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Abstract—The COVID-19 pandemic has posed a significant
threat to the health of elderly individuals, particularly those
with respiratory conditions. Therefore, daily monitoring of lung
capacity is necessary to assess the pulmonary condition and
initiate timely treatment measures. This paper aims to explore
an effective non-contact method for fine-grained pulmonary func-
tion sensing. Specifically, we propose to utilize millimeter-wave
radar to contactless sensing of the overall chest and abdominal
motion. Then the LUNet (Lung Unet) is constructed to recover
the Expiratory Volume (EV) curves using the entire motion
information of the chest and abdomen. Finally, the pulmonary
function indicators are extracted based on the predicted EV
curve directly. The experimental results demonstrate that the
average correlation of the predicted EV curve is 96.74% and the
mean relative errors for FEV1, FVC, and FEV1/FVC are 7.73%,
8.15%, and 6.70%, respectively. These results suggest that our
method has the potential for clinical monitoring and assessment
of respiratory diseases.

Index Terms—millimeter wave radar, lung function, respira-
tory diseases, chest-abdominal movements, neural network

I. INTRODUCTION

In 2021, FIRS released the third edition of the ”Global
Impact of Respiratory Disease” report, asthma and chronic
obstructive pulmonary disease (COPD) are among the top five
respiratory diseases worldwide [1]. These diseases are among
the most common causes of illness, disability, and death
globally. From 1990 to 2017, the global death toll from COPD
increased by 23%. Currently, approximately 3 million people
die from COPD each year [2]. The spread of smoking and the
aging population, along with the declining mortality rates of
other causes of death such as cardiovascular diseases, indicate
that by 2060, there may be over 5.4 million deaths annually
from COPD and related diseases [3]. The characteristic feature
of these diseases is the presence of various types of air-
way obstruction. Spirometry is the most common pulmonary
function test used to diagnose and monitor lung diseases,
providing valuable information about lung health [4]. The
current home spirometers are either too expensive (>$2,000)
or have low accuracy, potentially resulting in errors of >20%
[5]. Furthermore, contact-based measurements increase the
risk of cross-infection. With the prevalence of COVID-19,
daily lung capacity measurements have become particularly
important for timely diagnosis and treatment [6].

The development of more convenient, comfortable, and
effective spirometer technology has always received significant

attention in the medical community. While advancements have
been made in contact-based methods [7, 8, 9] based on wear-
able technology, recent years have witnessed much interest
in contactless lung function monitoring. Typically, contactless
methods work by capturing chest wall single-point motion
waveform and interpreting such information as indicators of
pulmonary function. Acoustics technology is a viable solution
for measuring lung function parameters [13, 14, 15, 16, 17].
But its usage requires an extremely quiet environment and
is prone to interference from ambient noise. Recently, lung
function monitoring based on wireless signals also emerged as
a potential solution due to the contactless, privacy-preserving,
comfortable user experience, as well as cost-effective deploy-
ability. [18] proposed extracting chest wall motion from the
variations in WiFi signals and interpreting such information
as indicators of pulmonary function.

However, relying solely on single-point motion data from
the chest wall is insufficient to accurately describe the intrin-
sic characteristics of respiration. [19] implemented enhanced
respiratory motion analysis by creating a 3D model of the
whole chest and abdominal region. [20] demonstrated that the
expansion of the upper and lower chest jointly correlated with
all pulmonary function parameters. [21] found that the chest
(upper and lower) and abdominal movements of most patients
with chronic obstructive pulmonary disease (COPD) are re-
duced to varying degrees. [22] achieved promising results by
estimating respiratory volume based on chest and abdominal
movements together. [19], [20], [21], [22] indicate that there
are different correlations between lung function and various
regions within the entire chest and abdominal area. These
works highlight the importance of analyzing the complete
chest and abdominal motion in order to precisely extract
intrinsic characteristics of breathing activity and enhance the
accuracy of pulmonary function sensing.

Inspired by [25] that employs radio signals to comprehen-
sively image torso surface motion, we extend a new dimension
of wireless sensing by designing a contactless Fine-grained
Lung Function system with millimeter-wave radar that exploits
the relation between the overall chest and abdominal motion
and lung functions. Specifically, the system depends on radar
contactless sensing of the overall chest and abdominal motion,
recovering the Expiratory Volume (EV) curves, and finally
extracting the pulmonary function test indicators for lung



function evaluation. To do so, we first separate the reflections
coming from different parts of the torso by beamforming.
Then we project the space voxel signals into body surface mo-
tions imaging representation. To solve EV curves recovering
problem, we propose a data-driven deep neural network that
leverages the temporal-spatial features of body surface motions
imaging input. Finally, corresponding pulmonary function
indicators can be calculated based on the EV curves. We
evaluate our system using a commodity radar sensor and
conduct 150 experimental trials over 13 participants. The
average correlation of the predicted EV curves is 96.74%. The
mean relative errors for FEV1, FVC, and FEV/FVC are 7.73%,
8.15%, and 6.70%, respectively.

