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摘摘摘 要要要

可分组t-平衡设计在组合设计理论中有着极其重要的作用，并且被广

泛应用于诸多领域。当t = 2时，可分组设计是当年组合设计理论奠基

人Wilson和Hanani在构造成对平衡设计时所用的递归构造中不可缺少的组

成部分。这些设计已被广泛研究。Hanani于1963年第一次提出了两类t = 3时的

可分组设计，即烛台型设计和可分组3-设计。1994年，Hartman对t = 3时的可分

组设计给出了更全面的解释说明，使其适用于推广的Wilson（和Hanani）基本

构造，并用来构造3-平衡设计。其中可分组3-设计（下面称H-设计）在这个推广

的基本构造中起到了重要的作用。

斯坦纳四元系是一类特殊的H-设计，有关斯坦纳四元系的研究可追溯

到19世纪40年代。直到20世纪60年代，才由Hanani给出这类设计的存在性的两

个完整证明。虽然Lenz（于1985年）和Hartman（于1994年）分别给出了它们的

简化证明，但现已知的证明仍很繁琐。可分解的斯坦纳四元系，即每个组的大

小都是1的可分解H-设计的存在性问题已经彻底解决。该工作是由Hartman，季

利均和朱烈共同完成的，前后持续了二十年之久。到目前为止，可分解H-设计

的一般存在性问题并没有新的结果。本文在第二、三章中不仅给出了斯坦纳

四元系和可分解的斯坦纳四元系存在性的另一种证明，而且几乎彻底解决了

可分解H-设计的存在性问题，并构造了一些型不一致H-设计的无穷类。由可分

解H-设计的存在性结果，第二章还给出了另一类t = 3时的可分组设计，即可分

解G-设计存在的充分必要条件，并顺便解决了最大可分解填充，最小可分解覆

盖和一类一致可分解3-平衡设计的存在性问题，证明了这些设计存在的必要条

件也是充分的。

作为3-平衡设计理论的应用，本文研究了组合群试和光纤网络领域中的

两个公开问题。第四章彻底解决了由Jimbo等人提出的斯坦纳四元系的区组

序列问题。该序列的元素和相邻并的集合所构成的码具有很好的纠错能力。

在DNA实验室，这类序列被广泛应用于具有连续阳性显示的可纠错的组合群试

中。第五章对于波分复用(WDM)光纤网络中最优容错路的设计进行了研究，成

功地将最优容错路的设计问题转化为一类具有特殊性质的
−→
P3-设计的大集问题。
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利用3-平衡设计理论和可划分烛台型设计，本章几乎解决了整个最优容错路设

计问题的三分之一。

关键词：BSCU，烛台型设计，容错路，H-设计，H-标架，LELD，可分解，斯坦

纳四元系



Abstract

Group divisible t-wise balanced designs are of utmost importance in com-

binatorial design theory, and have been widely used in many areas. For t = 2,

group divisible designs were an essential ingredient in the recursive constructions

used in the seminal works of Wilson and Hanani (two of the founders of com-

binatorial design theory), which established necessary and sufficient conditions

for the existence of pairwise balanced designs. Much work has been done on

such designs. For t = 3, two definitions for 3-analogues of group divisible de-

signs – candelabra quadruple systems and group divisible 3-designs were first

introduced by Hanani in 1963. In 1994, Hartman gave a more comprehensive ac-

count of the 3-analogues of group divisible designs, which were applicable for the

generalization of Wilson’s (and Hanani’s) fundamental constructions to produce

3-wise balanced designs. In these 3-analogues of the fundamental constructions,

group divisible 3-designs (called H-designs in the sequel) are also used as essential

ingredients.

The research on Steiner quadruple systems – a special class of H-designs

with each group of size one can be traced back to 1840s. The first and second

complete proofs for the existence of such designs were given by Hanani in 1960s.

All the existing proofs are rather cumbersome, even though simplified proofs have

been given by Lenz in 1985 and by Hartman in 1994. For the existence of Steiner

quadruple systems with resolvability, the known complete solution was obtained

by a joint effort of Hartman, Ji and Zhu over twenty years long. As for the general

existence of resolvable H-designs, however, not much is known. In Chapters 2

and 3 of this dissertation, not only do we provide alternative existence proofs for

Steiner quadruple systems and resolvable Steiner quadruple systems, we give an

almost complete solution to the general existence problem of resolvable H-designs

and construct several infinite classes of nonuniform H-designs. As a consequence

of the existence result of resolvable H-designs, we establish the necessary and

sufficient conditions for the existence of resolvable G-designs in Chapter 2, which
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is another kind of 3-analogue of group divisible designs. As a byproduct, we

also show the existence of maximal resolvable packings of triples by quadruples,

minimal resolvable coverings of triples by quadruples and a class of uniformly

resolvable Steiner systems.

As applications of the theory of group divisible 3-wise balanced designs, two

open problems in group testing and optical networks are also discussed. First,

we give a complete solution to the problem posed by Jimbo et al. on the block

sequences of Steiner quadruple systems with error correcting consecutive unions

in Chapter 4. Such sequences are useful when considering the error detecting

and correcting capability of combinatorial group testing for consecutive posi-

tives, which is essential in view of applications such as DNA library screening.

Then in Chapter 5, we investigate the design of fault-tolerant routings with lev-

elled minimum optical indices, which plays an important role in the wavelength

division multiplexing optical networks. By introducing the new concept of a large

set of even levelled
−→
P3-design, we solve nearly one-third of the existence problem

for optimal routings with levelled minimum optical indices based on the theory

of 3-wise balanced designs and partitionable candelabra systems.

Keywords: BSCU, candelabra systems, fault-tolerant routings, H-designs, H-

frames, LELD, resolvable, Steiner quadruple systems
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Chapter 1

Introduction

In this thesis, we focus on the construction of group divisible 3-wise balanced

designs. We give an almost complete solution to the general existence problem of

resolvable H-designs. Two applications of the theory of 3-wise balanced designs

in group testing and optical networks are also discussed.

1.1 Background

A t-wise balanced design (tBD) of type t-(v, K, λ) is a pair (X,B), where

X is a v-set of points and B is a collection of subsets of X (blocks) with the

property that the size of every block is in the set K and every t-subset of X is

contained in exactly λ blocks. A t-(v, K, λ) design is also denoted by Sλ(t,K, v)

or by Bt[K, λ; v]. If K = {k}, we simply write k for K and the tBD is called a

t-design. If λ = 1, the notation S(t,K, v) is often used and the design is called a

Steiner system.

A 2-wise balanced design is also called a pairwise balanced design (PBD). A

group divisible design (GDD) is a triple (X,G,B) with the property that (X,G∪B)

is a PBD and G is a partition of X into holes. PBDs and GDDs have been

studied extensively [63], and they have been used to obtain constructions for

various combinatorial designs, geometries, and orthogonal arrays. GDDs were

an essential ingredient in the recursive constructions used in the seminal works

of Wilson [67, 68] and Hanani [24, 26, 27] that established necessary and sufficient

conditions for the existence of Steiner systems S(2, K, v).

An S(3, 4, v) is called a Steiner quadruple system of order v, denoted by

SQS(v). The necessary conditions for the existence of an SQS(v) are that v ≡
2, 4 ( mod 6) or v = 1. When v < 4, the system has no blocks, and when v = 4, it
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has one block. The smallest interesting system, SQS(8), was known to Kirkman

[48] in 1847. The unique (up to isomorphism) SQS(10) was attributed to Barrau

[4] as early as 1908 and to Richard Wilson in [12]. Several infinite families of

quadruple systems were constructed by Kirkman [48] and by Carmichael [11].

The first complete proof for the existence of SQS(v) for all v ≡ 2, 4 (mod 6) was

given by Hanani [23] in 1960. The result is proved by induction using six recursive

constructions together with explicit constructions of an SQS(14) and an SQS(38).

In 1963, Hanani [25] gave a more sophisticated proof for the existence of SQS(v),

where two definitions for 3-analogues of group divisible designs – candelabra

quadruple systems and group divisible 3-designs (Hanani used quite different

terminology) were first introduced. Apart from Hanani’s two proofs, Hartman

[31, 32, 34] and Lenz [51] used the existence of candelabra quadruple systems

of type (g3 : s) with s ∈ {1, 2, 4, 8} to give a purely tripling existence proof,

which used only one type of construction and a small number of initial designs:

SQS(v) with v ∈ {8, 10, 14} and HQS(v : 8) with v ∈ {26, 28, 32, 34, 38, 40}. For

more information on Steiner quadruple systems, see the excellent survey paper

by Hartman and Phelps [36].

In 1994, Hartman [34] gave a comprehensive account of the 3-analogues

of group divisible designs, which were used for the generalization of Wilson’s

(and Hanani’s) fundamental constructions to produce Steiner systems S(3, K, v).

In this 3-analogues of the fundamental constructions, the most difficult thing

is to find appropriate definitions of “master” and “slave” 3-analogues of group

divisible designs. One feasible definition for 3-analogues of group divisible design

is: (X,G,B) is a G-design, if (X,G ∪ B) is a 3-wise balanced design and G is

a partition of X into holes. This definition relates to Mills’ definition [55] of a

G-design G(m, r, k, 3) and Hanani’s definition [25, Definition 2] of the systems

Pm[K, 1, v]. A G-design tends to be used for “master” designs in the 3-analogues

of the fundamental construction. Another important definition is: (X,G,B) is a

tripartite design if G is a partition of X into holes and every 3-element transverse

of G is contained in a unique block. Here a transverse of G is a subset of X

intersects each hole in at most one point. This definition contains Hanani’s

definition [25, Definition 3] of the systems P ′′
m[K, 1, v], which was introduced for
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the first time to construct Steiner quadruple systems SQS(v). It also relates

to Hanani’s definition [28] of the transversal 3-design T3[s, 1; r], Mills’ definition

[55] of H-designs H(m, r, k, 3) and Lens’ definition [52] of the divisible 3-design

D3D[k, r; v]. A tripartite design tends to be appropriate for “slave” designs

in the 3-analogues of the fundamental construction. Instead of the tripartite

design, we use the more general definition of group divisible t-design which was

first introduced by Hedvig Mohácsy and D.K. Ray-Chaudhuri in [58].

Let v be a non-negative integer, t be a positive integer and K be a set of

positive integers. A group divisible t-design of order v with block sizes from K,

denoted by GDD(t,K, v), is a triple (X,G,B) such that

(1) X is a set of v elements (called points);

(2) G = {G1, G2, . . . } is a set of nonempty subsets (called groups) of X which

partition X;

(3) B is a family of transverses (called blocks) of G, each of cardinality from K;

(4) every t-element transverse T of G is contained in a unique block.

The type of the GDD(t,K, v) is defined as the list (|G||G ∈ G). If there are ni

groups of size gi, 1 ≤ i ≤ r, then we denote the group type by gn1
1 gn2

2 · · · gnr
r . A

GDD(t,K, v) is called uniform if all groups have the same size. Note that when

t = 2, the group divisible 2-design is the classical group divisible design. It is

clear that an S(t,K, v) is a GDD(t,K, v) of type 1v. Mills [57] used H(n, g, k, t)

design to denote the GDD(t, k, ng) of type gn. In the sequel of this thesis, we use

H(gn1
1 gn2

2 · · · gnr
r ) to denote the GDD(3, 4,

∑
nigi) of type gn1

1 gn2
2 · · · gnr

r for short.

For the existence of uniform H-designs, Mills [57] in 1990, showed that for

n > 3, n 6= 5, an H(gn) exists if and only if ng is even and g(n − 1)(n − 2)

is divisible by 3, and that for n = 5, an H(g5) exists if g is divisible by 4 or 6.

Recently, Ji [42] improved these results by showing that an H(g5) exists whenever

g is even, g 6= 2 and g 6≡ 10, 26 (mod 48). We summarize the results as follows:
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Theorem 1.1.1. ([42, 57]) For n > 3 and n 6= 5, an H(gn) exists if and only if

ng is even and g(n− 1)(n− 2) is divisible by 3. For n = 5, an H(gn) exists when

g is even, g 6= 2 and g 6≡ 10, 26 (mod 48).

For the nonuniform H-designs, however, not much is known yet. Recently,

Lauinger et. al. [50] provided a table of existence results for H-designs of all

types when the number of points v ≤ 24. Keranen and Kreher [47] gave an

investigation of H(g4u1) with five holes.

An H(gn) is said to be resolvable, denoted by RH(gn), if its block set B can

be partitioned into parallel classes P1, P2, . . . , Pr, each of which is a partition of

the point set. In this case, we call P1|P2| . . . |Pr a resolution of B.

When g = 1, an RH(1n) is called a resolvable Steiner quadruple system of

order n, denoted by RSQS(n). The necessary conditions for the existence of an

RSQS(v) are that v ≡ 4 or 8 ( mod 12) or v = 1 or 2. In 1977, the only orders for

which an RSQS(v) was known were v = 2n, and the only recursive construction

known was the doubling construction (i.e., a construction of an RSQS(2v) from

an RSQS(v)). In 1978, Booth [8] and Greenwell and Lindner [20] provided the

first examples with v not a power of two by constructing an RSQS(20) and an

RSQS(28). More examples were given by Hartman [29], where he constructed

RSQS(q + 1) for all prime powers q ≡ 7 (mod 12) with q ≤ 379, and RSQS(4p)

for p ∈ {19, 43, 127, 199, 223, 271, 1603} [30].

The main recursive theorems for RSQS(v), i.e., two tripling constructions

were provided by Hartman in [31, 33], both of which assume some subsystem

structures on the input systems. Using the doubling and two tripling construc-

tions together with a large number of initial designs, Hartman [33] proved by

induction that the necessary condition v ≡ 4 or 8 (mod 12) for the existence

of a resolvable SQS(v) is also sufficient for all values of v, with 23 possible ex-

ceptions. These last 23 undecided orders were removed by Ji and Zhu [43] in

2005 by using resolvable H-designs and resolvable candelabra systems. They also

constructed an RH(2n) for each n ∈ {10, 14, 26, 146} and showed the existence of

RH(g4) for all positive integers g. We summarize the results as follows:

Theorem 1.1.2. [33, 43] There exists an RH(1n) for each n ≡ 4, 8 (mod 12),
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an RH(2n) for each n ∈ {10, 14, 26, 146} and an RH(g4) for all integer g > 0.

Group divisible 3-wise balanced designs have attracted more researchers for

its various applications in combinatorial group testing for consecutive positives

[59], in the design of fault-tolerant routings in the context of optical networks

[15] and in the construction of optimal constant weight codes [10].

Group testing was proposed by Dorfman [16] in 1940s to do large scale

blood testing economically, and new applications of group testing have been

found recently in the fields such as DNA library screening, being error-prone, in

which it is desired to determine the set of all positive clones in an economical and

correct way. In 1999, Colbourn [13] developed some strategy for group testing

when the clones are linearly ordered and the positive clones form a consecutive

subset of the set of all clones. Jimbo and his collaborators [60, 59, 61, 62] improved

Colbourn’s strategy by considering the error detecting and correcting capability

of group testing which is essential in view of applications such as DNA library

screening. Especially, Momihara and Jimbo [60, 59] suggested using a block

sequence with consecutive unions having minimum distance d (BSCU(t, k, v|d))

to correct false negative or false positive clones in the pool outcomes. For more

details of the progress we refer to [13, 17, 60, 59, 61, 62, 64] and references there

in. In the cases of d = 2 and d = 3, systematic results about the existence

of BSCU(t, k, v|d)s can be found in [62, 60]. For the case of d = 4, Momihara

and Jimbo [59] recently showed the existence of a BSCU(3, 4, v|4) for forty-seven

small values v ≤ 500.

The design of routings in optical networks has been a topic of considerable

recent interest (see, for examples, [2, 5, 6, 7, 53]). In the model of WDM opti-

cal networks, namely, wavelength division multiplexing optical networks, routing

nodes are joined by fiber-optic links, and each link can support some fixed num-

ber of wavelengths. Each routing path uses a particular wavelength, and two

paths must use different wavelengths if they have common links. Most research

concentrates on determining the minimum total number of wavelengths used in

the network, which is related to two basic invariants – the arc-forwarding and

optical indices. The f -tolerant arc-forwarding and f -tolerant optical indices were
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introduced by Maňuch and Stacho when they considered the fault-tolerant issues

in [53]. The parameter f represents the number of faults that can be toler-

ated in the optical network. The design of fault-tolerant routings with levelled

minimum optical indices plays an important role in the context of optical net-

works. However, not much is known for the existence of optimal routings with

levelled minimum optical indices besides the results established by Dinitz, Ling

and Stinson [15] via the partitionable Steiner quadruple systems approach.

Theorem 1.1.3. [15] For each n, 5 ≤ n ≤ 8, n = 4k or n = 2(pk + 1) with

p ∈ {7, 31}, there exists an optimal, levelled (n− 2)-fault tolerant routing of
−→
Kn

that has levelled minimum optical indices.

1.2 Main Results

In this thesis, we give a near complete solution to the general existence prob-

lem of resolvable H-designs and construct several infinite classes of nonuniform

H-designs. As applications, two problems in group testing and optical networks

are also discussed.

In Chapter 2, we first describe several recursive constructions for resolv-

able H-designs based on the theory of uniformly resolvable candelabra systems

and resolvable H-frames. In particular, we will introduce a simple but power-

ful construction–group halving construction, as well as the product construction,

doubling construction and three tripling constructions. Combining several ini-

tial designs together with the recursive methods, we establish the main result as

follows.

Theorem 1.2.1. The necessary conditions gn ≡ 0 (mod 4), g(n − 1)(n − 2) ≡
0 (mod 3) and n ≥ 4 for the existence of a resolvable H-design of type gn are

sufficient for each g ≡ 1, 2, 3, 5, 6, 7, 9, 10, 11 (mod 12), are sufficient for each

g ≡ 4, 8 ( mod 12) with two possible exceptions n = 73, 149, and are sufficient for

each g ≡ 0 ( mod 12) with sixteen possible exceptions n ∈ {15, 21, 27, 33, 39, 69, 75,

87, 105, 111, 129, 147, 213, 231, 243, 321}.
As a corollary of the existence of RH(2n)s, we provide an alternative exis-

tence proof for resolvable SQS(v)s, for which the known complete solution was
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obtained by a joint effort of Hartman [31, 33] and Ji and Zhu [43] over twenty

years long. As consequences of the above result, we show the existence of several

related designs.

Theorem 1.2.2. (i) The necessary conditions g = 1 and n ≡ 4 or 8 (mod

12), or g is even, gn ≡ 0 (mod 4) and g(n − 1)(n − 2) ≡ 0 (mod 3) for

the existence of a resolvable G-design of type gn are also sufficient.

(ii) A maximal resolvable packing (minimal resolvable covering) of triples by

quadruples of order v with the number of blocks meeting the upper (lower)

bound exists if and only if v ≡ 0 (mod 4).

(iii) There exits a uniformly resolvable Steiner system URS(3, {3, 4}, {r3, r4}, v)

with r3 = 4 if and only if v ≡ 0 (mod 12).

All the known proofs for the existence of Steiner quadruple systems are

rather cumbersome, even though simplified proofs have been given by Hartman

[31, 32, 34], Lenz [51] et al., and much attention has been paid on the proofs of

the existence of SQS(v). In Chapter 3, we mainly provide an alternative existence

proof for Steiner quadruple systems by reestablishing the existence of H-designs

of type 2n based on the theory of candelabra systems and H-frames. By this

approach, several new infinite classes of nonuniform H-designs of types 2nu1 with

u = 4, 6, 8 are also constructed.

Theorem 1.2.3. (i) There exists an H(2n41) if and only if n ≡ 1 (mod 3)

and n ≥ 4.

(ii) There exists an H(2n61) for each n ≡ 1 (mod 6) and n ≥ 7.

(iii) There exists an H(2n81) for each n ≡ 0, 1, 3, 6, 7, 12, 13, 16 ( mod 18), n ≥ 6

except possibly for n = 12, 34.

In Chapter 4, we give an application of the theory of 3-wise balanced design

in the construction of block sequences of Steiner quadruple systems with consec-

utive unions having minimum distance 4, denoted by BSCU(v). The only orders
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for which a BSCU(v) was known were the forty-seven small values v ≤ 500 es-

tablished by Momihara and Jimbo [59]. By the theory of 3-wise balanced design,

we completely determine the existence of BSCU(v)s as follows.

Theorem 1.2.4. The necessary conditions for the existence of a BSCU(v), namely,

v ≡ 2, 4 (mod 6) and v ≥ 4, are also sufficient with two exceptions v = 8, 10.

In Chapter 5, we give another application of the theory of 3-wise balanced

design in the design of fault-tolerant routings with levelled minimum optical

indices. Not much is known for the existence of such routings besides the results

established in Theorem 1.1.3 by Dinitz, Ling and Stinson [15]. By introducing

the new concept of a large set of even levelled
−→
P3-design of order v and index 2

((v,
−→
P3, 2)-LELD), and by the theory of 3-wise balanced designs and partitionable

candelabra systems, the existence problem for an optimal, levelled (v − 2)-fault

tolerant routing with levelled minimum optical indices of the complete network

with v nodes is solved nearly one-third.

