal, where each ToF bin
corresponds to the signal with specific ToFs. More specifically,
the relative phase shift on adjacent signal frequencies can be
expressed as

Φ(τ) = e−2π∆fτ , (3)

where ∆f denotes the difference among adjacent frequencies.
By compensating the phase shift and adding the signals on
different frequencies, the signal from ToF τ would superim-
pose coherently while the signals from other location would
be suppressed as

y(τ) = ΦH(τ)r, (4)

where
r = {r1, r2, ..., rK}T , (5)

ΦH(τ) = {1, e−2π∆fτ , ..., e−2π(K−1)∆fτ}. (6)

To extract the lip signal, we need to determine the ToF
corresponding to lip first. To achieve this, we first set a
series of possible ToF values and transform raw signals into
ToF domain as Eq. 4. Then, we perform difference among
consecutive samples. Due to the fact that lip reflections vary

with time due to the lip movement while other irrelevant
signals are time-invariant, the remained signal only keeps the
time-variant components which corresponds to lip movement.
Hence, we search the ToF bin with the maximum amplitude as
the one corresponding to lip movement and extract the original
signal for further processing. Note that after beamforming,
although the lip signal has been strengthened, it still contains
strong DC components which is caused by the direct signal
leakage from speaker and static reflections around lip. To
further enhance the signal most related to lip motion, we
deliver the signal through a Notch filter with the zero point
at zero frequency to suppress low frequency components. As
shown in Fig. 4, the signal passed Notch filter is series of
time samples containing severe random noise, which could not
directly capture fine-grained frequency information according
to [47]. Hence, we transform the signal into spectrogram by
short time fourier transform (STFT). As a visual representation
of the orginal signal, the STFT spectrogram is more suitable
to convolutional architectures.

B. Visual Lip Motion Extraction Module

In the proposed system, we extract the lip motion by detect-
ing lip landmarks from the captured videos. The lip motion
information, including the period of mouth open and close,
can be effectively represented by the location variation of lip
landmarks. Note that the ultrasonic STFT spectrogram spans
over the whole user interaction period containing irrelevant
motion, which would interfere the liveness detection. With the
period of lip movement, we can segment the signal-of-interest
correspondingly to suppress the interference. In the following,
we would introduce how we detect lip landmarks and segment
ultrasound signal in detail.

1) Lip motion representation.: Given video frames
{F0, F1, ..., FT } of length T , we use the face alignment
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(a) Lip landmarks (b) Lip motion vectors

Fig. 5. Lip landmarks and motion vectors.

method in [48] to obtain lip landmarks from each video frame.
Let {L0,L1, ...,LT } denotes the sequence of landmarks,
where each vector Lt = {p1, p2, ..., p22} contains 22 desig-
nated landmarks coordinates of one video frame as illustrated
in Fig.5(a). The displacement of a landmark between two
consecutive frames is then denoted as the motion vector of that
landmark, as shown in Fig.5(b). To capture the status of mouth
action, the aspect ratio of mouth area can be calculated from
euclidean distances between selected landmarks as follows:

asrt =
‖p20 − p13‖+ ‖p19 − p14‖+ ‖p18 − p15‖
‖p10 − p2‖+ ‖p9 − p3‖+ ‖p8 − p4‖

. (7)

This calculated aspect ratio sequence consists a curve indi-
cating the variation of mouth area along time axis. Thus, the
mouth open and close time indices s and e can be found at the
points where the curve crosses predefined thresholds upward
and downward respectively. The desired lip motion trajectory
Xv is composed of motion vectors of all lip landmarks
throughout this interval, which is of length Tv and can be
expressed as:

Xv = {Ls+1−Ls, Ls+2−Ls+1, ..., Le−1−Le−2, Le−Le−1}.
(8)

2) Ultrasound signal segmentation.: We segment ultra-
sound signal from the entire recorded spectrogram according
to the visual lip motion information. On one hand, this design
temporally cut out interference from irrelevant motion such
as head motion before or after opening mouth. On the other
hand, it can detect temporal mismatch to prevent attacks that
mimic lip motion on prerecorded videos. Specifically, we pick
out spectrogram segment within the same time interval of the
above lip motion trajectory as the final ultrasound signal Xu.
Notably, the length Tu of ultrasound might differ from the
length Tv of lip motion trajectory since the sample rate of
ultrasound signal and the video frames are not identical. In
the next section, we fuse the information from two modalities
to achieve accurate liveness detection.

