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ABSTRACT

Recent advancements in WiFi indoor localization have demon-
strated the potential for achieving decimeter-level accuracy
based on Angle of Arrival (AoA). However, existing com-
mercial WiFi Access Points (APs) suffer from phase offset
across different antennas, which significantly degrade the
performance of AoA-based methods in practical deployment.
Previous work either relied on labor-intensive manual cal-
ibration or involved inaccurate and non-robust automatic
calibration. In this paper, we propose AutoCali, an accurate
and robust automatic phase offset calibration system. The key
insight is to utilize the binary nature of phase offsets and the
property that triangulation exhibits higher convergence when
the correct combination of phase offsets is employed. Ex-
tensive experiments demonstrate that AutoCali outperforms
state-of-the-art methods by 22.1% in median localization er-
ror for simple scenarios and by 37.1% for complex multipath
scenarios.

Index Terms— Angle of Arrival (AoA), WiFi Localiza-
tion, Automatic Phase Calibration

1. INTRODUCTION

Indoor localization using commercial WiFi devices has
gained significant attention due to its cost-effectiveness and
widespread implementation [1]. With the increasing num-
ber of antennas equipped on commodity WiFi devices, it
has been demonstrated that AoA-based localization [2–6]
could achieve promising results. However, the accuracy of
AoA-based methods is hindered by the initial phase offsets
across different RF chains introduced by imperfect inertial
circuit contamination. Those offsets, referred to as the phase-
locked-loop (PLL) initial phase offsets [7], introduce phase
distortion that results in significant errors in AoA estimations,
as illustrated in Fig. 1.

To tackle this challenge, lots of methods have been in-
vestigated in recent years. Existing manual calibration meth-
ods [2, 8, 9] utilize coaxial cables and power splitters to con-
nect the transmit and receive chain, creating an ideal channel
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Fig. 1: PLL initial phase offset leading to incorrect AoA esti-
mation.

for directly measuring the PPL initial phase offsets across the
antennas. Given that the phase offsets between each antenna
pair are constant across time, these methods can efficiently
calibrate the phase offsets in raw Channel State Information
(CSI) and achieve accurate AoA estimation. However, a no-
table drawback of those approaches is the necessity for re-
calibration after each system restart or channel switch, which
demands a considerable amount of manual effort.

To overcome this limitation, automatic calibration meth-
ods have emerged. On one hand, some automatic calibra-
tion systems estimate PPL phase offsets by measuring spe-
cific location or angle information, which still incurs addi-
tional manual labor costs. For instance, Phaser [10] relies
on transmitting signals from known positions for phase offset
calibration, while D-MUSIC [11] proposes multiplying con-
jugate CSI from different positions to mitigate phase offsets
and measurement noise. On the other hand, some systems,
such as AutoLoc [12], achieve automatic calibration without
human effort by leveraging the constraints of triangulation.
However, AutoLoc still encounters certain challenges in prac-
tical deployments, especially complex scenarios with numer-
ous multipath reflections. Firstly, AutoLoc employs the com-
plex conjugate multiplication of CSI collected from reference
and target locations to remove phase offsets. This process can
introduce additional virtual multipath, diminishing the algo-
rithm’s effectiveness. Secondly, AutoLoc estimates the phase
offsets based on channel measurements. It still exhibits devia-
tions in the phase offsets compared to the true values, limiting
the precision of localization.

In this paper, we propose a novel approach, referred to as
AutoCali, for automatic and accurate phase offset calibration
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in AoA-based WiFi localization system. The key insights lie
in the underutilized binary nature of PLL phase offsets [7]
and the convergence properties of triangulation. Specifically,
the PLL phase offset between adjacent antennas has only two
possible values, according to [7]. Based on this observation,
we can easily obtain all 2n−1 possible phase offset combina-
tions for one AP, where n represents the number of antennas.
This observation largely simplifies the phase offset calibration
and turns it into a classification problem. Then, we system-
atically explore all 2N×(n−1) possible combinations of phase
offset calibration for N APs and conduct triangulation. Those
triangulation results tend to converge more effectively when
the correct combination is applied. In order to select the op-
timal combination from 2N×(n−1) possibilities, we carefully
design a confidence-aware triangulation selection algorithm.
To the best of our knowledge, AutoCali is the first automatic
phase offset calibration system that achieves calibration accu-
racy matching ground truth values.

