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Abstract—In this paper, we propose a contact-free breath
tracking system, BreathTrack, to track the status of breath using
the off-the-shelf WiFi devices by exploiting the phase variation
of the channel state information(CSI). BreathTrack utilizes a
reference antenna connected from the transmitter to resolve
the phase distortions introduced by the hardware imperfection.
Moreover, BreathTrack utilizes the sparse recovery method to
find the dominant path in the multipath indoor environment
and derive the corresponding complex attenuation coefficient.
Then, the phase variation of the complex attenuation coefficient
is utilized to extract the detailed breath status and the breath rate.
Extensive experiments are conducted to show that BreathTrack
could estimate the breath rate with the median accuracy of over
99% in most scenarios, and could track the detailed status of
breath directly using the raw phase variation.

I. INTRODUCTION

Breath rate is an important vital sign for health monitoring

and medical diagnosis. While we have witnessed the increas-

ing research interests and progresses in ubiquitous health

monitoring in the past few years, most existing methods are

intrusive that require the physical contact between human and

sensors [1] [2] , which affects the normal breath of human and

cannot be applied to the long-term breath monitoring.

To resolve this challenge, radio frequency based monitoring

schemes that can provide non-intrusive breath rate estimation

have been proposed. Vital-radio uses the frequency modulated

continuous wave signal to estimate breath and heart rate[3].

However, such a system is not only expensive, but also

occupies a large wireless band, which limits its application.

To reduce the cost, the WiFi based breath estimation methods

have been proposed[4], [5], [6], [8]. In [4], the UbiBreathe sys-

tem has been proposed to utilize the Received Signal Strength

(RSS) to monitor the breath signal. Since the RSS is not very

sensitive to the minor displacements in the environment, it

requires users to hold the WiFi devices close to their chests

to achieve reasonable performance. The amplitude of channel

state information (CSI) has also been utilized to estimate

the breath rate [5] [6]. However, similar to the RSS, the

amplitude is also not very sensitive to the minor displacement

in the environment, due to which the estimation performance

is limited. To achieve reasonable performance, sophisticated

subcarrier selection, denoising and filtering progresses are

needed. Since the frequency of breath varies in a very narrow

band, i.e., about 0.2Hz, it is difficult to determine whether the

estimated frequency is corresponding to the breath frequency.

Compared with the RSS and the amplitude of CSI, the phase

of CSI is much more sensitive to the minor displacement in

the environment, i.e., the phase of CSI is more suitable for

breath rate estimation. However, the hardware imperfection

of the commodity WiFi chips will introduce time-varying

phase distortions, which makes it difficult to obtain accurate

CSI phase information. It has been found that the phases of

the measured CSIs across packets are not correlated even in

very short time intervals [7]. Therefore, it is very difficult to

estimate the breath rate directly from the phase variation of

the measured CSI. To solve the phase distortion problem, the

PhaseBeat system proposed in [8] utilizes the phase difference

between antennas to eliminate the phase distortion. However,

since the CSI measured on the antennas is affected by the

minor displacement caused by breath, the phase difference

between antennas is actually the subtraction of two periodic

signals, which makes the model in [8] inaccurate.

Another challenge for the breath tracking in the indoor

environment is the multipath effect. In a multipath indoor

environment, the received signal is not periodic due to the

aggregation of the multipath effect, and thus the breath rate

cannot be directly obtained from the frequency components

of the CSI. Moreover, the breath may be interrupted due

to various factors such as talking, thinking or even some

unconscious behaviors. In such a case, only the estimation

of the breath rate may not be enough. Instead, it would be

more significant if we could track the detailed breath status.

However, to the best of our knowledge, there is no existing

work that could reliably and accurately track the detailed

breath status.

To resolve the challenges, in this paper, we propose a

contact-free system using the off-the-shelf WiFi devices,

BreathTrack, to track the human breath. BreathTrack exploits

the phase variation of the CSI to track human breath. To

avoid the phase distortions and obtain the accurate phase

information, BreathTrack combines the hardware and software

corrections. Specifically, the time-invariant PLL phase offset

(PPO) is calibrated by the hardware correction using cables

and splitters, while the time-varying carrier frequency offset

(CFO), sampling frequency offset (SFO) and packet detection

delay (PDD) are removed by the software corrections using the

phase difference between the CSI at the receiver antennas and

that at the reference antenna connected from the transmitter.