C. Ultrasonic-Visual Transformer Module

Inspired by the successful application of the Transformer
[49] in vision and language tasks [50]–[52], we design a

Ultrasonic-Visual Transformer (UVT) model which can ef-
fectively fuse the information from ultrasound signal and lip
motion trajectory.

Fig. 6 illustrates the detailed architecture of UVT model,
which is made up of feature extractors, transformer encoder,
transformer decoder, and followed by a light MLP classifica-
tion head. The feature extractor is a pair of CNNs to extract
high dimensional features from ultrasonic spectrogram and
visual motion trajectory. The transformer encoder reads ul-
trasound spectrogram feature and captures long-range context
information among spectrogram bins via self-attention mech-
anism. The transformer decoder’s inputs are visual movement
feature of each video frames, which are further aggregated
by self-attention layers inside the decoder. Furthermore, the
fusion of ultrasound and motion information is accomplished
by the multi-head attention between encoder output features
and decoder intermediate features. The intuition behind our
design is that the micro-doppler information in ultrasound
spectrogram comes from lip movement. This long-range cross-
modal relationship between ultrasonic and visual sequences
can be learnt by the transformer architecture. More design
details are elaborated below.

1) Feature extractor.: The ultrasound spectrogram Xu ∈
RW×Tu is composed of Tu frequency coefficient vectors,
and each vector contains W coefficients corresponding to
the window length of STFT. The visual motion trajectory
Xv ∈ R2×22×Tv contains a 2D tensor sequence of length
Tv . A common and practical issue of multi-modal task is the
imperfect alignment between different modalities. Specifically,
the length of the two sequences may be different, and sequence
element of the two modalities may span different duration. To
address this issue, we design the feature extractor as a pair of
modified ResNet-18 where all conv3x3 filters are replaced by
conv1x1. That is, the feature extractor only captures frequency
dimension features from ultrasonic input and spatial dimen-
sion features from visual input respectively. Furthermore, the
encoder-decoder attention block inside transformer, by its
design, can accept queries and keys of different lengths and
attend to global contexts across time dimension to handle
imperfect alignment issue. Note that, this split spatio-temporal
design has demonstrated superior performance than direct 3D
convolution for action recognition tasks in [53].

2) Transformer.: Let d be the input embedding dimension
of transformer. The ultrasonic feature map from feature ex-
tractor is averaged pooled and flattened into ultrasonic embed-
ding Eu ∈ Rd×Tu . Similarly, The motion vector embedding
Ev ∈ Rd×Tv is obtained through average pooling. We take
the advantage of transformer’s self-attention mechanism and
encoder-decoder architecture to fuse multi-modal features.
Specifically, Eu is fed into transformer encoder and trans-
formed by a stack of self-attention layers to capture long-range
temporal information. Intuitively, the noise can be assumed to
be stationary stochastic process during the short period. Hence,
encoder can focus on useful micro-doppler features while
eliminate noise features given enough contextual information.
Inside transformer decoder, the visual movement features
are aggregated via self-attention layers similarly. Then, the
encoder-decoder multi-head attention layer takes aggregated
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Fig. 6. Detailed architecture of UVT. UVT uses CNNs to extract embeddings from motion trajectory and ultrasound spectrogram, which are added with
sinusoid positional encoding to maintain positional information. Transformer encoder makes use of self-attention mechanism to capture long-range information
from ultrasound embedding, and feeds its output to transformer decoder as key-value pairs. Cross-modality matching is carried out within transformer decoder.
Specifically, for every query slot inside lip motion embedding, it looks over all key vectors to aggregate information from matching value vectors. The
aggregated information is carried by class token to classifier.