Extensive experiments are provided to demonstrate the ef-
fectiveness of the proposed automatic phase offset calibration
method. The proposed system can achieve enhanced AoA
estimation accuracy and significantly reduce the localization
errors introduced by initial phase offsets. This research con-
tributes to the practical application of AoA-based indoor lo-
calization systems, facilitating their deployment in real-world
scenarios without the burden of frequent manual recalibra-
tions.

2. CSI MODEL

Consider a typical scenario in which the WiFi signal prop-
agates from a single transmitting antenna to a receiver
equipped with an array of M uniformly spaced antennas.
During propagation, the WiFi signal encounters L propaga-
tion paths. Additionally, the WiFi channel is divided into K
different subcarriers, each with a frequency denoted as fk,
where k = 1, 2, . . . ,K. Thus, the received CSI signal can be
expressed as:

h(t,m, k) =

L∑
l=1

αl(t,m, k)e−j2πfkτl(t)×

e−j2πfk
(m−1)dsinθl(t)

c

(1)

where t, m, k, and l denote the index of time, antenna, subcar-
rier, and propagation path; αl(t,m, k) is the complex attenu-
ation coefficient; d is the space interval between two adjacent
antennas; c is the speed of light; θl(t) and τl(t) denote the
AoA and Time of Flight (ToF) of the l-th path, respectively.

Various parameter estimation algorithms such as MU-
SIC [13], and beamforming [14, 15] can be applied to es-
timate the geometric characteristics of all paths, including
AoA and ToF. In our current implementation, we select the
beamforming algorithm to achieve joint AoA-ToF estimation,
since beamforming is robust to various environments and can
be quickly calculated through Fast Fourier Transform (FFT).

In practice, however, the CSI obtained from commer-
cial WiFi chips characterizes wireless channel frequency
response, containing various phase distortions introduced
by imperfect inertial circuits. Considering all known phase
distortions [16–19], CSI can be represented as:

h(t,m, k) =e−j2π(fCFOt+k∆f(τSFO(t)+τPDD(t)))

× ejφmh(t,m, k),
(2)

where ∆f represents frequency spacing between subcarri-
ers; fCFO, τSFO, and τPDD denote Carrier Frequency Offset
(CFO), Sampling Frequency Offset (SFO), and Packet Detec-
tion Delay (PDD); φ represents the initial PLL phase. In Eq.
2, CFO, PDD, and SFO have little impact on AoA estima-
tion performance, due to their consistency across RF chains.
In contrast, the initial phase of PLL, denoted as φm1 − φm2,
varies among RF chains and needs to be calibrated.

The AoA-based localization methods utilize the phase dif-
ferences among different antennas to estimate the AoA and
then perform triangulation for target localization. As shown
in Fig. 2, the unknown phase offsets significantly degrade the
AoA estimation performance, rendering them from obtaining
accurate AoA values on commercial WiFi Network Interface
Cards (NICs).
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Fig. 2: Estimated AoA for a 2-antenna array with phase offset
ranging from −π to π.

3. AUTOCALI DESIGN

3.1. The Binary Nature of Phase Offset

The unknown initial phase offset significantly degrades the
performance of AoA estimation. [10] indicates that the phase
offset between two antennas is fixed when the WiFi system
locks onto a specific frequency. However, the phase offset
will change randomly each time the system restarts. The
authors in [7] further point out that after the WiFi system
restarts, the phase offset indeed changes, but it settles to one
of two fixed values, with a difference of π. Furthermore, for
chips of the same model, the phase offsets are approximately
the same.

