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ABSTRACT

Contactless vital signs estimation using mmWave radar has
gained significant attention. However, existing studies are
built upon the radar being directed facing the thorax to capture
fine-grained vital signs, ignoring the angle variation between
the radar and thorax in practical deployment. In this paper,
we propose a spatial-temporal optimization model to estimate
the human body orientations between the radar and thorax
through extracting the multi-domain features of reflected sig-
nal. By aligning the signal variation captured from different
angles, we can realize orientation-free vital sign sensing. The
system achieves an average angle estimation error of 13.1°,
and a 14.8% discrepancy reduction in terms of the mean ab-
solute error of the signal captured at different angles.

Index Terms— Wireless sensing, millimeter wave radar,
vital signs, body orientation

1. INTRODUCTION

Long-term monitoring of human respiration and heartbeat is
significant for medical diagnosis of lung and cardiovascular
diseases, as well as the evaluation of sleep status [1, 2]. How-
ever, existing monitoring systems typically rely on intrusive
sensors [3, 4], which leads to discomfort for patients. To ad-
dress these challenges, non-contact vital sign sensing using
radio signals has gained significant attention due to its ability
to extract phase variations caused by chest movements and
heart beats without the need for physical contact [5, 6, 7]. Ex-
isting studies often require the human chest to face the radar
directly [8, 9], as this position yields the most pronounced and
easily extractable chest movement. However, when the an-
gle between the body and the radar changes, the modulation
of the reflected signal by the thoracic micromotion becomes
weaker, which may lead to incorrectly interprets the situation
as hypoventilation [2], or the wrong results to the measure-
ment of human lung capacity [10].

The key to addressing this issue lies in accurately deter-
mining the body orientation [11]. Several research efforts

∗Dongheng Zhang is the corresponding author. This work was supported
by National Key R&D Programmes under Grant 2022YFC2503405, National
Natural Science Foundation of China under Grant 62201542

Thoracic 

Cross-Section

R
d1

d2

−𝜃1

Human Body

Direct Radar 

(angle = 0°)

Oblique Radar 

(angle = 𝜃2)

Oblique Radar 

(angle = −𝜃1)

𝜃2
Time (s)

Time (s)

Time (s)

P
h

as
e 

(R
ad

)

P
h

as
e 

(R
ad

)

P
h

as
e 

(R
ad

)

E
le

v
at

io
n

 (
°)

E
le

v
at

io
n

 (
°)

E
le

v
at

io
n

 (
°)

Azimuth (°)

Azimuth (°)

Azimuth (°)

Fig. 1. Impact of body orientation on the phase variations.

have been devoted to this area. For instance, in [12], they uti-
lize radar arrays at three different locations and a random for-
est algorithm to classify six orientations of the human body.
Similarly, [13] utilizes four radar arrays at different locations
to capture the Doppler features of waving arms for classify-
ing the eight orientations of human body. In [14], a distributed
radar network with a radius of 1.3 m is employed to estimate
the respiration rate and heart rate of human subjects located
at different orientations. While these approaches address this
issue to some extent, they rely on multiple radar devices lo-
cated at different locations, which increases the system cost
and hardware complexity. Additionally, they simply treat the
body orientation estimation as a classification problem, and
cannot obtain specific angles.

In this paper, we present a novel framework for estimat-
ing the human body orientations and aligning signal phase
variation at various body orientations using a single-chip
millimeter-wave radar. Our key design principle is to extract
signal features related to body orientations from different
domains. To achieve this, we first implement a 4D chest
imaging algorithm to locate the human body (specifically the
chest). Then, we analyze and capture signal features from the
spatial domain, frequency domain, and energy domain. These
features reflect the correlations between the signal variations
and body orientations. Based on the extracted features, we
formulate the angle estimation as an optimization problem
to obtain the body orientations. Finally, we leverage the es-
timated angles to compensate for the phase variation of the
reflected signal. Extensive experiments have demonstrated
that our approach can achieve an average angle estimation
error of 13.1°, and after compensation, the absolute phase
error between oblique and direct signals is reduced by 14.8%.
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Fig. 2. The proposed system consists of three components: spatial positioning, multi-domain feature extraction and phase
compensation. Firstly, our system locates the human target using a series of array signal processing methods. Subsequently,
we extract eight features that contain body orientation information from the spatial, energy, and frequency domains of the
signal. These features are then utilized to estimate the specific angle with an optimized model. Finally, we leverage the angle
information to compensate for the phase of the oblique signal.

