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Abstract—We observed that remarkable and impressive per-
formance on image-based human pose estimation have been
achieved by deep Convolutional Neural Networks (CNN). Nev-
ertheless, directly applying these image-based models on videos
is not only computionally intensive, but also may cause jitter
and loss. The main reason is that the image-based models purely
focus on the local features of individual frames and totally ignore
the temporal information among adjacent frames. Some existing
methods are proposed to address the temporal coherency issue.
However, these methods need to be designed carefully and cannot
be combined with existing image-based methods. In this paper,
we propose a simple yet effective module to refine the estimated
pose by exploting the temporal coherency among the heatmaps
of adjacent frames, which can be easily inserted into image-based
networks as a plug-in. We show that the temporal coherency issue
among the heat map frames could be re-formulated as a graph
path selection optimization problem. Moreover, to speed up the
refinement process, we propose a hierarchical graph optimization
to achieve the refinement from coarse to fine. Experimental
results on two large-scale video pose estimation benchmarks show
that that the proposed module can process up to 120 frames per
second even when running on a single CPU thread, with better
performance than all baseline methods.

Index Terms—Human pose refinement, dynamic programming
, pose estimation, deep learning

I. INTRODUCTION

HUMAN pose estimation (HPE), a fundamental but im-
portant task, has been studied extensively in the lit-

erature of computer vision. HPE obtains the configuration
of human skeleton from input visual data, which provides
geometric and motion information to facilitate many high-
level computer vision tasks, such as action recognition [1],
[2], person re-identification [3], [4], etc. Therefore, HPE is a
crucial task with extremely high application value.

With the development of deep Convolutional Neural Net-
works (CNN) in recent years, remarkable and impressive
performance have been achieved by existing CNN-based meh-
ods in HPE tasks. For example, Wei et al. [5] proposed the
Convolutional Pose Machine (CPM) to refine joint locations
via a sequence of predictors in the network. Around the same
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Fig. 1. Typical errors occur when applying the image-based pose estimation
methods on videos under various scenarios, where the red points represent
ground-truth annotations and the blue points are the results of OpenPose [7]:
a) estimating symmetric joints like right and left elbows; b) human body
moves rapidly; c) poor lighting conditions; d) body parts are occluded.

time, Newell et al. [6] proposed a structure named ”Stacked
Hourglass Networks”, which realized accurate estimation of
human joints by cascades of the hourglass structure. OpenPose
[7] predicted joint locations based on [5] and then assembled
joints via part affinity fields (PAFs). More recent methods [8]–
[10] obtained human bounding boxes and then warped the high
resolution feature maps with the boxes to predict human pose.

Nevertheless, the aforementioned image-based methods
studied the HPE task on the still images, which cannot be
directly applied on the videos. As shown in Fig.1, when
applying the OpenPose [7] on the video sequences, various
estimation errors may occur, e.g., the symmetric joints can be
wrongly estimated, and fast motion, poor lighting condition,
as well as occlusion can also lead to incorrect estimation
of joint locations. The main reason is that the image-based
methods estimate the joints purely based on the local ap-
pearance features of individual frames but totally ignore the
temporal information among adjacent frames, which thus leads
to degraded performance on video sequences.

To address the temporal coherency issue, many methods
have been proposed. For instance, Ramakrishna et al. [11]
and Zhang et al. [12] processed each joint separately and
then got the initial hypotheses. Afterwards they obtained best
pose hypotheses among adjacent video frames by utilizing
graph optimization methods. However, these methods needs to
be carried out on the whole video, which is computationally
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intensive. Ruder et al. [13] and Chen et al. [14] took optical
flow from the video into account and propagated short-term
coherence to long-term ones. Nevertheless, these methods need
to be carefully designed and cannot be combined with existing
image-based methods, which limits their applications.

We observe that the heatmaps output by the image-based
pose estimation methods contain abundant information includ-
ing the possible positions of joints and the corresponding
confidence scores. Thus, in this paper, we propose a simple yet
effective module to refine the estimated pose by exploiting the
temporal coherency among the heatmaps of adjacent frames.
Specifically, we formulate the refinement process as a graph
path selection problem and utilize the graph optimization
method to obtain the optimal pose hypotheses. Moreover, to
reduce the computational complexity and make the proposed
method more efficient, we propose a hierarchical graph opti-
mization to refine the pose locations from coarse to fine. The
main contributions of this paper can be summarized as follows.

1. We propose a simple yet effective module to refine the
pose estimation results by utilizing the temporal consistency
and dependency among the heatmaps of adjacent frames. The
refinement process is formulated as a graph path selection op-
timization problem. It is worth pointing out that the proposed
module does not need any training and thus can be combined
with any existing image-based pose estimation methods.

2. To speed up the refinement process, we propose a hier-
archical graph optimization method to achieve the refinement
from coarse to fine. Experimental results on two large-scale
public video pose estimation datasets show that the proposed
module can process up to 120 frames per second even when
running on a single CPU thread, with better performance than
all baseline methods.

The rest of this paper is organized as follows. Section
II introduces the related work of human pose estimation.
Section III presents our module and optimization algorithm.
Experiment settings and results are shown in section IV.
Finally, conclusions are drawn in section V.

II. RELATED WORKS

HPE methods aim to estimate spatial human joint locations
from images or videos. Traditional HPE methods utilize hand-
crafted features to obtain global pose structures. Recently,
with the development of deep learning, CNN-based solutions
have improved the estimation performance significantly. In the
following, we will review the existing HPE methods in images
and videos, respectively.