visual features as query, and audio features inside encoder
memory as key and value. The output is the weighted sum of
most relevant audio features for each video frame. Formally,
the output of the Transformer encoder can be expressed as

h0
enc = Eu + Posu,

h̃lenc = LN(MSA(hl−1
enc ,h

l−1
enc ,h

l−1
enc) + hl−1

enc), l = 1...Lenc

hlenc = LN(FFN(h̃lenc) + h̃lenc), l = 1...Lenc
(9)

where MSA, LN, and FFN denotes Transformer’s multi-
head self-attention, layer norm, and feed forward network
respectively. Posu is the positional encoding. l is the index
of the encoder layer and Lenc denotes the number of layers
for Transformer encoder. Then, the output of the decoder can
then be given by

h0
dec = [Ecls; Ev] + Posv,

h̃ldec = LN(MSA(hl−1
dec ,h

Lenc
enc ,h

Lenc
enc ) + hl−1

dec ), l = 1...Ldec

hldec = LN(FFN(h̃ldec) + h̃ldec), l = 1...Ldec
(10)

where Ecls is class token. The output of the decoder in the last
layer, i.e., hLdec

dec , is denoted as Z ∈ Rd×(Tv+1) for simplicity.
The design of Transformer is inspired by the principles of
database, where Query and Key are utilized to measure the
consistency of the inputs [52]. Similarly, we propose the
SonarGuard framework to distinguish live user and malicious
attack leveraging the consistency between ultrasound signal
and lip motion trajectory. Hence, we adopt ultrasound signal
and lip motion trajectories as key value and query, respectively.

3) Positional encoding.: Positional encoding is important
for self-attention modules to maintain positional information.
In our case, both ultrasonic and motion information are repre-
sented as time sequences, so positional encoding is injected to
both transformer encoder and decoders. Regarding the type of
positional encoding, we observe that the fixed sinusoid coding
works well in our experiments.

4) Liveness detection.: The liveness detection can be mod-
eled as a binary classification problem. To this end, we
adopt the class token method following BERT [52]. The class
token is a trainable embedding pretended to transformer de-
coder’s input tokens. It keeps aggregating useful classification
information, while going through the stack of transformer
decoder layers. Let the transformer decoder’s output be Z ∈
Rd×(Tv+1). The classification head is formed by connecting
a MLP to the first position at encoder’s output hidden state
Z0. The training objective of our model is the standard binary
cross-entropy (BCE) loss:

LBCE = − 1

M

M∑
i=1

yilogpi + (1− yi)log(1− pi), (11)

where yi and pi denote the label and model prediction for
the ith data sample, respectively. M is the number of data
samples.

VI. DATASETS

A. Datasets for training and validation.

Since this is, to our best knowledge, the first work to-
wards achieving liveness detection leveraging the consistency
between ultrasound and vision modality, there is no existing
dataset that can be utilized to evaluate our method. Hence, we
setup a new multi-modal Ultrasound-Vision Liveness Detec-
tion dataset, which contains synchronized ultrasound and video
samples, to evaluate our method. We implement an Android
application to collect data, which records ultrasound signal
with 48000Hz sample rate, and live video at 30 frames per
second by front camera. We utilize 3 carrier frequencies for
ultrasound signal transceiving. The difference among adjacent
frequencies is set to be 100Hz.

For live user data collection, the subjects are asked to hold
the smartphone, open and close their mouths following user
interface instructions shown on the screen. Fig. 7(a) shows an
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(a) Data captured by live user, of which the ultrasound spectrogram explic-
itly shows the unique pattern.

(b) Data captured under video replay attack, of which the ultrasound
spectrogram only contains random noise.

(c) Hardware injection attack data by combing live user video and ultrasound
spectrogram collected under replay attack.

(d) Attack data in Challenge set with finger gestures to mimic the effect
of lip movement. The pattern of ultrasound spectrogram under this case is
similar to the one under lip movement.

Fig. 7. Illustration of our dataset.

example of data captured by live user, of which the ultrasound
spectrogram explicitly shows the unique pattern caused by lip
movement.