To eliminate the multipath effect in the indoor environment,

BreathTrack utilizes the sparse recovery method to find the
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Fig. 1. An illustration of the BreathTrack system. The raw CSI is calibrated according to the signal of the reference antenna which is connected from the
transmitter. Then, the AOA-TOF of received signal is jointly estimated with the sparse recovery method. After that, the phase variation of the dominant path
is extracted. Finally, the breath rate and the breath status are output.

dominant path in the environment and obtain the correspond-

ing complex attenuation coefficient of this dominant path from

the CSI. Then, the phase variation of the complex attenuation

coefficient is utilized to extract the detailed breath status

and the breath rate. Extensive experiments are conducted to

show that BreathTrack could estimate the breath rate with the

median accuracy of over 99% in most scenarios. Besides the

breath rate, BreathTrack is the first system which could track

the detailed status of breath directly from the raw extracted

phase using commodity WiFi chips.

The rest of the paper is organized as follows. Section II

presents the theoretical model and the sparse recovery theory

of the joint AOA-TOF estimation. In Section III, we illustrate

in detail how to obtain accurate CSI phase and track the status

of breath. The experimental results are shown in Section IV.

Finally, conclusions are drawn in Section V.

II. THEORETICAL MODEL

In this section, we first present the CSI model of breath

estimation and the challenges. Then, we introduce the CSI

model of array signal processing. Finally, we illustrate how to

extract the CSI phase variation caused by breath. The system

model of BreathTrack is shown in Fig. 1.

A. CSI Model of Breath Detection

Let us first consider the ideal case without the multipath

effect. In such a case, with the minor displacement caused by

breath, the CSI affected by a static human can be rewritten as

y(t) = h0e
−j2π

d0+d(t)
λ , (1)

where d0 is the time-invariant path length and d(t) denotes the

additional dynamic path length caused by breath. h0 denotes

the complex attenuation of the path, λ denotes the wavelength

of the signal.

From (1), we can see that in the ideal case with a single

path, the breath status can be derived directly from the phase

variation of y(t). However, in practice, there exists several

propagation paths in typical indoor environment due to the

multipath effect. In addition, the CSI would be perturbed by

the noise introduced at the receiver, which is usually assumed

to be additive white Gaussian noise. Thus, the CSI in the

multipath environment can be expressed as

y(t) =

L∑
l=1

hle
−j2π

dl0+dl(t)

λ + e(t), (2)

where L denotes the number of propagation paths and e(t)
denotes the noise. When the lth path is static, dl(t) = 0.

According to (2), the CSI characterizes the multipath

propagation environment. In such a case, without separating

the signal affected by the human breath from the multipath

summation, one may only estimate part of the frequency

components of the breath signal rather than the whole time

domain shape. Moreover, the phase of the measured CSI from

the commodity WiFi chip is generally distorted due to the

imperfect internal circuit, which further reduces the estimation

accuracy. To resolve the above challenges, we propose to use

the array signal processing techniques to address the multipath

effect and adopt both the hardware and software correction

methods to obtain accurate CSI from the commodity WiFi

chip, which will be introduced in detail later.

B. CSI Model of Array Signal Processing

To resolve the challenge of multipath effect, we introduce

array signal processing techniques to jointly estimate the angle

of arrival(AOA) and the time of flight (TOF), then extract

signal from the specific path based on the its AOA-TOF.

We adapt sparse recovery based method which was shown

to achieve better resolution [12], especially in the low SNR



scenarios [13] compared with previous works[11], [10]. In

the following, we will show the formulation of AOA-TOF

estimation .

Let θl and τl denote the AOA and TOF of the lth path,

respectively. Suppose that there are M antennas equipped in

a uniform linear array with antennas space interval d, and

K subcarriers with frequency interval Δf . Let αl denote the

complex attenuation of the signal from lth path, which is

assumed to be the same for all antennas and subcarriers. Thus,

the relative phase between adjacent antennas and subcarriers

of the lth path can be expressed as

Φ(θl) = e
−2πd cos θl

λ , (3)

and

Φ(τl) = e−j2πΔfτl . (4)

Therefore, the joint phase shift from the CSI of the mth

antenna and the kth subcarrier to that of the first antenna and

the first subcarrier is given by

Φmk(θl, τl) = exp

(
− j2π

(
(k − 1)Δfτl + f0

(m− 1)dcosθl
c

+(k − 1)Δf
(m− 1)dcosθl

c

))
,

(5)

where f0 denotes the carrier frequency of the signal.

