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Abstract—Vibration is a widespread physical phenomenon that
often carries important information such as the internal state of
the devices. Thus, vibration measurement is of great importance
in the field of modern engineering and has drawn much attention.
While achieving promising performance, existing methods fail
when the vibration amplitude is tiny, e.g, smaller than 50um. To
address such a challenge, in this paper, we propose a contactless
method with deep learning, denoted as DeepVib, to sense the
tiny vibration using millimeter wave radar. Specifically, DeepVib
first makes full advantage of the physical characteristics of the
vibrating object and combines Range-Doppler FFT to find the
range bin of vibrating objects. Then, DeepVib trains a denoising
neural network using a large amount of simulated data, which
takes the noisy sample points as input and outputs the denoised
data with better SNR. Finally, the vibration status is recovered
through the phase variation of the extracted signal. Simulation
results show that DeepVib achieves over 40% improvement in
measuring um-level amplitudes with over 5x faster processing
time, while real experimental results show that DeepVib achieves
a mean amplitude error of 2.1 um for the 100um-amplitude
vibration.

Index Terms—Wireless Sensing, Vibration Measurement, Deep
Neural Network

I. INTRODUCTION

Vibration is a widespread physical phenomenon that often
carries important information. In industry, the vibration of
objects can reflect their internal state. By monitoring their
vibration characteristics, amplitude and/or frequency, it is
possible to detect damage or failure of device at an early stage
[1]. In healthcare, the periodic motion of the human chest and
heart is also a vibration that can reflect the health status of
the human body [2]. Therefore, it is of great importance to
accurately measure the vibration properties of an object.

Existing systems employ dedicated sensors such as ac-
celerometers [3] and gyroscopes [4] to measure vibration.
These approaches require the sensors to be attached to the
surface of the vibrating object, which may not be possible in
practice. High-speed cameras [5] and lasers [6] have also been
explored for non-contact vibration sensing. While achieving
accurate measurements of tiny vibration, both approaches are
too expensive and limited to certain conditions such as good
lighting and/or Line-of-Sight (LoS) conditions.

Recently, the researches of using radio signals to measure
vibrations have been emerged mainly due to the unique char-
acteristics of radio signals that is contactless, privacy friendly,
and can penetrate obstacles. For example, WiFi signals have
been utilized to track breathing and heartbeat [7]–[9], which

Fig. 1. DeepVib Architecture

can be considered as small vibrational displacement. [10]
proposes to utilize RFID technology to monitor the rotation
frequency of motors in noisy environment.

Because of the relatively short wavelength, e.g., 3.896
mm at 77 GHz, millimeter wave (mmWave) signals have
been utilized for various sensing tasks [11]–[13]. In [14], the
Cramer-Rao Lower Bound (CRLB) of the vibration parameter
estimation with FMCW radar is derived, which however does
not consider the multipath effect. To handle the multipath
problem, [2] presents the geometric form of the signal model
and proposes to remove the static reflections by geometric
fitting. Nevertheless, such a method is very susceptible to
noise when the vibration displacement is small. In order to
address weak vibrations under low signal-to-noise ratio (SNR)
scenarios, several approaches have been proposed to improve
the fitting accuracy by combining multiple data with different
frequencies [15]–[17]. However, these methods require extra
hardware such as digital phase shifter with extra data. The
increase of amount of data leads to a significant increase in
computational complexity for vibration signal recovery, which
limits the real-time applications.

Through the aforementioned discussions, there are two ma-
jor challenges to be resolved for tiny vibration measurements
as follows. 1) It is difficult to extract the vibration signal in
a rich multipath environment. In a typical industrial environ-
ment, there are multiple objects besides the vibrating target,



due to which the received signal is a mixture of reflections
from all objects. In such a case, the vibration-induced phase
changes are often distorted, making the extraction of vibration
signals extremely difficult. 2) It is difficult to recover the
micrometer-level vibration. The vibration amplitude of most
industrial devices is tiny, e.g., 20-100 um. Such micrometer-
level vibrations only lead to subtle phase change at the
Intermediate Frequency (IF) signal. For example, a vibration
of 50 um may only lead to about 0.06 rad phase change for
the mmWave with 3.896 mm wavelength, which can be easily
submerged by the noise.