II. MATERIALS AND INDICATORS

A. Data Collection

We collect respiratory data from volunteers using the
AWR1843 [26] millimeter-wave radar in synchronization with
the GDX-SPR [27] respiratory device. Each of the 13 volun-
teers will perform 10-15 sessions of 30 seconds of breathing.
Each session will include one deep breath, followed by normal
breathing for the remaining time. The data collected during
each session is divided into multiple segments of 512 frames,
with 1-second equivalent to 100 frames. During the testing
period, volunteers are required to sit with their backs against
the chair back, maintaining an upright posture. They should
hold the mouthpiece of the spirometer with their mouth and
try to keep their upper body stable during the lung capacity
test to minimize any interference from body movements on
the overall chest and abdominal motion. Simultaneously, the
millimeter-wave radar is positioned approximately 0.7 meters
away from the volunteers and directed towards the chest and
abdominal region.

B. Pulmonary Function Test (PFT) Indicators

Lung capacity measurement primarily generates the follow-
ing three indicators for the clinical evaluation of pulmonary
function:

• Forced Vital Capacity (FVC): FVC refers to the maxi-
mum amount of air that can be forcefully exhaled after
taking a deep breath. It is an important measure of lung
size and overall lung function.

• Forced Expiratory Volume in 1 second (FEV1): FEV1
represents the amount of air forcefully exhaled in the first
second during an FVC test. It provides information about
the rate at which air can be expelled from the lungs and
is used to assess airflow limitation.

• FEV1/FVC ratio: This ratio is calculated by dividing the
FEV1 value by the FVC value. It is used to assess the
presence of airflow obstruction. A reduced FEV1/FVC
ratio indicates the potential presence of a respiratory
condition such as chronic obstructive pulmonary disease
(COPD) or asthma.

In addition, this study introduces a new metric called the
EV curve correlation, which is used to assess the similarity
between the predicted EV curve and the original EV curve.

Fig. 1: System Overview.

Since the EV curve provides valuable information about
respiratory characteristics, it enables a more comprehensive
evaluation of lung function and enhances the accuracy of
diagnosing respiratory conditions.

III. SYSTEM DESIGN

The system workflow is shown in the Fig. 1. It utilizes
mm-wave radar to capture the signal variations of chest and
abdominal movements during respiration. 3D beamforming
and CA-CFAR techniques are employed to extract the chest
and abdominal motion imaging. Then, by constructing LUNet
(Lung Unet), the system recovers the accurate EV curves from
the imaging inputs. Finally, corresponding pulmonary function
indicators can be calculated based on the curves directly.

A. Chest and Abdominal Motion Imaging

3D Beamforming: By using an array of antennas in
millimeter-wave radar and employing a frequency-modulated
continuous wave (FMCW) system, we can map the prop-
agation distance of the reflected signals to phase changes.
Ultimately, through phase accumulation of the received signals
in a virtual channel formed by different transmitting and
receiving antennas, we can reconstruct the reflected signals
from all positions in the entire space.

S(x, y, z, t) =

N∑
n=1

T∑
t=1

yn,te
j2π

kr(x,y,z,n)
c ej2π

kr(x,y,z,n)
λ (1)

In the equation, N represents the number of virtual channels
formed by different transmitting and receiving antennas. yn,t
represents the received signal of virtual channel n at time
t. k represents the frequency modulation slope, λ represents
the wavelength of the RF signal, and r(x, y, z, n) represents
the round-trip propagation distance of the reflected signal
from the three-dimensional spatial position (x, y, z) to the
virtual channel n. Through the aforementioned computation
of three-dimensional beamforming, the multi-channel time-
domain signals are transformed into spatial domain represen-
tation. Therefore, the phase data of the signals in the chest
and abdominal region contains respiratory information.

CA-CFAR: Since the human chest and abdomen are not
standard cylindrical shapes, and to ensure stability during lung
capacity testing, the subject needs to lean their back against
the chair. As a result, the distances between different regions



Fig. 2: LUNet architecture for Expiratory Volume curves
recovering.

Fig. 3: Spatial data augmentation of the samples.

of the chest and abdomen and the millimeter-wave radar will
vary. To accurately extract the motion plane of the chest and
abdomen during breathing, given the X and Z coordinates, the
signal amplitudes at different Y distances are summed, and
the distance corresponding to the maximum signal intensity
is considered as the region of the chest and abdomen. Addi-
tionally, to avoid interference from noise and clutter, the Cell
Averaging-Constant False Alarm Rate (CA-CFAR) algorithm
is employed to adaptively detect the target signals and finally
form the chest and abdomen motion imaging.

B. Expiratory Volume curves Recovering

LUNet: The Unet network architecture can capture the con-
textual information of images and obtain multi-scale informa-
tion, allowing it to accurately capture the respiratory features
of different regions in the chest and abdomen. The Transformer
network architecture is capable of capturing the dependencies
between different positions in the input sequence, assigning
weights to the influence of different regions in the chest and
abdomen on lung function, the network structure is shown in
the Fig. 2. By combining the Unet and Transformer network
architectures, we can learn the nonlinear correlation between
the overall region of the chest and abdomen and lung function.