For attack data, we collect both presentation attack and
hardware injection attack data as illustrated in Sec. III. We
first collect presentation attack data via replaying live user
video data on various screens of phone, laptop and monitors.
As shown in Fig. 7(b), there is no signal pattern in ultrasound
spectrogram since the lip movement is only replayed on the
screen, which does not affect the propagation of ultrasound
signal. For hardware injection attack data, the only difference
is that the captured user video is directly injected to camera
interface rather than replayed on a medium. Hence, we com-
bine the video data of live user and ultrasound data captured
under replay attack to build the dataset of hardware injection
attack as shown in Fig. 7(c).

The dataset is collected by Asian people with ages rang-
ing from 18 to 40. The numbers of samples captured by
male/female are approximately same. Both real face and attack
samples are collected in a noisy office room. Totally, our
dataset contains over 30000 live and spoof samples from over

200 subjects.

B. Datasets for testing.

We collect two types of test datasets to verify the feasibility
of the proposed system and its effectiveness in practical
deployment, respectively. The first one is Basic testset, which
is collected in the same way as the training dataset. For live
user data, the subjects hold the smartphone, open and close
their mouths following user interface instructions. Similarly,
the attack data is also collected in the same way as the training
dataset. Another one is Challenge testset, which targets to
create challenging usage scenarios to evaluate the robustness
of our system. The live user data is collected from 20 subjects
who are the first time to use our system. In this case, the
subjects may not follow the user interface instruction to
perform lip movement perfectly, which could demonstrate the
performance of the proposed system for new users in practical
deployment. On the contrary, for the attack data, we assume
that the attacker is familiar with the principles of our system.
To this end, we have noted that a professional attacker may
perform finger gestures to mimic the effect of lip movement
on ultrasound propagation as shown in Fig. 8. Specifically, for
live user, the lip movement would modulate the propagation
of ultrasound signal, which is utilized to achieve liveness
detection. Meanwhile, we can perform finger gestures, i.e.,
pinch fingers to yield similar effects on ultrasound signal to
fool the liveness detection system. Hence, we let the attacker
perform finger movement synchronized with the pre-reorded
video to better fool the proposed framework. The detailed
information of the media for performing presentation attack is
summarized in Table. II. In general, the Basic dataset contain-
ing 19376 positive samples and 16882 negative samples, where
the proportion of the training, validation and test samples is
6:2:2. The Challenge dataset containing 1120 positive and
1152 negative samples for test.

(a) Ultrasound signal propagation
with live user.

(b) Ultrasound signal propagation
under replay attack with finger ges-
ture.

Fig. 8. Ultrasound signal propagation for live user and attack.

TABLE II
DEVICES FOR REPLAY ATTACK

Device Size(mm) Resolution
Dell P2314 553x312 1920x1080
Thinkpad T470 339x232 1920x1080
Apple iPad 243x190 2048x1536
Oppo R9s 153x74.3 1920x1080
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VII. EXPERIMENTS

A. Implementation Details

The UVT model is trained from scratch by PyTorch [54].
All convolution and fully-connected layers are initialized with
normal weight distribution. The model is trained for 100
epochs using SGD optimizer with weight decay of 10−4,
and learning rate is adjusted by 1cycle policy [55] with max
learning rate of 10−2. The transformer contains two encoder
layers and two decoder layers, both of which uses four-head
self-attention layers of 256 embedding dimension.

B. Evaluation metrics

To compare the performance of different methods, we
report the experiment results with the following metrics:
Attack Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and
Average Classification Error Rate (ACER) [3]. We utilize
positive/negative samples to denote attack/real samples. Then,
these metrics can be expressed as

APCER = FN/(TP + FN)

BPCER = FP/(FP + TN)

ACER = (APCER + BPCER)/2,

(12)

where TP, TN, FP and FN are the abbreviations of True
Positive, True Negative, False Positive and False Negative,
respectively.

C. Results and Analyais

Besides our full model, we experiment with another two
models: ultrasound-only model and late-fusion model. Specif-
ically, the ultrasound-only model applies a single ResNet18
feature extractor on ultrasonic spectrograms. The late-fusion
model uses two ResNet18 to extract features from two modal-
ities, and fuses them by simple concatenation. Experiment
results below verify the effectiveness of ultrasound on ba-
sic liveness detection, as well as the the importance of lip
motion trajectory and ultrasonic-visual transformer module on
preventing more challenging attacks.