To resolve the aforementioned challenges, in this paper,
we propose a contactless vibration sensing system with deep
learning, denoted as DeepVib, to push the limit of sensing
mechanical vibrations. Unlike existing methods that acquire
extra data to suppress the noise, DeepVib utilizes a denoising
neural network to reduce the noise level. As shown in Fig.
1, DeepVib consists of three main modules: vibrating object
detection (VOD) module to extract the signals reflected from
the vibrating object, vibration signal denoising (VSD) module
to denoise the vibration signals, and vibration signal recovery
(VSR) module to recover the vibration signals. The main
contributions of this paper can be summarized as follows:

• To the best of our knowledge, DeepVib is the first work to
utilize deep learning techniques to improve vibration sensing
performance. We would like to emphasize that DeepVib is
trained completely based on the simulated data and thus does
not require great efforts for dataset construction.

• DeepVib is computationally efficient, and the processing
time is extremely short during the testing phase. In par-
ticular, DeepVib reduces the processing time by about 80%
over the frequency group algorithm.

• We validate DeepVib on both simulated and real-world data.
The results show that DeepVib achieved over 40% improve-
ment in measuring um-level amplitudes on the simulated
data. Although only trained by simulated data, DeepVib
achieves a mean amplitude error of 2.1 um for the 100um-
amplitude vibration when testing on the real-world data.

The remainder of this paper is structured as follows. In
Section II, we introduce the system model. Then, Section III
presents the design of DeepVib in detail. Section IV shows
the simulation and experimental results. Finally, we draw the
conclusion in Section V.

II. SYSTEM MODEL

As shown in the Fig. 2, in this paper, we consider Frequency
Modulated Continuous Wave (FMCW) mmWave radar, where
the signal spectrum varies linearly over the bandwidth range.
Specifically, a single transmitted chirp signal can be written
as

s(t) = At exp[j2π(fc +
1

2
Kt2)], 0 < t < Tr, (1)

where At is the magnitude related to the transmit power, fc
is the carrier frequency, and K = B/Tr with B being the
bandwidth of the signal.

Fig. 2. An illustration of FMCW waveform, where the solid line stands for
TX signal and dashed line stands for RX signal.

Suppose there is only one small object vibrating at the
position x0 from the radar. The time-varying distance X(t),
due to the vibration, from the object to the radar can be written
as follows {

x(t) = Av sin(2πfvt+ φv),

X(t) = x0 + x(t),
(2)

where x(t) characterizes the vibration, Av , fv , φv are the
amplitude, frequency, and initial phase of the vibration target,
respectively.

The reflected wave off the object at the receiver is the
delayed version of s(t) with a delay t∆ = 2X(t)/c, which
is the round-trip propagation time of the chirp. The c is the
light speed throughout the whole paper. Therefore, we can
obtain the IF signal as

y(t) = s(t)r∗(t)

≈ AtAr exp[j4π(fc +Kt)X(t)
c ].

(3)

A chirp contains reflected signals at multiple distances.
Thus, we need to extract the signal from the right distance
to enhance the estimation performance of the vibration. Note
that the time of a chirp is generally short, and the vibrating
object can be considered stationary during this time slot. To
get the information of the target, we perform Range-FFT on
each chirp, and combine the range bin of different chirps into
a slow time sequence. The signal extracted from the range bin
of the target distance can be expressed as

ỹ(t) = a exp[j4πfc
X(t)

c
]. (4)

From (4), we can see that the phase of ỹ(t), θỹ(t), contains
all the vibration information of the target, from which we can
obtain

θỹ(t) = 4π
x0 + x(t)

λ
, (5)

where we can see that the phase change is proportional to the
change of the distance to the vibrating object, which could be
utilized to measure the vibration.

In practice, there are multiple reflected objects in the
environment. Thus, the signal extracted from the range bin



(a) Signal model of object (b) Fitting ambiguity

Fig. 3. (a) Complex plot representation of S(t), S(t) due to the displacement
X(t) is located in the thick arc. The vector

−→
OA represents the static

background reflections. (b) A small signal arc causes fitting ambiguity and
induces inaccuracy. The small (gray) circle is the ground truth, and the large
(brown) circle is the estimated incorrect circle.

where the vibrating target is located includes the information
about the target’s motion, the reflections from static objects
in the environment, as well as the noise. In such a case, the
received signal can be written as

S(t) = a0 exp[j4πfc
X(t)
c ] +

∑n
i=0 ai exp[j4π

xi

c ] + w(t)

= a0 exp[j4πfc
X(t)
c ] + a′ exp[j4π x′

c ] + w(t),

def
= Sv(t) + Ss + w(t),

(6)
where xi is the distance from i-th stationary object to radar and
w(t) is the complex Additive White Gaussian Noise (AWGN).
The second equality Ss comes from the fact that the static
reflections do not vary with time and thus can be combined
together as an aggregated static reflection x′.

