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MTrack: Tracking Multi-Person Moving
Trajectories and Vital Signs with Radio Signals

Dongheng Zhang, Yang Hu, and Yan Chen∗, Senior Member, IEEE

Abstract—In this paper, we propose a human sensing system
with radio signals, MTrack, for in-home healthcare, which is
capable of tracking the trajectories of moving persons and vital
signs of static persons under the multi-person scenarios. To
achieve this, we implement a multi-antenna wideband system
that can provide high-resolution angle of arrival (AoA) and
time of flight (ToF). A 2D beamformer is utilized to transform
the raw radio signals into the AoA-ToF domain. To track the
trajectories of moving persons, we leverage the movement of
persons to cancel static multipaths and propose a path selection
algorithm to estimate the locations of human and suppress the
interferences from dynamic multipaths. To track the vital signs of
static persons, we utilize the breath of static persons to eliminate
static multipaths and propose a correlation-based algorithm to
eliminate dynamic multipaths. Extensive experiments show that
the proposed MTrack system is capable of tracking multiple
moving persons with sub-decimeter level accuracy, and can
estimate the breath and heartbeat rate of static persons with
median accuracy of 99.8% and 98.46%, respectively.

Index Terms—Human Tracking, Vital Sign, AoA, ToF, Multi-
path, Healthcare.

I. INTRODUCTION

In the past decades, the number of aged people over the
world has been growing steadily [1]. The aged people suffer
from various chromic diseases such as congestive heart failure,
chronic obtrusive pulmonary disease, etc. [2]. Due to the long
period of these diseases and the limited medical resources, the
treatment has been disturbing for patients and consuming for
the human society. Therefore, there is an urgent need for the
new solution to alleviate this problem.

In-home human monitoring systems, which could contin-
uously monitor user information such as location and vital
sign, have been attractive to provide assistance for personal
healthcare, i.e., to provide healthcare professionals with rich
information to understand the health conditions of users [2]–
[8]. For instance, the location information is able to answer
the question like “does the person spend too much time
somewhere in home?” or “do the couple stay close with each
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other?”; while the vital sign information can be utilized to
detect unusual breath and heartbeat, which provides valuable
information for medical diagnoses. All in all, in-home human
monitoring systems would help doctors to discover potential
health risks and provide better care for existing diseases.

In-home human monitoring systems can be generally cat-
egorized into three different types based on the sensor they
adopt: vision based systems, wearable sensor based systems
and radio frequency (RF) based systems. Vision based sys-
tems, which are capable of localizing persons and extracting
their vital signs, suffer from low light conditions and severe
privacy issues in practice [9]. Wearable sensor based systems,
which require physical contact between human and sensor,
tend to be left by users and thus are not suitable for long-
term monitoring [10]. Due to the non-intrusive and privacy-
preserving characteristic of RF signals, RF based systems have
shown great potential for personal healthcare.

However, due to various practical challenges, the perfor-
mance of existing RF systems are still quite limited in some
aspects, e.g., only work in the single-person scenarios [11],
can only detect the presence of user [12], can only track the
trajectories of moving persons [13], [14], or can only monitor
the breath status [15]. In this paper, we introduce a RF system
that can track both the trajectories of moving persons and the
vital signs of static persons in multi-person scenarios. Building
such a RF system is non-trivial and there are mainly two
challenges needed to be resolved: 1) signal separation from
different targets; 2) alleviating the multipath interference.

Signal separation from different targets. The first chal-
lenge is to separate signals from different targets. To deal with
this challenge, we have noted that with AoA and ToF, the
location of a target can be determined without any ambiguity.
Since different targets generally stay at different locations,
their signals can be separated based on the corresponding AoA
and ToF. Therefore, we implement a multi-antenna wideband
transceiver system, which generates step-frequency signals
with 2GHz bandwidth and receives signals through a linear
16-antenna array. We then design a beamformer to separate
signals based on the corresponding AoA and ToF. With a
high spatial resolution, our system could separate signals from
different persons even when they stay close to each other.

