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ABSTRACT

Radar sensing has been a promising solution for contactless
monitoring of Heart Rate Variability (HRV), an essential
indicator of the cardiovascular and autonomic nervous sys-
tems. However, existing works neglect heartbeat-driven body
surface motions spreading across the entire body with spa-
tial variations, which limits their accuracy in identifying
fine-grid consecutive heartbeat timings and overall HRV per-
formance. In this paper, we propose to exploit the entire
body reflections and model the inherent spatial-temporal re-
lationship between these reflections and heartbeats by deep
neural network for contactless HRV monitoring. Specifically,
a hybrid convolution-transformer-based network is designed
to convert the complex multi-dimensional spatial-temporal
modeling problem into an efficient sequence modeling pro-
cess. Experimental results demonstrate its superiority over
the baseline method, achieving the median IBI estimation
error of 12ms (w.r.t. 98.47% accuracy), RMSDD error of
7.3ms, SDRR error of 2.9ms, pNN50 error of 5.5%.

Index Terms— HRV, Radar Sensing, Deep Learning

1. INTRODUCTION
Heart rate variability (HRV), the variation of the periods be-
tween Inter-Beat Intervals (IBI), is identified as an essential
indicator of the overall health status of an individual [1, 2].
HRV analysis provides insights into both cardiac health and
the Autonomic Nervous System (ANS) [2, 3]. Hence, the
development of more convenient, comfortable, and effective
HRV monitoring technology has always received significant
attention in both academia and industry. Among these tech-
nologies, radar sensing has emerged as a promising solution
[4, 5, 6, 7, 8, 9, 10, 11] due to the contactless, privacy-
preserving, and comfortable user experience.

In these works, various efforts are focusing on utilizing
signal processing algorithms to model the relation between
RF signals and heartbeat motion [6, 7, 8]. Wang et al. [7] pro-
pose to optimize the decomposition of the phase of the chan-
nel information modulated by the chest movement, thus es-
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timating the heartbeat signal and further evaluating the HRV
metrics. Also, with the rapid growth of deep learning mod-
els, the number of related works has increased significantly
on this topic [4, 5, 9]. Zhang et al. [9] propose to decom-
pose nonlinear signal mixing and recover fine-grained heart-
beat waveform by leveraging variational encoder-decoder net-
work design.

Typically, radar-based HRV sensing works by separating
the reflected signal from a particular place on the body sur-
face, recovering the heartbeat waveform modulated in the sig-
nal, and finally calculating HRV metrics from the waveform.
However, as highlighted in [12], the inertial cardiac mechan-
ical activity drives the entire torso surface to move in the
same heartbeat rhythms but with spatially variant morphol-
ogy, rather than being a one-dimensional motion at a single
body surface place. This indicates that previous methods may
be ambiguous in identifying fine-grid consecutive heartbeat
timings by considering one-dimensional movement and over-
looking the relationship between others on the torso surface.
Therefore, for accurate HRV monitoring, we need to jointly
consider reflected signals from the entire body surface.

However, addressing the above issue in radar sensing is
complex due to two main challenges. Firstly, unlike vision-
based photoplethysmography [13] which easily identifies skin
regions, radar sensing struggles to accurately separate reflec-
tions from the entire torso surface. Secondly, modeling the re-
lationship between the spatially variant body surface motions
and the heartbeat timing is challenging, particularly given the
notable noise and interference in the radio signal domain.

In this paper, we propose to exploit the entire body reflec-
tion signals and model the inherent spatial-temporal relation-
ship between these reflections and heartbeats by deep learn-
ing network for contactless HRV monitoring. Specifically,
we extract coarse-grid voxel signals around the target body
from raw signals and construct the spatial-temporal cardiac
signals representation which includes the entire body surface
heartbeat movements with spatial redundancy. Then, a hybrid
convolution-transformer-based network is designed to con-
vert the complex multi-dimensional spatial-temporal model-
ing problem into an efficient sequence modeling process. The
HRV metrics are finally calculated based on the heartbeat
waveform generated by the network. To substantiate the ef-
fectiveness of our proposal, we collect a dataset consisting
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Fig. 1: System overview. First, we construct cardiac spatio-temporal signal representation from the raw data. Then, our deep
spatial-temporal model transforms the complex multi-dimensional problem into a sequence modeling process. Finally, we use
the generated heartbeat waveform to compute HRV metrics.

of data from 8 different participants. Comparative analyses
against state-of-the-art methods consistently demonstrate the
superior performance achieved by our approach.