A. Human Pose Estimation in Images

Early HPE methods [15]–[18] built the graphical structures
to model geometry relations between human joints. However,
those works rely heavily on hand-crafted features, which
limit their generalization to real-world applications. With the
development of deep learning, the performance of CNN based
models [7], [9], [10], [19] have been impressively improved.
Lifshitz et al. [20] proposed a CNN-based HPE network which
determined locations of joints by incorporating the keypoints
votes and joint probabilities. The Convolutional Pose Machine

(CPM) [5] refined joint locations using a sequence of predic-
tors in the network. OpenPose [7] predicted joint locations
based on the CPM [5] and then assembled joints via part
affinity fields (PAFs). Newell et al. [6] proposed an encoder-
decoder structure named ”stacked hourglass networks”, which
realized accurate estimation of human joints by cascades of
the hourglass structure. The stacked hourglass (SHG) network
repeated pooling and upsampling layers to capture multi-
scale information of human pose. Since then, many variant
structures of SHG were developed. For example, Yang et al.
[21] proposed a Pyramid Residual Module (PRMs) to replace
the residual unit in SHG, which can learn convolutional filters
on various scales of input features and enhance the invariance
in scales of deep convolutional neural networks. Chu et al. [22]
designed a variation of SHG named Hourglass Residual Units
(HRUs), which extended residual units with a side branch
incorporating filters with larger receptive field, to learn and
combine different scale features.

In addition to SHG and its variants, many other structures
have also been designed. Mask R-CNN [8] is a well designed
framework for object detection, instance segmentation and
keypoint detection. It generates RoIs via a Region Proposal
Network (RPN) first. Then ROIAlign layer is proposed to
extract feature map for each ROI. Unlike RoIPool [23],
RoIAlign avoids harsh quantization of the RoI boundaries and
brings large improvements in many tasks. Finally, different
head architectures are applied for different tasks. For pose
estimation, the keypoint head architecture consists of a stack of
conv layers, followed by a deconv layer and bilinear upscaling,
producing heatmaps for each joint. The Cascaded Pyramid
Network (CPN) [24] designed two novel networks to refine
pose locations. GloabalNet is designed to locate ”simple” joint
locations which is a pyramid feature extractor. The pyramid
feature representation contains inevitabel information to infer-
ence ”hard” keypoints, such as occluded and invisible joints.
And RefineNet handles the ”hard” keypoints by combining all
levels of feature from GlobalNet. An online hard keypoint
mining loss is applied. CPN follows a top-down pipeline,
which first predicts the human bounding boxes and then
estimates keypoint locations for each bounding box.

Besides these efforts in effective network design, some
works explored the importance of high-resolution feature
representation to improve the accuracy of HPE methods.
Xiao et al. [9] proposed a simple network for human pose
estimation and pose tracking, where ResNet [25] is applied
as the backbone. Only a few deconvolutional layers are added
to the last convolution stage in ResNet backbone to produce
heatmaps for high-resolution representations, which achieves a
balance between efficiency and accuracy. The High-Resolution
Network (HRNet) [10], [26] consists of parallel high-low reso-
lution sub-networks with multi-scale feature fusion, which can
maintain high-resolution representations through the whole
process. It starts from a high-resolution sub-network. Then
several high-to-low resolution sub-networks are added one by
one. The multi-resolution sub-networks are connected in paral-
lel so that the resolutions for the sub-networks of a later stage
consists of ones from the previous stage and an extra lower
one. Besides, exchange units are proposed to fuse information
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Fig. 2. The proposed hierarchical dynamic programming module for human pose refinement. Image-based human pose estimation network extracts features
from video sequences to generate heatmaps, which corresponding to different key points of the human body. Our model refines these heat map sequences in a
hierarchical and recursive manner. At each stage, a specific region of original heat map (the dark blue square in the figure) is first picked based on the results
of the previous stage and pooled to a specific size, and then flattened into a one-dimensional vector. The optimal path is obtained by graph path selection
algorithm, which will lead to a finer region or pixel of original heat map for the next stage.

across parallel sub-networks. The final joint predictions are
obtained from the heatmaps output by the last exchange unit.
Inspired by HRNet [10], [26], Cheng et al. [27] proposed a
bottom-up pose estimation method for learning scale-aware
representations, which is named HigherHRNet. Scale variation
is the main challenge for bottom-up methods, especially when
predicting the pose of small human bodies. HigherHRNet
extracts high-resolution heatmaps via a new high-resolution
feature pyramid module based on the 1/4 resolution path
of HRNet [10], [26] . The proposed feature pyramid starts
directly from 1/4 resolution which is the highest resolution
feature in the backbone. Then transposed convolution layers
are applied to generate even higher-resolution feature maps.
Besides, they propose a Multi-Resolution Supervision strategy
to assign training target of different resolutions to the cor-
responding feature pyramid level. Finally, to generate scale-
aware high-resolution heatmaps, a simple Multi-Resolution
Heat map Aggregation strategy is introduced.

Although these CNN-based methods have achieved impres-
sive results on image datasets, applying them directly to videos
often produce unsatisfactory errors, such as jitter and loss. The
reason can be attributed to the fact that these methods process
the video frame by frame, ignoring the temporal coherency
contained among adjacent frames.

B. Human Pose Estimation in Videos

Pose estimation in videos brings new challenge that how
to utilize the abundant temporal information among adjacent
frames to make joint predictions more robust and stable. A

few previous studies [11], [12], [28], [29] tried to integrate
temporal cues into human pose estimation. Ramakrishna et
al. [11] and Zhang et al. [12] processed each joint separately
and obtained the initial hypotheses. Afterwards the best pose
hypotheses between adjacent video frames are obtained by
optimization methods. These graph optimization methods need
to be carried out on the whole video, which is computationally
intensive. Jain et al. [29] proposed a two-branch CNN network
named ”Modeep” to extract both motion and color features
within frame pairs to model the spatio-temporal information
in HPE. Pfister et al. [28] inserted frames at different color
channels as inputs to merge the motion in the video. After-
wards, Pfister et al. [30] and Song et al. [31] both utilized
dense optical flow [32] to adjust the joint locations to make
the motion more stable. Thin-Slicing Network [31] obtained
impressive results based on both adjustment from optical
flow and a spatial-temporal model. Nevertheless, the intensive
computational complexity makes the model slower than many
image-based methods.