As shown in Fig. 3(a), due to the vibration of the object,
ideally the received signal S(t) is located on an arc in the
complex plane, where the vector

−→
OA represents the aggregated

static reflection. Through identifying the radius and the center
of the arc, we can obtain the vibration information. In practice,
due to the noise, the received signal S(t) would be distributed
around the arc. In such a case, a straightforward method would
be fitting a circle with the noisy samples, which is however
severely affected by the noise, especially for small vibrations.
For example, a 50 um vibration only results in a phase change
of 0.06 rad, less than 1% of the entire circle, which is very
sensitive to signal noise, as shown in Fig. 3(b).

III. PROPOSED METHOD

In this section, we will introduce the proposed DeepVib
framework in detail. As shown in Fig. 1, DeepVib consists of
three main modules as follows:
• Vibrating Object Detection (VOD): VOD takes full advan-

tage of the physical characteristics of the vibrating object
and combines Range-Doppler FFT to extract the slow time
sequence of the vibrating object from the chirps.

• Vibration Signal Denoising (VSD): VSD first trains a
denoising neural network using the generated data. Then the
trained network model takes the noisy sample points as input
and outputs the denoised data with higher SNR.

• Vibration Signal Recovery (VSR): VSR utilizes the cir-
cular fitting method to remove background reflections, and
then unwraps the phase of the signal to recover the target
vibration.

A. Vibrating Object Detection

In the VOD module, we first process the radar data through
Range-FFT to transform signals at different distances into
different range bins. To differentiate the vibrating object from
the static objects, we observe that the vibrating target generally
makes a periodic motion, due to which the velocity has the
same magnitude but opposite direction when it passes through
the center symmetry position. Thus, we can determine the
range bin where the vibration signal is located with Doppler-
FFT. As shown in Fig. 4, symmetrical velocities appear in
the spectrum of the Doppler-FFT, which corresponds to the
vibrating object. Here, we utilize such a feature to exclude
other moving objects, and the detailed VOD algorithm is
shown in Alg. 1, where X denotes a frame of data, ϵ is the
threshold value for screening vibration targets, and R denotes
the output range bin where the vibration signal is located.

Algorithm 1: Detect vibrating target
Input: one frame data X , ϵ, K
Output: range bin index R

1 X∗ ← Range-Doppler and FFTshift on X

2 Xp ← abs(X∗)

3 Xp ← eliminate the component with velocity zero
4 I ← find index of top K max values of Xp

5 for (i, j) in I do
6 (i′, j) ← find symmetric index of (i, j)

7 v ← abs(Xp[i′][j]−Xp[i][j])

max(Xp[i′][j], Xp[i][j])

8 if v < ϵ then
9 R ← j

10 return

B. Vibration Signal Denoising

After the VOD module, we can extract the signals reflected
from the vibrating object, which is however noisy due to the
noise and imperfect spatial separation of the Range-FFT. In
such a case, the micro-meter level vibration may be buried
in the noise, leading to the inaccurate vibration estimation.
Therefore, in this subsection, we introduce the VSD module
to perform denoising on the extracted signals to suppress the
noise.

Ideally, the IQ samples of the reflected signals are dis-
tributed on a circle in the complex plane. These samples are
correlated in the temporal domain due to the continuity of
the vibrating motion, and the closer in time, the stronger the
correlation. Such a phenomenon is very similar to the visual



Fig. 4. Vibration object detection

image where the neighboring pixels are highly correlated and
the closer in space, the stronger the correlation. Since convo-
lutional neural network (CNN) has shown great advantages in
processing the visual images, in this paper, we also utilize the
CNN to process the IQ samples of the reflected signals.

Since the underlying structure of the reflected signals is sim-
ple, we utilize a network with three 1D-CNN layers, where the
kernels are all 3x1 and repeated values are padded after each
convolution to ensure the equal dimensions. Moreover, since
the samples have real geometric significance, no activation
function is used throughout the network. To better train the
network, the samples are normalized before being fed into the
network as follows:

H ′ =
H

max(|mean(H)|)
, (7)

where H is the samples extracted from the VOD module.
We use the l1-norm sum as the loss function to train the

network
L =

∑
∥f(H ′)− Y ∥1, (8)

where Y is the ground truth and f(H ′) is the estimated value
through the network.

C. Vibration Signal Recovery

After the VSD module, the noise of the reflected signals
has been suppressed. Thus, we can utilize the circle fitting
method to estimate the vibration by minimizing the geometric
distances from the samples to the circle

u∗, r∗ = argmin
u,r

N∑
i=1

(∥vi − u∥2 − r)2, (9)

where vi is the i-th denoised sample, N is the number of
samples, u and r stand for the circle center and radius,
respectively.