Alleviating the multipath interference. The second chal-
lenge is to deal with the multipath interference. Multipath
interference is a fundamental and challenging problem in
wireless communications. It becomes even more challenging
for the passive human sensing systems where human do not
carry any active device for signal transmitting and thus the
reflections from other multipaths can be stronger than that
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Fig. 1: System model of MTrack. Our system utilizes a step-frequency multi-port transceiver that can transmit and receive
wideband signals through multiple antennas. The transmitting signal is reflected by the objects in the environment, including
walls, static persons, and moving persons, and finally received by the receiver with a uniform linear antenna array.

from human. There are generally two kinds of multipath
interference with different characteristics: static multipaths and
dynamic multipaths [13]. We handle the multipath interference
by leveraging the fact that different multipaths have different
features from the signals reflected by human. Specifically, we
propose a spatial-temporal path selection method to track the
trajectories of moving persons based on the observations that
the location of moving persons changes continuously in the
time domain while the reflections of dynamic multipaths vary
randomly and the reflections of static multipaths keep the
same. We also propose a correlation-based method to extract
the signals reflected from the static persons and track the
corresponding vital signs based on the observations that the
time-domain dynamic multipaths are highly correlated with
the human breath signals and the static multipaths are not
modulated by the breath status.

The main contributions of this paper are summarized as
follows.

• To the best of our knowledge, MTrack is the first system
that could track the trajectories of moving persons and
the vital signs of static persons using a single device with
impressive accuracy.

• To track the trajectories of moving persons, we propose a
spatial-temporal path selection algorithm which can lever-
age the continuous movement of persons to suppress the
random dynamic multipath reflections and the constant
static multipath reflections.

• To track the vital signs of static persons, we propose a
correlation-based method to remove the dynamic multi-
paths that are highly correlated with the human breath
signals and the static multipaths that are not modulated
by the breath status.

The rest of the paper is organized as follows. Section II

introduces the related work. Section III illustrates the model
of our system. Section IV presents our method to localize
persons and extract their vital signs. Extensive experimental
results are shown in section V. Finally, conclusions are drawn
in Section VI.

II. RELATED WORK

This paper is related to the human tracking and vital
sign monitoring. In the following, we introduce in detail the
related work on human tracking and vital sign monitoring,
respectively.

A. Human Tracking
Mercuri et al. introduced a system to track the distance

between transceiver and human [18], while Ram and Ling
proposed to track the direction of human with an antenna array
[19]. Adib et al. proposed a WiTrack system to track a single
person by measuring the ToF on multiple antennas [13]. Later,
an upgraded version was proposed to track multiple persons
[14]. However, all these systems only obtain one location
parameter of human, i.e., AoA or ToF, and then perform
triangulation to estimate the location of human, which thus
limits the applications of these systems. Moreover, the signals
on the multiple antennas cannot be combined coherently to
track the vital signs of human. Qian et al. proposed an off-
the-shelf WiFi based system to track the location of human
[11], [16]. The system is capable of tracking single person
with only one WiFi link by jointly estimating the AoA and
ToF. However, the accuracy and robustness of the system are
still quite limited due to the limited number of antennas and
bandwidth of WiFi. There have also been some commercial
products such as [12], which however can only detect the
presence of the user.
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B. Vital Sign Monitoring

Adib et al. proposed a RF based vital sign estimation system
[17], which can accurately estimate the breath and heartbeat
rate in the single-person scenarios. However, for multi-person
scenarios, it requires users to stand 2m away from each other,
which may not be reasonable in practice. Zhang et al. proposed
a BreathTrack system, which could track human breath status
based on the off-the-shelf WiFi [15]. However, due to the
limited resources of WiFi, this system also fails in the multi-
person scenarios.

III. SYSTEM MODEL

As shown in Fig. 1, our MTrack system utilizes a step-
frequency multi-port transceiver that can transmit and re-
ceive wideband signals through multiple antennas. Given the
frequency band and number of frequency points, the signal
generator generates a single-tone signal on every frequency
point and the signal is transmitted through the RF chain on
a transmitter antenna. The signal is then reflected by the
objects in the environment, including walls, static persons, and
moving persons, and finally received by the receiver with a
uniform linear antenna array. Hence, the received signal can
be expressed as

sm,k(t) =
L∑

l=1

hl(t)e
−j2πfkτl(t)e−j2πfk

(m−1)dcosθl(t)

c , (1)

where m, k, l, and t denote the index of receiver antenna,
frequency point, propagation path, and time slot respectively,
L is the number of propagation paths, hl(t) is the complex
attenuation coefficient, θl(t) and τl(t) denote the AoA and
ToF respectively, fk is the signal frequency, d is the inter-
element space of the antenna array, and c is the speed of the
signal propagation.