2. METHOD

As shown in Fig. 2, our proposed approach encompasses
the following steps: (1) identifying the spatial position to lo-
cate the target, (2) conducting multi-domain feature extrac-
tion and angle estimation, and (3) compensating for signal
phases across different orientations.

2.1. Spatial Positioning and Signal Modeling

The reflected signals from the human body’s chest carry the
information about chest motion, where changes in the dis-
tance between the chest cavity and radar significantly modu-
late the signal phase:

ϕ (t) = 2π
d(t)

λ
, (1)

where λ is the wavelength of the Radio Frequency (RF) sig-
nals, d(t) is the distance between the radar sensor and reflec-
tion position, and t is sensing time.

With a 2D antenna array and Frequency-Modulated Con-
tinuous Wave (FMCW), we can obtain RF reflections in 3D
space [8, 15]. Specifically, as shown in Fig. 2 , we first per-
form range-FFT on the reflected signals and localize the hu-
man body by finding the range bin with the highest reflected
energy [16]. Then, we perform 2D beamforming on the re-
ceived signal from the selected range bin [17, 18, 19], obtain-
ing the differentiated representation of each voxel in the 2D
plane (azimuth and elevation directions) [20].

When the human body faces the radar, chest movement
produces the strongest modulation on the radar signal. How-
ever, when the human chest forms a certain angle with the
radar, the modulation of the signal by chest movement will be
the projections of the radar beam direction:

Sd(t) = B(t)S(t)ej2π
2d(t)

λ

So(t) = A(θ)B(t)S(t)ej2π
2d(t)γ cos(θ)

λ ,
(2)

where Sd(t) is the direct radar reflected signal, So(t) is the
oblique radar reflected signal, S(t) is the radar transmitted
signal, B(t) represents the modulation of the signal amplitude
under direct conditions, A(θ) represents the further modula-
tion of the signal amplitude at θ degrees beyond the direct
condition, d(t) is the thoracic heave distance, and γcos(θ)
represents the projection coefficients. From Eq. 2, we can see
that the phase of the oblique signal can be compensated by
solving the angle θ.

2.2. Multi-Domain Feature Extraction

From Eq. 2, we see that both the amplitude and phase of the
received signal are affected by the angle θ. Thus, we aim
to obtain angle information by extracting these angle-related
features.

Spatial domain. Firstly, we extract the target’s spatial
distribution in the radar coordinate system (shown by the blue
dotted line in Fig. 1). The distribution of the human body in
the radiation area changes with the orientation. At θ = 0◦, the
human body is directly beneath the radar, with nearly sym-
metrical irradiation range on the left and right. This can also
be seen in the heatmap of beamforming, where the target is
centrally located. For θ ̸= 0◦, the radar-to-right-chest dis-
tance are not equal to the radar-to-left-chest distance, causing
an overall shift of the target position in the heatmap. There-
fore, despite the radar’s limited resolution preventing us from
determining the precise orientation, this feature helps discern
if the human body is towards left or right.

Frequency domain. Breathing is the predominant cause
of chest movement at rest, which extensively modulates the
phase of reflected signals. This modulation results from both
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chest motion and the orientations between the human body
and radar, with angle information also being included in the
signal amplitude. Hence, our analysis focuses on extracting
the most pronounced respiratory component. Specifically, the
received signal, after passing through a band-pass filter, will
show a spike in the respiratory frequency range of 0.2-0.34
Hz (12-20 bpm) [21], which represents the fundamental fre-
quency of the respiratory signal. This information allows us
to identify the second and third harmonics of the respiratory
frequency [22], which correspond to amplitudes that charac-
terize respiration, as depicted in Fig. 2.