Based on this insight, we can transform the phase calibra-
tion task into a classification problem by pre-measuring the
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Fig. 3: System Overview: Orange arrows represent triangula-
tion after calibration using incorrect phase offset, while green
arrows represent triangulation calibrated by the correct phase
offset. We determine the correct phase offset by observing the
degree of convergence in triangulation.

phase offsets among all adjacent antennas of the AP. Specifi-
cally, for all APs in the localization system, we can measure
one possible phase offset combination using coaxial cables
and power dividers, and deduce all other possible combina-
tions based on the characteristic of their π difference. Com-
pared with existing phase calibration methods, the proposed
AutoCali requires only one manual measurement, and thus
the human effort is significantly reduced.

3.2. The Convergence Property of Triangulation

Now that we have obtained all possible phase offset combi-
nations, the next crucial question is to find the correct one.
The presence of multiple fixed APs with known positions is a
significant aspect of a localization system. Hence, automatic
calibration can be conducted by jointly considering multiple
APs without the necessity of prior knowledge about the ter-
minal’s location. The key insight is that, under ideal condi-
tions, the triangulated results from the accurate combination
of phase offsets tend to converge at a single point.

Specifically, by leveraging the binary nature of phase off-
sets, we can obtain 2n−1 possible phase offset combinations
for each AP, denoted as S, (APs of the same model share the
same S). For s ∈ S, we directly calibrate the collected raw
CSI and perform 2D-beamforming on the calibrated CSI, re-
sulting in 2n−1 AoA-ToF spectra P (θ, τ), with only one be-
ing correct. Subsequently, we transform each AoA-ToF spec-
trum into a probability density function concerning angles.
Here, we directly select the peak with the smallest ToF value
(denoted as τmin) in the AoA-ToF spectrum as the direct path,
which is simple yet efficient. Then, we compute the probabil-
ity density function:

P (θ) =
P (θ, τmin)∑π/2

θ=−π/2 P (θ, τmin)
. (3)

By utilizing P (θ) coupled with CSI from multiple APs,
the confidence level associated with each location can be
determined through a confidence-aware triangulation. This
confidence level serves as an indicator of how multiple APs
effectively converge during triangulation at a given location.
Specifically, we conduct grid point searches on the two-
dimensional plane to be localized. For each grid point, the
confidence level of that position is computed:

P (x, y) =

N∏
i=1

Pi(θi(x, y)), (4)

where i represents the i-th AP, θi(x, y) represents the AoA
between point (x, y) and the i-th AP, which can be calculated
based on the geometric relationship between that point and
the AP:

θi(x, y) = arccos
(xi − x, yi − y) · n

||(xi − x, yi − y)|| × ||n||
. (5)

Here, (xi, yi) is the location of i-th AP, n represents the unit
directional vector of the antenna orientation. For each candi-
date phase offset combination, we can generate a confidence
spectrum on the two-dimensional localizing plane by triangu-
lating, with a total of 2N(n−1) possibilities. We compare the
maximum confidence from each spectrum and consider the
candidate phase offset combination associated with the high-
est confidence among all maxima as the correct phase offset.

However, in practical scenarios, some environmental fac-
tors such as noise and multipath can significantly affect the
robustness of the calibration algorithm. This is intuitively
reflected in the higher convergence of incorrect phase offset
combinations during the triangulation process. To tackle this
problem, we introduce a multi-packet processing scheme.
Specifically, we superimpose and average the maximum con-
fidence levels of multiple packets corresponding to each
combination of phase offsets:

pjmax =

∑N
i=1 p

i,j
max

N
, (6)

where i, j, and pmax represent the i-th packet, j-th triangula-
tion spectrum, and the maximum confidence level of the spec-
trum, respectively. Similarly to single-packet processing, we
consider that the phase offset combination corresponding to
the maximum pmax is the correct one. This yields a more ro-
bust calibration result, a necessity that is further confirmed by
subsequent experiments.