Assuming that there are M receiver antennas and K fre-
quency points, and the step-frequency signal is transmitted
over T time slots, then we can put all the received signals
on different antennas, different frequency points, and different
time slots together into a matrix as follows

S = [st1 , st2 , ..., stT ], (2)

where st is defined as

st = [s1,1(t), s2,1(t), ..., sM,1(t), ..., sM,K(t)]T . (3)

From (1), we can see that to track the trajectories of moving
persons and/or the vital signs of static persons, we need to first
separate the signals reflected from different targets based on
their AoAs and ToFs. Thus, accurate AoA and ToF information
is an important prerequisite for our system to achieve good
performance. To guarantee the accuracy of AoA and ToF, the
system should have enough AoA and ToF resolution, which
can be expressed as [22]

RAoA = 2arcsin(
λ

Md
), (4)

and
RToF =

1

2B
, (5)

where B denotes the bandwidth of the signal.
According to (4) and (5), the resolution is determined by

the number of antennas and the signal bandwidth. In our
system, the transceiver can transmit step-frequency signals
with 2GHz bandwidth and receive signals with a 16-element
antenna array. Thus, the AoA and ToF resolution of our system
are 16.6◦ and 0.25ns, which guarantees the capability of our
system for providing accurate AoA-ToF information.

IV. SIGNAL PROCESSING AND TRACKING

In this section, we first introduce how to transform the raw
received signals to the AoA-ToF domain. Then, we illustrate
how to track the trajectories of moving persons and vital signs
of static persons, respectively.

A. Signals in the AoA-ToF Domain

Considering the signal transmitted or reflected from AoA θ
and ToF τ , the relative phase shift of this signal on adjacent
antennas can be expressed as

Φ(θ) = e
−j2πd cos θ

λ , (6)

while the phase shift on adjacent frequencies is given by

Φ(τ) = e−j2π∆fτ , (7)

where ∆f denotes the difference between adjacent frequen-
cies.

By compensating the phase shift and adding the signals on
different antennas and frequencies, the signals from AoA θ and
ToF τ would superimpose coherently while the signals from
other locations would be suppressed. Hence, the signals from
that AoA-ToF could be strengthened and separated. To extract
the signal from a specific AoA-ToF, we design a joint AoA-
ToF beamformer whose phase shift vector can be expressed
as

Φmk(θ, τ) = exp

(
−j2π

(
(k−1)∆fτ+fk

(m− 1)dcosθ

c

))
.

(8)
Since our system has M antennas and K frequency points,

the phase shift vector, which is referred as steering vector [23],
is given by

Φ(θ, τ) = [Φ1,1(θ, τ), ...,ΦM,1(θ, τ), ...,ΦM,K(θ, τ)]T , (9)

With (9) , the signal from a specific (θ, τ) can be extracted
by

y(θ, τ) = ΦH(θ, τ)s, (10)

By defining a spatial grid for candidate AoA-ToF values, we
could apply (10) to extract the signals from these AoA-ToFs,
which could be expressed as

y = AHs, (11)

with A being defined as follows

A = [Φ(θ1, τ1),Φ(θ2, τ1), ...,Φ(θgA , τ1), ...,Φ(θgA , τgD )],
(12)

where gA and gD denotes the number of candidate AoA and
ToF, respectively. An example of such transformation is shown
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Fig. 2: Transformation to AoA-ToF domain. We design a beamformer to transform raw signal to AoA-ToF domain. The rows
in (b) correspond to the candidate AoA while the columns correspond to the candidate ToF. The yellow elements denote strong
reflection paths while the blue ones denote weak reflection paths.

Fig. 3: Illustration of multipath interference.

in Fig. 2. Raw signals are transformed with (11) and reshaped
into a matrix. The rows correspond to the candidate AoA and
columns correspond to the candidate ToF. The yellow elements
denote strong reflection paths while the blue ones denote weak
reflection paths.

As shown in Fig. 2(b), each element in y corresponds to
the signal from a specific AoA-ToF at a particular time index.
Hence, we call y the signal in the AoA-ToF domain. With
such a transformation, the raw signals are transformed into
AoA-ToF domain for further processing. Since our system
continuously transmits and receives the RF signals, the AoA-
ToF domain signals at all time slots can be obtained by

Y = AHS, (13)

where Y is defined as

Y =


y1(θ1, τ1) y2(θ1, τ1) ... yT (θ1, τ1)
y1(θ2, τ1) y2(θ2, τ1) ... yT (θ2, τ1)

... ... ... ...
y1(θgA , τ1) y2(θgA , τ1) ... yT (θgA , τ1)

... ... ... ...
y1(θgA , τgD ) y2(θgA , τgD ) ... yT (θgA , τgD )

 .

The columns of Y correspond to the signals from different
(θ, τ), the rows correspond to the signals from a specific (θ, τ)
at different time slots. We use Y∗t and Ys∗ to denote the
columns and rows in the rest of this paper to avoid confusion.