With M antennas and K subcarriers, the phase shift vector

can be written as

a(θl, τl) = [1 Φ21(θl, τl) ... Φmk(θl, τl) ... ΦMK(θl, τl)]
T .
(6)

Combing all the L paths, the steering matrix is defined as

A = [a(θ1, τ1), a(θ2, τ2), ..., a(θL, τL)]. (7)

Thus, considering the measurement error caused by noise,

the measured CSI can be expressed as

y =

L∑
l=1

a(θl, τl)αl + e = Aα+ e, (8)

where αl denotes the complex attenuation of the signal from

the lth path.

To cast (8) into a sparse recovery problem, let us define a

AOA-TOF grid as follows

θτ = [(θ1, τ1), (θ2, τ2), ..., (θN , τN )], (9)

where N denotes the number of grid points. The overline is

introduced to distinguish the grid points and actual paths.

Similar to (6), the phase shift vector of the grid can be

written as

a(θn, τn) = [1 Φ21(θn, τn) ... Φmk(θn, τn) ... ΦMK(θn, τn)]
T .

(10)

According to (7) and (10), the new steering matrix which

contains all the grid points can be written as

A = [a(θ1, τ1), a(θ2, τ2), ..., a(θN , τN )], (11)

Thus, the received signal and the complex attenuation vector

can be expressed as

y = Aα+ e, (12)

with α being the complex attenuation vector

α = [α1, α2, ..., αN ], (13)

where αn equals to the complex attenuation coefficient if there

exists signal with the AOA of θn and TOF of τn, otherwise,

αn equals to zero. Thus, there are at most L non-zero elements

which correspond to the L paths. Apparently, the number of

grid points can be much larger than L, i.e., L � N , which

means that α is a sparse vector. As a result, the problem

can be solved using minimum norm methods [12], and the

optimization problem can be formulated as follows

min ||α||1,
s.t. ||y −Aα||22 ≤ β, (14)

where β is the parameter determined by the noise level. Once

the minimal norm problem was solved, we can obtain A from

A by selecting the columns of which αn is non-zero.

C. Breath rate estimation based on sparse estimation

In this section, we will introduce the way to enhance

the robustness of AOA-TOF estimation and derive the phase

variation caused by breath. Since the AOA-TOF changes

slowly compared with the speed of transmitting packets, we

are motivated to combine the samples at different slots to

obtain robust estimation. However, combining the samples at

different slots directly would increase the computation cost

dramatically, which makes it unapplicable to practical systems.

To resolve the problem, we utilize the l1-SVD algorithm

proposed in [12] to improve the accuracy and robustness of

the AOA-TOF estimation. The l1-SVD algorithm [12] is a

tractable approach to use a large number of time samples

coherently. The idea is to decompose the data matrix into the

signal and noise subspaces, and reformulate the problem with

reduced dimensions into the multiple sample sparse spectrum

estimation problem.

Let Y denote T consecutive time samples of y(t). Taking

the SVD on Y , we have

Y = UΣV′. (15)

Let us keep the reduced MK×L dimensional matrix YSV =
UΣDL = YVDL, where DL = [IL0

′], IL is a L× L identity

matrix, and 0 is a L × (T − L) matrix of zeros. Similarly,

let X and E denote T consecutive samples of α(t) and e(t),
respectively, and define XSV = XVDL and ESV = EVDL.

Then, we have

YSV = AXSV + ESV. (16)

With the SVD, the size of the problem is reduced from

T blocks of data to L, where L � T . Note that the form

of (16) is the same as that of (8), which means that it

could be effectively solved by the minimal norm method [12].

Although the formulation of SVD uses the information about



the number of paths, L, it has been observed that incorrect

determination of L has no catastrophic consequences [12].

Once we obtain the estimation of AOA-TOF, the complex

attenuation coefficient can be derived, which is given by

α(t) = A†y(t), (17)

where A† denotes the pseudo-inverse of A. Note that A is the

steering matrix in (7), which is obtained in the last subsection

by jointly estimating AOA-TOF and selecting the columns of

A where the corresponding complex attenuation coefficient is

non-zero. The phase variation of α(t) corresponds to the minor

displacement caused by breath directly, which can be utilized

to track the breath.

III. DATA PROCESSING

In this section, we will introduce in detail the data pro-

cessing steps of the proposed system. Specifically, we first

introduce how to obtain accurate CSI. Then, we present how

to extract the phase corresponding to the breath and how to

estimate the breath rate.

A. Obtaining accurate CSI for breath detection

Due to the hardware imperfection of commodity WiFi chips,

the measured CSI is generally distorted by the internal circuit.