Some effective network designs have also been applied
to video pose estimation tasks. Chained model [33] is a
simple recurrent architecture to incorporate temporal compo-
nent. LSTM Pose Machine [34] utilized LSTM to capture
temporal dependency. RPSM [35] used LSTM to obtain better
correspondence during the regression procedure from 2D to
3D. The winner [36] of ICCV’s 17 PoseTrack Challenge [15]
designed a two-stage strategy to track multi-person poses: first
estimated human pose via Mask R-CNN [8], then tracked
the pose online using a greedy bipartite matching algorithm
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frame by frame. However, they only use temporal coherency to
assign person IDs, not to refine human pose results. Pose Flow
[37] proposed a novel framework, which mainly leverages
spatio-temporal information to boost pose tracking task. Pose
Flow Builder (PF-Bulider) and Pose Flow NMS (PF-NMs) are
proposed to associate the cross-frame poses and improve the
NMS stabilization.

Liu et al. [38] proposed a new method to maintain temporal
consistency for video pose estimation via the structured space
learning and halfway temporal evaluation methods. Zecha et
al. [39] proposed a graph partitioning problem that connects
pose over time and solve the problem using integer linear
programming (ILP). Nie et al. [40] proposed a Dynamic
Kernel Distillation (DKD) model for improving efficiency of
video pose estimation. In particular, DKD used a distillator
to online distill pose kernels via temporal cues from the
previous frame. Afterwards, the joint localization problem is
simplified into a matching procedure between pose kernels and
the current frame, which can be solved by simple convolution.
Artacho et al. [41] proposed a unified framework named
”UniPose” for human pose estimation, which is based on the
Waterfall Atrous Spatial Pooling (WASP) module [42].

While achieving promising results, the aforementioned
methods still have some drawbacks. Firstly, the computational
complexity is typically high due to the optimization over the
whole video sequences. Secondly, almost all methods need
to carefully design and refine over new data. Different from
these methods, our method is computationally efficient without
any training, and can be combined with existing image-based
methods.

III. THE PROPOSED HIERARCHICAL DYNAMIC
PROGRAMMING MODULE FOR POSE REFINEMENT

As a plug-in, our module can be easily inserted into the ex-
isting human pose estimation network. The overall pipeline is
shown in Fig. 2. The backbone image-based network extracts
features of video frames to output heatmaps of various joints.
Taking heatmaps as input, our module refines human pose in
a recursive manner, i.e., we refine the initial joint locations
from coarse to fine. At each stage, we select a specific region
of the heatmaps based on the results of the previous stage,
pool and flatten it into vectors. Then we apply a graph path
selection algorithm to get the shortest path and output the final
estimated pose.

A. Problem Formulation

Without considering the temporal consistency, the pridicted
pose will be jittered or lost. With the help of the information
provided by adjacent frames, it is expected that the pose pre-
diction errors of current frame can be mitigated or corrected,
resulting in smoother motion trajectory of the pose. Consid-
ering such a motivation, we take the information of multiple
video frames into consideration and view the pose refinement
process as an optimization problem. Since the heatmaps output
by the image-based pose estimation methods contain rich

spatial location information, we refine pose predictions based
on the heat map sequence, which are represented as

HP = (H0
P , H

1
P , H

2
P , . . . H

T
P ), P ∈ {0, 1, . . . , N} (1)

where HP is the sequence for the Pth joint of all N points
and T is sequence length. The size of each heat map HT

P is
(hT , wT ). Note that the size of each frame’s heat map may
be different.

Due to noise and lack of temporal consistency, the locations
of predicted keypoints by image-based models can be unstable.
If we expand and arrange all the candidate keypoints in the
heat map sequence, then the task of refining keypoints can be
regarded as the shortest path problem of a lattice, where each
column of the lattice map is the candidate points of a heat
map frame. We can extract the optimal path of the Pth joint
by minimizing the following total cost function

YP = arg min
yP

C =

T∑
t=1

Ct
P (2)

where YP represents the set of optimal keypoint coordinates,
and Ct

P is the cost matrix at time t.
Considering that the heat map sequence contains the con-

fidence and the spatial location information of keypoints,
we can use them to construct the constraint matrix in Eqn.
(2). Therefore, we proposed a constraint function based on
confidence and distance items as follow:

CP(Y t
P → Y t+1

P ) =λ · dist(Y t
P , Y

t+1
P )+

(1− λ) · exp(−SY t+1
P

)
(3)

where Y t
P is the coordinate point picked from the heat map of

the Pth joint at time t, dist is the euclidean distance function,
and SY t+1

P
is the confidence score of the coordinate point at

time t+ 1. The λ ∈ [0, 1] is the weight parameter to balance
the two items.

From Eqn. (2) and Eqn. (3), the optimization problem can
be efficiently solved by dynamic programming with value iter-
ation algorithm. The state transition equation can be obtained
:

D(t+ 1) = min(D(t) + CP (Y t
P , Y

t+1
P )) (4)

where D(t+ 1) denotes the distance between the first and the
(t+ 1)th frame.