Theorem 1.2.5. For each positive integer n, 4 ≤ n ≤ 11 or n ≥ 14, n ≡ k ( mod

144) with k ∈ {2, 6, 8, 11, 14, 18, 20, 22, 23, 30, 32, 34, 38, 44, 46, 47, 50, 54, 56, 59, 62,

66, 68, 70, 78, 80, 82, 83, 86, 92, 94, 95, 98, 102, 104, 110, 114, 116, 118, 119, 126, 128,

130, 131, 134, 140, 142} and n 6= 34, 50, there exists an (n,
−→
P3, 2)-LELD and an

optimal, levelled (n − 2)-fault tolerant routing of
−→
Kn that has levelled minimum

optical indices.



Chapter 2

Resolvable H-designs

In this chapter, we mainly investigate the general existence problem of resolvable

H-designs and give a near complete solution to this problem. As applications,

not only do we provide an alternative existence proof for resolvable SQS(v)s,

we establish the existence results for several related designs, such as resolvable

G-designs, maximal resolvable packings, minimal resolvable coverings of triples

by quadruples and a class of uniformly resolvable Steiner systems.

2.1 Introduction

According to the necessary conditions for the existence of an RH(gn), the

general existence problem of RH(gn) can be separated into the following six parts:

(i) g ≡ 1, 5, 7, 11 (mod 12) and n ≡ 4, 8 (mod 12),

(ii) g ≡ 2, 10 (mod 12) and n ≡ 2, 4 (mod 6),

(iii) g ≡ 3, 9 (mod 12) and n ≡ 0 (mod 4),

(iv) g ≡ 4, 8 (mod 12) and n ≡ 1, 2 (mod 3),

(v) g ≡ 6 (mod 12) and n ≡ 0 (mod 2),

(vi) g ≡ 0 (mod 12) and n ∈ N .

Theorem 2.1.1. (Weighting Construction) If there exists an RH(gn), then there

is an RH((mg)n) for any positive integer m.

Proof. Let (X,G,B) be the given RH(gn) with G = {G0, . . . , Gn−1} and a reso-

lution of B, P (i), 1 ≤ i ≤ (n − 1)(n − 2)g2/6. For each positive integer m, we
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will construct an RH((mg)n) on X ×Zm with groups Gi×Zm, 0 ≤ i ≤ n− 1 as

follows.

For each block B ∈ B, construct an RH(m4) on B × Zm with group set

{x× Zm : x ∈ B} and block set AB, which has a resolution PB(k), 1 ≤ k ≤ m2.

Such a design exists by Theorem 1.1.2. Let B′ = ∪B∈BAB. Then B′ is the

block set of an RH((mg)n), which has a resolution Qi,k = ∪B∈P (i)PB(k), where

1 ≤ i ≤ (n− 1)(n− 2)g2/6 and 1 ≤ k ≤ m2.

By the Weighting Construction above, the whole existence problem of RH(gn)

depends on the solution of the following six cases:

(1) g = 1 and n ≡ 4, 8 (mod 12),

(2) g = 2 and n ≡ 2, 4 (mod 6),

(3) g = 3 and n ≡ 0 (mod 4),

(4) g = 4 and n ≡ 1, 2 (mod 3),

(5) g = 6 and n ≡ 0 (mod 2),

(6) g = 12 and n ∈ N .

Here, the only solved case is Case (1) by Theorem 1.1.2.

A regular graph (V, E) of degree k is said to have a one-factorization if the

edge set E can be partitioned into k parts E = F1|F2| . . . |Fk so that each Fi is a

partition of the vertex set V into pairs. The parts Fi are called one-factors. For

all even integers n, the complete graph on n vertices Kn has a one-factorization.

Theorem 2.1.2. (Group Halving Construction) If there exists an RH((2g)n),

then there exists an RH(g2n).

Proof. Let (X,G,B) be the given RH((2g)n) with G = {G0, . . . , Gn−1}. Therefore,

gn is even. Halve each group Gi into Gi0 and Gi1, 0 ≤ i ≤ n−1. We will construct

an RH(g2n) on the group set G ′ = {Gij| 0 ≤ i ≤ n− 1, j = 0, 1} as follows.
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For each i, 0 ≤ i ≤ n − 1, let F i = {F i
1, . . . , F

i
g} be a one-factorization of

the bipartite graph on Gi0 ∪Gi1. Let

A = {{a, b, c, d} : {a, b} ∈ F i
j , {c, d} ∈ F i′

j , 0 ≤ i, i′ ≤ n− 1, 1 ≤ j ≤ g},

then B′ = B ∪A is the block set of an H(g2n) on the group set G ′. It remains to

show that A can be partitioned into parallel classes.

For each j, 1 ≤ j ≤ g, let

Aj ={{a, b, c, d} : {a, b} ∈ F i
j , {c, d} ∈ F i′

j , 0 ≤ i, i′ ≤ n− 1}, and

A′
j ={{{a, b}, {c, d}} : {a, b} ∈ F i

j , {c, d} ∈ F i′
j , 0 ≤ i, i′ ≤ n− 1}.

If we regard each pair in F i
j , 0 ≤ i ≤ n − 1 as a vertex, we may construct a

multi-partite complete graph Γj on the vertex set Xj = ∪n−1
i=0 F i

j with partite set

{F i
j : 0 ≤ i ≤ n − 1}, where two different vertices connect if and only if they

are from different factors F i
j . Hence, A′

j is the edge set of Γj. That is to say we

obtain a GDD(2, 2, gn) of type gn on Xj with group set {F i
j , 0 ≤ i ≤ n− 1} and

block set A′
j.

It is well-known that there always exists a resolvable GDD(2, 2, gn) of type

gn when gn is even (see [14]). Hence, we can partition the blocks A′
j of our

resulting GDD(2, 2, gn) of type gn into parallel classes on Xj. Therefore, Aj

can also be partitioned in parallel classes of X. So does A = ∪1≤j≤gAj. This

completes the proof.

By the Group Halving Construction above, the existence problems of the

six cases have the following recursive relations.

RH(4n) =⇒ RH(22n) =⇒ RH(14n)

RH(12n) =⇒ RH(62n) =⇒ RH(34n)

Hence, the general existence problem of RH(gn) depends on the following two

cases:

(4) g = 4 and n ≡ 1, 2 (mod 3),

(6) g = 12 and n ∈ N .
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Moreover, the solution of Case (4) implies two-thirds of that of Case (6) by the

Weighting Construction.

The remainder of this chapter is organized as follows. In Section 2.2, we

will describe several recursive constructions for resolvable H-designs based on

the theory of uniformly resolvable candelabra systems and resolvable H-frames.

Combining several initial designs together with the recursive methods established

in Section 2.2, we give an almost complete solution to the existence problem of

RH(4n) in Section 2.3. As consequences of this result, we show the necessary and

sufficient conditions of RH(2n), RH(6n) and RH(3n) successively in Section 2.4.

Thus we provide an alternative existence proof for resolvable SQS(v)s. Further-

more, we show the existence of resolvable G-designs, maximal resolvable packings

of triples by quadruples, minimal resolvable coverings of triples by quadruples as

well as a class of uniformly resolvable Steiner systems. Finally in Section 2.5,

combining the recursive methods established in Section 2.2 and the existence re-

sults of resolvable H-designs and resolvable G-designs established in Sections 2.3

and 2.4, we show the necessary conditions for the existence of RH(12n) are also

sufficient with sixteen possible exceptions.

2.2 Recursive Constructions

In this section, we shall describe several recursive constructions for resolvable

H-designs. First, we need the following definitions and notation.

Let s be a non-negative integer. A candelabra t-system (or t-CS) of order v

and block sizes from K, denoted by CS(t,K, v), is a quadruple (X,S,G,A) that

satisfies the following properties:

(1) X is a set of v elements;

(2) S is an s-subset (called the stem of the candelabra) of X;

(3) G = {G1, G2, . . .} is a set of non-empty subsets of X \ S, which partition

X \ S;

(4) A is a collection of subsets of X, each of cardinality from K;
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(5) every t-subset T of X with |T ∩ (S ∪ Gi)| < t, for all i, is contained in a

unique block of A, and no t-subset of S ∪Gi, for any i, is contained in any

block of A.

The group type of a t-CS (X,S,G,A) is defined as the list (|G||G ∈ G : |S|). If

a t-CS has ni groups of size gi, 1 ≤ i ≤ r, and stem size s, then we use the

notation (gn1
1 gn2

2 . . . gnr
r : s) to denote the group type. A candelabra system with

t = 3 and K = {4} is called a candelabra quadruple system and denoted by

CQS(gn1
1 gn2

2 · · · gnr
r : s).

A CS(t,K, v) (X,S,G,A) is said to be resolvable, denoted by RCS(t,K, v),

if the block set A can be partitioned into several parts, each being a partition on

X or a partition on X \ (G ∪ S) for some G ∈ G (called a partial parallel class).

An RCS(t,K, v) is called uniform, denoted by URCS(t,K, v) if all the blocks in

each resolution class have the same size. If K = {4}, it is denoted by RCQS, for

which the number of parallel classes on X is ((
∑

G∈G |G|)2 −∑
G∈G |G|2)/6 and

the number of partial parallel classes on X \ (G ∪ S) is |G|(|G|+ 2|S| − 3)/6 for

each G ∈ G.

Theorem 2.2.1. [54] For each integer n ≥ 2, there exists an RCQS(3(22n−1)/3 :

1).

For non-negative integers q, g, k, and t, an H(q, g, k, t) frame (as in [35]),

denoted by HF(q, g, k, t), is an ordered four-tuple (X,G,B,F) with the following

properties:

1. X is a set of qg points;

2. G = {G1, G2, . . . , Gq} is an equipartition of X into q groups;

3. F is a family {Fi} of subsets of G called holes, which is closed under inter-

sections. Hence each hole Fi ∈ F is of the form Fi = {Gi1 , Gi2 , . . . , Gis},
and if Fi and Fj are holes then Fi∩Fj is also a hole. The number of groups

in a hole is its size; and
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4. B is a set of k-element transverses of G with the property that every t-

element transverse of G, which is not a t-element transverse of any hole

Fi ∈ F is contained in precisely one block of B, and no block contains a

t-element transverse of any hole.

If an HF(q, g, 4, 3) has n holes of size m+ s, which intersect on a common hole of

size s, then we denote such a design by HF(mn : s) with group size g, or shortly

by HFg(m
n : s). If an HF(q, g, 4, 3) has only one hole of size s, then we call it an

incomplete H-design of type (gq : gs), denoted by IH(gq : gs).

An HFg(m
n : s) (X,G,B,F) with F = {Fi : 0 ≤ i ≤ n} and F0 the common

hole of size s is said to be resolvable, denoted by RHFg(m
n : s), if its block set

can be partitioned into (nmg2(m + 2s − 3) + n(n − 1)(mg)2)/6 parts with the

following properties:

(1) For each hole Fi, 1 ≤ i ≤ n, there are exactly mg2(m + 2s − 3)/6 parts,

each being a partition of X \ (
⋃

G∈Fi
G);

(2) There are n(n− 1)(mg)2/6 parts, each being a parallel class on X.

An IH(gm+s : gs) (X,G,B, F ) with the only hole F of size s is said to be

resolvable, denoted by IRH(gm+s : gs), if its block set can be partitioned into

(m + s − 1)(m + s − 2)g2/6 parts, (s − 1)(s − 2)g2/6 of which are partitions of

X \ (
⋃

G∈F G), and m(m + 2s− 3)g2/6 of which are parallel classes on X.

The construction given below is a generalization of the fundamental con-

struction for 3-wise balanced designs.

Theorem 2.2.2. Suppose that (X,S, Γ,A) is a 3-CS(mn : s) and ∞ ∈ S. Let

K1 = {|A| : ∞ ∈ A ∈ A} and K2 = {|A| : ∞ 6∈ A ∈ A}. If there exists an

HFg(t
k1−1 : a) for each k1 ∈ K1 and an H((gt)k2) for each k2 ∈ K2, then there

exists an HFg((tm)n : t(s−1)+a). Furthermore, if the 3-CS(mn : s) is uniformly

resolvable, and each of HFg(t
k1−1 : a) and H((gt)k2) for k1 ∈ K1 and k2 ∈ K2 is

resolvable, then the resultant HFg((tm)n : t(s− 1) + a) is also resolvable.

Proof. Suppose (X,S, Γ,A) is the given URCS(mn : s), where Γ = {G1, . . . , Gn}
and A has a resolution A = (

⋃
1≤i≤nQi)

⋃Q with each member of Qi being a
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partition of X \ (Gi ∪ S) and each member of Q being a partition of X. Define

G′
x,j = {x} × {j} × Zg. Let X ′ = ((X \ {∞}) × Zt × Zg) ∪ ({∞} × Za × Zg),

G ′ = {G′
x,j : x ∈ X \ {∞}, j ∈ Zt} ∪ {G′

∞,j : j ∈ Za}, F = {Fi : 0 ≤ i ≤ n},
where F0 = {G′

x,j : x ∈ S \ {∞}, j ∈ Zt} ∪ {G′
∞,j : j ∈ Za} and Fi = {G′

x,j : x ∈
Gi, j ∈ Zt} ∪ F0 for 1 ≤ i ≤ n. We will construct an RHFg((tm)n : t(s− 1) + a)

on X ′ with group set G ′ and hole set F .

For each B ∈ A and ∞ ∈ B, construct an RHFg(t
|B|−1 : a) on X ′

B =

((B \ {∞}) × Zt × Zg) ∪ ({∞} × Za × Zg) with group set G ′B = {G′
x,j : x ∈

B \ {∞}, j ∈ Zt} ∪ {G′
∞,j : j ∈ Za} and hole set FB = {Fx : x ∈ B}, where

Fx = {G′
x,j : j ∈ Zt} ∪ F∞ with F∞ = {G′

∞,j : j ∈ Za} being the common hole

of size a. Denote its block set by CB, which has a resolution {CB(x, j) : x ∈
B \ {∞}, 1 ≤ j ≤ tg2(t + 2a− 3)/6}∪ {CB(l) : 1 ≤ l ≤ (|B| − 1)(|B| − 2)(tg)2/6}
with each CB(x, j) being a partition of X ′

B \ (
⋃

G∈Fx
G) and each CB(l) being a

parallel class on X ′
B.

For each B ∈ A and ∞ 6∈ B, construct an RH((gt)|B|) on X ′
B = B×Zt×Zg

with group set G ′B = {{x} × Zt × Zg : x ∈ B} and block set CB, which can be

partitioned into parallel classes CB(l), 1 ≤ l ≤ (|B| − 1)(|B| − 2)(tg)2/6.

Then A′ =
⋃

B∈A CB is the block set of the required design. We need to

partition the blocks into resolution classes.

For each member Q ∈ Qi, 1 ≤ i ≤ n, suppose its block size is kQ. Then

PQ(l) =
⋃

B∈Q CB(l) is a partition of X ′ \ (
⋃

G∈Fi
G) for 1 ≤ l ≤ (kQ − 1)(kQ −

2)(tg)2/6.

For each x ∈ ⋃
G∈Fi

G, 1 ≤ i ≤ n, Px,j =
⋃

B∈A,∞6∈B CB(x, j) is a partition of

X ′ \ (
⋃

G∈Fi
G) for 1 ≤ j ≤ tg2(t + 2a− 3)/6.

For each member Q ∈ Q, suppose its block size is kQ. Then P ′
Q(l) =⋃

B∈Q CB(l) is a partition of X ′ for 1 ≤ l ≤ (kQ − 1)(kQ − 2)(tg)2/6.

Thus we obtain an RHFg((tm)n : t(s− 1) + a).

Theorem 2.2.3. Suppose that there exists an RHFg(m
n : s). If there exists an

IRH(gm+s : gs), then there exists an IRH(gmn+s : gm+s). Furthermore, if there is

an RH(gm+s), then there is an RH(gmn+s).
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Proof. Let (X,G,B,F) be the given RHFg(m
n : s), F = {Fk : 0 ≤ k ≤ n} and

F0 be the common hole of size s. Then the block set B has a partition {P (k, j) :

1 ≤ k ≤ n, 1 ≤ j ≤ mg2(m + 2s − 3)/6} ∪ {P ′(i) : 1 ≤ i ≤ n(n − 1)(mg)2/6}
such that (1) for each pair (k, j), 1 ≤ k ≤ n and 1 ≤ j ≤ mg2(m + 2s − 3)/6,

P (k, j) is a partition of X \ (
⋃

G∈Fk
G); (2) for each i, 1 ≤ i ≤ n(n− 1)(mg)2/6,

P ′(i) is a parallel class on X.

For 1 ≤ k ≤ n− 1, construct an IRH(gm+s : gs) on
⋃

G∈Fk
G with group set

Fk and hole F0. Denote the set of blocks by Ak. Then there are (m+ s− 1)(m+

s − 2)g2/6 parts Q(k, j), such that for 1 ≤ j ≤ m(m + 2s − 3)g2/6, Q(k, j) is a

partition of
⋃

G∈Fk
G; for m(m + 2s− 3)g2/6 < j ≤ (m + s− 1)(m + s− 2)g2/6,

each Q(k, j) is a partition of
⋃

G∈Fk\F0
G. Then each P (k, j) ∪ Q(k, j) with

1 ≤ k ≤ n − 1, 1 ≤ j ≤ mg2(m + 2s − 3)/6 forms a parallel class on X. Each

∪1≤k≤n−1Q(k, j) with m(m+2s−3)g2/6 < j ≤ (m+ s−1)(m+ s−2)g2/6 forms

a partition of X \ (
⋃

G∈Fn
G). So the resultant design is an IRH(gmn+s : gm+s).

Furthermore, if we construct an RH(gm+s) on
⋃

G∈Fn
G with group set Fn,

then we obtain an RH(gmn+s).

Theorem 2.2.4. (Product Construction) If there exist both an RH(gm) and an

RH(gn), then there exists an RH(gmn) and an IRH(gmn : gn).

Proof. Let (X,G,B) be the given RH(gm), where G = {G0, . . . , Gm−1}. Applying

Theorem 2.1.1, we construct an RH((ng)m) on X ′ = X × Zn with the group set

G ′ = {G′
i = Gi × Zn : 0 ≤ i ≤ m− 1} and block set A.

For each i, 0 ≤ i ≤ m − 1, construct an RH(gn) on Gi × Zn with group

set {Gi × {l} : l ∈ Zn} and block set Ci, which has a resolution Pi(k), 1 ≤ k ≤
(n− 1)(n− 2)g2/6.

Since an RH(gn) exists, gn is double even. For each i, 0 ≤ i ≤ m − 1, let

F i = {F i
1, . . . , F

i
g(n−1)} be a one-factorization of the complete multiple-graph on

Gi × Zn with n parts in {Gi × {l} : l ∈ Zn}. Let

D = {{a, b, c, d} : {a, b} ∈ F i
j , {c, d} ∈ F i′

j , 0 ≤ i 6= i′ ≤ m− 1, 1 ≤ j ≤ g(n− 1)},

then B′ = A ∪ (∪m−1
i=0 Ci) ∪ D is the block set of an H(gmn) on the group set

G ′′ = {Gi × {l} : l ∈ Zn, 0 ≤ i ≤ m− 1}. It is clear that ∪m−1
i=0 Ci has a resolution
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Q(k) = ∪m−1
i=0 Pi(k), 1 ≤ k ≤ (n− 1)(n− 2)g2/6. It remains to show that D can

be partitioned into parallel classes.

For each j, 1 ≤ j ≤ g(n− 1), let

Dj ={{a, b, c, d} : {a, b} ∈ F i
j , {c, d} ∈ F i′

j , 0 ≤ i < i′ ≤ m− 1}, and

Dj ={{{a, b}, {c, d}} : {a, b} ∈ F i
j , {c, d} ∈ F i′

j , 0 ≤ i < i′ ≤ m− 1}.
If we regard each pair in F i

j , 0 ≤ i ≤ m − 1 as a vertex, we may construct a

multi-partite complete graph Γj on the vertex set X ′
j = ∪m−1

i=0 F i
j with partite set

{F i
j : 0 ≤ i ≤ m− 1}, where two different vertices connect if and only if they are

from different factors F i
j . Hence, Dj is the edge set of Γj. That is to say we obtain

a GDD(2, 2, gnm/2) of type (gn/2)m on X ′
j with group set {F i

j , 0 ≤ i ≤ m− 1}
and block set Dj.

It is well-known that there always exists a resolvable GDD(2, 2, gnm/2) of

type (gn/2)m when gnm/2 is even (see [14]). Hence, we can partition the block

set Dj of our resulting GDD(2, 2, gnm/2) of type (gn/2)m into parallel classes

on X ′
j. Therefore, Dj can also be partitioned in parallel classes of X ′. So does

D = ∪1≤j≤g(n−1)Dj. Thus, the desired H(gmn) is resolvable.

For each i, 0 ≤ i ≤ m − 1, B′ \ Ci is the block set of an incomplete design

IRH(gmn : gn) on X ′ with group set G ′′ and hole set {Gi × {l} : l ∈ Zn}.
With a similar proof to that of Theorem 2.2.4, we have the following theorem.

Here, we just need to fill each hole with the trivial design RH(g2).

Theorem 2.2.5. (Doubling Construction) If there exists an RH(gu), then there

exists an RH(g2u) and an IRH(g2u : gu).