The above problem is a nonlinear least-square optimization
problem, which has no analytical solution and can only be
solved by iterative or approximated methods [16]. In this
paper, we adopt the Levenberg-Marquardt algorithm [18],

which has been shown to have low error and fast running
time [16]. After estimating the radius and the center of the
circle, the sample points are subtracted from the center of the
circle to eliminate static reflections using

v′i = vi − u∗. (10)

Then, according to (5), the displacement of the vibration
signal Di can be obtained from the phase of sample v′i, φi,
as follows

Di =
c

4πfc
unwrap(φi), i ∈ [1, N ]. (11)

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Implementation

In order to train the denoising network for the VSD module,
we generate the samples according to the signal model in (6)
with the following settings

• Av ={10, 20, 30, 40, 70, 120, 200} um
• fv = {30, 50, 80, 120, 160, 250} Hz
• fc uniformly distributed from 77GHz to 78GHz
• φv uniformly distributed form 0 to 2π

In this paper, the optimizer used for training the model is
Adam, and the initial learning rate is set to 0.001, with an
iteration period of 25. After every 5 iterations, the learning rate
is reduced to one-tenth of the original rate. All the simulations
and experiments are run on a computer with an Intel CoreTM

i7 10700k CPU @3.7GHz and Nvidia GeForce RTX 3090
graphics card.

We compare the proposed DeepVib with two baselines,
which are the circle fitting-based method [2] (denoted by
“CircleFit”) and the multi-signal consolidation model [15]
(denoted by “mmVib”). For fair comparisons, all approaches
use the same data and pre-processing methods.

B. Simulation Results

(a) Initial samples (b) Denoised samples

Fig. 5. Comparison of samples before and after denoising.

Denoising Performence. We first evaluate the denoising
performance of our VSD module. Fig. 5 show the initial IQ
samples and those after the VSD module. We can see that
with the proposed VSD module, the noise is well suppressed
and thus the samples fit better with the ground-truth arc. We
also illustrate the displacement profile in Fig. 6, where we can
see that the vibration signals reconstructed by the proposed



Fig. 6. Comparison between ground truth displacement and estimated

Fig. 7. Impact of vibration amplitude

DeepVib matches well with the ground truth, which validates
the effectiveness of the proposed DeepVib.

Accuracy of Amplitude Estimation. We then evaluate
the performance of different methods in terms of amplitude
estimation accuracy. We set the vibration frequency at 50Hz
and decrease the amplitude from 200um to 20um. The results
are shown in Fig. 7. We can see that for all three methods,
as the amplitude increases, the performance becomes better.
DeepVib achieves the highest accuracy at all cases, while the
CircleFit performs the worst. The improvement of DeepVib
over mmVib is about 40%.

C. Experimental Results

In this subsection, we evaluate the effectiveness of the
proposed DeepVib in real-world data. Specifically, we utilize
the dataset provided in [15], which uses a Texas Instruments
(TI) 77 GHz mmWave radar to acquire data and a vibration
calibrator to generate vibration with ground truth in a 2.4m ×
10m hallway. Notice that these data are only used to evaluate
the model in the testing phase, and not included in the training
phase.

Fig. 8. Impact of measurement distance

Accuracy at Different Distances. In this experiment, we
set the vibration frequency at 50 Hz and vary the distance
from 80 cm to 640 cm at an amplitude of 100 um. The
results are shown in Fig. 8. We can see that the experimental
results are consistent with the simulation result in the previous
subsection, where the proposed DeepVib achieves the best
performance while the CircleFit performs the worst. For a
typical case of 240 cm distance, DeepVib achieves an average
amplitude error of 2.1 um with a relative error of 2.1%, which
satisfies the measurement requirements of real industries. The
improvement of DeepVib over mmVib can be up to 33% when
the distance is 640 cm.

TABLE I
COMPARISON OF THE COMPUTATION SPEEDS OF VARIOUS METHODS.

Algorithm Time/ms

CircleFit 85.8647
DeepVib 86.6164
mmVib 480.4097

Execution Time. Finally, we evaluate the performance of
different methods in terms of execution time, and the results
are shown in Table I, where we average over 90 experiments
and each experiment contains 10 frames of data. We can see
that the proposed DeepVib has similar execution time with the
CircleFit, both are about 5x faster than mmVib.

V. CONCLUSION

In this paper, we proposed a deep learning based framework,
DeepVib, to accurately sense the um-level vibrating object.
The key idea was to exploit the temporal correlations among
different IQ samples through a simple yet effective neural net-
work. Both simulation and experimental results demonstrated
that DeepVib can extract tiny vibrations robustly, accurately,
and efficiently even under low SNR conditions.
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