Fig. 3. The mechanism by which the human visual system identifies body
parts. The red boxes represent the locations noticed by the human eye at
each stage. Through several iterations, the human eye eventually focuses its
attention on the most likely area and obtains the coordinate position (the red
dot).
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B. Hierarchical Dynamic Programming

In the above discussions, we have formulated the pose
refinement process using temporal consistency as a graph
path selection problem. Considering the large dimensions of
the heatmaps, directly applying the dynamic programming
would lead to large computational complexity. Assume that
the length of the lattice graph in Fig. 2 is N and the width
is D. The dynamic programming algorithm compares D ∗D
times between every two layers, keeps the optimal path to
the next layer, and recursively, so the algorithm complexity is
O(N ∗ D2), which is relatively high. In this subsection, we
will introduce hierarchical dynamic programming (HDP), an
optimization method that can effectively reduce the complexity
of the original algorithm while maintaining accuracy.

The proposed hierarchical dynamic programming is mo-
tivated by the human visual system, which scans the entire
scene element, finds and focuses on the area of interest, and
looks closely to obtain external information, as shown in Fig.
3. Following the principle of finding the region of interest
before determining the target location, we improve the original
dynamic programming algorithm into a hierarchical iterative
form. As shown in Fig. 2, an image-based CNN backbone
network extracts features of video frames to output heatmaps
of various joints. Suppose the size of original heat map Hori

is (W,H). At each stage, we pool a specific region of Hori

based on the results of the previous stage to obtain heat map
Hpool with the size of (M,N). Note the whole heat map Hori

will be picked when in the first stage. Afterwards, we flatten
Hpool into vector V with the length of M × N , where the
index of each element maps a region of Hori. Therefore, we
would obtain the optimal region (or pixel) of the original heat
map Hori if the optimal path (i.e. the optimal element index
of vector V ) is obtained by graph path selection algorithm,
which will lead to a finer region or pixel of original heat map
for the next stage.

A key question is how we calculate the cost matrix of the
pooled heat map sequence at each stage. Only after obtaining
the exact cost matrix, we can use Eqn. (4) to construct the state
transfer matrix and obtain the optimal path at the current stage
by the dynamic programming algorithm. According to Eqn.
(3), the cost matrix consists of two main items: the distance
term dist(Y t

P , Y
t+1
P ) and the confidence term exp(−SY t+1

P
).

Considering that each pooled heat map in the sequence may
come from a different region of the original image, we cannot
directly calculate the Euclidean distance between the locations
in adjacent maps. Therefore, in each iteration we use affine
transformation to map each position back to the original image
coordinate system and then calculate the distance matrix. This
way, no matter which region on the heat map is selected,
we get the distance matrix in a uniform coordinate system.
As for the confidence term, at each stage we use the value
in the heat map after maximum pooling as the confidence
score for the current position. We choose maximum pooling
because it is better at retaining the regions with larger values
in the heatmap, i.e. the regions where the backbone network
is more confident. Average pooling, on the other hand, dilutes
the influence of the larger value regions as the pooling kernel

increases, which can have a detrimental effect on our module.
At each stage we simply use the downsampled heat map

to accelerate the search for the optimal path, and then select
the optimal region or pixel on the original heat map based on
this path, so that we can gradually focus our attention on the
most likely region instead of the global one, and finally get
the optimal motion trajectory of the key points.

Furthermore, we can divide the whole video sequence into
chunks and perform HDP method on the video chunks since
a large motion generally does not last throughout the whole
video. Obviously, a large length of video chuck would lead to
large computational complexity. In the experiment, we divide
the video into video chucks with length of 20, which achieves
a good tradeoff between accuracy and efficiency.

Suppose we need to process a video sequence of length N .
It is known that each heat map generated by the backbone
network has D pixels after being flattened. If the length of
the video chuck is N/2 and a two-stage hierarchical dynamic
programming is adopted, then the overall time complexity is
O(N/2 ∗ D), which is much smaller than the original time
complexity O(N ∗D2). In the experiment, we use a heat map
with a size of 64× 48, i.e. the most common size for current
human pose estimation networks. Suppose video length is 40
frames. If we use a video chuck with a length of 20 frames,
theoretically the time complexity of our module will be about
3000 times smaller than the original algorithm.

C. Parameter estimation
According to Eqn. (3), λ is an important parameter which

banlances distance term and confidence term. An intuitive
attempt is to directly set λ to 0.5, which means that distance
term and confidence term are equally important. But from our
experiment results, such a simple setting does not bring about
performance improvements. This is because that the motion
of different human body parts is often different. For parts
that move more vigorously, such as elbows, wrists, etc., the
joint locations generated by the existing image-based methods
often jitter greatly, i.e., the confidence of the predicted points
is unreliable. In this case, the weight of distance should be
greater than confidence to make joint motion more smooth
and thus correct prediction errors.

Fig. 4. The motion curves of predicted results and ground-truth labels. The
blue dashed line is based on the prediction results. It is visually more jittery
than the motion curve based on the annotations (red dashed line), which means
a larger value of parameter λ is needed in such a case.

According to the animation principles [43], [44], the curve
representation can avoid unnecessary flickers and make actions
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smooth, which conforms to the kinematics characteristics.
Inspired by these facts, we fit the motion curve according
to the movement of the key points. As depicted in Fig. 4,
we found that the problematic prediction results often lead
to an unsmooth curve, which means that these results do not
conform to the characteristics of human motion. In such cases,
we need to increase the value of parameter λ so that the refined
joint locations consider more about the temporal consistency.
Therefore, we propose a method to adaptively estimate the
parameter λ according to the motion situation.

To avoid high computational complexity, we only focus on
the problematic video clips. We observe through experiments
that video clips with large gap between adjacent frames are
often caused by jitter, which is exactly what we need to refine.
Therefore, we propose a strategy toto find the problematic
video clips as follows

Clip(x, y) =

{
1 if (∆x or ∆y) > Thresh
0 otherwise

(5)

where ∆x and ∆y represent the difference in x and y coor-
dinates between adjacent frames. For the sake of simplicity,
we adopt the PCK metric introduced in [16] as the Thresh,
which is defined as follows

Thresh = α ∗max(Wbbox, Hbbox) (6)

where α is the weight parameter, Wbbox and Hbbox are the
width and height of the bounding box, respectively. According
to the general practice, we set α to 0.2.