Our first tripling construction given below is on resolvable H-frames, which

is a generalization of the tripling construction for resolvable CQSs developed in

[43].

Theorem 2.2.6. (Tripling Construction I) Suppose there exists an RHFg(n
3 : s),

then there exists an RHFg((3n)3 : s).

Proof. Start with a CQS(33 : 1) (as in [43]) on Z9 ∪ {∞} with groups Gi =

{i, i + 3, i + 6}, 0 ≤ i ≤ 2 and stem {∞}, whose block set B is generated by the

following 9 base blocks under the automorphism group 〈(0 3 6)(1 4 7)(2 5 8)(∞)〉.
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A∞: {0, 1, 2,∞}, {0, 4, 8,∞}, {0, 5, 7,∞},
A1: {1, 3, 2, 6}, {1, 3, 5, 7}, {2, 6, 5, 7},
A2: {4, 7, 5, 8}, {3, 6, 5, 8}, {3, 6, 4, 7}.

View each base block as an ordered quadruple given above so that each block

B ∈ B is ordered.

Since an RHFg(n
3 : s) exists, both gn and gs are even. We separate the

proof into the following two cases:

Case (1): When g is even, we will construct an RHFg((3n)3 : s) on X = (Z9×Z2×
Zgn/2)∪({∞}×Z2×Zgs/2) with groups G(x, j) = {x}×Z2×{j, j+n, . . . , j+(g

2
−

1)n}, x ∈ Z9, 0 ≤ j ≤ n−1, and G(∞, j) = {∞}×Z2×{j, j+s, . . . , j+(g
2
−1)s},

0 ≤ j ≤ s − 1, and three holes Fi = {G(i, j), G(i + 3, j), G(i + 6, j) : 0 ≤ j ≤
n− 1}∪S, 0 ≤ i ≤ 2, which intersect on a common hole S = {G(∞, j) : 0 ≤ j ≤
s− 1}.

For each block B ∈ B containing ∞, construct an RHFg(n
3 : s) on XB =

((B \ {∞}) × Z2 × Zgn/2) ∪ ({∞} × Z2 × Zgs/2) with group set {G(x, j) : x ∈
B\{∞}, 0 ≤ j ≤ n−1}∪S, three holes {G(x, j) : 0 ≤ j ≤ n−1}∪S, x ∈ B\{∞}
and a common hole S. Denote its block set by AB, which has a resolution

{PB(x, l) : x ∈ B \{∞}, 1 ≤ l ≤ n(n+2s−3)g2/6}∪{PB(r′, r, h) : r′, r ∈ Z2, 1 ≤
h ≤ (gn)2/4} such that each PB(x, l) is a partition of (B \ {∞, x})× Z2 × Zgn/2

and each PB(r′, r, h) is a parallel class on XB.

For each block B = {a, b, c, d} ∈ B and ∞ 6∈ B, we shall construct a special

H((gn)4) on B × Z2 × Zgn/2 with groups {x} × Z2 × Zgn/2, x ∈ B. Denote

C ′
B(k, i, j) = {(a, i), (b, i+k), (c, j), (d, j+k)} and C ′B(k) = {C ′

B(k, i, j) : i, j ∈ Z2},

then C ′B = C ′B(0)∪C ′B(1) is the block set of an H(24) on B×Z2. For each A ∈ C ′B,

construct an RH((gn/2)4) on A×Zgn/2 with groups {a}×Zgn/2, a ∈ A. Denote its

block set by B(A) and the (gn)2/4 parallel classes by P (A, h), 1 ≤ h ≤ (gn)2/4.

Then, CB = ∪A∈C′BB(A) is the block set of the desired H((gn)4).

Let D = (∪B∈B,∞6∈BCB) ∪ (∪B∈B,∞∈BAB). By Theorem 2.2.2, D is the block

set of an HFg(((3n)3 : s)). It remains to show the resolvability. This HFg(((3n)3 :

s)) should be partitioned into 9g2n2 parallel classes on X and g2n(3n+2s−3)/2

partial parallel classes on (Z9 \Gi)× Z2 × Zgn/2 for each i, 0 ≤ i ≤ 2.
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For each i, 0 ≤ i ≤ 2, let P (i, x, l) = ∪B∈B,{x,∞}⊂BPB(x, l), 1 ≤ l ≤ n(n +

2s− 3)g2/6, x ∈ Gi. Then each P (i, x, l) is a partition of (Z9 \Gi)×Z2 ×Zgn/2.

The other g2n2 partial parallel classes on (Z9\Gi)×Z2×Zgn/2 can be obtained as

follows. Denote the three base blocks of A2 by B0, B1, B2 in order. For 0 ≤ i ≤ 2,

let Bi = {3j + Bi : 0 ≤ j ≤ 2}, and for r′, r ∈ Z2, let P (i, r′, r) = {C ′
B(1, r′, r) :

B ∈ Bi}. Then P (i, r′, r) is a partial class on (Z9 \ Gi) × Z2. Note that for

0 ≤ i ≤ 2, ∪r′,r∈Z2P (i, r′, r) = ∪B∈Bi
C ′B(1). Let P (i, r′, r, h) = ∪A∈P (i,r′,r)P (A, h).

Then, these P (i, r′, r, h)s with r′, r ∈ Z2 and 1 ≤ h ≤ (gn)2/4 are g2n2 partial

parallel classes on (Z9 \Gi)× Z2 × Zgn/2.

Now we give the required 9g2n2 parallel classes on X. Denote the three base
blocks of A1 by A0, A1, A2 in order. Let D0 = A0, D1 = A1+3 = {4, 6, 8, 1}, D2 =
A2+6 = {8, 3, 2, 4}. Let A(i, 0) be as follows and A(i, j) = {3j+B : B ∈ A(i, 0)}
for 0 ≤ j ≤ 2.

A(1, 0) = {{0, 4, 8,∞}, A0, A1, A2},

A(2, 0) = {{0, 1, 2,∞}, B0, B1, B2},

A(0, 0) = {{0, 5, 7,∞}, D0, D1, D2}.

Let

P ′(1, j, r′, r) ={C′A0+3j(0, r′, r′ + r), C′A1+3j(0, r′ + 1, r), C′A2+3j(0, r′ + r + 1, r + 1)},
P ′(2, j, r′, r) ={C′B0+3j(0, r′ + r, r′), C′B1+3j(0, r, r′ + 1), C′B2+3j(0, r + 1, r′ + r + 1)},
P ′(0, j, r′, r) ={C′D0+3j(1, r′, r′ + r), C′D1+3j(1, r′ + r + 1, r′), C′D2+3j(1, r′ + 1, r′ + r + 1)}.

Let P ′(i, j, r′, r, h) = ∪A∈P ′(i,j,r′,r)P (A, h) and P ′′(i, j, r′, r, h) = PB(r′, r, h) ∪
P ′(i, j, r′, r, h), where B ∈ A(i, j) and ∞ ∈ B. Then P ′′(i, j, r′, r, h) for 0 ≤
i, j ≤ 2, r′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4 are the desired 9g2n2 parallel classes on X.

So D has the resolution {P (i, x, l) : 0 ≤ i ≤ 2, x ∈ Gi, 1 ≤ l ≤ n(n + 2s −
3)g2/6}∪{P (i, r′, r, h) : 0 ≤ i ≤ 2, r′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4}∪{P ′′(i, j, r′, r, h) :

0 ≤ i, j ≤ 2, r′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4}, and the HFg(((3n)3 : s)) is resolvable.

Case (2): When g is odd, both n and s must be even, we will construct an

RHFg((3n)3 : s) on X with groups G′(x, k, j) = {x} × {k} × {j, j + n
2
, . . . , j +

(g − 1)n
2
}, x ∈ Z9, k ∈ Z2, 0 ≤ j ≤ n

2
− 1, and G′(∞, k, j) = {∞} × {k} ×

{j, j + s
2
, . . . , j + (g − 1) s

2
}, k ∈ Z2, 0 ≤ j ≤ s

2
− 1, and three holes F ′

i =

{G′(i, k, j), G′(i + 3, k, j), G′(i + 6, k, j) : k ∈ Z2, 0 ≤ j ≤ n
2
− 1} ∪ S ′, 0 ≤ i ≤ 2,

which intersect on a common hole S ′ = {G′(∞, k, j) : k ∈ Z2, 0 ≤ j ≤ s
2
− 1}.
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For each block B ∈ B containing ∞, construct an RHFg(n
3 : s) on XB =

((B \ {∞}) × Z2 × Zgn/2) ∪ ({∞} × Z2 × Zgs/2) with group set {G′(x, k, j) :

x ∈ B \ {∞}, k ∈ Z2, 0 ≤ j ≤ n
2
− 1} ∪ S ′, three holes {G′(x, k, j) : k ∈

Z2, 0 ≤ j ≤ n
2
− 1} ∪ S ′, x ∈ B \ {∞} and a common hole S ′. Denote its

block set by AB, which has a resolution {PB(x, l) : x ∈ B \ {∞}, 1 ≤ l ≤
n(n + 2s − 3)g2/6} ∪ {PB(r′, r, h) : r′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4} such that each

PB(x, l) is a partition of (B \ {∞, x}) × Z2 × Zgn/2 and each PB(r′, r, h) is a

parallel class on XB.

The remaining proof of this case is the same as that of Case (1).

The construction of resolvable H-frames given below is used for our second

tripling construction on resolvable H-designs. It is a generalization of that for

resolvable Steiner quadruple systems proposed by Hartman in [31], which have

played an important role in the construction of RSQS(v). The following notations

are needed.

For x ∈ Zn, we define |x| by

|x| =




x, if 0 ≤ x ≤ n/2,

−x, if n/2 < x < n.

For n ≥ 2 and L ⊆ {1, 2, . . . , bn/2c}, define G(n, L) to be the regular graph with

vertex set Zn and edge set E given by {x, y} ∈ E if and only if |x− y| ∈ L.

The following lemma is proved by Stern and Lenz in [65].

Lemma 2.2.7. Let L ⊆ {1, 2, . . . , n}. Then G(2n, L) has a one-factorization if

and only if 2n/gcd(j, 2n) is even for some j ∈ L.

Let g be a positive integer and m = lcm(g, 6). For non-negative integers n

and s, a Bg-pairing, Bg(n, s) consists of four subsets D,R0, R1, R2 of Zmn+gs and

three subsets PR0, PR1, PR2 of Zmn+gs × Zmn+gs with the following properties

for each i ∈ {0, 1, 2}:

(1) Cardinality and symmetry conditions

(a) |D| = gs, |Ri| = mn/3,
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(b) D = −D.

(2) Partitioning conditions

(a) PRi is a partition of Ri into pairs, thus |PRi| = mn/6,

(b) Zmn+gs = D|R0|R1|R2.

(3) Pairing conditions

Let Li = {|x − y| : {x, y} ∈ PRi} and N = {mn/g + s, 2(mn/g +

s), . . . , bg/2c(mn/g + s)},

(a) N ∩ Li = ∅ and (mn + gs)/2 /∈ Li,

(b) |Li| = mn/6,

(c) the complement Gi of the graph G(mn + gs, Li ∪ N) has a one-

factorization.

Suppose that m = lcm(g, 12). Let S0, S1, S2, R0, R1, R2 be subsets of Zmn+gs

and PS0, PS1, PS2 be subsets of Zmn+gs × Zmn+gs. A Bg-pairing Bg(n, s) with

D,R0, R1, R2, PR0, PR1 and PR2, is said to be resolvable, denoted by RBg(n, s),

if the following properties are satisfied for each i ∈ {0, 1, 2}:

(1) Cardinality and symmetry conditions

(c) |Si| = mn/3, |Ri| = mn/6.

(2) Partitioning conditions

(c) PSi is a partition of Si into pairs, thus |PSi| = mn/6,

(d) Zmn+gs = D|Ri|Si|Ri+1|(−Ri−1).

(3) Pairing conditions

Let Oi = {|x− y| : {x, y} ∈ PSi},

(d) N ∩Oi = ∅ and (mn + gs)/2 /∈ Oi,

(e) |Oi| = mn/6, Li ∩Oi = ∅, and all members of Oi are odd,
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(f) the complement G′
i of the graph G(mn + gs, Li ∪ Oi ∪N) has a one-

factorization.

When g = 1, a Bg(n, s) is a simple pairing, and an RBg(n, s) is a resolv-

able pairing in [31], which are used to construct CQSs and RCQSs, respectively.

The following theorem gives the relation between Bg-pairings and H-frames with

group size g.

Theorem 2.2.8. Suppose that m = lcm(g, 6) and there exists a Bg(n, s). Then

there exists an HFg((mn/g + s)3 : s). Furthermore, if m = lcm(g, 12) and the

Bg(n, s) is resolvable, then the HFg((mn/g+s)3 : s) is also resolvable. Moreover,

if k(mn/g+s) ∈ D for all k, 0 ≤ k ≤ g−1, then the resultant RHFg((mn/g+s)3 :

s) has a sub-design RH(g4).

Proof. Let X = (Zmn+gs×Z3)∪{∞0,∞1, . . . ,∞gs−1}. Define the groups G(i, j) =

{(k(mn/g + s) + i, j) : 0 ≤ k ≤ g − 1}, 0 ≤ i ≤ mn/g + s − 1, j ∈ {0, 1, 2},
G(∞, j) = {∞ks+j : 0 ≤ k ≤ g−1}, 0 ≤ j ≤ s−1 and hole set F = {F0, F1, F2, S}
with S = {G(∞, j) : 0 ≤ j ≤ s−1} and Fj = S∪{G(i, j) : 0 ≤ i ≤ mn/g+s−1},
j = 0, 1, 2.

For i ∈ {0, 1, 2}, let D,Ri, Ri, Si, PRi, PSi be a resolvable Bg-pairing RBg(n, s).

Let F 2k−1
i |F 2k

i be a one-factorization of the graph G(mn + gs, {m}), where m is

the k-th member of Oi for 1 ≤ k ≤ mn/6. Let F
mn/3+1
i |Fmn/3+2

i | . . . |F 2mn/3+gs−g
i

be a one-factorization of the complement of the graph G(mn + gs, Li ∪Oi ∪N).

Then it is natural that F 1
i |F 2

i | . . . |F 2mn/3+gs−g
i is a one-factorization of the com-

plement of the graph G(mn + gs, Li ∪N).

We construct an HFg((mn/g + s)3 : s) (X,G,B,F) with the block set B
consisting of the following three parts:

(1) {∞j, (a, 0), (b, 1), (c, 2)}, where a + b + c ≡ d (mod mn + gs), d is the j-th

member of D and 0 ≤ j < gs.

(2) {(a+q, i), (a+ t, i), (b, i+1), (c, i+2)}, where a+b+c ≡ 0 (mod mn+gs),

{q, t} ∈ PRi and i ∈ {0, 1, 2}.
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(3) {(a, i), (b, i), (c, i + 1), (d, i + 1)}, where {a, b} ∈ F j
i and {c, d} ∈ F j

i+1,

i ∈ {0, 1, 2} and j = 1, 2, . . . , 2mn/3 + gs− g.

Now, we partition them into (partial) parallel classes.

First, we give the partial parallel classes. Define F j
i = {F j

i (k) : 0 ≤ k ≤
(mn+ gs)/2− 1}. For each i ∈ {0, 1, 2}, the (mn+ gs)(mn+3gs− 3g)/6 partial

parallel classes missing the hole Fi are defined as follows:

Pi(j, k) = {{(a, i + 1), (b, i + 1), (c, i + 2), (d, i + 2)} : {a, b} = F j
i+1(m),

{c, d} = F j
i+2(m + k), 0 ≤ m ≤ (mn + gs)/2− 1},

where mn/3 + 1 ≤ j ≤ 2mn/3 + gs− g and 0 ≤ k ≤ (mn + gs)/2− 1. It is clear

that each Pi(j, k) forms a partition of X \ (
⋃

G∈Fi
G).

Next, we give the (mn+gs)2 complete parallel classes. For each (a, b, c) such

that a + b + c ≡ 0 (mod mn + gs), let P (a, b, c) be comprised of gs blocks from

Part (δ), mn/2 blocks from Part (ρ) and mn/4 blocks from Part (φ) as follows:

Part (δ): {{∞j, (a + d, 0), (b− d, 1), (c + d, 2)} : d is the j-th member of D, 0 ≤
j < gs}.
Part (ρ):

{(a + q, 0), (a + t, 0), (b− u, 1), (c + u, 2)} for i = 0,

{(a + u, 0), (b + q, 1), (b + t, 1), (c− u, 2)} for i = 1,

{(a− u, 0), (b + u, 1), (c + q, 2), (c + t, 2)} for i = 2,

where {q, t} is the j-th pair in PRi and u is the j-th member of Ri, 1 ≤ j ≤ mn/6.

Part (φ): To select the blocks of Part (φ), let PAi|PBi be a partition of PSi into

parts of size mn/12. Then the blocks of Part (φ) are all those of the forms:

{(a + s, 0), (a + s′, 0), (b + t, 1), (b + t′, 1)},

{(b + u, 1), (b + u′, 1), (c + w, 2), (c + w′, 2)},
{(c + y, 2), (c + y′, 2), (a + z, 0), (a + z′, 0)},

where the pairs {s, s′}, {t, t′}, {u, u′}, {w, w′}, {y, y′} and {z, z′} are the j-th (1 ≤
j ≤ mn/12) pairs selected from the sets PAi, PBi according to the parities of

a, b and c, as follows:



24 ZHEJIANG UNIV, PH.D. DISSERTATION

(i) If a, b and c are all even, then {s, s′} ∈ PA0, {t, t′} ∈ PA1, {u, u′} ∈
PB1, {w, w′} ∈ PB2, {y, y′} ∈ PA2, {z, z′} ∈ PB0.

(ii) If just a is even, then {s, s′} ∈ PB0, {t, t′} ∈ PB1, {u, u′} ∈ PA1, {w, w′} ∈
PB2, {y, y′} ∈ PA2, {z, z′} ∈ PA0.

(iii) If just b is even, then {s, s′} ∈ PB0, {t, t′} ∈ PB1, {u, u′} ∈ PA1, {w, w′} ∈
PA2, {y, y′} ∈ PB2, {z, z′} ∈ PA0.

(iv) If just c is even, then {s, s′} ∈ PA0, {t, t′} ∈ PA1, {u, u′} ∈ PB1, {w, w′} ∈
PA2, {y, y′} ∈ PB2, {z, z′} ∈ PB0.

It is clear that each P (a, b, c) forms a partition of X. Note that for all (a, b, c)

such that a+b+c ≡ 0 ( mod mn+gs), the blocks of Part (φ) cover all the blocks

of the form {(x, i + 1), (y, i + 1), (z, i + 2), (w, i + 2)}, where {x, y} ∈ F j
i+1 and

{z, w} ∈ F j′
i+2 such that 1 ≤ j, j′ ≤ mn/3 and {j, j′} is an appropriate pair,

i ∈ {0, 1, 2}. Thus, the desired HFg((mn/g + s)3 : s) is resolvable.

Moreover, if k(mn/g + s) ∈ D for each k, 0 ≤ k ≤ g − 1, without loss of

generality we may assume k(mn/g + s) is the (ks)th element of D. Let

δ0 = {{∞ks, (a + d, 0), (b− d, 1), (c + d, 2)} : a + b + c ≡ 0 (mod mn + gs),

a, b, c ∈ {i(mn/g + s) : 0 ≤ i ≤ g − 1}, d is the (ks)th member of D,

0 ≤ k ≤ g − 1}.

Note that δ0 ⊂ δ and δ0 forms the block set of an RH(g4) with the group set

{{(k(mn/g + s), i) : 0 ≤ k ≤ g − 1} : i ∈ {0, 1, 2}} ∪ {{∞ks : 0 ≤ k ≤
g− 1}} and parallel classes {{∞(i+j+k+l)s, ((i + l)(mn/g + s), 0), ((j + l)(mn/g +

s), 1), ((k + l)(mn/g + s), 2)} : 0 ≤ l ≤ g− 1}, i+ j + k ≡ 0 (mod g). Hence, the

RHFg((mn/g + s)3 : s) contains a subdesign RH(g4).

2.3 Resolvable H-designs with Group Size 4

First, we give our second tripling construction for resolvable H-designs with

groups size 4 by constructing resolvable B4-pairings. In order to construct such
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structures, we describe a special class of Bg-pairings with extra properties. Sup-

pose that D,Ri, PRi, i ∈ {0, 1, 2} form a Bg(n, s) on Zmn+gs. If there exist three

subsets A0, A1, A2 of Zmn+gs and three subsets PA0, PA1, PA2 of Zmn+gs×Zmn+gs

satisfying the following conditions for each i ∈ {0, 1, 2}:

(1) Ri = −Ri, Ai ⊂ Ri, |Ai| = mn/6,

(2) PAi is a partition of Ai into pairs. Let O′
i = {|x− y| : {x, y} ∈ PAi},

(a) |O′
i| = mn/12, all O′

0, O
′
1, O

′
2 are disjoint and of odd members,

(b) (∪2
i=0O

′
i)

⋂
(N

⋃
(∪2

i=0Li)) = ∅ and (mn + gs)/2 /∈ O′
i,

then let

S0 = A1 ∪ A2, S1 = A0 ∪ (−A2), S2 = (−A0) ∪ (−A1),

PS0 = PA1 ∪ PA2, PS1 = PA0 ∪ (−PA2), PS2 = (−PA0) ∪ (−PA1),

R0 = −(R0 \ A0), R1 = R1 \ A1 and R2 = −(R2 \ A2).