1) Results under presentation attack: Performance com-
parison result is presented in Tab. III. The ultrasound-only
model achieves acceptable result on Basic testset, but does
not generalize well on Challenge testset. By incorporating the
lip motion trajectory, the late-fusion method reduces ACER by
1.46 points and 6.96 points on the two testsets respectively. On
top of the late-fusion method, our full model gains additional
0.36 points and 0.45 points improvements. We attribute this
achievement to transformer’s strong information fusion ability.
Furthermore, when switching from Basic testset to the Chal-
lenge one, the Ultrasound-only method’s ACER increase 8.68
points, while our method maintains more stable performance
relatively. To inspect performance comparison at different
thresholds, Fig. 9(a) shows the receiver operating characteristic
(ROC) curves of Challenge testset under presentation attack.
We observe that our full model has strongest performance (i.e.
largest area under curve), and its advantage is more obvious
on the Challenge testset due to better generalization ability.

TABLE III
EVALUATION RESULTS UNDER PRESENTATION ATTACK (%).

Testset Method APCER BPCER ACER

Basic
Ultrasound-only 2.74 2.71 2.73

Late-fusion 0.49 2.05 1.27
UVT 0.26 1.56 0.91

Challenge
Ultrasound-only 15.23 7.59 11.41

Late-fusion 1.40 7.50 4.45
UVT 0.95 7.05 4.00

2) Results under hardware injection attack: Although the
vision cue under hardware injection attack has been unreliable,
our method still can exploit the mismatching between two
modalities to achieve accurate liveness detection as shown
in Tab. IV. All three methods can resist hardware injection
attack. Specifically, the ACER of our methods only increase
0.52 points and 2.75 points respectively on the two testsets.
Note that, pure vision methods would be subjected to total
failure under such attack. Since the live user data does not
change under difference attacks, the BPCER in Tab. IV is
the same with the BPCER in Tab. III. The ROC curves of
Challenge testset in Fig. 9(b) show that our full model is the
most robust against hardware injection attack.

TABLE IV
EVALUATION RESULTS UNDER HARDWARE INJECTION (%).

Testset Method APCER BPCER ACER

Basic
Ultrasound-only 2.74 2.71 2.73

Late-fusion 1.78 2.05 1.92
UVT 1.29 1.56 1.43

Challenge
Ultrasound-only 15.23 7.59 11.41

Late-fusion 10.66 7.50 9.08
UVT 6.44 7.05 6.75

3) Ablation study on signal processing: Our signal pro-
cessing module is composed of several steps. Fig. 10(a)
shows the ultrasonic spectrogram obtained through the entire
signal processing module. To demonstrate the effectiveness
of these steps, we perform an ablation study by removing
the beamformer and notch filter. The spectrogram without
beamformer is shown in Fig. 10(b), which contains severe
random noise. This illustrates beamformer’s functionality of
aggregating information from different carrier frequencies to
increase the signal-to-noise ratio. Without notch filter, it would
be hard to identify the lip motion trajectory, as shown in
Fig.10(c). This is because the ultrasound signal contains strong
time-invariant components, which has much higher amplitude
compared to lip motion trajectory.

4) Model scaling experiment: We also perform a model
scaling experiment by varying transformer’s embedding size,
and number of layers. The result is reported in Tab. V.
Regarding our task, increasing number of layers from 1 to
2 achieves more improvements than enlarging embedding size
from 128 to 256. However, stacking additional layers hurts
performance in our experiment instead, which suggests that
larger transformer requires more training samples.

5) Attention visualization: Attention mechanism is a key
components of Transformer, so we provide visualizations to
understand how it contributes to effective information fusion.
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Fig. 9. ROC curves under Challenge testset. The proposed UVT module achieves the best performance under both presentation and hardware inejction attack.

(a) Original (b) Without Beamformer (c) Without Notch Filter

Fig. 10. Ablation study of signal processing module. (a) is the signal extracted
by the entire signal processing module. (b) is extracted without beamformer,
which contains severe random noise. (c) is extracted without notch filter, which
is hard to distinguish lip movement period.