Moreover, some distortions even change rapidly with time,

which makes it difficult to obtain the accurate CSI measure-

ment. Existing work has found that the phases of measured

CSIs across packets are not correlated [7], which limits the

application of phase variation based wireless sensing. Accord-

ing to [17], there are mainly four kinds of phase distortions:

Carrier Frequency Offset (CFO), Sampling Frequency Offset

(SFO), Packet Detection Delay (PDD) and PLL Phase Offset

(PPO).

With the four kinds of phase distortion mentioned above,

the actual measured CSI can be expressed as

ym,k(t) = e−j2π(fCFOt+kΔf(τSFO(t)+τPDD(t))

ejϕPLLm

L∑
i=1

αie
−j2πfkτ

m
i , (18)

where τPDD and τSFO denote the time shift introduced by

PDD and SFO, respectively, fCFO denotes the CFO, and

ϕPLL denotes the time-invariant PPO.

The correction of the PPO has been well investigated in

[9] and [10]. Since the calibration is only invoked when

the receiver sets the channel, to guarantee the robustness of

the phase correction, we use the method proposed in [9]

which utilizes cables and splitters to correct the PPO between

antennas.

While the PPO is a constant offset which can be corrected

through cables and splitters, other phase distortions (CFO,

SFO and PDD) are difficult to correct since they are time-

variant. To the best of our knowledge, there is no existing

reliable correction approach up to now. The most recent

approach in [18] utilized two propagation paths to get rid of

the phase distortion. However, such a method is not reliable

since it is very difficult to detect two paths stably in the

indoor multipath environment using the off-the-shelf WiFi

devices. Fortunately, we have found that the CFO, SFO and

PDD are the same among different antennas, which makes the

phase difference between antennas time-invariant in the static

environment [8]. To create an artificially static environment,

we connect the transmitter and receiver by a coaxial cable.

By assuming that the antenna 1 at the receiver is connected

with the transmitter, the measured CSI on the antenna 1 at the

receiver can be expressed as

y1,k(t) = e−j2π(fCFOt+kΔf(τSFO(t)+τPDD(t))

ejϕPLL1α0e
−j2πfkτ0 , (19)

where α0 and τ0 denote the complex attenuation of the coaxial

cable and the TOF in the cable, respectively.

Since the signal propagates in the coaxial cable, on the

ideal case, the CSI measured on this antenna should be time-

invariant. Thus, the variation of the measured CSI is only

caused by the distortions, i.e., the CFO, SFO and PDD.

With such information on this antenna, to eliminate the phase

distortion on other antennas, the measured CSI of mth antenna

is multiplied with the complex conjugate of the CSI on the

antenna 1 as follows

ŷm,k = (y1,k)
∗ × ym,k

= α0e
j2πfkτ0

L∑
i=1

αie
−j2πfkτ

m
i , (20)

where ∗ denotes the operation of complex conjugate. Note that

since ϕPLL can be removed as illustrated above, we omit it

in (20).

We can see that the modified CSI ŷm,k is the ideal CSI

ym,k multiplied with a constant complex coefficient. Since τ0
is known which is determined by the length of coaxial cable,

the complex coefficient will not affect the estimation of AOA-

TOF and thus not affect the estimation of the breath.

B. Phase Extraction and Breath Rate Estimation

With the modified CSI ŷm,k in (20), we utilize the sparse

recovery algorithm in Section III to estimate the AOA-TOF

of the paths in the environment. According to [14], it can be

derived that the the proposed algorithm could not perfectly

obtain the accurate AOA-TOF estimation of all paths due

to the limited number of antennas and bandwidth. Luckily,

it can be derived theoretically and verified experimentally

that the estimation for the dominant path is accurate. Thus,

we only pick the path with the maximum amplitude in the

estimated AOA-TOF spectrum to build matrix A in (7). Then,

the complex coefficient of this dominant path is obtained, and

the phase of this complex coefficient is extracted for breath

rate estimation.

Benefiting from the aforementioned phase extraction algo-

rithms, the breath rate estimation does not require sophisticated

denoising, filtering and/or approximating processing steps as

in the previous works[4], [5], [6], [8]. Since the DC component

of the phase variation is large, which may affect the breath rate
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Fig. 2. Median error of breath rate estimation under different breath
frequencies.

estimation, we utilize the Hampel Filter to remove it [8]. The

window size is set as 100 samples and the threshold is set to

be 0.01. To further suppress the low frequency noise, we use

a FIR highpass filter with the cutoff frequency 0.05Hz, which

is determined by the lowest breath frequency of human. Then,

we simply pick the peak of FFT spectrum of the filtered phase

data as the estimation of breath rate.