It is readily checked that D,Ri, PRi, Si, PSi, Ri, i ∈ {0, 1, 2} form an RBg(n, s).

Now, we are in a position to construct RB4(n, s) for any n ≥ 0 and s ≥ 1.

We list the components D,PRi, PAi, i ∈ {0, 1, 2} for short or D,PRi, PSi, Ri,

i ∈ {0, 1, 2} fully.

Lemma 2.3.1. For each pair of integers n ≥ 0 and s ≥ 1, there exists an

RB4(n, s).

Proof. When n = 0, we take D = Z4(3n+s) and Ri = Si = Ri = ∅ for each

i ∈ {0, 1, 2}. When n > 0, s > 0, the desired RB4(n, s) is constructed directly as

follows:

(1) For s odd and n even, let

D = {(3n + s)j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤ (s− 1)/2 or 3n + (s−
1)/2 + 1 ≤ j ≤ 3n + s− 1},
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PR0 = {{j,−j} : (s− 1)/2 + 1 ≤ j ≤ (s− 1)/2 + n or (3n + s) + (s− 1)/2 + n + 1 ≤ j ≤
(3n + s) + (s− 1)/2 + 2n},
PR1 = {{j,−j} : (s− 1)/2 + 2n + 1 ≤ j ≤ (s− 1)/2 + 3n or (3n + s) + (s− 1)/2 + 1 ≤
j ≤ (3n + s) + (s− 1)/2 + n},
PR2 = {{j,−j} : (s−1)/2+n+1 ≤ j ≤ (s−1)/2+2n or (3n+ s)+ (s−1)/2+2n+1 ≤
j ≤ (3n + s) + (s− 1)/2 + 3n},
PA0 = {{(s− 1)/2 + j, 8n + 3s− (s− 1)/2− j} : 1 ≤ j ≤ n},
PA1 = {{(s− 1)/2+2n+ j, 4n+ s+(s− 1)/2− j} : 1 ≤ j ≤ n− 1}∪{{10n− (s− 1)/2−
1, 10n− (s− 1)/2− 2}},
PA2 = {{(s− 1)/2 + n + j, 6n + s + (s− 1)/2 + 2− j} : 2 ≤ j ≤ n} ∪ {{(s− 1)/2 + n +

1, 11n + 4s− (s− 1)/2− 2}}.

(2) For s even and n even, let

D = {(3n + s)j, (3n + s)/2 + (3n + s)j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤
(s− 2)/2 or 3n + s/2 + 1 ≤ j ≤ 3n + s− 1},
PR0 = {{j,−j} : (s − 2)/2 + 1 ≤ j ≤ (s − 2)/2 + n or (s − 2)/2 + n + 1 ≤ j ≤
2n + (s− 2)/2 + 1 and j 6= (3n + s)/2},
PR1 = {{j,−j} : 2n + (s− 2)/2 + 2 ≤ j ≤ 3n + s/2 or 3n + s + (s− 2)/2 + n + 1 ≤ j ≤
3n + s + (s− 2)/2 + 2n + 1 and j 6= 3n + s + (3n + s)/2},
PR2 = {{j,−j} : 3n+s+(s−2)/2+1 ≤ j ≤ 3n+s+(s−2)/2+n or 5n+s+(s−2)/2+2 ≤
j ≤ 6n + s + (s− 2)/2},
PA0 = {{(s− 2)/2 + j, (s− 2)/2 + 2n + 1− j} : 1 ≤ j ≤ n and j 6= n/2} ∪ {{11n + 3s +

(s + 2)/2, 10n + (s + 2)/2 + 3s− 1}},
PA1 = {{(s − 2)/2 + 2n + 1 + j, 8n + 2s + (s + 2)/2 − j} : 1 ≤ j ≤ n and j 6=
n/2} ∪ {{10n + 3s + (s + 2)/2− 2, 3n + s + (s− 2)/2 + 2n + 1}},
PA2 = {{3n + s + (s− 2)/2 + j, 7n + 2s + (s + 2)/2− 1− j} : 1 ≤ j ≤ n}.

(3) For s even and n odd,

(3.1) n ≥ 3 odd, let

D = {(3n + s)j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤ (s− 2)/2 or 3n +

(s− 2)/2 + 2 ≤ j ≤ 3n + s− 1} ∪ {±((s− 2)/2 + 1),±(6n + s + (s− 2)/2 + 1)},
PR0 = {{j,−j} : (s− 2)/2 + 2 ≤ j ≤ (s− 2)/2 + n + 1 or (s− 2)/2 + 2n + 2 ≤ j ≤
(s− 2)/2 + 3n + 1},
PR1 = {{j,−j} : (s−2)/2+n+2 ≤ j ≤ (s−2)/2+2n+1 or (5n+s)+(s−2)/2+1 ≤
j ≤ (5n + s) + (s− 2)/2 + n},
PR2 = {{j,−j} : 3n + s + (s− 2)/2 + 1 ≤ j ≤ 3n + s + (s− 2)/2 + n or 3n + s +

(s− 2)/2 + n + 1 ≤ j ≤ 3n + s + (s− 2)/2 + 2n},
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PA0 = {{(s−2)/2+2n+ j, 10n+4s− (s−2)/2−1− j} : 2 ≤ j ≤ n}∪{(s−2)/2+

3, (s− 2)/2 + 3n + 1},
PA1 = {{(s − 2)/2 + n + j, 6n + s + (s − 2)/2 + 2 − j} : 2 ≤ j ≤ n} ∪ {{5n + s +

(s− 2)/2 + 1, 11n + 4s− (s− 1)/2− 2}},
PA2 = {{(s− 2)/2 + 3n + s + j, 5n + s + (s− 2)/2 + 1− j} : 1 ≤ j ≤ n}.

(3.2) n = 1, let

D = {(3 + s)j : 0 ≤ j ≤ 3} ∪ {(3 + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤ (s− 2)/2 or 3 + (s−
2)/2 + 2 ≤ j ≤ 3 + s− 1} ∪ {±((s− 2)/2 + 1),±((s− 2)/2 + 2)},
PR0 = {{j,−j} : (s− 2)/2 + 3 ≤ j ≤ (s− 2)/2 + 4},
PR1 = {{j,−j} : 3 + s + (s− 2)/2 + 1 ≤ j ≤ 3 + s + (s− 2)/2 + 2},
PR2 = {{j,−j} : 3 + s + (s− 2)/2 + 3 ≤ j ≤ 3 + s + (s− 2)/2 + 4},
PA0 = {{(s− 2)/2 + 3, (s− 2)/2 + 4}},
PA1 = {{3 + s + (s− 2)/2 + 2, 8 + 2s + (s + 2)/2}},
PA2 = {{3 + s + (s− 2)/2 + 3, 5 + 2s + (s + 2)/2}}.

(4) For s odd and n odd,

(4.1) s ≥ 3 odd and n ≥ 3 odd, let

D = {(3n + s)j, (3n + s)/2 + (3n + s)j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤
j ≤ (s− 3)/2 or 3n + (s− 3)/2 + 3 ≤ j ≤ 3n + s− 1} ∪ {±((s− 3)/2 + 1),±(3n +

s + 3n + (s− 3)/2 + 2)},
PR0 = {{j,−j} : (s− 3)/2 + 2 ≤ j ≤ (s− 3)/2 + n + 1 or (s− 3)/2 + n + 2 ≤ j ≤
2n + (s− 3)/2 + 2 and j 6= (3n + s)/2},
PR1 = {{j,−j} : 2n+(s−3)/2+3 ≤ j ≤ 3n+(s−3)/2+2 or 3n+s+(s−3)/2+n+1 ≤
j ≤ 3n + s + (s− 3)/2 + 2n + 1 and j 6= 3n + s + (3n + s)/2},
PR2 = {{j,−j} : 3n + s + (s− 3)/2 + 1 ≤ j ≤ 3n + s + (s− 3)/2 + n or 5n + s +

(s− 3)/2 + 2 ≤ j ≤ 6n + s + (s− 3)/2 + 1},
PA0 = {{(s− 3)/2 + j, (s− 3)/2 + 2n + 3− j} : 2 ≤ j ≤ n + 1 and j 6= n + 3− (n +

3)/2} ∪ {{11n + 3s + (s + 3)/2− 2, 10n + (s + 3)/2 + 3s− 2}},
PA1 = {{(s − 3)/2 + 2n + 2 + j, 8n + 2s + (s + 3)/2 − j} : 1 ≤ j ≤ n and j 6=
(n− 1)/2 + 2} ∪ {{10n + 3s + (s + 3)/2− 4, 3n + s + (s− 3)/2 + 2n + 1}},
PA2 = {{3n + s + (s− 3)/2 + j, 7n + 2s + (s + 3)/2− 1− j} : 1 ≤ j ≤ n}.

(4.2) s ≥ 3 odd and n = 1 odd, let

D = {(3 + s)j, (3 + s)/2 + (3 + s)j : 0 ≤ j ≤ 3} ∪ {(3 + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤
(s− 3)/2 or 3 + (s + 3)/2 ≤ j ≤ 3 + s− 1} ∪ {±((s− 3)/2 + 1),±((s− 3)/2 + 2)},
PR0 = {{j,−j} : (s + 3)/2 + 1 ≤ j ≤ (s + 3)/2 + 2},
PR1 = {{j,−j} : 3 + s + (s− 3)/2 + 1 ≤ j ≤ 3 + s + (s− 3)/2 + 2},
PR2 = {{j,−j} : 3 + s + (s + 3)/2 + 1 ≤ j ≤ 3 + s + (s + 3)/2 + 1},
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PA0 = {{(s + 3)/2 + 1, (s + 3)/2 + 2}},
PA1 = {{3 + s + (s− 3)/2 + 1, 7 + 2s + (s + 3)/2}},
PA2 = {{3 + s + (s + 3)/2 + 1, 7 + 2s + (s− 3)/2}}.

(4.3) For s = 1 and n ≥ 3 odd, let

D = {(3n + 1)i : 0 ≤ i ≤ 3},
PR0 = {{j,−j} : 1 ≤ j ≤ (n+1)/2 or (3n+1)/2+n+1 ≤ j ≤ 3n}∪{{j,−j− 1} :

3n+1+(n+1)/2+1 ≤ j ≤ 3n+1+(3n+1)/2−1}∪{{3n+1+(3n+1)/2, 3(3n+

1)− (n + 1)/2− 1}},
PR1 = {{j,−j} : 3n+1+1 ≤ j ≤ 3n+1+(n+1)/2 or 3n+1+(3n+1)/2+n+1 ≤
j ≤ 2(3n + 1)− 1} ∪ {{j,−j − 1} : (n + 1)/2 + 1 ≤ j ≤ (3n + 1)/2− 1} ∪ {{(3n +

1)/2, 4(3n + 1)− (n + 1)/2− 1}},
PR2 = {{j,−j} : (3n + 1)/2 + 1 ≤ j ≤ (3n + 1)/2 + n or 3n + 1 + (3n + 1)/2 + 1 ≤
j ≤ 3n + 1 + (3n + 1)/2 + n},
PA0 = {{j,−j− 1} : 3n+1+(n+1)/2+1 ≤ j ≤ 3n+1+(3n+1)/2− 1}∪{{(n+

1)/2− 1, 4(3n + 1)− (n + 1)/2}},
PA1 = {{j,−j − 1} : (n + 1)/2 + 1 ≤ j ≤ (3n + 1)/2− 1} ∪ {{3n + 2, 3n + 3}},
PA2 = {{(3n + 1)/2 + 1 + j, 3(3n + 1) − (3n + 1)/2 − j} : 1 ≤ j ≤ (n + 1)/2} ∪
{{3n + 1 + (3n + 1)/2 + j, 3n + 1 + (3n + 1)/2 + n − j} : 1 ≤ j ≤ (n − 3)/2} ∪ V ,

where V = {{3n + 1 + (3n + 1)/2 + n, 3(3n + 1) − (3n + 1)/2 − n + 1}} for n ≥ 5

and V = {{17, 22}} when n = 3.

(4.4) For s = 1 and n = 1, let

D = {0, 1, 8, 15},
PR0 = {{2, 3}, {4, 6}}, PR1 = {{5, 11}, {9, 14}}, PR2 = {{7, 13}, {10, 12}},
PS0 = {{7, 10}, {9, 14}}, PS1 = {{6, 7}, {10, 13}}, PS2 = {{2, 3}, {6, 9}},
R0 = {4, 14}, R1 = {5, 11}, R2 = {3, 4}.

Combining Theorem 2.2.8 and Lemma 2.3.1, we obtain the following theo-

rem.

Theorem 2.3.2. Suppose that n ≥ 0 and s ≥ 1. There exists an RHF4((3n+s)3 :

s). When (n, s) 6= (1, 1), the RHF4((3n+s)3 : s) exists with a sub-design RH(44).

As a consequence of Theorem 2.3.2, we have our second tripling construction

for resolvable H-designs with group size 4 as follows.

Corollary 2.3.3. (Tripling Construction II) Let n ≡ 2s (mod 3) and s ≥ 1. If

there exists an IRH(4n : 4s), then there exist both an IRH(43n−2s : 4n) and an

IRH(43n−2s : 4s). Furthermore, if there exists an RH(4n) or an RH(4s), then

there exists an RH(43n−2s), as well as an IRH(43n−2s : 44) when (n, s) 6= (5, 1).
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The construction given below is a variation of the construction for resolvable

candelabra quadruple systems in [33].

Theorem 2.3.4. Suppose that n ≥ 1, s ≡ 1, 2 (mod 3) and 3s ≥ 5n. There

exists an RHF4((3n)3 : s).

Proof. Let n ≥ 1, s ≡ 1, 2 ( mod 3) and 3s ≥ 5n. Take Y = {∞0,∞1, . . . ,∞4s−1}
and let X = (Z12n × Z3) ∪ Y . We will construct an RHF4((3n)3 : s) (X,G,B,F)

with groups G(i, j) = {(i + 3kn, j) : k ∈ Z4}, i ∈ Z3n, j ∈ Z3, and G(∞, j) =

{∞sk+j : k ∈ Z4}, 0 ≤ j ≤ s − 1, and three holes Fj = {G(i, j) : i ∈ Z3n} ∪ S,

0 ≤ j ≤ 2, which intersect on a common hole S = {G(∞, j) : 0 ≤ j ≤ s− 1}. In

the sequel we shall write xi for the ordered pair (x, i) ∈ Z12n × Z3.

Let h = (12n − 4s)/2. Since 3s ≥ 5n, h is even and h ≤ 8n/3. As in [33,

Theorem 2.1], let

H∗
1 = {{9n− i, 9n− 3 + i} : 2 ≤ i ≤ 3n + 1, i 6≡ 0 (mod 3)}, and

H∗
2 = {{3n− i, 3n + i} : 1 ≤ i ≤ 3n− 2, i 6≡ 0 (mod 3)}.

It is easy to check that |H∗
1 | = 2n and |H∗

2 | = 2n − 1. Let Hi be any subset of

H∗
i of cardinality h/2, i = 1, 2 and H = H1 ∪ H2, which satisfies the following

properties:

(1) |H| = h = (12n− 4s)/2 ≤ 8n/3.

(2) The pairs in H are disjoint, i.e., |⋃{x,y}∈H{x, y}| = 2h.

(3) Let LH = {|y−x| : {x, y} ∈ H}, then |LH| = h and LH ∩{3, 6, . . . , 6n} =

∅.

(4) The distances between members of H1 are odd.

(5) {x, y} ≡ {1, 2} (mod 3) for each {x, y} ∈ H.

Since H1  H∗
1 and all distances between members of H∗

1 are odd, the graph

G(12n, {1, 2, . . . , 6n}\(LH
⋃{3n, 6n})) has a one-factorization F1|F2| . . . |F12n−2h−4
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by Lemma 2.2.7. Let F12n−2h−3|F12n−2h−2|F12n−2h−1 be a one-factorization of the

graph G(12n, {3n, 6n}). Then it is natural that F1|F2| . . . |F12n−2h−1 is a one-

factorization of the graph G(12n, {1, 2, . . . , 6n} \ LH). Using the above set of

pairs H and the one-factorization of the graph G(12n, {1, 2, . . . , 6n}\LH), Hart-

man [33, Theorem 2.1] constructed a resolvable RCQS((12n)3 : 4s) on X with

group set {Z12n×{i} : i ∈ Z3} and stem Y , as well as the block set B′ and its reso-

lution P containing the following 6n(12n−2h−1) partitions of Z12n×{i+1, i+2}
for each i ∈ Z3:

Pi,u,k = {{xi+1, yi+1, zi+2, ti+2} : {x, y} is the mth member of Fu,

{z, t} is the (m + k)th member of Fu,m = 1, 2, . . . , 6n},

where u = 1, 2, . . . , 12n− 2h− 1, and k = 0, 1, . . . , 6n− 1.

For each i ∈ Z3, let βi be the union of partitions Pi,u,k with 12n− 2h− 3 ≤
u ≤ 12n− 2h− 1 and 0 ≤ k ≤ 6n− 1. Then we have that B = B′ \ (

⋃
i∈Z3

βi) is

the block set of the desired RHF4((3n)3 : s) on X with group set G and hole set

F , where B has a resolution P \ {Pi,u,k : 12n − 2h − 3 ≤ u ≤ 12n − 2h − 1, 0 ≤
k ≤ 6n− 1, i ∈ Z3}.

As a consequence of Theorem 2.3.4, we have our third tripling construction

as follows.

Corollary 2.3.5. (Tripling Construction III) Let n ≡ s ≡ 1 or 2 (mod 3) and

14s ≥ 5n. If there exists an IRH(4n : 4s), then there exists an IRH(43n−2s : 4n)

and an IRH(43n−2s : 4s).

In the sequel of this section, we shall establish the existence of resolvable

H-designs with group size 4 by using the recursive constructions having been

developed. The following initial designs are needed.

Lemma 2.3.6. There exists an RH(45).

Proof. Let the point set be Z20, and the group set be {{j, j + 5, . . . , j + 15} : j =

0, 1, · · · , 4}. We list the base blocks as follows, which are developed by adding 2

modulo 20:
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{3, 4, 7, 11} {6, 10, 17, 18} {0, 2, 9, 13} {5, 8, 19, 1} {12, 14, 15, 16}
{8, 9, 16, 17} {11, 19, 0, 2} {18, 4, 12, 15} {3, 6, 10, 14} {1, 5, 7, 13}
{1, 7, 9, 18} {11, 13, 14, 15} {19, 5, 6, 12} {8, 10, 2, 4} {16, 17, 0, 3}
{1, 12, 18, 19}

Each of the first three rows forms a parallel class. The last block covers the four

residues modulo 4, hence gives a parallel class by adding 4 modulo 20.

Lemma 2.3.7. There exists an RH(47).

Proof. Let the point set be Z28, and the group set be {{j, j + 7, . . . , j + 21} :

j = 0, 1, · · · , 6}. We list the base blocks as follows, each of which is developed

by adding 2 modulo 28:

{3, 7, 11, 23} {27, 9, 15, 17} {13, 14, 19, 1} {2, 4, 10, 20} {18, 22, 26, 6}
{24, 0, 5, 16} {8, 12, 21, 25}
{0, 1, 9, 12} {21, 25, 2, 10} {18, 20, 5, 14} {22, 24, 27, 4} {13, 15, 17, 23}
{16, 19, 7, 8} {26, 3, 6, 11}
{3, 6, 18, 21} {8, 9, 19, 24} {20, 5, 7, 11} {10, 15, 16, 0} {4, 14, 17, 1}
{25, 2, 12, 13} {22, 23, 26, 27}
{2, 4, 6, 24} {1, 5, 7, 23} {9, 12, 20, 21} {16, 18, 22, 0} {3, 8, 11, 13}
{10, 15, 19, 27} {14, 17, 25, 26}
{3, 4, 7, 8} {21, 26, 2, 13} {22, 23, 24, 25} {14, 17, 20, 11} {18, 19, 0, 9}
{27, 1, 10, 12} {16, 5, 6, 15}
{2, 7, 13, 24} {5, 7, 22, 24} {7, 12, 13, 18} {12, 18, 21, 27} {13, 15, 16, 18}

The seven blocks in the ith and (i + 1)th rows form a parallel class for each

i = 1, 3, 5, 7, 9. Each block of the last row covers the four residues modulo 4,

hence gives a parallel class by adding 4 modulo 28.

Lemma 2.3.8. There exists an RHF4(3
5 : 2).

Proof. We first construct an HF2(3
5 : 2) on Z30 ∪ {∞0, . . . ,∞3}, with groups

G′
j = {j, j + 15}, j = 0, 1, · · · , 14, G′

∞i
= {∞i,∞i+2}, i = 0, 1, five holes

F ′
i = {G′

i, G
′
i+5, G

′
i+10}∪S ′, i = 0, 1, . . . , 4 and a common hole S ′ = {G′

∞0
, G′

∞1
}.