4. EXPERIMENTS
4.1. Experiment Setup

We implement our method on a human-held device WiFi
localization dataset1, which consists of approximately 120k

1For details on the scenario setup, please refer to [20].
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Fig. 4: Performance of AutoCali. (a) Phase offset calibration accuracy. (b) AoA estimation performance comparison. (c)
Localization performance comparison.

Number of APs Laboratory Office Lounge Meeting Room
3 271 (28s) 421 (43s) 338 (34s) 500 (50s)
4 433 (44s) 736 (74s) 608 (61s) 891 (90s)

Table 1: Minimum packet count (seconds) required to
achieve 100% calibration accuracy.

data points collected from ten volunteers with a sampling
rate of 10Hz across four classic indoor scenarios: labora-
tory, lounge, office, and meeting room. This dataset uses an
Ultra-Wideband (UWB)-based localization system with an
accuracy of ten centimeters to obtain ground truth location
data.

4.2. Phase Offset Calibration Accuracy

AutoCali utilizes the binary nature of phase offset to trans-
form the calibration problem into a classification problem.
We implement our method in four different scenarios to eval-
uate the accuracy rate of the phase offset calibration. As illus-
trated in Fig. 4(a), the accuracy rate of phase offset calibration
increases with the number of packets, reaching 100% with
at most 500 packets. With the sampling rate of 10Hz, cali-
bration can be accomplished within a 50-second timeframe.
This implies that AutoCali can automatically, accurately, and
quickly complete the phase offset calibration task across four
common indoor scenarios.

4.3. AoA Estimation Accuracy

We conduct a comparison of AoA estimation performance be-
tween our AutoCali and two other methods: AutoLoc [12]
and Phaser [10] in simple and complex scenarios, respec-
tively. As Fig. 4(b) illustrates, AutoCali achieves median er-
rors of 5.0◦ in the simple laboratory scenario and 12.0◦ in the
complex meeting room scenario, which significantly outper-
forms Phaser and AutoLoc. It is worth noting that AutoCali
exhibits performance identical to the ground truth calibration,
which is achieved by the coaxial cables and power splitters
(manual calibration). This implies the accuracy advantage of
AutoCali compared with other automated calibration meth-
ods.

4.4. Localization Accuracy

We conduct localization accuracy experiments in a simple
laboratory scenario and complex meeting room scenario to
evaluate our AutoCali. As shown in Fig. 4(c), AutoCali ex-
hibits superior performance compared with AutoLoc [12] and
Phaser [10]. Specifically, in the simple laboratory scenarios,
the median localization errors for AutoCali, AutoLoc, and
Phaser are 0.73m, 0.94m, and 1.06m, respectively. Further-
more, in complex meeting room scenarios, AutoCali achieves
a remarkable 1.57m median localization error, significantly
outperforming AutoLoc’s 2.51m and Phaser’s 2.58m. This
implies that in the meeting room scenario with rich multipath
reflections, AutoLoc and Phaser encounter challenges, while
AutoCali significantly enhances calibration robustness.

4.5. Impact of AP Numbers

We evaluate the impact on the phase calibration of the num-
ber of APs. Table 1 illustrates the minimum packet count to
achieve 100% calibration accuracy of our AutoCali in four
scenarios under varying numbers of APs, along with the cor-
responding CSI collection times. With an increasing number
of APs, the minimum required packet count remains low, tak-
ing up to 90 seconds to complete calibration.

5. CONCLUSIONS

In this paper, we investigated the PLL phase calibration
problem and proposed AutoCali, a confidence-aware phase
calibration system, that can automatically, accurately, and ro-
bustly calibrate the phase offset among antennas. To the best
of our knowledge, AutoCali represents the first automatic
calibration system that achieves the same level of precision as
manual calibration. Real-world evaluations demonstrate that
AutoCali outperforms state-of-the-art methods by 22.1% in
median localization error for simple scenarios and by 37.1%
for complex multipath scenarios. We believe AutoCali’s
salient advantages will promote more AoA-based indoor
localization systems to be deployed in the real world.
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