Intuitively, if the keypoints predicted by the image-based
methods are connected into a polyline, the greater jitter of
the polyline, the larger λ we should use to make the refined
results more smooth. Therefore, we can first fit the predicted
keypoints with a curve and then evaluate the goodness of the
curve fitting to choose a proper λ.

In order to reflect the motion characteristics of the joint
points as accurately as possible, we apply a hampel filter on
all point coordinates to reduce the influence of abnormal points
on the motion curve. Afterwards, ridge regression is used to
fit the motion characteristic curve

min
w

m∑
i=1

(
yi − xTi w

)2
s.t.

n∑
i=1

w2
j ≤ t

(7)

The optimal ridge regression estimator can be obtained as

ŵ =
(
XTX + kI

)−1
XT y (8)

where k is the penalty term. Then we estimate the goodness
of curve fitting, E, using

E =
1

Z
1
2 + 1

(9)

with Z being defined as follows

Z =

n∑
i=1

(|yi − Yi|p)

n∑
i=1

(∣∣Yi − Ȳ ∣∣p)+ ε
(10)

where ε is a very small number in order to avoid the denomi-
nator being 0. yi is the fitted value, Yi represents the original
value, and Ȳ represents the mean value of the original data.

Finally, we get the estimated value of λ according to the
goodness of curve fitting using

λ = 1−min (Ex, Ey) (11)

where Ex and Ey represent the goodness of curve fitting in
the horizontal and vertical directions , respectively.

D. Algorithm

The detailed algorithm of the proposed method is shown
in Algorithm 1. Table I summarizes the notations used in the
algorithm. We first split the input heat map sequences into
several video chucks according to the threshold. Afterwards,
the module judges whether refinement is required according to
the motion characteristics of each clip. For the video chucks
to be refined, hierarchical dynamic programming method is
applied to find the optimal graph path between heat map
sequences. Finally, the optimal path will be transformed into
the refined joint locations of the video chuck.

TABLE I
NOTATIONS IN ALGORITHM 1

I video frames
H heat map sequence
bboxes human bounding boxes
center,scale affine transformation parameters
L slide window length
α threshold parameter
∆x, ∆y the difference in x and y coordinates of each clip
λ weight parameter of constraint function
kernel kernel size of pooling operation
pred local predictions of each refinement stage
CropHm heat maps cropped from original sequence
PooledHm pooled heat map sequence
Cost the cost matrix of each clip
OptimalPath optimal path generated by graph optimization
Y refined joint locations
NPose baseline human pose estimation network
FDiff function for calculating difference of each video clip
FIter function for calculating number of HDP iterations
FGetHM function for cropping heatmaps
FPool function for pooling cropped heatmaps
FGetCost function for calculating cost matrix
FHDP function for hierarchical dynamic programming
FRefinePred function for obtaining local pose predictions
FGetFinalPreds function for obtaining final pose predictions

IV. EXPERIMENTS AND EVALUATIONS

A. Implementation details

To fairly compare the effect of our module in the existing
state-of-the-art image-based methods, we use the released pre-
trained models without any finetune. Specifically, we use [7],
[9], [10], [45]–[47] as our baseline models, which have never
been trained on the datasets we used to evaluate. The FastPose
[45] is the new designed network from the team of AlphaPose
[19]. We let OpenPose [7] generate a heat map with the same
size as the input image in order to improve its accuracy, and
other models generate a heat map with a size of 64 × 48 as
default. In order to eliminate the impact of hardware as much
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Algorithm 1: Hierarchical DP Module for Human Pose Refinement
Input : frames I; bounding boxes bboxes; affine transformation parameters center and scale; slide window length L;

video filter threshold α;
Output: optimal pose predictions of video Y

1 H = NPose (I, bboxes) ; // obtain initial heat maps of each joints
2 Split original sequence H into C chunks, each with a length of L;
3 for c = 1 to C do
4 Thresh = α ∗max(Wbboxes, Hbboxes) ; // calculate the threshold value for filtering this

video clip
5 ∆x,∆y = FDiff(H, c) ; // calculate the difference in motion of key points in

adjacent frames
6 if max(∆x,∆y) > Thresh then // refine chunks with jitter above the filtering

threshold
7 Fit motion curve using ridge regression;
8 Caculate goodness of curve fitting Ex and Ey;
9 λ = 1−min (Ex, Ey) ; // calculate the HDP parameter λ

10 N = FIter(H) ; // calculate the optimal number of iterations of HDP based on the
heat map size

11 pred = [], OptimalPath = [];
12 for i = 1 to N do
13 Compute pooling kernel size kernel;
14 CropHm = FGetHM(H, c,OptimalPath); // crop specific region based on the path of

the previous iteration
15 PooledHm = FPool(CropHm, kernel) ; // pool selected heat map region
16 Cost = FGetCost(PooledHm, kernel, center, scale, λ) ; // calculate the cost matrix
17 OptimalPath = FHDP (Cost) ; // obtain the optimal path of current stage
18 pred = FRefinePred(pred,OptimalPath) ; // obtain coarse pose estimation results
19 end
20 Y = FGetFinalPreds(pred, center, scale) ; // obtain final pose estimation results using

affine transformation
21 end
22 end

as possible, all baseline models are run on a GTX1080Ti GPU.
Our HDP module post-processes the heat maps in a single
thread on a Xeon E5-2680 CPU. We first use the ground-truth
bounding boxes as the detection results of the baseline models,
crop the input frames and send it to network. Afterwards, we
get and store the coordinates of the joint points, confidence
scores and the heat map sequences. Finally, our Hierarchical
DP Module is applied to refine the predictions from baseline
models. It is worth noting that our module does not require
additional training data and can work in online or offline
manner, which can greatly expand the applications of in video
pose estimation.