B. Track the Trajectories of Moving Persons

In this subsection, we will discuss how to track the trajec-
tories of moving persons. For the simplicity of analysis, we
first consider the single-person scenarios. Then, we extend our
discussions to the multi-person scenarios.

In the previous subsection, we have discussed how to
transform the raw received signals into the AoA-ToF domain,
where the amplitude denotes the reflected signal strength
from a specific (θ, τ). Hence, the amplitude of the AoA-ToF
domain signal can be utilized to indicate the likelihood that
a target exists at that location. In such a case, to localize a
target, a straightforward approach is to find the (θ, τ) with the
maximum amplitude in the AoA-ToF domain. However, due
to the multipath interference, this approach may lead to wrong
estimation in practice.

As discussed in the introduction section, there are two kinds
of multipaths: static multipaths and dynamic multipaths [13].
As shown in Fig. 3, static multipaths denote the signals reflect-
ed from static objects in the environment, e.g., furniture and
wall. With the existence of various static objects, the energy of
static multipaths is generally very strong. Thus, if we directly
choose the (θ, τ) in the AoA-ToF domain with the maximum
amplitude, the estimated AoA-ToF would correspond to the
location of static objects rather than the moving persons. Fig.
4(a) shows an example of raw AoA-ToF data in practical
measurement. All elements with strong reflections are actually
static multipaths while human reflections are totally invisible.

To remove static multipaths, we leverage the fact that
the reflections from moving persons and static objects have
different characteristics in the time domain. More specifically,
the reflected signals from moving persons would change
over time due to the movement of persons, while the static
multipath reflections keep the same over time. Thus, by simply
subtracting the signals in consecutive measurements, signals
from static objects would be removed while signals from
moving persons still persist, i.e.,

Y ′
∗ti = Y∗ti+1

− Y∗ti . (14)

With (14), the static multipaths can be removed, due to
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Fig. 4: Procedures of localizing moving persons. We first subtract the signals in consecutive measurements to eliminate static
multipath. Then, we formulate and solve the graph path selection problem to suppress dynamic multipath.

which one may localize the moving persons at time ti by

(θ̂, τ̂)ti = argmax
θ,τ

|Y ′
∗ti | (15)

where | · | denotes the absolute value.
Although (15) is able to localize the moving persons, the

accuracy and robustness would be very limited due to the
existence of the dynamic multipaths in Y ′

∗ti . As shown in
Fig. 3, dynamic multipaths are caused by the fact that moving
persons not only reflect signal themselves but also change
some reflection paths of static objects, e.g., the moving person
may block the wall and thus the reflection from the wall would
be changed. Since the dynamic multipath signals change with
time, similar to the signals from the moving persons, they
still persist after the removal of static multipaths. As shown in
Fig. 4(b), the signal strength of dynamic multipaths caused
by one person is even stronger compared with the direct
reflection from another person. In the single-person scenarios,
one can leverage the fact that the direct signal reflected from
the moving person to the receiver has a smaller ToF, to remove
the dynamic multipaths [13]. However, this method is not
applicable to the multi-person scenarios since the ToF of
dynamic multipaths caused one person may be smaller than
the direct reflection from another person.

To resolve this problem, we observe that the locations
of moving persons change continuously due to the limited
speed of human movement, while the locations of dynamic
multipaths change fast and randomly due to the random
distribution of the multipath reflectors in the environment.
Based on the observations, we propose to jointly estimate the
continuous trajectory of the moving person (θ, τ ) rather than
simply pick the peak amplitudes of Y ′ at every time index.

More specifically, assuming that the AoA-ToF estimation at
time index i is a and the AoA-ToF estimation at time index
i+ 1 is b, then we can define the cost function at time index
i as follows

ci = −|Y ′
ai| − |Y ′

bi+1|+ ωα(a, b), (16)

where |Y ′
ai| and |Y ′

bi+1| denote the amplitude of signal at
AoA-ToF a in time i and AoA-ToF b in time i+ 1, ω is the
weighting factor, and α(a, b) denotes the location constraint

in time domain as follows

α(a, b) = ωθ||θa − θb||2 + ωτ ||τa − τb||2, (17)

where ωθ and ωτ are the weighting factors.
From (17), we can see that for the signals reflected from

moving human, their locations change continuously, which
makes α(a, b) small. On the contrary, for dynamic multipaths,
their locations change fast and randomly, which makes α(a, b)
big. Thus, by adding the location constraint in (17), we could
extract the trajectory of moving person by minimizing the
following total cost function

(θ̂, τ̂ ) = argmin
θ,τ

C =
T−1∑
i=1

ci. (18)