Energy domain. To enhance model generalization, we
consider low signal-to-noise ratio environments where noise
might affect the distribution of signal spectrum. Therefore,
instead of relying solely on a single respiratory frequency that
may be contaminated by the noise, we partially preserve the
modulation information by calculating the total energy within
the frequency band containing human respiration and heart-
beat. Specifically, we apply a band-pass filter of 0.2-0.34 Hz
(12-20 bpm) and a band-pass filter of 1-1.5 Hz (60-90 bpm)
[23] to the raw signals. By doing so, we can calculate the to-
tal energy within the respiration band and the heartbeat band,
respectively, as shown by the pink dashed line in Fig. 2.

In summary, we derive eight features in total for estimat-
ing the orientation of the human body: the elevation and az-
imuth angles of the strongest reflection point, the fundamen-
tal amplitude of the respiratory signal, the second harmonic
amplitude, the third harmonic amplitude, the total energy of
the respiratory band, the total energy of the heartbeat band,
and the left/right rotation label obtained from azimuth angle
discrimination. We can represent these as a feature vector x:

x = [1, x1, x2, x3, x4, x5, x6, x7, x8] . (3)

We model the optimization problem for angle estimation as
follows:

ω∗ = arg min
ω

N∑
n=1

∣∣∣∣θn − ω xT
n

∣∣∣∣2
2
, (4)

where n is the n-th set of data, θn is the true angle corre-
sponding to the n-th set of signal data, and xn is the feature
corresponding to the n-th set of signal data. Therefore, the
angle estimation results can be expressed as θ̂ = ωxT and
vector ω is the weight distribution of each feature.

2.3. Adaptive Compensation of Signal Phase

Based on the angular information obtained, we can compen-
sate for the signal phase in the radar oblique state.

Firstly, we locate both the oblique and direct signals
from the same region of the human body’s surface through
inter-area correlation. Taking the location of the strongest
energy reflection of the received oblique signal as the cen-
ter, we frame an approximated 9.1 cm × 9.1 cm area (10°

elevation and azimuth angle). By using a sliding window to
traverse the direct signal’s perception range, we can compute
the inter-area cross-correlation, defined as the sum of all sig-
nal phases cross-correlations. Ultimately, the range with the
largest cross-correlation is considered from the same body
surface region as the oblique signal’s framing range. Results
are depicted in Fig. 2.

As can be seen from Eq. 2, for the signal phase modula-
tion caused by the same region, the oblique signal phase is the
projection of the direct signal phase at angle multiplied by the
attenuation factor γ. Hence, the phase compensation can be
realized by the inverse operation of the oblique signal phase.
We set the empirical value of attenuation factor γ to 5

6 .

3. EXPERIMENTS

3.1. Experimental Setup

Considering the common ECG monitoring and sleep moni-
toring scenarios in hospitals, we perform contactless data ac-
quisition in clinically relevant scenarios. As shown in Fig. 3,
during data acquisition, the subject is in a supine position on
the bed and remain in a quasi-static state. Two radar sensors
are placed on a fixed bracket. Direct radar is positioned 0.52
meters above the chest’s center, while the oblique radar is sit-
uated 0.52 meters lateral to the chest’s center and angled to
capture the movements of the thoracic cavity from different
perspectives. We conduct a total of 98 experiments involv-
ing 7 participants aged between 21 and 25 years, including
5 males and 2 females. In each experiment, the angle be-
tween the oblique radar and the human body is adjusted by
10 degrees and each session is conducted for a duration of 40
seconds and is repeated three times.