We list below the set of base blocks B′ = ∆∪Θ, which will be is developed under

the automorphism group 〈α′〉, where α′ = (0 1 2 3 . . . 28 29)(∞0)(∞1)(∞2)(∞3).

∆ :
{0, 1, 13, 22} {0, 3, 4, 7} {0, 14, 16, 27} {0, 6, 18, 19}
{0, 3, 6, 24} {0, 19, 21, 22} {0, 1, 2, 8} {0, 11, 19, 27}
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Θ :

{0, 2, 29,∞0} {0, 4, 22,∞0} {0, 7, 16,∞0} {0, 6, 17,∞0}
{0, 3, 12,∞1} {0, 2, 24,∞1} {0, 16, 29,∞1} {0, 4, 11,∞1}
{0, 19, 28,∞2} {0, 13, 27,∞2} {0, 8, 26,∞2} {0, 6, 7,∞2}
{0, 3, 9,∞3} {0, 22, 29,∞3} {0, 14, 26,∞3} {0, 11, 13,∞3}
{0, 2, 18, 28} {0, 5, 14, 18} {0, 1, 14, 19} {0, 2, 25, 27}
{0, 3, 8, 25} {0, 7, 12, 28} {0, 7, 14, 25} {0, 1, 6, 25}
{0, 10, 19, 26} {0, 9, 10, 29} {0, 12, 20, 22} {0, 6, 16, 22}
{0, 3, 20, 23} {0, 21, 25, 26} {0, 7, 17, 24} {0, 10, 21, 28}
{0, 20, 24, 26} {0, 13, 17, 21}

For each block B = {a, b, c, d} ∈ B′, construct an RH(24) with group set

{{x, x′} : x ∈ B}, where x′ = x + 30 when x ∈ Z30 or x′ = ∞i+4 when x =

∞i, and block set AB having a resolution PB(1) = {{a, b, c, d}, {a′, b′, c′, d′}},
PB(2) = {{a, b, c′, d′}, {a′, b′, c, d}}, PB(3) = {{a, b′, c, d′}, {a′, b, c′, d}}, PB(4) =

{{a, b′, c′, d}, {a′, b, c, d′}}. Let B = ∪B∈B′AB. It is clear that B is the set of base

blocks of an HF4(3
5 : 2) on X = Z60 ∪ {∞0, . . . ,∞7} with the group set Gj =

{j + 15k : 0 ≤ k ≤ 3}, j = 0, 1, · · · , 14, G∞i
= {∞i+2k : 0 ≤ k ≤ 3}, i = 0, 1, five

holes Fi = {Gi, Gi+5, Gi+10} ∪ S, i ∈ Z5, a common hole S = {G∞0 , G∞1} and

an automorphism group 〈α〉, where α = (0 1 2 3 . . . 28 29)(30 31 32 33 . . . 58 59)

(∞0) . . . (∞7). Now, we need to give the resolution. The design should contain

16× 30 parallel classes on X and 8× 4 partial parallel classes on X \ (∪G∈Fi
G)

for each i ∈ Z5.

Note that each block B ∈ ∆ covers all but one, say j, distinct residues

modulo 5. Then for each i ∈ {1, 2, 3, 4} and a fixed s ∈ Z5, PB(i) gives a partial

parallel class on X \ (∪G∈Fj+s
G) when developed by the automorphisms {α5k+s :

k ∈ Z6}. That is, ∪B∈∆AB gives 32 partial parallel classes on X \ (∪G∈Fi
G) for

each i ∈ Z5 when developed under 〈α〉.
Then we shift each block B ∈ ∪B∈ΘAB by a suitable automorphism αB ∈

〈α〉. The result is listed below, where the blocks in each of the four consecutive

rows, namely the ith, (i + 1)th, (i + 2)th and (i + 3)th rows for i ∈ {4k + 1 : k =

0, 1, . . . , 15}, form a parallel class.

{1, 37, 38,∞2} {3, 44, 46,∞3} {6, 40, 28,∞4} {34, 7, 16,∞5} {32, 8, 9,∞6}
{30, 11, 13,∞7} {31, 36, 45, 49} {35, 10, 19, 53} {15, 20, 59, 33} {57, 29, 52, 24}
{18, 51, 26, 43} {47, 50, 25, 12} {55, 27, 54,∞0} {17, 48, 23, 42} {4, 41, 21, 58}
{39, 22, 56, 0} {2, 5, 14,∞1}
{32, 6, 24,∞4} {2, 5, 44,∞5} {3, 9, 40,∞6} {8, 19, 51,∞7} {35, 10, 49, 23}
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{11, 46, 55, 29} {33, 38, 17, 21} {57, 28, 41, 16} {12, 13, 48, 37} {59, 39, 18, 25}
{36, 43, 20, 1} {0, 4, 22,∞0} {56, 30, 7,∞1} {26, 45, 54,∞2} {50, 27, 34, 15}
{52, 53, 58, 47} {31, 42, 14,∞3}
{55, 26, 9, 44} {10, 12, 5, 7} {54, 57, 14, 17} {13, 49, 30,∞0} {4, 46, 24, 56}
{37, 43, 23, 29} {52, 25, 31,∞3} {45, 48, 27,∞1} {33, 39, 50,∞4} {8, 20, 28, 0}
{19, 35, 18,∞5} {51, 59, 47,∞6} {2, 40, 58,∞2} {42, 15, 21,∞7} {36, 38, 1, 3}
{34, 11, 16, 32} {22, 53, 6, 41}
{1, 15, 27,∞3} {32, 39, 48,∞4} {34, 36, 58,∞5} {40, 59, 38,∞6} {51, 35, 47,∞7}
{2, 3, 16, 21} {10, 41, 54, 29} {17, 49, 12, 44} {53, 25, 18, 50} {56, 5, 6, 55}
{7, 20, 24, 28} {9, 52, 26, 30} {14, 46, 43,∞0} {0, 4, 11,∞1} {45, 22, 57, 13}
{23, 33, 42, 19} {31, 37, 8,∞2}
{45, 28, 12,∞6} {52, 58, 38, 44} {39, 25, 8,∞5} {43, 19, 29, 35} {4, 41, 16, 32}
{21, 27, 7, 13} {53, 0, 10, 47} {33, 9, 50,∞0} {15, 22, 59, 40} {55, 17, 54,∞3}
{1, 34, 51, 24} {23, 56, 31, 18} {49, 5, 48,∞1} {3, 46, 30,∞2} {42, 14, 11,∞4}
{57, 6, 37, 26} {36, 20, 2,∞7}
{51, 58, 33, 49} {50, 42, 19,∞3} {8, 40, 2,∞5} {20, 57, 36,∞0} {48, 24, 34, 10}
{31, 11, 22, 59} {3, 6, 53, 56} {43, 46, 52,∞7} {4, 44, 23, 30} {0, 37, 14, 55}
{17, 25, 13,∞2} {27, 29, 21,∞1} {32, 9, 18,∞4} {16, 54, 12,∞6} {1, 38, 45, 26}
{7, 47, 28, 35} {15, 5, 39, 41}
{17, 20, 25, 12} {2, 53, 27, 58} {30, 34, 22,∞0} {44, 47, 23,∞3} {37, 9, 1,∞5}
{18, 21, 56, 43} {3, 46, 50, 24} {26, 59, 16, 49} {5, 36, 41, 0} {38, 45, 55, 32}
{48, 39, 13, 14} {6, 19, 33,∞6} {28, 31, 40,∞1} {10, 29, 8,∞2} {52, 54, 51,∞4}
{15, 57, 35, 7} {42, 4, 11,∞7}
{24, 1, 40,∞4} {10, 30, 4, 36} {33, 6, 53, 26} {11, 0, 39,∞6} {59, 32, 49, 52}
{54, 8, 50,∞3} {16, 18, 41, 43} {56, 42, 55,∞5} {46, 48, 15,∞0} {47, 21, 58,∞1}
{5, 38, 14,∞7} {19, 22, 9, 12} {7, 28, 2, 3} {20, 27, 37, 44} {57, 17, 51, 23}
{35, 25, 29, 31} {45, 34, 13,∞2}
{0, 7, 12, 28} {23, 55, 47,∞1} {18, 58, 39, 16} {34, 44, 53, 30} {20, 33, 17,∞6}
{41, 21, 32, 9} {31, 11, 50, 27} {24, 4, 45, 52} {19, 29, 8, 15} {22, 36, 48,∞3}
{40, 42, 35, 37} {13, 26, 10,∞2} {57, 3, 14,∞4} {25, 59, 6,∞5} {2, 54, 1,∞7}
{43, 46, 51, 38} {49, 56, 5,∞0}
{16, 18, 40,∞5} {23, 9, 22,∞1} {49, 56, 1, 17} {41, 54, 8,∞2} {31, 5, 53,∞0}
{10, 2, 39,∞7} {55, 3, 21,∞6} {52, 4, 12, 44} {45, 57, 35, 37} {15, 28, 32, 36}
{51, 42, 46, 47} {14, 6, 13,∞3} {27, 59, 26,∞4} {48, 19, 24, 43} {38, 20, 58, 0}
{34, 25, 29, 30} {50, 33, 7, 11}
{36, 25, 4,∞6} {8, 11, 17,∞3} {30, 50, 54, 56} {21, 58, 38, 15} {27, 29, 26,∞0}
{47, 19, 41,∞1} {28, 34, 44, 20} {32, 45, 49, 53} {43, 35, 42,∞7} {40, 23, 37,∞2}
{24, 31, 10,∞4} {51, 22, 57, 16} {0, 6, 46, 52} {48, 1, 5, 39} {33, 7, 14,∞5}
{59, 9, 18, 55} {3, 12, 13, 2}
{27, 36, 37, 26} {23, 30, 35, 21} {39, 47, 5,∞2} {46, 32, 15,∞1} {53, 54, 29, 18}
{57, 34, 41, 52} {59, 43, 25,∞3} {16, 2, 45,∞5} {40, 50, 1, 8} {19, 55, 6,∞4}
{7, 17, 56, 33} {3, 9, 20,∞0} {31, 44, 58,∞6} {10, 13, 49,∞7} {4, 24, 28, 0}
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{48, 38, 12, 14} {42, 51, 22, 11}
{0, 34, 52,∞0} {30, 3, 42,∞1} {1, 7, 8,∞2} {2, 13, 15,∞3} {31, 35, 53,∞4}
{33, 36, 45,∞5} {32, 38, 39,∞6} {44, 55, 57,∞7} {24, 26, 12, 22} {18, 50, 6, 46}
{56, 28, 14, 54} {41, 43, 29, 9} {19, 21, 37, 47} {49, 58, 59, 48} {11, 20, 51, 40}
{25, 5, 16, 23} {10, 17, 27, 4}
{0, 7, 16,∞0} {30, 32, 24,∞1} {33, 9, 40,∞2} {31, 12, 44,∞3} {1, 5, 53,∞4}
{2, 35, 14,∞5} {3, 39, 10,∞6} {15, 56, 28,∞7} {50, 52, 38, 48} {55, 27, 43, 23}
{19, 51, 37, 17} {8, 13, 22, 26} {6, 41, 20, 54} {58, 59, 42, 47} {4, 11, 18, 29}
{36, 46, 57, 34} {25, 45, 49, 21}
{30, 7, 46,∞0} {0, 34, 41,∞1} {31, 20, 59,∞2} {3, 36, 42,∞3} {2, 8, 49,∞4}
{43, 47, 54,∞5} {1, 9, 57,∞6} {29, 13, 55,∞7} {38, 39, 22, 27} {50, 23, 28, 45}
{37, 14, 21, 32} {24, 33, 4, 53} {10, 11, 16, 5} {6, 18, 56, 58} {19, 40, 44, 15}
{26, 17, 51, 52} {48, 25, 35, 12}
{30, 36, 17,∞0} {0, 46, 59,∞1} {51, 29, 47,∞2} {5, 57, 34,∞3} {11, 13, 40,∞4}
{3, 7, 44,∞5} {16, 35, 14,∞6} {23, 37, 19,∞7} {24, 25, 38, 43} {1, 33, 56, 28}
{53, 26, 31, 18} {27, 4, 39, 55} {48, 21, 8, 41} {50, 32, 10, 12} {6, 42, 22, 58}
{54, 15, 49, 20} {45, 52, 2, 9}

As a corollary of the Tripling Construction II, we obtain

Theorem 2.3.9. If there exists a constant M ≥ 6, such that for every n ≡
1, 2 (mod 3) in the range M ≤ n < 3M , there exists an IRH(4n : 417), then for

every n ≡ 1, 2 (mod 3) and n ≥ M , there exists an IRH(4n : 417).

Proof. First, we claim that there exists an IRH(417 : 4s) for each s ∈ {1, 2, 4, 5, 7}.
Applying the Tripling Construction II with (n, s) = (7, 2) and an RH(47) in

Lemma 2.3.7, we obtain an RH(417), an IRH(417 : 44) and an IRH(417 : 47). An

IRH(417 : 45) can be constructed by applying Theorem 2.2.3 with an RHF4(3
5 : 2)

in Lemma 2.3.8 and an RH(45) in Lemma 2.3.6. The designs with a hole of sizes

1 or 2 are actually an RH(417).

The above statement yields that the existence of an IRH(4n : 417) implies

the existence of an IRH(4n : 4s) for all s ∈ {1, 2, 4, 5, 7, 17}. The proof proceeds

by induction. Let n ≥ 3M and n ≡ 1, 2 (mod 3). Assume that for each n′, M ≤
n′ < n, n′ ≡ 1, 2 (mod 3), there exists an IRH(4n′ : 417). Write n = 3m − 2s,

where s = 7, 5, 1, 17, 4, 2 when n ≡ 1, 2, 4, 5, 7, 8 (mod 9), respectively. It is

easy to check that M ≤ m < n and m ≡ 1, 2 (mod 3). Applying the Tripling

Construction II, the conclusion then follows.
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Lemma 2.3.10. For each integer n ≡ 1, 2 ( mod 3), n ≥ 4 and n /∈ {73, 149, 181,

599}, there exists an RH(4n).

Proof. Let L be the list of pairs (n, s) such that an IRH(4n : 4s) is known. For

every two pairs (n, s) and (n′, s′), define (n, s) ≺ (n′, s′) if n < n′ or, n = n′

and s < s′. We will compute the output of the Tripling Constructions I, II and

III, the Doubling Construction and the Product Construction by a computer

programme, which involves the following steps:

Step 1: Initialize L. Let L = {(4, 1), (4, 2), (5, 1), (5, 2), (7, 1), (7, 2), (13, 1),

(13, 2), (13, 5), (19, 1), (19, 2), (41, 1), (41, 2)}. The designs with 13 groups can be

constructed by applying Tripling Construction II with (n, s) = (5, 1). The designs

with 19 or 41 groups are constructed in the Appendix. Sort L in ascending order.

Let (n, s) be the smallest pair in L.

Step 2: Check whether (n, s) satisfies the Tripling Construction II’s condi-

tion, i.e., n ≡ 2s (mod 3) and (n, s) 6= (5, 1). If not, go to Step 3. If yes, update

L by adding pairs (3n − 2s, n), (3n − 2s, 4) and (3n − 2s, k) for all k such that

(n, k) ∈ L. Sort the updated L in ascending order, then go to Step 4.

Step 3: Check whether n − s ≡ 0 (mod 3). If not, go to Step 4. If yes,

write n − s = 3x · t, such that t > s and 3 - t, or s < t < 3s and 3|t. Check

whether (t + s, s) satisfies the Tripling Construction II’s condition, i.e., t + s ≡
2s (mod 3) and (t + s, s) 6= (5, 1), or the Tripling Construction III’s condition,

i.e., t ≡ 0 (mod 3) and 9s ≥ 5t. If yes, update L by adding pairs (3n − 2s, n)

and (3n−2s, k) for all k such that (n, k) ∈ L. Furthermore, add (3n−2s, 4) into

L if (t + s, s) satisfies the Tripling Construction II’s condition. Sort the updated

L in ascending order, then go to Step 4.

Step 4: Apply the Doubling Construction and the Product Construction.

Update L by adding the pair (2n, k) for all k such that (n, k) ∈ L. For each m

such that (m, 1) ∈ L, update L by adding pairs (mn, n), (mn,m) and (mn, k)

for all k such that (n, k) or (m, k) ∈ L. Sort the updated L in ascending order.

Let (n, s) be the next smallest pair in the updated L, then go to Step 2.

The programme was run with n < 2000 and s ≤ 64, and produced two

results as follows:
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Result 1: For each n ≡ 1, 2 (mod 3) and 4 ≤ n < 1285, there exists an

RH(4n) with four possible exceptions {73, 149, 181, 599}.
Result 2: There exists an IRH(4n : 417) for all n ≡ 1, 2 (mod 3) and 1285 ≤

n < 3855.

By Theorem 2.3.9, there exists an IRH(4n : 417) for all n ≡ 1, 2 ( mod 3) and

n ≥ 1285. Hence there exists an RH(4n) by Theorem 2.2.3. This completes the

proof.

Lemma 2.3.11. There exists an RH(4n) for each n ∈ {181, 599}.

Proof. For n = 181, there exists an RCQS(115 : 1) obtained from an RSQS(16).

By Theorem 2.3.2, there exists an RHF4(4
3 : 1), thus an RHF4(123 : 1) exists

by Tripling Construction I. Applying Theorem 2.2.2 with an RH(484) and an

RCQS(115 : 1), we get an RHF4(1215 : 1). Then applying Theorem 2.2.3 with an

RH(413), we obtain an RH(4181).

For n = 599, there exists an RCQS(17 : 1) obtained from an RSQS(8). By

Theorem 2.3.2, there exists an RHF4(853 : 4). Applying Theorem 2.2.2 with the

RCQS(17 : 1), the RHF4(853 : 4) and an RH(3404), we get an RHF4(857 : 4).

Applying Theorem 2.2.3 with an IRH(489 : 44) gives the desired RH(4599). Here,

the input IRH(489 : 44) can be constructed by applying Tripling Construction II

with (n, s) = (31, 2) and an RH(431).

Combining Lemmas 2.3.10 and 2.3.11, we obtain the main result in this

section.

Theorem 2.3.12. The necessary conditions n ≡ 1 or 2 (mod 3) and n ≥ 4 for

the existence of an RH(4n) are sufficient except possibly for n ∈ {73, 149}.

2.4 Applications of the Existence of RH(4n)

In this section, we give several applications of the existence result of resolv-

able H-designs of group size 4 stated in Theorem 2.3.12.

Firstly, we establish the necessary and sufficient conditions for the existence

of resolvable H-designs of group size 2. As a corollary of Theorem 2.3.12, we have

the following result by the Group Halving Construction.
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Lemma 2.4.1. There exists an RH(2n) for each n ≡ 2, 4 (mod 6) and n /∈
{146, 298}.

Lemma 2.4.2. There exists an RH(66).

Proof. Let the point set be Z36 and the group set be {{j, j + 6, . . . , j + 30} : j =

0, 1, · · · , 5}. We list the base blocks of an RH(66) as follows:

Part 1: {7, 9, 14, 16}, {5, 10, 27, 32}, {1, 3, 12, 14},
{2, 5, 16, 19}, {1, 11, 20, 30}, {1, 4, 11, 14}.

Part 2: {0, 2, 4, 9}, {14, 21, 22, 30}, {6, 11, 34, 3},
{18, 31, 5, 10}, {12, 16, 26, 1}, {19, 20, 23, 24},
{25, 32, 33, 35}, {7, 27, 28, 29}, {8, 13, 15, 17}.

Part 3: {11, 16, 27, 32}, {1, 14, 17, 34}, {2, 13, 21, 30},
{5, 9, 24, 28}, {19, 23, 4, 8}, {35, 7, 12, 22},
{18, 20, 3, 10}, {26, 31, 6, 15}, {0, 25, 29, 33}.

Part 4: {18, 32, 33, 34}, {1, 5, 16, 27}, {19, 29, 9, 10},
{14, 22, 23, 0}, {20, 21, 24, 25}, {12, 17, 3, 7},
{2, 11, 15, 31}, {8, 30, 35, 4}, {6, 13, 26, 28}.

Part 5: {9, 22, 23, 31}, {17, 25, 26, 33}, {29, 0, 16, 20},
{4, 7, 12, 15}, {14, 21, 35, 1}, {8, 10, 11, 18},
{5, 13, 24, 32}, {2, 27, 30, 34}, {19, 28, 3, 6}.

Part 6: {0, 2, 5, 15}, {9, 30, 4, 7}, {29, 31, 12, 14},
{23, 27, 16, 20}, {3, 10, 25, 32}, {24, 26, 35, 1},
{11, 13, 21, 28}, {6, 19, 22, 33}, {17, 18, 34, 8}.

Part 7: {1, 10, 14, 33}, {4, 11, 19, 32}, {31, 9, 12, 26},
{13, 15, 16, 18}, {0, 5, 20, 21}, {24, 25, 34, 35},
{2, 17, 27, 28}, {22, 23, 3, 6}, {7, 8, 29, 30}.

Here, the base blocks are developed by adding 2 modulo 36. The elements of

each block in Part 1 cover the residues modulo 4, hence each block in Part 1

gives a parallel class when developed by adding 4 modulo 36. The elements of

blocks in each of the other parts are different. Hence, each of these parts forms

a parallel class.