TABLE V
DETAILED RESULTS OF MODEL SCALING EXPERIMENT. (%)

Testset Embedding size Layers ACER

Basic
256 1 1.42
128 2 1.04
256 2 0.91
256 4 1.59

Challenge
256 1 6.22
128 2 4.88
256 2 4.00
256 4 4.68

Fig. 11(a) shows the curve of mouth aspect ratios during data
acquisition, where mouth open and close occur in duration
18˜22 and 42˜54 respectively. The corresponding ultrasonic
spectrogram is shown in Fig. 11(d), which shows the mouth
open and close signatures in duration 18˜32 and 42˜56. We
visualize the attention map of one cross-attention head in
Fig. 11(b). The vertical and horizontal axis correspond to the
query and key, i.e., visual embeddings Ev , and ultrasound
embeddings Eu accordingly. The visual embeddings within
18˜22 attend to the ultrasonic embeddings within 21˜30, which
has highest amplitude in ultrasonic spectrogram shown in red.
Similar observation for lip close can be noticed. In other
words, the cross-attention block is able to aggregate ultrasonic
embeddings most relevant to lip motion. Furthermore, we visu-
alize the attention map of Transformer encoder’s self-attention
blocks in Fig. 11(c), the vertical axis for query and horizontal
axis for key are both related to ultrasonic embeddings. We
notice that embeddings associated with mouth open 18˜32 and
close 42˜56 both attend to the 24th embedding. Moreover,
the attention of other embeddings is located around the 31st

Fig. 11. Visualization of encoder self-attention in ultrasonic modality and de-
coder cross-attention in both modalities. The encoder-decoder cross-attention
plays an key role on effective information fusion and the encoder self-attention
provides noise suppression on ultrasonic spectrogram.

embedding, all of which corresponds to noise area in the
spectrogram. This attention patterns reveals the model’s ability
to separate lip motion trajectory and noise. In conclusion, these
results demonstrate that the encoder-decoder cross-attention
plays an important role on effective information fusion and the
encoder self-attention provides noise suppression on ultrasonic
spectrogram.

D. Robustness Evaluation
1) Robustness among different devices: Our method is

designed for existing mobile devices without using additional
hardware. So a consistent performance on different devices is
a key consideration for future deployment in real world. To
evaluate the the robustness of the proposed system among dif-
ferent devices, we collect data on four smartphones: OnePlus
7Pro, Samsung Galaxy Note10, Google Pixel 2 XL and Vivo
X9, respectively. From Tab. VI, we can find that our full model
performs consistently among different devices.
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TABLE VI
ACER(%) MEASUREMENT AMONG DIFFERENT DEVICES.

Device Method Basic Set Challenge Set

OnePlus 7Pro
Ultrasound-only 2.70 11.97

Late-fusion 1.52 4.28
UVT 1.20 3.18

Samsung Galaxy Note 10
Ultrasound-only 2.39 14.79

Late-fusion 1.02 6.00
UVT 0.85 4.19

Google Pixel 2 XL
Ultrasound-only 15.71 11.06

Late-fusion 5.00 4.55
UVT 2.14 3.26

Vivo X9
Ultrasound-only 2.71 3.35

Late-fusion 1.52 2.41
UVT 0.82 2.22

TABLE VII
ACER VARIATION UNDER BACKGROUND NOISE(%)

Noise Level(dB) 40 50 60 70 80 90
Basic -0.2 -0.2 -0.2 -0.2 -0.17 -0.2

Challenge -0.13 +0.06 -0.23 -0.03 -0.03 -0.13

2) Robustness under background noise.: Since our sys-
tem relies on transmitting and receiving ultrasound signal
on mobile devices, a natural concern is whether the system
performance would be affected by environment noise. To
address this concern, we evaluate robustness of the proposed
system under background noise with the level varies from
40dB to 90dB. The ACER variation of the proposed system
versus noise level is shown in Tab. VII, which indicates that the
background noise has tiny effect on the system performance.
This is because the background noise mainly exists on the
frequency under 18000Hz, while our system adopts signal with
higher frequency. Note that the environment with noise level
higher than 90dB would be harmful to human health, which
is not considered for the application of the proposed system.
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Fig. 12. ACER under different carrier frequencies

3) Robustness under different signal frequencies: In this
experiment, we investigate the impact of the signal frequency
selected for signal transmitting and receiving. As shown in Fig.
12, the ACER varies slightly when the frequency is lower than
22000Hz, while it increases rapidly with higher frequency.
This is due to the fact that signal transceiving with higher
frequency could not be perfectly supported by the speaker and

microphone on smartphones, which leads to the performance
degradation.
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Fig. 13. ACER under different distances.