IV. EXPERIMENTS RESULTS

In this section, we conduct extensive real experiments to

evaluate the performance of the proposed system.We use two

desktop computers equipped with the Intel 5300 NIC as the

transmitter and the receiver. The Linux 802.11n CSI Tool [16]

is installed on both the transmitter and the receiver. We ran-

domly choose channel 62, i.e., 5.31GHz center frequency with

the 40MHz bandwidth, as our experimental band. The receiver

is equipped with a uniform linear array which is composed

of three omnidirectional antennas, while we only use two of

them since one of the port is connected with the transmitter

directly. The space interval of the antennas is 2.6cm, which is

about the half wavelength. The transmitter sends 20 packets

per second using one omnidirectional antenna. The transmitted

signal is first divided into two parts using a microwave power

splitter: one is fed into the transmit antenna and the other is

fed into an attenuator which is connected with the receiver

via a coaxial cable. The AOA-TOF estimation problem with

the sparse recovery formulation is solved using the CVX tool

[15]. The AOA grid spans [1◦, 180◦] with Nθ = 90 and the

TOF grid spans [−15m, 15m] with Nτ = 31.

A total of 8 different participants were invited. The perfor-

mance of the system is evaluated by comparing the estimated

breath rate with the ground truth. To obtain the ground truths,

participants are asked to synchronize their breaths with the

metronome on their cellphones. Besides the controlled breath,

participants are also asked to breath naturally and count their

breaths manually. Experiments are conducted in a 5m × 8m
meeting room.

The transmitter and the receiver are separated 2m away.

The participant sits in the midpoint of the transmitter and

the receiver. To show the robustness of the proposed system,

they are asked to breath with the frequency of 0.2Hz, 0.25Hz

and 0.33Hz in different experiments, respectively. The median

accuracy of the breath rate estimation of three frequencies is

shown in Fig. 2. We can see that the proposed method can

achieve very accurate breath rate estimation, above 99.5%, in

this scenario.

Since most existing methods seem to have reasonable per-

formance in estimating the breath rate under simple settings,

to show the advantages of the propose system, we compare

the raw phase variation data of different subcarriers and the

raw phase extracted by the proposed system. We first ask

the participant to breath with 15 BPM and the results are

shown in Fig. 3. It can be seen clearly from the Fig. 3 (a)

that there are 15 periods. On the contrary, although the phase

of the subcarriers do show some periodicity, it is difficult to

recognize the breath period based on the phase variation on

the subcarriers as shown in Fig. 3 (b), (c), and (d). Note that

we do check the phase variation of all different subcarriers,

however, none of them could be used to judge the breath

period. In all experiments of the proposed system, the raw

phase data is directly related to the breath and the frequency

of the breath can be easily estimated in the way similar to Fig.

3 (a). In contrast, sophisticated subcarrier selection, denoising

and filtering progresses are needed in previous works[4], [5],

[6], [8]. Since the frequency of breath varies in a very narrow

band, i.e., about 0.2Hz, it is difficult to determine whether the

estimated frequency is corresponding to the breath frequency.

To further illustrate the advantages of proposed system,

we show two more experiments in Fig. 4 and Fig. 5. Since

the status of human breath may change rapidly due to many

factors, such as speaking, moving or even some unconscious

behaviors, it will be much more significant if one could

identify the whole breath status rather than just estimate the

rate. In Fig. 4, the participant is asked to hold the breath for

30s first, then take a deep breath, and finally breath normally.

In Fig. 5, the participant is asked to breath normally first,

and then hold the breath. As shown in Fig. 4 (a) and Fig.

5 (a), the proposed system can perfectly capture such minor

and fast change of the whole breath status. However, similar to

the results in Fig. 3, we cannot judge the breath status directly

from the phase variation on different subcarriers as shown in

(b), (c), and (d) of Fig. 4 and Fig. 5.

V. CONCLUSION

In this paper, we proposed BreathTrack, the first system

that can track the detailed status of breath using the off-the-

shelf WiFi devices. To achieve this, we proposed hardware and

software correction methods to remove both the time-invariant

and time-varying phase distortions introduced by the hardware

imperfection of commodity WiFi chips and thus obtain the

accurate CSI. We also proposed a joint AOA-TOF sparse

recovery method to eliminate the multipath effect in the indoor

environment and extract the information of the dominant path

to track the status of breath. Experimental results show that
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Fig. 3. The case when one person breaths 15 times per minute.
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Fig. 4. The case when one person holds the breath first and then breath normally.
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Fig. 5. The case when one person breaths normally first and then holds the breath.

BreathTrack can achieve high accurate breath rate estimation

and track the detailed status of breath.
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