B. Datasets

Penn Action Dataset. Penn Action Dataset [49] is a large
dataset containing in total 2326 video clips of 15 different
actions, with 1258 clips for training and 1068 clips for testing.
Note that we only use the 1068 video clips because our
module does not require training. All frames are in RGB.
The resolution of each frame is within the size of 640× 480.
Each frames has joint annotations of 13 joints including
head, shoulders, elbows, wrists, hips, knees and ankles. An

additional label indicates whether a joint is visible or not
is also provided. Following previous works, we will only
consider those visible joints during evaluation.

Sub-JHMDB Dataset. JHMDB [50] is another video-based
dataset for pose estimation. To maintain the consistency with
previous works, we only evaluate our module on a subset of
JHMDB called sub-JHMDB dataset, which contains 316 clips
with all 11200 frames in the same size. This subset contains
only complete bodies and no invisible joint is annotated. Sub-
JHMDB has 3 different split schemes, so we evaluate our
module separately and report the average accuracy over these
three splits. Similar to the Penn Action Dataset, we only use
the test set and ignore the training set.

C. Evaluation Metrics

We use the Percentage Correct Keypoints (PCK) [16] as
the metric to evaluate the performance of pose estimation. A
prediction is considered to be correct if the distance between
it and the true position is smaller than α ·max(w, h), where h
and w are the height and width of the ground-truth bounding
box. α is set to 0.2 on both datasets for fairly comparing with
image-based models. Besides, we deduce the human bounding
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TABLE II
THE PCK METRIC COMPARISONS ON PENNACTION DATASET AMONG STATE-OF-THE-ART METHODS AND OUR MODULE. BOLD FONTS REPRESENT THE

BEST RESULTS.

Method Head Sho Elb Wri Hip Knee Ank Mean
Thin-Slicing [31] baseline 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5

CPM [5] baseline 98.6 97.9 95.9 95.8 98.1 97.3 96.6 97.1
LPM [34] baseline 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7

UniPose [41] baseline - - - - - - - 99.3
DCPose [48] baseline - 98.6 96.2 96.0 98.7 98.8 98.7 97.9

OpenPose [7]
baseline - 97.1 93.6 92.7 96.0 97.1 96.8 95.6
greedy - 97.4 94.2 93.6 96.2 97.2 97.1 96.0
HDP - 97.7 94.9 94.6 96.5 97.7 97.5 96.5

SimpleBaseline [9]
baseline - 98.2 95.8 95.7 99.0 98.8 98.3 97.7
greedy - 98.3 95.8 95.6 99 98.8 98.4 97.7
HDP - 98.6 96.9 97.0 99.1 99.2 98.9 98.3

HRNet [10]
baseline - 98.4 96.1 96.3 98.5 98.6 97.9 97.6
greedy - 98.3 96.2 962 98.6 0 98.6 97.8 97.7
HDP - 98.9 97.3 97.6 98.9 99.1 98.5 98.4

FastPose [45]
baseline - 98.2 95.8 95.7 99.0 98.8 98.3 97.7
greedy - 98.3 95.8 95.6 99.0 98.8 98.4 97.7
HDP - 98.6 96.9 97.0 99.1 99.2 98.9 98.3

TransPose [46]
baseline - 98.3 95.4 94.6 98.5 98.4 97.7 97.2
greedy - 98.2 95.5 94.4 98.5 98.3 97.6 97.1
HDP - 98.7 96.8 96.4 98.7 98.8 98.3 98.0

LightHRNet [47]
baseline - 97.8 94.2 94.4 98.6 98.0 97.7 96.9
greedy - 98.0 94.3 94.5 98.6 98.1 97.8 97.0
HDP - 98.1 96.4 95.8 98.9 98.4 98.3 97.8

TABLE III
THE PCK METRIC COMPARISONS ON SUB-JHMDB DATASET AMONG STATE-OF-THE-ART METHODS AND OUR MODULE. THE BEST RESULTS ARE IN

BOLD.

Method Head Sho Elb Wri Hip Knee Ank Mean
Thin-Slicing [31] baseline 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

CPM [5] baseline 98.4 94.7 85.5 81.7 97.9 94.9 90.3 91.9
LPM [34] baseline 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

DCPose [48] baseline - 97.9 93.2 92.1 98.4 97.8 95.9 95.8

OpenPose [7]
baseline - 96.1 90.6 86.4 95.5 93.0 90.8 92.1
greedy - 96.3 90.9 86.8 95.7 93.3 91.2 92.4
HDP - 97.3 92.5 89.2 96.7 94.6 93.2 93.9

SimpleBaseline [9]
baseline - 97.6 93.2 90.2 98.3 96.8 942 95.0
greedy - 97.7 93.4 90.3 98.3 96.8 94.3 95.1
HDP - 98.2 95.3 93.6 98.8 97.7 95.5 96.5

HRNet [10]
baseline - 97.9 94.0 90.8 98.2 96.9 94.8 95.5
greedy - 97.9 94.1 91.0 98.3 97.0 94.9 95.5
HDP - 98.5 96.2 93.2 98.7 98.0 96.2 96.8

FastPose [45]
baseline - 97.6 92.9 90.6 98.0 97.1 93.9 95.0
greedy - 97.6 93.0 90.8 98.1 97.1 94.2 95.1
HDP - 98.4 94.9 93.2 98.5 98.0 95.6 96.5

TransPose [46]
baseline - 96.4 91.1 87.2 97.2 95.7 93.6 93.5
greedy - 96.4 91.3 87.4 97.3 95.8 93.8 93.7
HDP - 97.4 94.3 90.8 98.0 97.1 95.5 95.5

LightHRNet [47]
baseline - 97.3 91.7 89.3 98.1 96.9 94.2 94.6
greedy - 97.4 91.8 89.8 98.2 96.8 94.5 94.8
HDP - 97.8 93.6 91.9 98.4 97.6 95.8 95.9

boxes from the puppet masks used for segmentation for sub-
JHMDB datasets as done in [34]. It should be noted that since
the models we use are not trained on these two datasets, they
can only predict the position of the nose instead of the head.
So we will not report the prediction results of the head during
the experiments.