The optimization problem in (18) can be re-formulated as
a graph path selection problem. As shown in Fig. 4(c), the
vertices of the graph are the candidate AoA-ToFs, and the
vertices are connected to all vertices in the last time stamp
and the next time stamp with the weight of edges being the
cost function in (16). Suppose that we have already known the
optimal path from t0 to every vertices Y ′

ati at ti, to obtain the
optimal path from t0 to Y ′

bti+1
at ti+1, we have

C(Y ′
∗t0 → Y ′

bti+1
) = min

a∈GALL

{
C(Y ′

∗t0 → Y ′
ati)

+c(Y ′
ati → Y ′

bti+1
)
}

(19)

where GALL denotes the AoA-ToF grid.
From (19), we can see that the optimization problem in (18)

can be efficiently solved by the dynamic programming with
value iteration algorithm [21], [24], i.e., the optimal trajectory
can be obtained with dynamic programming.

To extend our algorithm to the multi-person scenarios, we
propose an iterative estimating and cancellation method to
track the trajectories of multiple persons. More specifically, we
first perform the aforementioned algorithms once by solving
the optimization problem in (18) to extract the trajectory
corresponding to the moving human with the maximum signal
amplitude. Due to the near-far effect, the signal amplitude of
one person may overwhelm the others. Thus, we need to cancel
the signal of the first person to track the second one [14].
Hence, with the estimated trajectory, we trace back to Y ′ to
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Fig. 5: Procedures of extracting static person vital signs. We first subtract the signals after and before a time window to
eliminate static multipath. Then, we trace back to the time domain signal which has large amplitude in AoA-ToF domain.
Finally, we label these signals based on the correlation.

eliminate the signals from the first person. Note that since
human body is not a point reflector, we need to eliminate the
spread of reflected signals in all candidate AoA-ToF points.
To achieve this, we set a square mask centered at the location
of human body and zero all signals in the mask. We repeat
the above procedures until the estimated C is lower than the
empirical noise floor to obtain the trajectories of all moving
persons.

With the estimated AoA-ToFs, we can obtain the human
locations (x, y) through a simple transformation

x =
cτ

2
cos θ y =

cτ

2
sin θ (20)

where τ is divided by 2 since the ToF is the round-trip distance
between human and transceiver.

C. Track Vital Signs of Static Persons

Since signals from different targets have been separated in
the AoA-ToF domain, given the location of a static person, we
could trace back to Y to extract the signals from that person.
Hence, to track the vital signs, i.e., breath and heartbeat status,
of static persons, we need to first estimate their locations.

Localizing static persons is considered as a more chal-
lenging problem compared with localizing moving persons.
This is because static persons do not perform significant
movements to change the received signals, which makes
it difficult to eliminate static multipaths as we did in the
last subsection. Nevertheless, we observe that although the
static persons locations keep unchanged, their chests move
slightly and periodically due to the breath. In one period of
breath, the inhale and exhale make the person’s chest move
sub-centimeter distance, which would modulate the reflected
signals. By selecting an appropriate time window, i.e., half of
a breath period, subtracting the signals after and before the
time window, the static multipath reflections can be removed
while the signals reflected from static persons still persist as
below

Y ′′
∗ti = Y∗ti+W

− Y∗ti , (21)

where W denotes the window length.

When persons keep static in the environment, the dynamic
multipath reflections, which are affected by the locations of
persons, also keep unchanged. In such a case, the optimization
algorithm in (18) could not be applied to suppress the dynamic
multipaths anymore. To resolve this problem, we have noted
that the dynamic multipaths are caused by the inter modulation
between human breath and static multipaths as shown in Fig.
3. Thus, the received signals of direct reflection from static
persons and dynamic multipaths can be expressed as

sh(t) = e−j2πf(τh+τb(t)), (22)

and
sw(t) = e−j2πf(τw+τb(t)), (23)

where τh and τw denote the constant ToF between transceiver
and the human as well as the dynamic multipath reflector,
respectively, τb(t) denotes the time-varying ToF caused by
human breath. Since τb(t) is the only term which varies
with time, the time variation of the signals reflected from
human and dynamic multipaths would be highly correlated.
Fig. 5(a)(b) show an example of this phenomenon in practical
measurement. The signal from person 1 has the strongest
amplitude and the corresponding dynamic multipath is even
stronger than the direct reflection from person 2. From the time
domain signals, we can observe that the first and second curves
are highly correlated because they are actually modulated
by the same person, i.e., person 1, while the third curve
corresponds to the signal from another person which is very
different.