We implement our contactless ECG monitoring system by
using TI IWR6843 millimeter-wave radar and DCA1000 real-
time data acquisition board. We activate 3 transmitters (Tx)
and 4 receivers (Rx) to achieve a virtual 2D antenna array
with 12 channels. The radar operates within a frequency band
of 60-64 GHz and has a sampling rate of 100 Hz. The 3D
beamforming is carried out in the radar’s relative coordinates.
Considering the radar’s beam sensing range and detection dis-
tance, we refine the 3D sensing grid into 15 range bins, 40°-
140° azimuth angles, and -70°-70° elevation angles.

3.2. Evaluation Metrics

In the first part of angle estimation, we input radar signals
gathered from different angles to estimate angle information.
We utilize the Mean Absolute Error (MAE) as a metric:

MAE =
1

N

N∑
n=1

(
∣∣∣θn − θ̂n

∣∣∣), (5)

where θ is the true angle, θ̂ is the estimated angle, N is the
number of tests.
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R=0.52m

Direct Radar
Oblique Radar

Fig. 3. Experimental setup of data collection.

(a) Angle estimation error (b) ECDF of cross-validation

Fig. 4. Cross-validation generalization across individuals.

In the second part, for both the oblique signal phase before
and after phase compensation, we compute their MAE with
the phase of the direct signal. Then, we use the improvement
of these two MAEs to demonstrate the effectiveness of our
system.

3.3. Experimental Results

We first evaluate the accuracy of the single chip radar system
for orientation estimation.

Our system demonstrates an average accuracy of 98.3%
in determining the direction of rotation of the human body,
whether it is towards the left or right. Angle estimation tests
are performed on 294 sets of time series samples obtained
from various subjects at different angles within a range of -70°
to 70° of human rotation, and the average angle estimation
error is 13.1°, as shown in Fig. 4(a).

In order to verify the generalizability of the algorithm
on different users, we use data from 3 random users as the
training data and 4 new users as the test data. As shown in
Fig. 4(b), our method can well generalize to different users,
and only samples from a small number of user is needed to
achieve orientation estimation for new users.

Furthermore, we utilize the angle information to compen-
sate for the phase of all signals within the framed region of
the oblique signal, and the MAE between the phase of the
oblique signal and the phase of the direct signal is reduced
by 14.8% before and after the compensation, across various
subjects and at different angles. The MAE of phase enhance-

(a) Before phase compensation

(b) After phase compensation

Fig. 5. Signal phase before and after compensation when ori-
entation is 70°.

|Angle| 10° 20° 30° 40° 50° 60° 70°
Improved(%) 13.3 20.4 3.0 4.9 12.2 21.5 28.2

Table 1. Percentage of MAE improvement before and after
signal phase compensation at different angles.

ment capability at each angle is shown in Table 1. This reveals
that the phase of the oblique signal has been enhanced after
compensation at various different angles. Fig. 5(a) shows the
phase distribution of the signal under a 70° oblique radiation
condition and the phase portion of the direct radiation condi-
tion. It is evident that the change in signal phase under the
oblique radiation is much weaker. Fig. 5(b) shows that after
phase compensation, the signal phase under the oblique radi-
ation condition is better restored to the direct radiation con-
dition, which reflects a more realistic undulation movement
of the chest and reduces the dependence of the non-contact
perception on the human body posture.

4. CONCLUSION

In this paper, we proposed an algorithm for estimating the
human body orientations of the radar and the chest cavity us-
ing a single millimeter-wave radar. Based on that, we im-
plemented phase compensation for the received signal under
oblique incidence conditions. By extracting the multi-domain
features of the received signals at different angles, we realized
robust orientation estimation through an optimization model
and then aligned the signal phase of different orienations. Our
method achieved an angle estimation error of 13.1° and re-
duced the absolute error in the phase of the oblique and direct
signals by 14.8%. Through reliable orientation detection and
phase compensation, we believe our framework significantly
mitigates the stringent posture requirements typically associ-
ated with RF-based vital signs monitoring.
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