2. SYSTEM DESIGN
2.1. Cardiac Spatio-Temporal Signals Constructing
First, we need to extract cardiac spatial-temporal signals re-
flected from the entire body surface. The fundamental con-
cept behind using radar sensors for detecting cardiac micro-
motions involves extracting the phase variation of received
signals reflected from the target. The phase model is mathe-
matically defined as follows:

ϕ(t) = 2π
d(t)

λ
, (1)

where λ represents the wavelength of the RF signals, d(t) sig-
nifies the distance between the radar sensor and the reflection
objects, and t stands for sensing time.

However, it is complex to precisely identify and extract
these signals from the received RF signals. Instead, we first
extract signals from the target with spatial redundancy to
ensure the entire body reflections are included. Then, we
emphasize the heartbeat features and suppress other interfer-
ences in these signals by temporal filtering. This streamlined
processing approach helps us construct a spatial-temporal
cardiac signals representation, ensuring that all reflections
related to the heartbeat are included with spatial-temporal
details embedded.

Specifically, we opt for a coarse-grained spatial range to
ensure the inclusion of the entire body reflections using the
beamforming and localization techniques in [14]. The beam-
forming calculation is expressed as:

S(x,y,t) =

N∑
n=1

T∑
tf=1

yn,tf e
j2π(tf−1)Tsk

r(x,y,n)
c ej2π

r(x,y,n)
λ ,

(2)
where N is the number of virtual channels, yn,tf is the re-
ceived signal at tf (ADC sampling points within the chirp),
Ts is the ADC sampling period, k is the frequency slope, λ is
the wavelength, r(x, y, n) is the distance from voxel (x, y) to
the antenna pair in channel n, and t is the frame time.

Then, we utilize a second-order differentiator [8] to elim-
inate noise signals while retaining the heartbeat signals for
each voxel. The differentiator is defined as:

s′′0 =
(s−3 + s3) + 2(s−2 + s2)− (s−1 + s1)− 4s0

16h2
, (3)

where s′′0 refers to the second derivative at a particular time
sample, si is the value of the time series i samples away, h is
the frame periodicity between consecutive samples.

Finally, we can construct the cardiac spatio-temporal sig-
nals in the form of Xin ∈ RH×W×L. H and W denote the
dimensions of the 2D spatial size, L denote temporal length.

2.2. Deep Spatial-Temporal Model
Modeling cardiac spatial-temporal signals with deep neural
networks is challenging. This challenge arises from the explo-
sive network input size due to high-frequency radar sampling
and the need for long-duration signals with redundant spatial
sizes in the modeling process. To address this, we designed
a hybrid convolutional-transformer-based neural network ar-
chitecture as shown in Fig. 1.

Specifically, we first employ a conditional Temporal Con-
volutional Network (TCN) [15, 16] to conduct feature extrac-
tion and compression in the temporal dimension. Within the
TCN, Gated Activation Units are used to incorporate the in-
fluence of historical features:

z = tanh(Wf,k∗x+Vf,k∗f(h))⊙σ(Wg,k∗x+Vg,k∗f(h)),
(4)

where ∗ denotes convolution, ⊙ represents element-wise mul-
tiplication, σ(·) is the sigmoid function, k is the layer index,
f and g correspond to the filter and gate, W denotes a learn-
able convolution filter, and Vf,k and Vg,k are learnable linear
projection matrices. f(h) maps the historical sequence to the
input feature with the same dimensions.

Then, we can model the entire process as follows:

p(Xf |Xin) =

T∏
t=1

p(Xf |y1, ..., yn−1, Xin), (5)

where the feature Xf conditions on the sequence ground truth
at previous timesteps and the current input Xin.
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To clearly utilize the physical interpretations of spatial-
temporal information, inspired by Vision Transformers [17,
18], we convert multidimensional data into sequence-like
patches. Then, we employ a transformer model to capture
complex relationships between these patches. Finally, we
project these representations to obtain fine-grained heart-
beat information. Specifically, given the TCN output as
Xf ∈ RH×W×C×Tout , where C is the number of out-
put channels, and Tout represents the feature length with
a global temporal view, we split the Tout dimension into P
patches using sum-pooling. We add a learnable token to cap-
ture the global context, and the spatio-temporal patches are
mixed. This process yields mixed spatio-temporal patches
Xst ∈ RH∗W∗P+1×C . After adding position embeddings,
we obtain global spatio-temporal features as:

Xw = Attention(Xst, Xst, Xst) ∈ RC . (6)
Following this, a simple two-layer MLP is utilized as:

Xout = σ(Xw ·WT
1 + b1) ·WT

2 + b2, (7)
where, W1 and W2 are learnable matrices, and σ represents
the activation function. Xout represents the final output.