Data Augmentation: Insufficient data during the training
process of deep neural networks often leads to the problem of
overfitting. Hence, it is essential to employ data augmentation
techniques to enhance the robustness of the model. In this
study, two data augmentation methods are utilized. The first

Fig. 4: Predicted Expiratory Volume curve and the original
Expiratory Volume curve.

Fig. 5: The correlation between the predicted Expiratory
Volume curve and the original Expiratory Volume curve.

method is temporal augmentation, which involves linearly
expanding or compressing time to extend or shorten each
respiratory cycle effectively. The second method is spatial
augmentation, as illustrated in the Fig. 3, which introduces
different spatial regions while ensuring coverage of the chest
and abdominal areas. This is equivalent to introducing different
noise interferences, which helps the model better learn and
understand the intrinsic features of abdominal movements.

IV. PERFORMANCE EVALUATION

The leave-one-out cross-validation method is used to eval-
uate the performance of lung function detection during the
training of the LUNet. This method involves selecting one
individual’s data as the test set and using the data from
the remaining individuals as the training set. The process
is repeated for each participant, and the average results are
obtained at the end. This approach allows for a comprehensive
evaluation of the network’s performance by ensuring that
each individual’s data is used both for training and testing,
thus providing a more robust assessment of the lung function
detection performance.



A. Performance of the predicted Expiratory Volume curves

The results of the EV curves recovered by LUNet and the
original EV curves are shown in Fig. 4, the two curves almost
completely overlap. The correlation between the predicted EV
curves and the original EV curves for different subjects is
shown in Fig. 5. The average correlation can reach 96.74%,
indicating a high similarity between the predicted and original
EV curves. Therefore, the predicted EV curves can be used
to extract relevant pulmonary function indicators and assist in
the diagnosis of pulmonary diseases.

B. Performance of the estimated pulmonary function indica-
tors.

We also evaluate the performance of pulmonary function
indicators based on the predicted EV curve results. We com-
pare our method with the SpiroFi in [18], which extracts
single-point chest wall motion from radio signal variations
and interprets this information as pulmonary function indica-
tors using Bayesian regularized neural networks. As demon-
strated in Fig. 6, our approach significantly improves system
performance with respect to mean relative errors in FEV1,
FVC, and FEV1/FVC. Specifically, we achieve mean relative
errors of 7.73%±1.61%, 8.15%±1.69%, and 6.70%±2.61%
for each indicator respectively. In comparison, the SpiroFi
method yielded larger mean relative errors in FEV1, FVC,
and FEV1/FVC at 14.90%±7.62%, 16.45%±10.41%, and
14.93%±8.03% respectively. These results clearly indicate that
our method outperforms SpiroFi across all three pulmonary
function indicators, demonstrating better robustness.

C. Ablation experiment

To demonstrate that using the phase of the entire chest and
abdomen region as input yields better results than using the
phase of a single point, an ablation experiment is conducted. In
this experiment, the maximum signal intensity point is selected
from the previously extracted chest and abdomen plane, and
the phase information of that point is used as input to the
LUNet. The performance comparison between single-point
and whole-region is shown in the Fig. 7. The FEV1, FVC,
and FVC/FEV1 obtained from single-point phase input are
16.92%, 9.83%, and 15.26%, respectively. On the other hand,
the FEV1, FVC, and FVC/FEV1 obtained from whole-region
phase input are 8.60%, 5.71%, and 6.68%, respectively. It can
be observed that the whole-region phase input has significant
advantages over the single-point phase input, indicating that
learning respiratory features from the whole region of the chest
and abdomen can significantly improve the performance of
lung function detection.

To validate the crucial role of the transformer architecture
in capturing the spatial relationships between the chest and
abdomen regions, the transformer structure is removed from
the network to observe if the network could accurately learn
the features of EV curves. A comparison of performance is
made between the LUNet without the transformer structure
and the LUNet with the transformer structure, as shown in the
Fig. 8. Without the transformer structure, the values of FEV1,

(a) FEV1

(b) FVC

(c) FEV1/FVC

Fig. 6: Comparison of Spirofi [18] and our method for esti-
mating pulmonary function indicators.



Fig. 7: Performance comparison between single-point and the
whole-region.

Fig. 8: Performance comparison between without and with the
transformer structure

FVC, and FVC/FEV1 are 28.24%, 22.19%, and 26.02%,
respectively. With the transformer structure, the values of
FEV1, FVC, and FVC/FEV1 are 8.60%, 5.71%, and 6.68%,
respectively. It is evident that the transformer structure effec-
tively establishes spatial relationships among various points
in the chest and abdomen, enabling the accurate learning of
respiratory characteristics.

V. CONCLUSION

This study investigated the fine-grained perception of lung
function using mmWave radar. By studying the whole-region
of the chest and abdomen and utilizing the LUNet, the intrinsic
respiratory features were learned, resulting in highly restored
EV curves and low errors in pulmonary function indicators.
The mean relative errors for FEV1, FVC, and FEV1/FVC were
7.73%, 8.15%, and 6.70%, respectively. Comparatively, the
error of pulmonary function indicators in clinics is typically
around 5%, indicating that the proposed method has the
potential to become a reliable solution for daily monitoring.
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