To localize multiple static persons, we first subtract the
signals using window W in (21). Since the locations of static
persons do not change, we average Y ′′

∗ti in time domain to
suppress random noise, which can expressed as

Y ′′
∗ti =

1

T

T∑
i=1

|Y ′′
∗ti |. (24)

Then, we detect the first candidate location of static per-
sons (θ̂, τ̂) by simply picking the peak with the maximum
amplitude in Y ′′

∗ti . Then, we eliminate the signals around
(θ̂, τ̂) as we did when localizing moving persons. We repeat
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the aforementioned procedures until the amplitude of the peak
is below the noise floor.

Next, we define two sets: labeled set D and unlabeled set R.
The labeled set contains the signals which has been analyzed
and labeled, while the unlabeled set contains the signals to
be analyzed. Initially, labeled set D only contains the first
detected (θ̂1, τ̂1), while unlabeled set contains the other (θ̂, τ̂)
to be analyzed, i.e.,

D =
{
{(θ̂1, τ̂1)}1

}
R = {(θ̂2, τ̂2), (θ̂3, τ̂3), ..., (θ̂N , τ̂N )},

(25)

where N denotes the number of AoA-ToF candidates detected.
To determine whether the signal from (θ̂2, τ̂2) belongs to

another person or belongs to person 1, we trace back to Y
and calculate the correlation coefficient between Y1∗ and Y2∗,
which is given by

ρ12 =
cov(Y1∗,Y2∗)

σY1∗σY2∗

. (26)

If ρ12 in (26) is higher than a pre-defined threshold, we
conclude that Y1∗ and Y2∗ are modulated by the same person
and move Y2∗ to the detected set with label 1. Then the
detected set is given by

D =
{
{(θ̂1, τ̂1), (θ̂2, τ̂2)}1

}
. (27)

On the other hand, if ρ12 in (26) is lower than the pre-
defined threshold, we conclude that Y2∗ is the signal corre-
sponding to another person. We move Y2∗ to the detected set
with a new label 2. Then the detected set is given by

D =
{
{(θ̂1, τ̂1)}1, {(θ̂2, τ̂2)}2

}
. (28)

We iteratively repeat this procedure and compare the signals
in the unlabeled set with all signals in the labeled set. If the
correlation is lower than the threshold, we add a new label
in the labeled set, or the signals in the unlabeled set would
be labeled with the same label of which has the maximum
correlation. After this procedure, we have classified the de-
tected signals with different labels. The signals with the same
label correspond to the signal modulated by the same person
as shown in Fig. 5(c). One of them is the direct reflection,
while the others are dynamic multipath reflections. Since the
signals from different persons have been separated in the AoA-
ToF domain, we could leverage the solution for single-person
tracking to eliminate the dynamic multipath reflections [13].
More specifically, leveraging the fact that in the single-person
scenarios, the direct reflection from human has the minimum
ToF compared with other multipath reflections, we pick the
AoA-ToF pairs with the minimum ToF as our output.

Once we have known the (θ, τ) of static persons, we trace
back to the original Y to obtain the signals from them. Note
that the phase variations of signals correspond to the breath
and heartbeat directly as follows

ϕ(t) = 4π
db(t) + dh(t)

λ
, (29)

where db(t) and dh(t) are the vibrations caused by breath and
heartbeat defined as follows

db(t) = αb cos(2πfbt),

dh(t) = αh cos(2πfht),
(30)

(a) Antenna Configuration (b) Static Human Cofiguration

Fig. 6: Experiment settings.

Fig. 7: Experiment environment layout.

where fb and fh are the breath rate and heartbeat rate,
respectively. αb and αh are the corresponding amplitudes,
respectively.

To estimate the breath rate, we first perform fast Fourier
transform (FFT) on ϕ(t). Due to the fact that human breath rate
lies between 0.1Hz and 0.4Hz, we find the frequency which
has the maximal amplitude between 0.1Hz and 0.4Hz as our
estimate, which can be expressed as

f̂b = argmax
f∈[0.1,0.4]

Φ(f) = |FFT(ϕ(t))|. (31)

Compared with breath signals, heartbeat signals are much
weaker. To estimate heartbeat rate, we first pass ϕ(t) through
a bandpass FIR filter with the passband 1Hz-2Hz, which is
the frequency range of human heartbeat. Then, we find the
peak from 1Hz to 2Hz with the maximum amplitude as the
heartbeat rate estimation.

V. EXPERIMENTS

In this section, we conduct extensive experiments in differ-
ent scenarios to verify the effectiveness of our MTrack system.
We first introduce the implementation details of our system.
Then, we present the accuracy of localizing moving persons.
Finally, we illustrate the accuracy of localizing static persons
and vital signs estimation.
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Fig. 8: Localization accuracy of moving persons.