Our task involves precise heartbeat timing rather than
physiology waveform reconstruction. Inspired by [19], we
use the heartbeat waveform as ground truth which is gen-
erated by interpolating the time points corresponding to the
heartbeat events (R peaks in electrocardiogram, ECG) with
Gaussian distribution, as shown in Fig. 2. For the final out-
put, a simple peak-finding process is used to locate heartbeat
timing.

3. EXPERIMENTS AND RESULTS

3.1. Implementation

Our non-contact HRV monitoring system employs the TI
AWR1843 millimeter-wave radar, equipped with 2 trans-
mitters and 4 receivers. Operating at 100 Hz, it features
a 65MHz/us signal slope and a 3.32 GHz bandwidth. The
ground truth ECG data is acquired using the TI ADS1292
evaluation board. Our system is implemented in PyTorch,
optimized with Adam and L1 loss, employing a learning rate
of 0.001 and a mini-batch size of 32. Key hyperparameters
include L = 640, C = 128, Tout = 128, Xout dimension =
100, H = W = 9 (a 0.5×0.5m region), and the TCN with
9 stacks utilizing a dilation factor of 2. Within the Trans-
former block, we employ an attention dimension of 32 and 4
attention heads.

Experimental setting: To evaluate our system, we con-
duct experiments with 8 participants. The radar data and
ECG signals are collected simultaneously. During exper-
iments, participants are asked to sit and breathe naturally.
We conduct measurements when subjects sit at different dis-
tances from radar, specifically at 1m, 2m, 3m, and 4m. At
each distance, we collect three segments of data, totaling nine
minutes. In total, we collect data for nearly 5 hours. Finally,
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Process
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Fig. 2: Results and ground truth visualization. The first
row displays the true ECG signal alongside its correspond-
ing heartbeat waveform ground truth. Subsequent rows show
results from different methods. The final row presents the IBI
results along the sampling dimension.

75% of the data (6 subjects) are used to train the model, then
the model is tested upon the remaining 2 subjects.

Baseline: We select mmHRV [7] and VED [9] as baseline
methods for comparison. mmHRV is the SOTA radar-based
HRV analysis achieved by signal processing design. VED
demonstrates promising performance in recovering fine-grid
heartbeat waveforms by using a novel deep generative model.

Metrics: We use the following metrics:
• Absolute IBI Error: The absolute difference between

predicted IBI and its corresponding ground truth.
• Relative Error: The ratio between the absolute IBI er-

ror and the ground truth value.
• RMSSD: Root mean square of successive differences.
• SDRR: Standard deviation of all the IBIs.
• pNN50: A measure of the percentage of consecutive

IBIs differing by more than 50 ms.
To ensure a fair performance comparison and prevent am-

biguity in IBI error calculations caused by differing heart-
beat counts in the generated and ground truth, we calculate
IBI along time sampling dimension rather than heartbeat se-
quences, as shown in Fig. 2. Specifically, at each time point,
the IBI is determined by the period between the two adjacent
waveform peaks. For period-based HRV metrics of RMSDD,
SDRR, pNN50, evaluation is achieved through a 60-second
sliding window with a 5-second step.

3.2. Performance Evaluation

Fig. 2 demonstrates the output of various methods. Mean-
while, Fig. 3 illustrates the overall IBI estimation accuracy
of the three different methods at all distances. mmHRV, VED
and our system achieve median absolute IBI errors of 35ms,
26ms, 12ms, and median relative errors of 4.5%, 3.3%, 1.5%.
Our method achieves the best overall performance. This is
because deep learning algorithms tend to extract more heart-
beat features compared to traditional signal processing meth-
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Metrics IBI Error(ms) ↓ RMSSD Error(ms) ↓ SDRR Error(ms) ↓ pNN50 Error(%) ↓
Methods mmHRV VED Ours mmHRV VED Ours mmHRV VED Ours mmHRV VED Ours

D
is

ta
nc

e
(c

m
)