D. Objective Results and Quantitative Analysis

To validate the effectiveness of our Hierarchical DP Module,
we first compare it with the state-of-the-art methods on Penn
Action Dataset. Table II shows the performance of OpenPose
[7], SimpleBaseline [9], HRNet [10], FastPose [45], TransPose

[46] and LightHRNet [47]. The best results are shown in bold.
The baseline means no additional refinement is applied to the
backbone network. The greedy means we use greedy search
algorithm to refine the predictions. And the HDP means the
proposed Hierarchical DP Module is applied. Note that we do
not report the results of Head because all of the pretrained
models predict Nose instead of Head. Since the prediction
accuracy of Head is usually the highest, the true overall
accuracy of our module should be slightly higher than the
ones we report here.

Several important observations can be obtained from Table
II. First of all, compared with the greedy algorithm, our
module has much better performance improvement on all
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Fig. 5. Some qualitative examples on the Penn Action dataset: (a) original joint predictions (blue markers), (b)refined joint locations by our HDP module
(green markers), (c) the groundtruth labels (red markers), (d) heat maps generated by baseline models, respectively. The problematic frames are marked with
red bounding boxes.

Fig. 6. Some qualitative examples on the Sub-JHMDB dataset: (a) original joint predictions (blue markers), (b)refined joint locations by our HDP module
(green markers), (c) the groundtruth labels (red markers), (d) heat maps generated by baseline models, respectively. The problematic frames are marked with
red bounding boxes.

Fig. 7. Failure cases of our module: (a) original joint predictions (blue markers), (b)refined joint locations by our HDP module (green markers), (c) the
groundtruth labels (red markers), (d) heat maps generated by baseline models, respectively.
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baseline models. This may be because that greedy algorithm
tends to fall into the local optimum, while the DP algorithm
can obtain the global optimal results. Secondly, the gains
mainly come from ”hard” joints. For example, the accuracy
of elbow increases 1.3% and the accuracy of wrist increases
1.9% when our module is combined with OpenPose [7],
which means our module can improve the accuracy of the
joints that are subject to drastic movements or occlusion
by utilizing temporal information. Thirdly, we also compare
our module with some video-based pose estimation methods.
Due to the good performance of the baseline models we
use, the accuracy can be comparable to many video-based
methods even without using our HDP module. For example,
LightHRNet [47] has higher accuracy than Thin-Slicing [31],
achieves 96.9%, while FastPose has the same overall accuracy
of 97.7% with LPM [34]. After combining with HDP module,
all baseline methods have performance gain. Three baseline
methods [9], [10], [45] have improved by more than 0.6% to an
accuracy of around 98.3%, second only to the UniPose method
[41]. Probably because the distribution of the new dataset is
different from that of the training dataset, the two state-of-the-
art methods [46], [47] don’t outperform other methods on Penn
Action dataset, but still gained more than 0.8% with the help
of the HDP module, achieving 98.0% and 97.8% accuracy,
respectively.

Similarly, we achieved improvements in every joints on
Sub-JHMDB dataset as shown in Table III, especially those
”hard“ joints like elbow, wrist and ankle. Our module has
achieved better performance improvement, which may be due
to the poorer performance of the baseline models on these data.
We observe that TransPose [46] has the largest improvement,
reaching 2%, and the performance of the remaining three
models is similar.

In order to better understand the effect of our proposed
Hierarchical DP Module, we show some qualitative results on
Penn Action and Sub-JHMDB Datasets in Fig.5 and 6 respec-
tively. As illustrated in Fig.5 and 6, we visualize (a) original
prediction results from image-based networks, (b) prediction
results refined by our Hierarchical DP Module, (c) the ground
truth labels, (d) heat maps generated by image-based networks.
It can be observed that some jitter occurs when only image-
based method is applied. For example, the first sample in Fig.
6 shows that baseline models can make errors when estimating
symmetric joints. Two peaks appear in the heat map. The third
sample in Fig. 6 shows that poor lighting condition can also
leads to wrong predictions. Nevertheless, our module helps to
improve the accuracy of those joints by better utilizing their
historical locations. Therefore, the motion trajectory of the
joint points is smoother and more stable.

E. Ablation Study
Analysis on all components. Our proposed method consists

of three main components: Hierarchical DP module, sliding
window acceleration, and adaptive DP parameter estimation.
To validate the contribution of each component, we conduct
ablation study on the Sub-JHMDB dataset [50].

In the ablation experiments, we focus on the accuracy of the
results and the speed of inference. According to TABLE IV,

the hierarchical dynamic programming module runs more
efficiently than the original DP algorithm. The overall running
speed is further increased after the combination of the sliding
window method. However, the overall accuracy slips due
to the lack of accurate estimation of the DP parameter λ.
Therefore, with the addition of adaptive parameter estimation,
the module can further improve the accuracy of pose
estimation while meeting the real-time requirements.

TABLE IV
THE ABLATION EXPERIMENT ON SUB-JHMDB DATASET. BOLD FONTS

REPRESENT THE BEST RESULTS. NOTE THAT BASELINE REFERS TO
HRNET [10].