Lemma 2.4.3. There exists an RH(2146) and an RH(2298).

Proof. An RH(2146) was constructed in [43]. For RH(2298), there exists an

RHF2(1
3 : 1) which is actually an RH(24). By the Tripling Construction I,
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there is an RHF2(9
3 : 1) and an RHF2(273 : 1). Applying Theorem 2.2.2 with an

RCQS(35 : 1) from Theorem 2.2.1, an RHF2(9
3 : 1) and an RH(184), we get an

RHF2(275 : 1).

Now we need a URCS(3, {4, 6}, 12) of type (111 : 1) which is constructed as

follows. Let Xi, i = 1, 2, be two disjoint point sets of size 6. Let B = {{a, b, c, d} :

{a, b} ∈ F 1
j , {c, d} ∈ F 2

j , 0 ≤ j ≤ 4} ∪ {Xi : i = 1, 2}, where {F i
j : 0 ≤ j ≤ 4} is a

one-factorization of the complete graph on Xi, i = 1, 2. Then B is the block set of

a URCS(3, {4, 6}, 12) of type (111 : 1) on X1∪X2 with any point as a stem. Here,

B has a resolution {Pj,k : 0 ≤ j ≤ 4, 0 ≤ k ≤ 2}∪{Q}, where Pj,k = {{a, b, c, d} :

{a, b} is the mth member of F 1
j , {c, d} is the (m + k)th member of F 2

j , 1 ≤ m ≤
3} and Q = {Xi : i = 1, 2}.

Applying Theorem 2.2.2 with the above URCS(3, {4, 6}, 12), an RHF2(27k−1 :

1) and an RH(54k) for k ∈ {4, 6}, we get an RHF2(2711 : 1). Applying Theorem

2.2.3 with an RH(228), we get an RH(2298). Here, the input RH(546) can be ob-

tained from an RH(66) in Lemma 2.4.2 by applying the Weighting Construction

with m = 9.

Combining Lemmas 2.4.1 and 2.4.3, we obtain

Theorem 2.4.4. The necessary conditions n ≡ 2 or 4 (mod 6) and n ≥ 4 for

the existence of an RH(2n) are also sufficient.

As a consequence of Theorem 2.4.4, we have the following corollary by the

Group Halving Construction.

Corollary 2.4.5. The necessary condition v ≡ 4 or 8 ( mod 12) for the existence

of an RSQS(v) is also sufficient.

Note that the proof of Corollary 2.4.5 is independent of the existence of

RSQSs but individual designs of small orders. Hence, we provide an alternative

existence proof for resolvable SQS(v)s. The existence problem for such designs

is a challenging one in combinatorial designs theory. A complete solution was

obtained by a joint effort of Hartman [31, 33] and Ji and Zhu [43] over twenty

years long. This new proof is beneficial not only from the tripling constructions,

but also from the Group Halving Construction developed in Section 2.2.
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Secondly, we establish the necessary and sufficient conditions for the exis-

tence of resolvable H-designs of group sizes 6 and 3. The following construction

for resolvable H-designs is similar as but much stronger than the Product Con-

struction in Theorem 2.2.4.

Lemma 2.4.6. Suppose that there exist both an RH(g2u) and an RH(g2t). Then

there exists an RH(g2ut).

Proof. Let (X,G,B) be the given RH(g2u), where G = {G0, . . . , G2u−1}. Let F =

{F1, . . . , F2u−1} be a one-factorization of the complete graph on Z2u. Applying

Lemma 2.1.1, we construct an RH((tg)2u) on X ′ = X × Zt with the group set

G ′ = {G′
i = Gi × Zt : 0 ≤ i ≤ 2u − 1} and a resolution of the block set A,

P1 | P2 | · · · | Ps, where s = (2u− 1)(2u− 2)(tg)2/6.

Since an RH(g2t) exists, gt is even. For each i, 0 ≤ i ≤ 2u − 1, let F i =

{F i
1, . . . , F

i
g(t−1)} be a one-factorization of the complete multiple-graph on Gi×Zt

with t parts {Gi × {l} : l ∈ Zt}. For any {a, b} ∈ F x
m and {c, d} ∈ F y

m, construct

a block {a, b, c, d}, where 1 ≤ m ≤ g(t− 1) and {x, y} ∈ Fn with 2 ≤ n ≤ 2u− 1.

Denote the set of all these blocks by A′. Here, for any fixed r, 0 ≤ r ≤ tg/2− 1,

the blocks {a, b, c, d} with {a, b} being the k-th edge of F x
m, {c, d} being the

(k + r)-th edge of F y
m with 1 ≤ k ≤ tg/2 form a partition of the set G′

x ∪ G′
y.

Hence, for each {x, y} ∈ Fn, we can obtain g(t − 1) · tg/2 parts each of which

partitions G′
x ∪G′

y. In total, we can get (2u− 2) · g(t− 1) · tg/2 parallel classes.

For 1 ≤ k ≤ u, let the k-th edge of F1 be {x, y}. Construct an RH(g2t) on

G′
x ∪ G′

y with group set {Gx × {l}, Gy × {l} : l ∈ Zt}. Denote its block set by

Ck, which can be partitioned into parallel classes Q(k, 1), . . . , Q(k, (2t − 1)(2t −
2)g2/6). Let C = ∪1≤k≤uCk. Here, for each fixed j, 1 ≤ j ≤ (2t− 1)(2t− 2)g2/6,

∪1≤k≤uQ(k, j) forms a parallel class.

Let G ′′ = {Gi × {l} : 0 ≤ i ≤ 2u − 1, l ∈ Zt}, it is easy to check that

(X ′,G ′′,A ∪ A′ ∪ C) is an H(g2ut). By the construction, the number of parallel

classes is (2u−1)(2u−2)(tg)2/6+(2u−2) ·g(t−1) · tg/2+(2t−1)(2t−2)g2/6 =

(2ut− 1)(2ut− 2)g2/6. Hence, the resultant H-design is resolvable.

Theorem 2.4.7. There exists an RH(6n) for each n ≡ 0 (mod 2) and n ≥ 2.
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Proof. For each n ≡ 2 or 4 (mod 6) and n ≥ 4, there exists an RH(6n) by the

Weighting Construction with an RH(2n) from Theorem 2.4.4 and m = 3.

For n = 6, there exists an RH(66) from Lemma 2.4.2. For each n = 6h and

h ≥ 2, the proof proceeds by induction. Assume that for each n′ ≡ 0 (mod 6)

and n′ < n, there exists an RH(6n′). Thus there exists an RH(6k) for each

k ≡ 0 (mod 2) and k < n. By Lemma 2.4.6, an RH(6n) exists since there exists

an RH(66) and an RH(62h).

As a corollary of Theorem 2.4.7, we have the following result by the Group

Halving Construction.

Theorem 2.4.8. The necessary conditions n ≡ 0 (mod 4) and n ≥ 4 for the

existence of an RH(3n) are also sufficient.

Thirdly, we completely determine the existence of resolvable G-designs.

A G-design of order v with block sizes from K, denoted by G(t,K, v), is a

triple (X,G,A) that satisfies the following properties:

(1) X is a set of v elements;

(3) G = {G1, G2, . . . } is a set of nonempty subsets of X, which partition X;

(4) A is a family of subsets of X, each of cardinality from K;

(5) every t-subset T of X with |T ∩Gi| < t, for all i, is contained in a unique

block, and no t-subset of Gi, for any i, is contained in any block.

The type of the G(t,K, v) is defined as the list (|G||G ∈ G). In this chapter,

we denote a G(3, {4}, v) of type gn by G(gn) for short. Recently, Zhuralev et

al. [69] investigated the existence of such designs (called group divisible Steiner

quadruple systems as in [69]). A table was provided that includes existence results

when the number of points is not more than 24. They also proved the following

theorem in [69].
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Theorem 2.4.9. There exists a G(gn) if and only if g = 1 and n ≡ 2 or 4 (mod

6), or g is even and g(n− 1)(n− 2) ≡ 0 (mod 3).

A G(gn) is said to be resolvable, denoted by RG(gn), if its block set can

be partitioned into parallel classes. It is clear that the necessary conditions for

the existence of an RG(gn) are g = 1 and n ≡ 4 or 8 (mod 12), or g is even,

gn ≡ 0 (mod 4) and g(n− 1)(n− 2) ≡ 0 (mod 3).

Lemma 2.4.10. If there exists an RH(g2t) with g even, then there exist both an

RG((2g)t) and an RG(g2t).

Proof. Let (X,G,B) be the given RH(g2t), where G = {G0, . . . , G2t−1}. Let

F = {F1, . . . , F2t−1} be a one-factorization of the complete graph on Z2t.

For 0 ≤ i ≤ 2t − 1, let F i = {F i
1, . . . , F

i
g−1} be a one-factorization of the

complete graph on Gi. Let F i
j = {f i

j(0), . . . , f i
j(g/2− 1)}. For all 1 ≤ n ≤ 2t− 2,

1 ≤ j ≤ g − 1, 0 ≤ k ≤ g/2− 1, it is easy to see that

{fx
j (l) ∪ f y

j (l + k) : 0 ≤ l ≤ g/2− 1, {x, y} ∈ Fn}

is a partition of X. Denote the set of all these blocks by A.

Then it is easy to check that (X,G ′,A ∪ B) is an RG((2g)t) with group set

G ′ = {Gx ∪Gy : {x, y} ∈ F2t−1}.
Furthermore, if we adjoin the parallel classes formed by {fx

j (l) ∪ f y
j (l + k) :

0 ≤ l ≤ g/2−1, {x, y} ∈ Fn} into the RG((2g)t), where n = 2t−1, 1 ≤ j ≤ g−1,

0 ≤ k ≤ g/2− 1, then we obtain an RG(g2t) with group set G.

Lemma 2.4.11. If there exists an RG(gn), then there exists an RG((2mg)n) for

any positive integer m.

Proof. Let (X,G,B) be the given RG(gn) with G = {G1, G2, . . . , Gn} and a reso-

lution of B, Pi, 1 ≤ i ≤ r, where r = ((gn− 1)(gn− 2)− (g − 1)(g − 2))/6. Let

X ′ = X×Z2m and G′
k = Gk×Z2m, 1 ≤ k ≤ n. We will construct an RG((2mg)n)

on X ′ with group set G ′ = {G′
k : 1 ≤ k ≤ n}.

For each block B ∈ B, construct an RH((2m)4) on B × Z2m with group set

{x × Z2m : x ∈ B} and block set AB having resolution classes PB(j), 1 ≤ j ≤
(2m)2.
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Let Γ be a multi-partite complete graph on the vertex set X with partite

set G. Denote its edge set by E. Then E is the block set of a GDD(2, 2, gn)

of type gn on X with group set G. Since an RG(gn) exists, gn is even. There

exists a resolvable GDD(2, 2, gn) of type gn by [14], i.e., E has a resolution

{Qi : 1 ≤ i ≤ g(n− 1)} on X.

For each x ∈ X, let Fx = {F x
1 , . . . , F x

2m−1} be a one-factorization of the

complete graph on x× Z2m. For each edge {x, y} ∈ E, let

E{x,y} = {{a, b, c, d} : {a, b} ∈ F x
k , {c, d} ∈ F y

k , 1 ≤ k ≤ 2m− 1}.

Then C = (
⋃

B∈BAB)
⋃

(
⋃
{x,y}∈E E{x,y}) is the block set of the required G((2mg)n).

We need to give its required resolution classes.

For each Pi, 1 ≤ i ≤ r, P ′
i,j =

⋃
B∈Pi

PB(j) is a parallel class of X ′, where

1 ≤ j ≤ (2m)2.

For each Qi, 1 ≤ i ≤ g(n− 1), and for each pair of k, l with 1 ≤ k ≤ 2m− 1

and 0 ≤ l ≤ m− 1,

Q′
i,k,l =

⋃

{x,y}∈Qi

{{a, b, c, d} : where {a, b} is the jth member of F x
k and

{c, d} is the (j + l)th member of F y
k , 1 ≤ j ≤ m}

is a parallel class of X ′.

Thus we obtain an RG((2mg)n).

Theorem 2.4.12. The necessary conditions g = 1 and n ≡ 4 or 8 (mod 12), or

g is even, gn ≡ 0 (mod 4) and g(n− 1)(n− 2) ≡ 0 (mod 3) for the existence of

an RG(gn) are also sufficient.

Proof. According to the necessary conditions for the existence of an RG(gn), we

partition the parameters into seven classes as follows:

(1) g = 1 and n ≡ 4, 8 (mod 12),

(2) g ≡ 2 (mod 12) and n ≡ 2, 4 (mod 6),

(3) g ≡ 4 (mod 12) and n ≡ 1, 2 (mod 3),



CHAPTER 2 RESOLVABLE H-DESIGNS 43

(4) g ≡ 6 (mod 12) and n ≡ 0 (mod 2),

(5) g ≡ 8 (mod 12) and n ≡ 1, 2 (mod 3),

(6) g ≡ 10 (mod 12) and n ≡ 2, 4 (mod 6),

(7) g ≡ 0 (mod 12) and n ∈ N .

For Case (1), an RG(1n) is actually an RSQS(n), whose existence has been solved

completely [33, 43]. For Cases (2), (4) and (6), an RG(gn) can be obtained

by applying Lemma 2.4.10 with an RH(gn). For Cases (3), (5) and (7), we

continue to partition them into two subcases (A) g ≡ 4, 20, 12 (mod 24) and (B)

g ≡ 16, 8, 0 (mod 24). For Subcase (A), an RG(gn) can be obtained by applying

Lemma 2.4.10 with an RH((g/2)2n). For Subcase (B), the existence of an RG(gn)

can be obtained by applying Lemma 2.4.11 with an RG(4n) or an RG(12n).

Finally, we give two applications of the existence result of resolvable G-

designs.

A packing quadruple system (covering quadruple system, respectively) of or-

der v, denoted by PQS(v) ( CQS(v)) is a pair (X,B), where X is a set of car-

dinality n and B is a set of 4-subsets of X such that every 3-subset of X is

contained in at most one (at least one) block of B. Note that we use a bold black

letter “C” in the notation “CQS” to distinguish it from the one of candelabra

quadruple system.

A PQS(v) (CQS(v)) (X,B) is called maximal (minimal), denoted by MPQS(v)

(MCQS(v)), if there does not exist any PQS(v) (CQS(v)) (X,A) with |A| > |B|
(|A| < |B|). We denote by p(v) (c(v)) the number of blocks in an MPQS(v)

(MCQS(v)).

The Johnson bound [44] j(v) for the packing numbers is given by

p(v) ≤ j(v) =





⌊
v
4

⌊
v−1
3

⌊
v−2
2

⌋⌋⌋
, v 6≡ 0 (mod 6),

⌊
v
4

⌊
v−1
3

⌊
v−2
2

⌋⌋− 1
⌋
, v ≡ 0 (mod 6).
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Here, bxc denotes the largest integer not greater than x.

When v ≡ 2, 4 (mod 6), Hanani [23] showed that p(v) = j(v) by con-

structing an SQS(v). Deleting a point and all blocks containing it from an

SQS(v+1) yields that p(v) = j(v) for v ≡ 1, 3 ( mod 6). Brouwer [9] showed that

p(v) = j(v) for all v ≡ 0 (mod 6). Recently, Ji [40] showed that the last packing

number for v ≡ 5 (mod 6) is equal to Johnson bound with 21 undecided values

v = 6k+5, k ∈ {m : m is odd, 3 ≤ m ≤ 35,m 6= 17, 21}∪{45, 47, 75, 77, 79, 159}.
The Schönheim bound [51] s(v) for the covering numbers is given by

c(v) ≥ s(v) =
⌈v

4

⌈v − 1

3

⌈v − 2

2

⌉⌉⌉
.

Here, dxe denotes the smallest integer not less than x.

Mills [55] has shown that c(v) = s(v) for all v 6≡ 7 (mod 12). Kalbfleisch

and Stanton [45] and Swift [66] have noted that c(7) = s(7) + 1. Mills [56]

has also proved that c(499) = s(499). Hartman et al. [35] have shown that

c(v) = s(v) for all v ≥ 52423. Recently, Ji [41] proved that c(v) = s(v) for

all v ≡ 7 (mod 12) with an exception v = 7 and possible exceptions of v =

12k + 7, k ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 16, 21, 23, 25, 29}.
A PQS(v) (CQS(v)) is called resolvable, denoted by RPQS(v) (RCQS(v)),

if its block set can be partitioned into parallel classes.

An RPQS(v) (RCQS(v)) (X,B) is called maximal (minimal), denoted by

MRPQS(v) (MRCQS(v)), if there does not exist any RPQS(v) (RCQS(v)) (X,A)

with |A| > |B| (|A| < |B|). It is easy to see that the necessary condition for the

existence of an MRPQS(v) (MRCQS(v)) is v ≡ 0 (mod 4).

Maximal resolvable packings and minimal resolvable coverings with strength

t = 2 are fundamental problems in combinatorial designs theory (see, for exam-

ples, [18, 49]). It is nature and interesting to consider the corresponding problems

for strength t = 3. For the existence of MRPQS(v) and MRCQS(v), we need

only to consider the case v ≡ 0 (mod 12), since an RSQS(v) is simply both

an MRPQS(v) and an MRCQS(v). Now, we focus on the investigation of the

existence of MRPQS(v) and MRCQS(v) with v = 12t for all t ≥ 1. Denote by

p′(v) (c′(v)) the number of blocks in an MRPQS(v) (MRCQS(v)). Since v = 12t,
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it is easy to check that p′(v) ≤ 3t(24t2 − 6t − 1) and c′(v) ≥ 3t(24t2 − 6t + 1).

In the sequel, when we talk about an MRPQS(v) (MRCQS(v)) we will mean

the RPQS(v) (RCQS(v)) with the number of blocks meeting the previous upper

(lower) bound for p′(v) (c′(v)).

Lemma 2.4.13. There exist both an MRPQS(12) and an MRCQS(12).

Proof. It is easy to check that p′(12) ≤ 51 and c′(12) ≥ 57.

Let X = Z6 × Z2 with two subsets A = Z6 × {0} and B = Z6 × {1}. It is

easy to check that F1 = {{0, 1}, {2, 4}, {3, 5}}, F2 = {{4, 5}, {0, 2}, {1, 3}}, F3 =

{{0, 3}, {2, 5}, {1, 4}}, F4 = {{2, 3}, {0, 4}, {1, 5}} and F5 = {{0, 5}, {1, 2}, {3, 4}}
form a one-factorization of the complete graph on Z6. Let f j

i,k = {(x, j), (y, j)},
where {x, y} is the k-th member of Fi, 1 ≤ k ≤ 3, 1 ≤ i ≤ 5 and j ∈ Z2. Then

{F j
i = {f j

i,k : 1 ≤ k ≤ 3} : 1 ≤ i ≤ 5} is a one-factorization of the complete

graph on Z6 × {j} for each j ∈ Z2. We will construct an MRCQS(12) and an

MRPQS(12) on X as follows.

For MRPQS(12), {f 0
i,k ∪ f 1

i,k+l : 1 ≤ k ≤ 3} with (i, l) ∈ ({2, 3, 4, 5} × Z3) ∪
({1} × (Z3 \ {0})) are the first 14 parallel classes. Next, {f 0

1,s ∪ f 0
1,1+s, f

1
1,s ∪

f 1
1,1+s, f

0
1,2+s ∪ f 1

1,2+s} for s ∈ Z3 are the last 3 parallel classes. It is clear that all

the blocks in these 17 parallel classes form an MRPQS(12).

For MRCQS(12), {f 0
i,k ∪ f 1

i,k+l : 1 ≤ k ≤ 3} with (i, l) ∈ ({3, 5} × Z3) ∪
({1, 2, 4} × (Z3 \ {0})) are the first 12 parallel classes. Next, {f 0

i,1 ∪ f 1
i,1 : i =

1, 2, 4} and {f 0
i,1 ∪ f 0

i,1+l, f
1
i,1 ∪ f 1

i,1+l, f
0
i,1+l′ ∪ f 1

i,1+l′} for i ∈ {1, 2, 4} and (l, l′) ∈
{(1, 2), (2, 1)} are the last 7 parallel classes. It is clear that all the blocks in these

19 parallel classes form an MRCQS(12).

Now, we give a complete solution to the existence problem of MRPQSs and

MRCQSs as follows.

Theorem 2.4.14. An MRPQS(v) (MRCQS(v)) with the number of blocks meet-

ing the upper (lower) bound exists if and only if v ≡ 0 (mod 4).

Proof. Start from an RG(12t) based on X with |X| = 12t. It is easy to check that

an RG(12t) contains 18t(4t + 3)(t− 1) blocks. Adjoining these 18t(4t + 3)(t− 1)
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blocks with t disjoint MRPQS(12)s based on the t different groups of the RG(12t),

we obtain 3t(24t2−6t−1) blocks which cover the triples of X at most once. Hence,

we have an MRPQS(12t). Similarly, we can obtain an MRCQS(12t).