4) Robustness under different distances: In this experiment,
We investigate the impact of the distance between the user and
the device. The distance, which is measured from the center
of the phone screen to the user lips, varies from 18cm to
30cm. As shown in Fig. 13, the ACER gradually increases
when the distance increases. This is because ultrasound signals
decay rapidly when the propagation increases, which makes it
extremely difficult to capture lip motion information and leads
to accuracy degradation. However, it is common for the user
to hold the smartphone within 30cm, which indicates that the
proposed system can be deployed in practical scenario.

(a) One carrier frequency
shifts 3Hz

(b) Two carrier frequen-
cies shift 2Hz

(c) Three carrier fre-
quencies shift 2Hz

Fig. 14. Robustness of our system under ultrasound replay attack. With the
wrong carrier frequency, the signal has been far from the expected one as
shown in Fig. 10(a), which leads to the failure of attack.

5) Robustness under ultrasound replay attack.: Similar to
visual replay attacks, the ultrasound data of live user may
be hacked by attackers to achieve ultrasound replay attack,
which would introduce security risk. However, different from
vision based methods which passively record RGB videos of
the user, our system actively transmits and receives ultrasound
signal. As illustrated in Sec. V-A, we randomly change the
carrier frequency of the signal in Eq. 1 for every new authen-
tication process. Fig. 14 shows the processed signal when an
attacker perform replay attack while the signal frequencies has
changed. Due to the wrong signal frequency, the output signal
has been far from the expected one, which leads to the failure
of the attack.

VIII. DISCUSSIONS

In the past decade, face authentication systems have gained
widespread popularity. However, these systems have been vul-
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nerable under various kinds of malicious attacks. This is due to
the fact that optical cameras themselves are easily to be fooled
or hacked, which motivates us to seek for new modalities to
achieve liveness detection. While achieving liveness detection
based on ultrasound reflection has been investigated, the
system security with only ultrasound modality is still limited.
To this end, we propose to leverage the consistency between
visual and ultrasonic modality to achieve liveness detection,
which is more accurate through multi-modal learning. All in
all, the proposed technique could enhance the security of face
authentication systems on mobile devices and inspire more
investigations on multi-modal learning.

For ultrasound signal, since the signal variation caused by
lip movement is too tiny to capture, we design the ultrasound
signal processing module to enhance the signal-of-interest
with elaborated designed beamformer and filters. For visual
information, the lip landmarks could represent the lip motion
information more efficiently compared with raw frames, which
encourages us to deign the visual lip extraction module.
To judge the consistency of two modalities, we have noted
that Transformer is inspired by the principles of database,
where the Query and Key are utilized to measure the con-
sistency of the inputs. Hence, we design the Ultrasonic-Visual
Transformer module to achieve final information fusion for
accurate liveness detection. While all existing approaches fail
under hardware injection attack, the proposed framework could
detect it through cross-modality matching. For presentation
attacks, the proposed framework could also improve the over-
all accuracy for liveness detection. The main disadvantage
of the proposed framework lies in the fact that it requires
synchronized collection of ultrasound signal and video frame,
which may lead to additional overhead for data collection.

IX. CONCLUSION

In this paper, we proposed SonarGuard, a liveness detection
system for face authentication on mobile devices by combing
ultrasonic and visual information. SonarGuard extracts ultra-
sound signal related to lip movement with a signal processing
module, obtains the lip motion trajectory and segmented ultra-
sound signal with a motion extraction module and finally fuses
the information from ultrasound signal and motion vector with
a information fusion module. Extensive experiments on newly
collected dataset demonstrates the efficiency of the proposed
system in real world usage. To our best knowledge, this is the
first attempt towards ultrasonic liveness detection on mobile
devices.
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