A. Implementation Details

Our system has one transmitter antenna and sixteen receiver
antennas as shown in Fig. 6(a). All antennas are omni-
directional to increase the coverage area of the system. The
receiver antennas are arranged on a plastic platform to form a
linear antenna array. The inter-element space is 2.6cm, which
is set approximately half wavelength to avoid grating lobe.
The transceiver generates signal from 4GHz to 6GHz with
401 frequency points, which corresponds to the frequency step
of 5MHz. The system performs 16.66 whole frequency step
periods in one second, which corresponds to the sampling
frequency of 16.66Hz in time domain. Since typical human
breath and heartbeat rate are under 2Hz, the system could
satisfy the Nyquist frequency to extract breath and heartbeat
signals without aliasing. The transmitting signal power is set
as -10dBm. The transceiver is controlled by the host PC with
a TCP/IP connection. Once the signal acquisition finished, the
transceiver transmits raw data to host PC through TCP/IP for
further processing. The algorithms proposed in this paper are
performed on the host PC. The AoA grid spans [1, 180]◦ with
gA = 180 and ToF grid spans [0, 0.066]µs with gD = 201.

To evaluate the performance of our system, we conduct
experiments in our lab with twelve participants: four females
and eight males. Experiments are conducted in a meeting room
and a busy office area as shown in Fig. 7. The meeting room
and office are separated by a wall made of double-layered
glasses and metal frame with a wooden door. We conduct
experiments in both Line-of-Sight (LOS) scenario and Non-
Line-of-Sight(NLOS) scenario. In the LOS experiments, par-
ticipants stay in the meeting room. In the NLOS experiments,
participants stay in the office area while the device is still
deployed in the meeting room.

B. Accuracy of Tracking Moving Persons

In this subsection, we report the accuracy for tracking
moving persons. In all experiments, we ask participants to
walk in the experiment area. To obtain the ground-truth
trajectories, we ask the participants to walk following the
predefined trajectory labeled on the floor. The localization
error is defined as the distance between the ground-truth
location and the estimated location. In the LOS case, we ask
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Fig. 9: Accuracy comparison between MTrack and WiTrack.
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Fig. 10: Localization accuracy of moving persons versus
distance.

up to 3 persons to walk simultaneously in the meeting room.
In the NLOS case, due to the strong signal attenuation and
multipath reflection caused by the wall, we only consider the
single-person scenarios. To demonstrate the effectiveness of
our system, we compare the performance of our system with
a benchmark algorithm, which estimates human locations on
different time slots independently as (15).

The localization accuracy in the LOS and NLOS scenarios
are shown in Fig. 8. We adopt the cumulative distribution
function(CDF) of localization error to illustrate the accuracy
of our system. From the figure, we can see that our MTrack
system could achieve sub-decimeter level median accuracy in
both LOS and NLOS scenarios. In both scenarios, MTrack
outperforms the benchmark, and in the NLOS scenario the
improvement is more remarkable. This is because in the
NLOS scenario, the stronger signal attenuation makes the
system suffer from severe multipath and random noise. The
benchmark method usually mistakes the human signal and the
interference, while MTrack fully utilizes the characteristics of
human signal to suppress the interference.

To further illustrate the advantages of the proposed MTrack
system, we implement WiTrack in [13], [14] with our antenna
configuration and the localization accuracy comparison in LOS
scenario is shown in Fig. 9. The accuracy of WiTrack with
our antenna configuration is not comparable with the results
reported in [13], [14] due to the fact that WiTrack requires the
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Fig. 11: Extracted human trajectories in different scenarios.
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Fig. 12: Comparison of extracted human signal and ground-
truth breath signal.

deployment of antennas on a huge platform to achieve accurate
trilateration. On the contrary, in our system, 16 antennas
are arranged on a platform with only 0.5m width, which is
compact but not adequate for WiTrack to achieve accurate
trilateration.

To investigate the effective range of our system, we ask
participants to walk at different distances to the transceiver.
The average localization errors in the LOS and NLOS scenar-
ios are shown in Fig. 10. We can see that our system could
localize human targets even when the human is 7m away in
the NLOS scenario without severe performance degradation,
which makes it be capable of covering typical in-home areas.

To illustrate the accuracy of MTrack intuitively, the human
trajectories extracted by MTrack are shown in Fig. 11. We can
see that the difference between our estimation and ground-truth
is very small even in the three-person scenario.