An S(t,K, v) (X,B) is said to be resolvable, denoted by RS(t,K, v), if the

block set B can be partitioned into parallel classes. A parallel class is uniform if

all blocks in the parallel class have the same size. A uniformly resolvable Steiner

system, URS(t,K,R, v), is an RS(t,K, v) such that all the blocks in each parallel

class have the same size, where R is a multiset with |R| = |K| and for each k ∈ K

there corresponds a positive rk ∈ R such that there are exactly rk parallel classes

of size k.

When t = 2, much work has been done on uniformly resolvable pairwise

balanced designs, see [1]. However, for t > 2, not much is known for uniformly

resolvable t-wise balanced design. For each v ≡ 4, 8 (mod 12), an RSQS(v) is

actually a URS(3, {4, k}, {r4, rk}, v) with rk = 0 for any k 6= 4. So it is interesting

to investigate the existence of a URS(3, {4, k}, {r4, rk}, v) with rk > 0, where the

smallest nontrivial case is k = 3. First, we give the necessary conditions for the

existence of a URS(3, {3, 4}, {r3, r4}, v).

Lemma 2.4.15. If there exists a URS(3, {3, 4}, {r3, r4}, v) with r3 > 0, then

v ≡ 0 (mod 12) and r3 ≡ 1 (mod 3).

Proof. If there exists a URS(3, {3, 4}, {r3, r4}, v), then v ≡ 0 (mod 12) since v

must be divided by both 3 and 4. Let v = 12k, k ≥ 1. Since there are r3 parallel

classes of size 3,

r4 =

(
3

12k

)− (12k/3)× r3 ×
(

3
3

)
(

3
4

)× (12k/4)
=

72k2 − 18k + 1− r3

3
.

Since r4 is an integer, we have r3 ≡ 1 (mod 3).

Lemma 2.4.16. For each positive integer n, there does not exist a URS(3, {3, 4},
{r3, r4}, 12n) with r3 = 1.
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Proof. Suppose that there exists a URS(3, {3, 4}, {r3, r4}, 12n) with r3 = 1. Re-

garding each block in the parallel class of size 3 as a group, we get an RG(34n),

which leads to a contradiction by Theorem 2.4.12.

Lemma 2.4.17. There exists a URS(3, {3, 4}, {r3, r4}, 12) with r3 = 4 and r4 =

17.

Proof. We will construct a URS(3, {3, 4}, {r3, r4}, 12) with r3 = 4 on X =

{a, b, c}×Z2×Z2. For convenience, we write xij for the ordered triple (x, i, j) ∈
X. Arrange the points of X in the following array.

a00 a10 a01 a11

b00 b10 b01 b11

c00 c10 c01 c11

Take the four parallel classes with blocks of size three below:

T1 = {{aij, bij, cij} : i ∈ Z2, j ∈ Z2},
T2 = {{aij, bij, c(i + 1)j} : i ∈ Z2, j ∈ Z2},
T3 = {{aij, b(i + 1)j, cij} : i ∈ Z2, j ∈ Z2},
T4 = {{aij, b(i + 1)j, c(i + 1)j} : i ∈ Z2, j ∈ Z2}.

Let Fi, i = 1, 2, . . . , 5 be a one-factorization of the complete graph on the vertex

set {a, b, c}×Z2 and f j
i be the jth member of Fi. Without loss of generality, we

may assume F0 = {{a0, a1}, {b0, b1}, {c0, c1}}.
The first five parallel classes with blocks of size four are given below:

Q1 = {{a0j, a1j, b0j, b1j} : j ∈ Z2} ∪ {{c00, c10, c01, c11}},
Q2 = {{a0j, a1j, c0j, c1j} : j ∈ Z2} ∪ {{b00, b10, b01, b11}},
Q3 = {{b0j, b1j, c0j, c1j} : j ∈ Z2} ∪ {{a00, a10, a01, a11}},
Q4 = {{a00, a10, b01, b11}, {b00, b10, c01, c11}, {c00, c10, a01, a11}},
Q5 = {{a00, a10, c01, c11}, {b00, b10, a01, a11}, {c00, c10, b01, b11}}.

The remaining twelve parallel classes with blocks of size four Pi,m with i =

2, 3, 4, 5 and m = 0, 1, 2 are obtained as follows:

Pi,m = { {f j
i × {0}, f j+m

i × {1}} : 1 ≤ j ≤ 3}.
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Then (∪1≤i≤4Ti)
⋃

(∪1≤i≤5Qi)
⋃

(∪2≤i≤5,0≤m≤2Pi,m) is the block set of a URS(3,

{3, 4}, {r3, r4}, 12) with r3 = 4 and r4 = 17.

Theorem 2.4.18. There exits a URS(3, {3, 4}, {r3, r4}, v) with r3 = 4 if and

only if v ≡ 0 (mod 12).

Proof. For each v = 12t, start from an RG(12t) on X with group set G and

block set B. For each group G ∈ G, construct a URS(3, {3, 4}, {r3, r4}, 12) with

r3 = 4 on G with block set BG. Then B ∪ (∪G∈GBG) is the block set of a

URS(3, {3, 4}, {r3, r4}, v) with r3 = 4.

2.5 Resolvable H-designs with Group Size 12

As in Section 2.3, we first give our second tripling construction for resolvable

H-designs with groups size 12 by constructing resolvable B12-pairings. Combin-

ing this tripling construction together with the Product Construction and the

existence result of resolvable H-designs and resolvable G-designs stated in Sec-

tions 2.3 and 2.4, we give a near complete solution to the existence problem of

resolvable H-designs with group size 12. Finally, a main result of this chapter is

given to close this section.

Lemma 2.5.1. There exists an RB12(n, s).

Proof. When n = 0, we take D = Z12n+12s and Ri = Si = Ri = ∅. When

n > 0, s > 0, the desired RB12(n, s) is constructed directly as follows:

(1) For s odd and n even, let

D = {(n + s)j : 0 ≤ j ≤ 11} ∪ {(n + s)i + j : 0 ≤ i ≤ 11, n/2 + 1 ≤ j ≤ n/2 + s− 1},
PR0 = {{j,−j} : 1 ≤ j ≤ n/2 or 5(n + s) + 1 ≤ j ≤ 5(n + s) + n/2 or n + s + 1 ≤ j ≤
n + s + n/2 or n + s + n/2 + s ≤ j ≤ 2(n + s)− 1},
PR1 = {{j,−j} : 2(n + s) + 1 ≤ j ≤ 2(n + s) + n/2 or 2(n + s) + n/2 + s ≤ j ≤
3(n+s)−1 or 4(n+s)+1 ≤ j ≤ 4(n+s)+n/2 or 4(n+s)+n/2+s ≤ j ≤ 5(n+s)−1},
PR2 = {{j,−j} : 3(n + s) + 1 ≤ j ≤ 3(n + s) + n/2 or 3(n + s) + n/2 + s ≤ j ≤
4(n + s)− 1 or n/2 + s ≤ j ≤ n + s− 1 or 5(n + s) + n/2 + s ≤ j ≤ 6(n + s)− 1}.
PA0 = {{j, 7(n + s)− j} : 1 ≤ j ≤ n/2} ∪ {{5(n + s) + j, 2(n + s)− j} : 1 ≤ j ≤ n/2},
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PA1 = {{2(n + s) + j, 5(n + s)− j} : 1 ≤ j ≤ n/2} ∪ {{4(n + s) + j, 3(n + s)− j} : 1 ≤
j ≤ n/2},

PA2 = {{3(n+s)+j, 4(n+s)−j} : 1 ≤ j ≤ n/2}∪{{n+s−j, 8(n+s)+j : 1 ≤ j ≤ n/2}}.

(2) For s even and n odd,

(2.1) n ≥ 3, let

D = {(n + s)j : 0 ≤ j ≤ 11} ∪ {(n + s)i + j : 0 ≤ i ≤ 11, 1 ≤ j ≤ (s − 2)/2 or n +

s− (s− 2)/2 ≤ j ≤ n + s− 1} ∪ {(n + s)i + (s− 2)/2 + 1, (n + s)i′ − (s− 2)/2− 1 :

i = 0, 1, 2, 6, 7, 8, i′ = 4, 5, 6, 10, 11, 12},
PR0 = {{j,−j} : s/2+1 ≤ j ≤ n+s/2 or 3(n+s)+s/2 ≤ j ≤ 3(n+s)+n+s/2−1},
PR1 = {{j,−j} : n + s + s/2 + 1 ≤ j ≤ n + s + n + s/2 or 5(n + s) + s/2 ≤ j ≤
5(n + s) + n + s/2− 1},
PR2 = {{j,−j} : 2(n + s) + s/2 + 1 ≤ j ≤ 2(n + s) + n + s/2 or 4(n + s) + s/2 ≤
j ≤ 4(n + s) + n + s/2− 1}.
PA0 = {{s/2 + j, n + s/2− j} : 1 ≤ j ≤ (n− 1)/2}∪ {{3(n + s) + s/2− 1 + j, 9(n +

s)− s/2− j} : 1 ≤ j ≤ (n− 1)/2} ∪ {{n + s/2, 3(n + s) + n + s/2− 2}},
PA1 = {{(n + s) + s/2 + j, 5(n + s) + n + s/2− j} : 1 ≤ j ≤ n},
PA2 = {{2(n + s) + s/2 + j, 4(n + s) + n + s/2− j} : 1 ≤ j ≤ n}.

(2.2) n = 1, let

D = Z12(s+1) \ {±((n + s)i + s/2 + 1) : 0 ≤ i ≤ 5},
PR0 = {{s/2 + 1, 11(s + 1) + s/2}, {s + 1 + s/2 + 1, 10(s + 1) + s/2}},
PR1 = {{2(s + 1) + s/2 + 1, 9(s + 1) + s/2}, {3(s + 1 + s/2 + 1, 8(s + 1) + s/2}},
PR2 = {{4(s + 1) + s/2 + 1, 7(s + 1) + s/2}, {5(s + 1) + s/2 + 1, 6(s + 1) + s/2}}.
PA0 = {{s/2 + 1, 10(s + 1) + s/2}},
PA1 = {{2(s + 1) + s/2 + 1, 8(s + 1) + s/2}},
PA2 = {{4(s + 1) + s/2 + 1, 6(s + 1) + s/2}}.

(3) For s even and n even,

(3.1) n ≥ 4, let

D = {(n + s)j : 0 ≤ j ≤ 11}∪ {(n + s)i + j : 0 ≤ i ≤ 11, n/2+1 ≤ j ≤ n/2+ s− 1},
PR0 = {{j,−j} : 1 ≤ j ≤ n/2 or n/2 + s ≤ j ≤ n + s − 1 or 2(n + s) + 1 ≤ j ≤
2(n + s) + n/2 or 2(n + s) + n/2 + s ≤ j ≤ 3(n + s)− 1},
PR1 = {{j,−j} : n + s + 1 ≤ j ≤ n + s + n/2 or n + s + n/2 + s ≤ j ≤
2(n+s)−1 or 5(n+s)+1 ≤ j ≤ 5(n+s)+n/2 or 5(n+s)+n/2+s ≤ j ≤ 6(n+s)−1},
PR2 = {{j,−j} : 3(n + s) + 1 ≤ j ≤ 3(n + s) + n/2 or 3(n + s) + n/2 + s ≤ j ≤
4(n+s)−1 or 4(n+s)+1 ≤ j ≤ 4(n+s)+n/2 or 4(n+s)+n/2+s ≤ j ≤ 5(n+s)−1}.



50 ZHEJIANG UNIV, PH.D. DISSERTATION

PA0 = {{j, 12(n+ s)−1− j} : 1 ≤ j ≤ n/2−1}∪{{2(n+ s)+ j, 10(n+ s)−1− j} :

1 ≤ j ≤ n/2−1}∪{{n/2, 11(n+s)+n/2−1}, {2(n+s)+n/2, 9(n+s)+n/2−1}},
PA1 = {{(n + s) + j, 11(n + s)− 1− j} : 1 ≤ j ≤ n/2− 1} ∪ {{5(n + s) + j, 7(n +

s)− 1− j} : 1 ≤ j ≤ n/2− 1} ∪ {{(n + s) + n/2, 10(n + s) + n/2− 1}, {5(n + s) +

n/2, 6(n + s) + n/2− 1}},
PA2 = {{3(n + s) + j, 9(n + s)− 1− j} : 1 ≤ j ≤ n/2− 1} ∪ {{4(n + s) + j, 8(n +

s)− 1− j} : 1 ≤ j ≤ n/2− 1} ∪ {{3(n + s) + n/2, 8(n + s) + n/2− 1}, {4(n + s) +

n/2, 7(n + s) + n/2− 1}}.

(3.2) s > 2 even and n = 2, let

D = {(2 + s)i + j : 0 ≤ i ≤ 2 or 9 ≤ i ≤ 11, 0 ≤ j ≤ s + 1} ∪ {(2 + s)i + j : 3 ≤ i ≤
8, 0 ≤ j ≤ s/2− 2 or j = s/2 + 1 or s/2 + 4 ≤ j ≤ s + 1},
PR0 = {{j,−j} : 3(s + 2) + s/2 − 1 ≤ j ≤ 3(s + 2) + s/2 or 3(s + 2) + s/2 + 2 ≤
j ≤ 3(s + 2) + s/2 + 3},
PR1 = {{j,−j} : 4(s + 2) + s/2 − 1 ≤ j ≤ 4(s + 2) + s/2 or 4(s + 2) + s/2 + 2 ≤
j ≤ 4(s + 2) + s/2 + 3},
PR2 = {{j,−j} : 5(s + 2) + s/2 − 1 ≤ j ≤ 5(s + 2) + s/2 or 5(s + 2) + s/2 + 2 ≤
j ≤ 5(s + 2) + s/2 + 3}.
PA0 = {{3(s+2)+ s/2− 1, 3(s+2)+ s/2+2}, {3(s+2)+ s/2, 9(s+2)− s/2− 3}},
PA1 = {{4(s+2)+s/2−1, 8(s+2)−s/2−2}, {4(s+2)+s/2+2, 8(s+2)−s/2−3}},
PA2 = {{5(s+2)+ s/2, 7(s+2)− s/2+1}, {5(s+2)+ s/2+2, 5(s+2)+ s/2+3}}.

(3.3) For s = 2 and n = 2, let

D = {4i + j : 0 ≤ i ≤ 2 or 9 ≤ i ≤ 11, 0 ≤ j ≤ 3} ∪ {24} \ {36},
PR0 = {{12, 34}, {13, 36}, {14, 35}, {15, 33}},
PR1 = {{16, 30}, {17, 32}, {18, 31}, {19, 29}},
PR2 = {{20, 26}, {21, 28}, {22, 27}, {23, 25}}.
PA0 = {{13, 36}, {14, 35}},
PA1 = {{17, 32}, {18, 31}},
PA2 = {{21, 28}, {22, 27}}.

(4) For s odd and n odd,

(4.1) s ≥ 3 odd and n ≥ 5 odd, let

D = {(n + s)j, (n + s)j + (n + s)/2 : 0 ≤ j ≤ 11} ∪ {(n + s)i + j : 0 ≤ i ≤ 11, 1 ≤
j ≤ (s− 3)/2 or n + s− (s− 3)/2 ≤ j ≤ n + s− 1} ∪ {(n + s)i + (s− 3)/2 + 1, (n +

s)i′ − (s− 3)/2− 1 : i = 0, 1, 2, 6, 7, 8, i′ = 4, 5, 6, 10, 11, 12},
PR0 = {{j,−j} : (s − 3)/2 + 2 ≤ j ≤ (n + s)/2 − 1 or (n + s)/2 + 1 ≤ j ≤
n+s−(s−3)/2−1 or 3(n+s)+(s−3)/2+1 ≤ j ≤ 3(n+s)+(n+s)/2−1 or 3(n+

s) + (n + s)/2 + 1 ≤ j ≤ 4(n + s)− (s− 3)/2− 2},
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PR1 = {{j,−j} : n + s + (s − 3)/2 + 2 ≤ j ≤ n + s + (n + s)/2 − 1 or n + s +

(n + s)/2 + 1 ≤ j ≤ 2(n + s) − (s − 3)/2 − 1 or 5(n + s) + (s − 3)/2 + 1 ≤ j ≤
5(n + s) + (n + s)/2− 1 or 5(n + s) + (n + s)/2 + 1 ≤ j ≤ 6(n + s)− (s− 3)/2− 2},
PR2 = {{j,−j} : 2(n + s) + (s− 3)/2 + 2 ≤ j ≤ 2(n + s) + (n + s)/2− 1 or 2(n +

s) + (n + s)/2 + 1 ≤ j ≤ 3(n + s)− (s− 3)/2− 1 or 4(n + s) + (s− 3)/2 + 1 ≤ j ≤
4(n + s) + (n + s)/2− 1 or 4(n + s) + (n + s)/2 + 1 ≤ j ≤ 5(n + s)− (s− 3)/2− 2}.
PA0 = {{(s − 3)/2 + 1 + j, 12(n + s) − (s − 3)/2 − 2 − j} : 1 ≤ j ≤ (n − 3)/2} ∪
{{3(n+ s)+ (s− 3)/2+ j, 9(n+ s)− (s− 3)/2− 1− j} : 1 ≤ j ≤ (n− 1)/2}∪{{(n+

s)/2−1, 12(n+s)−(n+s)/2−2}, {3(n+s)+(n+s)/2−1, 9(n+s)−(n+s)/2−2}},
PA1 = {{(n+s)+(s−3)/2+1+j, 11(n+s)−(s−3)/2−2−j} : 1 ≤ j ≤ (n−3)/2}∪
{{5(n+s)+(s−3)/2+j, 7(n+s)−(s−3)/2−1−j} : 1 ≤ j ≤ (n−1)/2}∪{{(n+s)+

(n+s)/2−1, 11(n+s)−(n+s)/2−2}, {5(n+s)+(n+s)/2−1, 7(n+s)−(n+s)/2−2}},
PA2 = {{2(n + s) + (s − 3)/2 + 1 + j, 10(n + s) − (s − 3)/2 − 2 − j} : 1 ≤ j ≤
(n − 3)/2} ∪ {{4(n + s) + (s − 3)/2 + j, 8(n + s) − (s − 3)/2 − 1 − j} : 1 ≤ j ≤
(n− 1)/2} ∪ {{2(n + s) + (n + s)/2− 1, 10(n + s)− (n + s)/2− 2}, {4(n + s) + (n +

s)/2− 1, 8(n + s)− (n + s)/2− 2}}.
(4.2) s = 1 and n ≡ 1 (mod 4) and n ≥ 5, let

D = {(n + 1)i : 0 ≤ i ≤ 11},
PR0 = {{j,−j − 1} : 1 ≤ j ≤ (n + 1)/2 − 1 or (n + 1) + 1 ≤ j ≤ (n + 1) + (n +

1)/2 − 1} ∪ {{j,−j} : (n + 1)/2 + 1 ≤ j ≤ n or (n + 1) + (n + 1)/2 + 1 ≤ j ≤
2(n + 1)− 1} ∪ {{(n + 1)/2, 12(n + 1)− 1}, {(n + 1) + (n + 1)/2, 11(n + 1)− 1}},
PR1 = {{j,−j − 1} : 2(n + 1) + 1 ≤ j ≤ 2(n + 1) + (n + 1)/2− 1 or 4(n + 1) + 1 ≤
j ≤ 4(n + 1) + (n + 1)/2− 1} ∪ {{j,−j} : 2(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 3(n + 1)−
1 or 4(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 5(n + 1)− 1} ∪ {{2(n + 1) + (n + 1)/2, 10(n +

1)− 1}, {4(n + 1) + (n + 1)/2, 8(n + 1)− 1}},
PR2 = {{j,−j − 1} : 3(n + 1) + 1 ≤ j ≤ 3(n + 1) + (n + 1)/2− 1 or 5(n + 1) + 1 ≤
j ≤ 5(n + 1) + (n + 1)/2− 1} ∪ {{j,−j} : 3(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 4(n + 1)−
1 or 5(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 6(n + 1) − 1} ∪ {{3(n + 1) + (n + 1)/2, 9(n +

1)− 1}, {5(n + 1) + (n + 1)/2, 7(n + 1)− 1}}.
PA0 = {{j,−j − 1} : 1 ≤ j ≤ (n + 1)/2 − 1 or (n + 1) + 1 ≤ j ≤ (n + 1) + (n +

1)/2− 1} ∪ {{n− 1, n}},
PA1 = {{j,−j − 1} : 2(n + 1) + 1 ≤ j ≤ 2(n + 1) + (n + 1)/2− 1 or 4(n + 1) + 1 ≤
j ≤ 4(n + 1) + (n + 1)/2− 1} ∪ {{2(n + 1) + (n + 1/2 + 1, 4(n + 1) + (n + 1)/2}},
PA2 = {{j,−j − 1} : 3(n + 1) + 1 ≤ j ≤ 3(n + 1) + (n + 1)/2− 1 or 5(n + 1) + 1 ≤
j ≤ 5(n + 1) + (n + 1)/2− 1} ∪ {{3(n + 1) + (n + 1)/2, 5(n + 1) + (n + 1)/2 + 1}}.