FPS Acc
Baseline 35.2 95.6
Baseline + DP <0.2 95.6
Baseline + HDP 5.6 95.5
Baseline + HDP + slide window 25.4 95.9
Baseline + HDP + slide window + Adaptive Parameter 22 96.8

Analysis on temporal length. As shown in TABLE V,
we investigate the effect of different time window lengths
on performance. We observe that the accuracy of pose
estimation does not always improve with increasing time
length. Specifically, our module performs better with video
clips of about 20 frames, when the module can estimate good
motion characteristics and is not distracted by excess video
frames.

TABLE V
THE PERFORMANCE COMPARISONS ON SUB-JHMDB DATASET WITH

DIFFERENT LENGTH OF SLIDE WINDOW. BOLD FONTS REPRESENT THE
BEST RESULTS. NOTE THAT FULL MODEL REFER TO THE HRNET [10]

COMBINED WITH OUR PROPOSED HDP MODULE

5-Frames 10-Frames 20-Frames 30-Frames 40-Frames
Full model 96.0 96.3 96.8 96.6 96.4

Analysis on problematic video filter. In the HDP
algorithm, we added a problematic video detection step
to further improve the overall speed. We also report the
performance data of the module under different detection
thresholds. As shown in Fig.8, when α becomes larger, the
number of filtered problem videos decreases and the module
runs faster. But accordingly, the accuracy rate also appears
to decrease. However, α should not be too small which
will lead to a large number of clips that do not need to be
processed cannot be ignored, thus seriously slowing down the
processing speed of the module. After weighing the speed
and accuracy, we choose to set α to 0.2.

TABLE VI
THE PERFORMANCE COMPARISONS ON SUB-JHMDB DATASET WITH
DIFFERENT POOLING KERNELS. BOLD FONTS REPRESENT THE BEST

RESULTS.

Input heat map heat map (stage 1) heat map (stage 2) FPS Acc

64× 48

16× 16 4× 3 11 97.0
8× 8 8× 8 127 96.8
4× 4 16× 12 19 96.4
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Fig. 8. Analysis on problematic video filter. The inference speed(FPS) and
accuracy of the module under different thresholds α are presented.

Analysis on pooled heat map size. One remaining but
critical problem is: how do different sizes of pooled heat
maps at each stage affect the performance of the module? As
shown in Table VI, we show the results of some experiments.
We choose HRNet [10] as the backbone and combined it
with our HDP module with different pooling kernels. It
can be seen that at the first stage, the bigger the pooled
heat map is, the smaller the quantization error is, which
will improve the final accuracy. However, the bigger the
pooled heat map is, the higher the computation complexity
of the graph path search algorithm will be, which will slow
down the inference speed. In practice, we ensure that the
size of the pooled heat map of each stage is appropriate,
e.g. for an original heat map of size 64 × 48, we use a
pooling kernel of size 8 × 6 to produce a map of size 8 × 8
at each stage, which achieves a balance of speed and accuracy.

F. Inference Speed

Inference speed is crucial for video-based applications.
Since our module is designed as a plug-in which can be used as
a component of existing image-based pose estimation networks
to improve their performance on video data, its running speed
is very important. We conduct the experiment on the test
set of Penn Action Dataset, using the heat map sequences
produced by SimpleBaseline [9]. The results are illustrated
in Table VII. Note that the original dynamic programming
method has too high computational complexity and takes up
a lot of memory, so it is impossible to run a complete test.
Therefore, we randomly pick a few short video clip for test.

TABLE VII
INFERENCE SPEED TEST AMONG DIFFERENT GRAGH PATH SELECT

ALGORITHMS ON PENN ACTION DATASET.

Optimization Method Inference Speed (FPS)
Greedy Search 270

Original DP 0.2*
Hierarchical DP 127

We can see that original dynamic programming method is
extremely slow, which needs more than 5s per-frame to refine

the joint predictions. Our Hierarchical DP Module is much
faster, only needs 7.8ms per-frame, about 641x faster than
original DP. Greedy search runs the fastest, reaching 270 fps,
but its accuracy is far lower than our Hierarchical DP module
according to Table II and Table III.

To more fully compare the performance benefits of our
modules, we perform speed tests on the Sub-JHMDB dataset
for state-of-the-art methods. As can be seen from the Table
VIII, although the video-based pose estimation method can
achieve high accuracy, it cannot meet the need for real-
time performance. For example, DCPose [48] requires three
consecutive frames to optimize the result of the middle frame,
so the running speed is greatly reduced. In contrast, with
the addition of our efficient HDP module, the image-based
baseline methods have a small loss in speed but a significant
gain in accuracy.

TABLE VIII
THE RESPONSE TIME COMPARISONS ON SUB-JHMDB DATASET AMONG
STATE-OF-THE-ART METHODS AND OUR MODULE. THE BEST RESULTS

ARE IN BOLD.

Method Speed (FPS) Accuracy
LPM [34] 7 93.6
DCPose [48] 8 95.8
OpenPose [7] + HDP 20 93.9
SimpleBaseline [9] + HDP 31 96.5
HRNet [10] + HDP 22 96.8
FastPose [45] + HDP 27 96.5
TransPose [46] + HDP 24 95.5
LightHRNet [47] + HDP 15 95.9

G. Failure Case

We also present some failure cases in Fig.7. We can observe
that our module can not refine the key points when the
percentage of wrong points in the clip is too high. When
encountering rare actions or pictures with poor quality, the
baseline model will be confused and produce ambiguous heat
maps. These heat maps contain a lot of misleading information
so that our module cannot correct the wrong prediction results
well.

V. CONCLUSION

In this paper, we present a lightweight but effective module
named Hierarchical DP Module for video pose estimation. It
can be used as a component of existing image-based pose
estimation networks to improve their performance on video
data. Experiments on two widely-used datasets show that our
module significantly improves the performance of state-of-the-
art image-based methods, especially for those joints that are
subject to drastic movements or occlusion. Our module can
process hundreds of frames per second in the experiment, even
in single-threaded mode.
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