C. Accuracy of Tracking Static Person Vital Signs

In this subsection, we report the accuracy of our MTrack
system for tracking vital signs of static persons. Since human
vital signs are too weak to capture, we first conduct single-
person experiments to verify the capability of our system, and
then perform multi-person experiments. To obtain the ground-
truth breath and heartbeat rate, participants wear breath sensor
and heartbeat sensor as shown in Fig. 6(b).

In the single-person experiments, participants stay 3m away
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Fig. 13: Comparison of extracted human heartbeat signal and
ground-truth in frequency domain.
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Fig. 14: Comparison of extracted human heartbeat signal and
ground-truth heartbeat signal.

from the device, and the monitoring time varies from 1 minute
to 5 minutes. During experiments, we ask them to sit down
and watch movies. We collect over 4 hours data from all
12 participants. In these experiments, the average localization
error for static persons is within 5cm. Human breath rate and
heartbeat rate can be estimated with the average accuracy of
99.8% and 98.46%, respectively. To illustrate the effectiveness
of our system, the extracted human signals and the ground-
truth human breath signals are shown in Fig. 12. As we
can see, these two waveforms have the same periods in time
domain. The ripples on the extracted human signals actually
correspond to the heartbeats. The frequency-domain heartbeat
signals of two persons are shown in Fig. 13. The location of the
peak with maximum amplitude, which corresponds to heart-
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Fig. 16: Localization accuracy of static persons.

beat frequency, is approximately the same for the estimated
and groundtruth spectrum, which demonstrates that our system
could achieve accurate heartbeat frequency estimation. We also
show the time-domain heartbeat signals in Fig. 14. We can see
that the extracted heartbeat signals are highly correlated with
the ground-truth ones, which demonstrates the effectiveness
of our system. To further verify the capability of our system
for tracking human heartbeat rate, we let one person sit down
and watch movies for 5 minutes. We continuously estimate the
heartbeat rate and the results are shown in Fig. 15. Our system
could track the frequency variation of the heartbeat accurately,
which confirms that we do obtain the heartbeat signals rather
than the noise from the environment.

Finally, we evaluate the performance of our system on
tracking the vital signs under the multi-person scenarios, where
we ask 3 participants to sit in the meeting room. We require
the participants to be separated for at least 0.8m away to make
the system be capable of separating signals from different
persons. During experiments, we ask participants to select their
locations freely as long as they are separated for 0.8m. We
let them sit down to watch videos and start monitoring for 1
minute. Then, we let them change their locations and repeat the
experiment. The accuracy is taken on average of 19 minutes
data. The distances between transceiver and participants vary
from 2m to 4m in these experiments. The localization in
this scenario is still very accurate as shown in Fig. 16. The
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Fig. 17: Vital signs accuracy of static persons.
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Fig. 18: Accuracy comparison between MTrack and Breath-
Track.

breath rate and heartbeat rate accuracy are shown in Fig. 17.
We can see that the breath rates of all three persons can be
accurately estimated. However, the heartbeat rate estimation
accuracy of one participant drops significantly. This is due to
the fact that although we could separate signals from different
persons based on their AoA-ToF, the separation is not perfect.
Since heartbeat signal is too weak to capture, it tends to be
distorted by the signals from other persons, which yields the
performance degradation.

To further illustrate the superiority of the proposed method,
we compare MTrack with BreathTrack [15], which simply
regards signals with large amplitudes as human signals. The
comparison of their breath rate estimation accuracy in a 2-
person experiment is shown in Fig. 18. Both methods could
achieve high accuracy to estimate the breath rate of person
1, which has the maximum signal amplitude. However, the
accuracy of BreathTrack for person 2 drops dramatically while
MTrack is still accurate. This is because the dynamic multipath
caused by person 1 is stronger than the signal from person
2, which makes BreathTrack mistake the dynamic multipath
as person 2 signal and yields large estimation error; while
MTrack could handle this problem with the correlation-based
method to distinguish human signal and dynamic multipath.
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VI. CONCLUSIONS

In this paper, we reported a RF system, MTrack, which is
capable of tracking the trajectories of moving persons and the
vital signs of static persons under multi-person scenarios. To
achieve this, we implemented a multi-antenna wideband RF
sensing system to separate signals from different persons based
on their AoA and ToF. Experimental results showed that the
proposed MTrack system can track multiple moving persons
with sub-decimeter level accuracy, and estimate the breath and
heartbeat rate of static persons with median accuracy of 99.8%
and 98.46%, respectively. It is worth to be noted that MTrack
is also applicable in other RF-based sensing applications, such
as activity recognition, gesture recognition, etc.
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