100
Mean 19.24 25.45 12.41 22.94 19.48 5.56 10.39 12.02 1.57 19.94 11.00 5.07

Median 12.00 16.00 10.00 14.95 16.85 5.70 4.75 7.20 1.30 13.36 10.14 5.37

200
Mean 52.05 50.51 18.12 39.56 45.76 13.39 16.44 38.55 5.38 35.27 20.08 6.20

Median 38.00 26.00 12.00 41.20 37.60 8.65 15.85 37.00 3.25 35.39 20.38 4.69

300
Mean 61.36 61.74 18.14 49.45 50.40 9.96 25.97 36.29 4.40 39.93 23.05 7.37

Median 51.00 40.00 12.00 49.90 51.59 9.40 25.95 35.65 3.30 39.20 23.29 7.35

400
Mean 68.66 68.22 24.44 36.27 49.68 17.89 22.65 32.18 12.40 29.86 21.87 12.60

Median 59.00 44.00 16.00 33.55 56.30 13.10 21.65 29.35 5.50 28.63 20.59 8.69

All
Mean 50.21 50.93 18.24 36.99 40.86 11.66 18.83 29.45 5.80 31.26 18.79 7.78

Median 35.00 26.00 12.00 37.25 37.15 7.30 18.15 21.25 2.90 31.28 15.89 5.53

Table 1: HRV monitoring performance at different distances under different methods.

(a) Absolute IBI Error (b) Relative Error

Fig. 3: Overall performance of IBI.

ods, and the entire body reflections can be processed by deep
spatio-temporal models to extract more precise heartbeat tim-
ing information.

Table 1 presents the mean and median HRV-related met-
rics for all methods across various distances. Several note-
worthy observations can be discerned. Firstly, as the distance
increases, both the median and mean IBI errors for all three
methods tend to rise. This can be attributed to the decrease
in signal-to-noise ratio with increasing distance. Notably,
mmHRV and VED appear more sensitive to distance, pos-
sibly because limited body reflection performs poorly when
signal quality decreases. Furthermore, our approach outper-
forms others in HRV metrics, including RMSSD, SDRR, and
pNN50, displaying more stable performance across different
distances. Also, our performance exhibits greater stability in
terms of both mean and median errors. These underscore the
robustness of our approach in accurately extracting heartbeat
timings.

In summary, our system consistently demonstrates su-
perior performance across varying distances, showcasing its
ability to reliably extract intricate HRV-related features.

3.3. Ablation Study

To demonstrate the importance of considering the entire body
reflections in radar-based HRV monitoring rather than the
single-place body reflection, we first conduct the ablation ex-
periment by comparatively using the cardiac spatio-temporal
signals or one-dimensional cardiac signals at a single body

surface place described in [9] as the network input. As shown
in Table 2, the performance significantly improves when
using spatial-temporal signals that consider the entire body
reflections.

Type of errors IBI (ms) ↓ RMSSD (ms) ↓ SDRR (ms) ↓ pNN50 (%) ↓

Single
reflection

Mean 42.53 16.44 14.50 10.14

Median 26.00 11.40 9.10 8.70

Entire body
reflections

Mean 18.24 11.66 5.80 7.78

Median 12.00 7.30 2.90 5.53

Table 2: Ablation study of cardiac signal representation.

We also analyze the effectiveness of the spatial modeling
in the network. Specifically, we conduct the experiment with-
out spatial modeling by averaging transformer input along
the spatial dimension to blur the spatial information in Xf .
The result shown in Table 3 demonstrates our network design
effectively models spatial information and achieves superior
performance.

Type of errors IBI (ms) ↓ RMSSD (ms) ↓ SDRR (ms) ↓ pNN50 (%) ↓

Without
spacial modeling

Mean 22.38 13.61 8.50 9.79

Median 16.00 8.15 4.20 7.35

With
spacial modeling

Mean 18.24 11.66 5.80 7.78

Median 12.00 7.30 2.90 5.53

Table 3: Ablation study of spatial modeling.

4. CONCLUSIONS

In this paper, we presented a novel system designed to en-
hance HRV monitoring by efficiently extracting information
from the entire torso surface. Leveraging entire body reflec-
tions and a deep spatio-temporal network, we have achieved
the best results in a fair HRV evaluation approach. Further-
more, we emphasized the significance of using entire body re-
flections and spatial modeling for HRV analysis, demonstrat-
ing its superior performance. This system holds promise for
non-contact HRV monitoring, with potential applications in
early cardiovascular disease diagnosis and stress assessment.
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