(4.3) s = 1 and n ≡ 3 (mod 4) and n ≥ 5, let

D = {(n + 1)i : 0 ≤ i ≤ 11},
PR0 = {{j,−j−1} : 2 ≤ j ≤ (n+1)/2−1 or 3(n+1)+2 ≤ j ≤ 3(n+1)+(n+1)/2−
1}∪{{j,−j} : (n+1)/2+1 ≤ j ≤ n or 3(n+1)+(n+1)/2+1 ≤ j ≤ 4(n+1)−1 or j =

1, 3(n + 1) + 1} ∪ {{(n + 1)/2, 12(n + 1)− 2}, {3(n + 1) + (n + 1)/2, 9(n + 1)− 2}},
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PR1 = {{j,−j − 1} : (n + 1) + 2 ≤ j ≤ (n + 1) + (n + 1)/2 − 1 or 5(n + 1) + 2 ≤
j ≤ 5(n + 1) + (n + 1)/2− 1} ∪ {{j,−j} : (n + 1) + (n + 1)/2 + 1 ≤ j ≤ 2(n + 1)−
1 or 5(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 6(n + 1) − 1} ∪ {{(n + 1) + (n + 1)/2, 11(n +

1)− 2}, {5(n + 1) + (n + 1)/2, 7(n + 1)− 2}},
PR2 = {{j,−j − 1} : 2(n + 1) + 2 ≤ j ≤ 2(n + 1) + (n + 1)/2− 1 or 4(n + 1) + 2 ≤
j ≤ 4(n + 1) + (n + 1)/2− 1} ∪ {{j,−j} : 2(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 3(n + 1)−
1 or 4(n + 1) + (n + 1)/2 + 1 ≤ j ≤ 5(n + 1)− 1} ∪ {{2(n + 1) + (n + 1)/2, 10(n +

1)− 2}, {4(n + 1) + (n + 1)/2, 8(n + 1)− 2}}.
PA0 = {{j,−j − 1} : 2 ≤ j ≤ (n + 1)/2− 1 or 3(n + 1) + 2 ≤ j ≤ 3(n + 1) + (n +

1)/2− 1} ∪ {{n− 6 + J, n− j} : 0 ≤ j ≤ 1} ∪ {{1, 4(n + 1)− 2}},
PA1 = {{j,−j− 1} : (n+1)+2 ≤ j ≤ (n+1)+ (n+1)/2− 1 or 5(n+1)+2 ≤ j ≤
5(n+1)+(n+1)/2−1}∪{{(n+1)+(n+1)/2+j, 5(n+1)+(n+1)/2+3−j} : 0 ≤ j ≤ 2},
PA2 = {{j,−j−1} : 2(n+1)+2 ≤ j ≤ 2(n+1)+(n+1)/2−1 or 4(n+1)+2 ≤ j ≤
4(n + 1) + (n + 1)/2− 1}∪ {{2(n + 1) + (n + 1)/2 + j, 4(n + 1) + (n + 1)/2 + 3− j} :

0 ≤ j ≤ 2}.

(4.4) For s > 1 odd and n = 3, let

D = {(n + s)j : 0 ≤ j ≤ 11} ∪ {(n + s)i + j : 0 ≤ i ≤ 11, 3 ≤ j ≤ s} ∪ {(n + s)i + j :

(i, j) ∈ {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (9, s+1), (9, s+2), (10, s+1), (10, s+

2), (11, s + 1), (11, s + 2)}},
PR0 = {{j,−j} : s+1 ≤ j ≤ s+2 or 3(3+s)+1 ≤ j ≤ 3(n+s)+2 or 3(3+s)+s+1 ≤
j ≤ 3(n + s) + s + 2},
PR1 = {{j,−j} : (3 + s) + s + 1 ≤ j ≤ (3 + s) + s + 2 or 5(3 + s) + 1 ≤ j ≤
5(n + s) + 2 or 5(3 + s) + s + 1 ≤ j ≤ 5(n + s) + s + 2},
PR2 = {{j,−j} : 2(3 + s) + s + 1 ≤ j ≤ 2(3 + s) + s + 2 or 4(3 + s) + 1 ≤ j ≤
4(n + s) + 2 or 4(3 + s) + s + 1 ≤ j ≤ 4(n + s) + s + 2}.
PA0 = {{s+1, 3(s+3)+s+2}, {s+2, 3(s+3)+s+1}, {3(s+3)+1, 3(s+3)+2}},
PA1 = {{(s + 3) + s + 1, 5(s + 3) + s + 2}, {(s + 3) + s + 2, 5(s + 3) + s + 1}, {5(s +

3) + 1, 10(s + 3) + 2}},
PA2 = {{2(s+3)+ s+1, 4(s+3)+ s+2}, {2(s+3)+ s+2, 4(s+3)+ s+1}, {4(s+

3) + 2, 9(s + 3) + 1}}.

(4.5) For s = 1 and n = 3, let

D = {4i + j : 0 ≤ i ≤ 2 or 9 ≤ i ≤ 11, j = 0, 2} ∪ {24} \ {36},
PR0 = {{1, 47}, {3, 45}, {12, 34}, {13, 36}, {14, 35}, {15, 33}},
PR1 = {{9, 39}, {11, 37}, {16, 30}, {17, 32}, {18, 31}, {19, 29}},
PR2 = {{5, 43}, {7, 41}, {20, 26}, {21, 28}, {22, 27}, {23, 25}}.
PA0 = {{13, 36}, {14, 35}, {3, 12}},
PA1 = {{17, 32}, {18, 31}, {11, 30}},
PA2 = {{21, 28}, {22, 27}, {20, 23}}.
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(4.6) For s > 3 odd and n = 1, let

D = Z12(s+1) \ {±((n + s)i + j) : 0 ≤ i ≤ 2, 1 ≤ j ≤ 2},
PR0 = {{1, 11(s + 1) + s}, {2, 11(s + 1) + s− 1}},
PR1 = {{(s + 1) + 1, 10(s + 1) + s}, {(s + 1) + 2, 10(s + 1) + s− 1}},
PR2 = {{2(s + 1) + 1, 9(s + 1) + s}, {2(s + 1) + 2, 9(s + 1) + s− 1}}.
PA0 = {{1, 2}},
PA1 = {{(s + 1) + 1, 10(s + 1) + s− 1}},
PA2 = {{2(s + 1) + 1, 9(s + 1) + s− 1}}.

(4.7) For s = 3 and n = 1, let

D = Z48 \ {1, 2, 5, 6, 9, 10, 38, 39, 42, 43, 46, 47},
PR0 = {{5, 6}, {10, 39}},
PR1 = {{42, 43}, {9, 46}},
PR2 = {{2, 47}, {1, 38}},
PS0 = {{9, 46}, {2, 47}},
PS1 = {{5, 38}, {1, 10}},
PS2 = {{6, 39}, {42, 43}},
R0 = {9, 46},
R1 = {38, 43},
R2 = {6, 47}.

(4.8) For s = 1 and n = 1, let

D = {0, 1, 2, 3, 4, 5, 12, 19, 20, 21, 22, 23},
PR0 = {{6, 7}, {8, 11}},
PR1 = {{9, 10}, {13, 18}},
PR2 = {{14, 17}, {15, 16}},
PS0 = {{9, 16}, {10, 15}},
PS1 = {{8, 15}, {11, 14}},
PS2 = {{6, 13}, {9, 18}},
R0 = {7, 8},
R1 = {13, 14},
R2 = {6, 7}.

Combining Theorem 2.2.8 and Lemma 2.5.1, we obtain the following theo-

rem.

Theorem 2.5.2. Suppose that n ≥ 0 and s ≥ 1. There exists an RHF12((n+s)3 :

s). When (n, s) 6∈ {(1, 1), (2, 2), (3, 1)}, the RHF12((n+ s)3 : s) exists with a sub-

design RH(124).
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As a consequence of Theorem 2.5.2, we have our second tripling construction

for resolvable H-designs with group size 12 as follows.

Corollary 2.5.3. (Tripling construction II) Let n ≥ 0 and s ≥ 1. If there

exists an IRH(12n : 12s), then there exist both an IRH(123n−2s : 12n) and an

IRH(123n−2s : 12s). Furthermore, if there exists an RH(12n) or an RH(12s),

then there exists an RH(123n−2s), as well as an IRH(123n−2s : 124) when (n, s) 6∈
{(3, 1), (5, 1), (6, 2)}.

Lemma 2.5.4. There exists an RH(12n) for n ≡ 0, 1, 2, 4, 5 (mod 6) and n ≥ 4.

Proof. For each n ≡ 1 or 2 ( mod 3), n ≥ 4 and n /∈ {73, 149}, an RH(12n) can be

obtained by applying the Weighting Construction with an RH(4n) in Theorem

2.3.12 and m = 3. For each n ≡ 0 (mod 6) and n ≥ 4, an RH(12n) can be

obtained by applying the Weighting Construction with an RH(6n) in Theorem

2.4.7 and m = 2.

For the design RH(1273), it can be constructed by applying Tripling Con-

struction II with (n, s) = (25, 1). For the design RH(12149), it can be obtained by

applying Tripling Construction II with (n, s) = (51, 2). Here, the IRH(1251 : 122)

exists by Tripling Construction II with (n, s) = (23, 9) and the IRH(1223 : 129)

exists by Tripling Construction II with (n, s) = (9, 2), where an RH(129) is con-

structed in the Appendix.

Lemma 2.5.5. There exists an RHF12(3
5 : 2) and an IRH(12n : 12s) for each

(n, s) ∈ {(13, 5), (17, 7)}.

Proof. For the existence of an RHF12(3
5 : 2), start from an RHF4(3

5 : 2) on X

with group set G, hole set F and block set B. Such a design exists by Lemma 2.3.8.

Let X ′ = X×Z3, G ′ = {G×Z3 : G ∈ G} and F ′ = {{G×Z3 : G ∈ F} : F ∈ F}.
For each block B ∈ B, construct an RH(34) on B × Z3 with block set AB. Then⋃

B∈BAB is the block set of an RHF12(3
5 : 2) on X ′ with group set G ′ and hole

set F ′.

An IRH(1213 : 125) and an IRH(1217 : 127) can be obtained by applying the

Tripling Construction II with (n, s) = (5, 1) and (7, 2), respectively.
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Lemma 2.5.6. There exists an IRH(12n : 12s) for all n ≡ 35 (mod 36) and

s ∈ {1, 2, 4, 5, 6, 7, 11, 17}.

Proof. For each n = 36m− 1, m ≥ 1, start from an RG(62m) in Theorem 2.4.12.

Considering each group as a block of size 6 and taking any fixed point as a

stem, we get a URCS(3, {4, 6}, 12m) of type (112m−1 : 1). Applying Theorem

2.2.2 with an RHF12(3
k−1 : 2) and an RH(36k) with k ∈ {4, 6}, we get an

RHF12(3
12m−1 : 2). Applying Theorem 2.2.3 with an RH(125), we get an RH(12n)

and an IRH(12n : 125). Here, the input designs RHF12(3
k−1 : 2) with k ∈ {4, 6}

are from Theorem 2.5.2 and Lemma 2.5.5, respectively. The designs with a hole

of sizes 1 or 2 are actually an RH(12n). The designs with a hole of sizes 11 or

17 exist since we input an RHF12(3
k−1 : 2) with k ∈ {4, 6} respectively when

applying Theorem 2.2.2. The design with a hole size 7 exists since there exists

an IRH(1217 : 127) by Lemma 2.5.5. The designs with a hole of sizes k = 4 or 6

exist since the input designs RH(36k) exist with a subdesign RH(12k).

As a corollary of the Tripling Construction II, we obtain

Theorem 2.5.7. If there exists a constant M ≥ 7, such that for any odd integer

n in the range M ≤ n < 3M , there exists an IRH(12n : 126), then for all odd

integer n ≥ M , there exists an IRH(12n : 126).

Proof. It is clear that the existence of an IRH(12n : 126) implies the existence of

an IRH(12n : 12s) for all s ∈ {1, 2, 6}, since there exists an RH(126) obtained by

the Weighting Construction with an RH(66). The proof proceeds by induction.

Let n be an odd integer and n ≥ 3M . Assume that for all odd n′ in the range

M ≤ n′ < n, there exists an IRH(12n′ : 126). Write n = 3m − 2 · s, where

s = 1, 6, 2 when n ≡ 1, 3, 5 (mod 6), respectively. It is simple to check that

m is odd and M ≤ m < n. Then applying Tripling Construction II gives the

conclusion.

Lemma 2.5.8. For each odd integer n ≥ 5 and n /∈ {15, 21, 27, 33, 39, 69, 75, 87,

105, 111, 129, 147, 189, 213, 231, 243, 321, 681}, there exists an RH(12n).

Proof. As in Lemma 2.3.10, let L be the poset of pairs (n, s) such that an

IRH(12n : 12s) is known. We will compute the output of the Tripling Construc-
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tion II, the Doubling Construction and the Product Construction by a computer

programme, which involves the following steps:

Step 1: Initialize L. Let L = {(5, 1), (5, 2), (7, 1), (7, 2), (9, 1), (9, 2), (13, 1),

(13, 2), (13, 5)} ∪ {(n, s) : RH(12n : 12s) in Lemma 2.5.6}. Sort L in ascending

order. Let (n, s) be the smallest pair in L.

Step 2: Check whether (n, s) satisfies the Tripling Construction II’s condi-

tion, i.e., (n, s) 6∈ {(3, 1), (5, 1), (6, 2)}. If not, go to Step 3. If yes, update L

by adding pairs (3n − 2s, n), (3n − 2s, 4) and (3n − 2s, k) for all k such that

(n, k) ∈ L. Sort the updated L in ascending order, then go to Step 3.

Step 3: Apply the Doubling Construction and the Product Construction.

Update L by adding the pair (2n, k) for all k such that (n, k) ∈ L. For each m

such that (m, 1) ∈ L, update L by adding pairs (mn, n), (mn,m) and (mn, k)

for all k such that (n, k) or (m, k) ∈ L. Sort the updated L in ascending order.

Let (n, s) be the next smallest pair in the updated L, then go to Step 2.

The programme was run with n < 2000 and s ≤ 64, and produced two

results as follows:

Result 1: For all odd n and 4 ≤ n < 1102, there exists an RH(12n) with eigh-

teen possible exceptions n ∈ {15, 21, 27, 33, 39, 69, 75, 87, 105, 111, 129, 147, 189,

213, 231, 243, 321, 681}.
Result 2: There exists an IRH(12n : 126) for all odd n in the range 1102 ≤

n < 3306.

By Theorem 2.5.7, there exists an IRH(12n : 126) for all odd n ≥ 1102.

Hence there exists an RH(12n) by Theorem 2.2.3. This completes the proof.

Lemma 2.5.9. There exists an RH(12n) for each n ∈ {189, 681}.

Proof. For n = 189, start from an RCQS(35 : 1). Applying Theorem 2.2.2

with an RHF12(123 : 9) and an RH(1444), we get an RHF12(365 : 9). Applying

Theorem 2.2.3 with an IRH(1245 : 129), we get the desired RH(12189). Here, the

RHF12(123 : 9) exists by Theorem 2.5.2. The IRH(1245 : 129) can be obtained by

applying the Product Construction with an RH(125) and an RH(129).
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For n = 681, start from an RCQS(17 : 1). Applying Theorem 2.2.2 with an

RHF12(973 : 2) from Theorem 2.5.2 and an RH((12×97)4), we get an RHF12(977 :

2). Applying Theorem 2.2.3 with an RH(1299), we get an RH(12681).

Combining Lemmas 2.5.4, 2.5.8 and 2.5.9, we obtain the main result in this

section.

Theorem 2.5.10. The necessary conditions for the existence of RH(12n) are suf-

ficient except possibly with n ∈ {15, 21, 27, 33, 39, 69, 75, 87, 105, 111, 129, 147, 213,

231, 243, 321}.

Combining Theorems 1.1.2, 2.3.12, 2.4.4, 2.4.7, 2.4.8 and 2.5.10, we have

the general existence result of resolvable H-designs as follows, which is the main

result of this chapter.

Theorem 2.5.11. The necessary conditions gn ≡ 0 (mod 4), g(n− 1)(n− 2) ≡
0 (mod 3) and n ≥ 4 for the existence of a resolvable H-design of type gn are

sufficient for each g ≡ 1, 2, 3, 5, 6, 7, 9, 10, 11 (mod 12), are sufficient for each

g ≡ 4, 8 ( mod 12) with two possible exceptions n = 73, 149, and are sufficient for

each g ≡ 0 ( mod 12) with sixteen possible exceptions n ∈ {15, 21, 27, 33, 39, 69, 75,

87, 105, 111, 129, 147, 213, 231, 243, 321}.





Chapter 3

A New Existence Proof for Steiner Quadruple

Systems

The purpose of this chapter is to provide an alternative existence proof for Steiner

quadruple systems via H-designs of type 2n. However, the existing proof for

the existence of H(2n), which is the main context of Mills’ paper in 1990, is

based on the existence result of Steiner quadruple systems. In this chapter, by

using the theory of candelabra systems and H-frames, we give a new existence

proof for H-designs of type 2n independent of the existence result of Steiner

quadruple systems. As an application of this approach, several new infinite classes

of nonuniform H-designs of types 2nu1 with u = 4, 6, 8 are also constructed.

3.1 Introduction

The necessary conditions for the existence of an SQS(v) are that v ≡
2, 4 (mod 6) or v = 1. When v < 4, the systems have no blocks, and when

v = 4, it has one block. The smallest interesting system, SQS(8), was known to

Kirkman [48] in 1847. The unique (up to isomorphism) SQS(10) was attributed

to Barrau [4] as early as 1908 and to Richard Wilson in [12]. Several infinite fam-

ilies of quadruple systems were constructed by Kirkman [48] and by Carmichael

[11]. The first complete proof for the existence of SQS(v) was given by Hanani

[23] in 1960.

Theorem 3.1.1. There exists an SQS(v) for all v ≡ 2, 4 (mod 6).

This result is proved by induction using six recursive constructions together

with explicit constructions of an SQS(14) and an SQS(38). Hanani also gave a

more sophisticated proof of the existence theorem for SQS(v) in [25], which relies
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on the construction of 3-wise balanced designs and 3-analogs of group divisible

designs. Apart from Hanani’s two proofs, Hartman [31, 32, 34] and Lenz [51] used

the existence of candelabra quadruple systems of type (g3 : s) with s ∈ {1, 2, 4, 8}
to give a purely tripling existence proof, which used only one type of construction

and a small number of initial designs: SQS(v) with v ∈ {8, 10, 14} and HQS(v : 8)

with v ∈ {26, 28, 32, 34, 38, 40}.
It is easy to see that the existence of an H(2n) implies that of an SQS(2n)

by combining every two groups of the H(2n) to form a quadruple as a new block.

However, the existing proof for the existence of H(2n), which is the main con-

text of Mills’ paper [57], is based on the existence result of Steiner quadruple

systems. The purpose of this chapter is to provide an alternative existence proof

for Steiner quadruple systems via H-designs of type 2n. By using the theory of

candelabra systems and H-frames, we give a new existence proof for H-designs of

type 2n independent of the existence result of Steiner quadruple systems. As an

application of this approach, several new infinite classes of nonuniform H-designs

of types 2nu1 with u = 4, 6, 8 are also constructed.

3.2 Recursive Constructions

In this section, we shall describe several recursive constructions for H-designs

from candelabra systems and H-frames.

The following is a construction for 3-CSs which is a special case of the

fundamental construction of Hartman [34].

Theorem 3.2.1. Suppose that (X,A) is an S(t,K ′, v) and ∞ ∈ X. Let K1 =

{|A| : ∞ ∈ A ∈ A} and K2 = {|A| : ∞ 6∈ A ∈ A}. If there exists a

CS(3, K, t(k1 − 1) + a) of type (tk1−1 : a) for each k1 ∈ K1 and a GDD(3, K, tk2)

of type tk2 for each k2 ∈ K2, then there exists a CS(3, K, t(v − 1) + a) of type

(tv−1 : a).

Now we give two tripling constructions and a doubling construction for

H(2n). The two tripling constructions are variations of those for SQS(v) pro-

posed by Hartman in [31] and [32], which will play a similar role with that of the

tripling constructions of Hartman [31, 32, 34] and Lenz [51] to deal with SQS(v).
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First, recall that we have defined a Bg-pairing with components D,Ri, PRi

(i ∈ {0, 1, 2}) in Section 2.2, which is called a simple pairing in [31] when g = 1.

In the sequel of this chapter, we denote a B1(n, s) by P (n, s) as in [31].

Theorem 3.2.2. For each pair of integers n ≥ 0 and s ≥ 1, there exists a

simple pairing P (n, 2s) with the extra property that {0, 3n + s} ⊂ D and Gi =

G(6n + 2s, {1, 2, . . . , 3n + s} \Li) has a one-factorization with {{k, k + 3n + s} :

0 ≤ k ≤ 3n + s− 1} as one of the one-factors for each i ∈ {0, 1, 2}.

Proof. For each pair of integers n ≥ 0 and s ≥ 1, a P (n, 2s) was constructed in

[31, Theorem 3.3]. It is easy to check that {0, 3n + s} ⊂ D. The lengths Li of

all P (n, 2s)s for each i ∈ {0, 1, 2} are listed below:

Case (a) s = 1 and n even, or s ≥ 2.

L0 = {2j : 0 < j ≤ bn/2c or n < j ≤ n + dn/2e},

L1 = {2j : bn/2c < j ≤ n + bn/2c},

L2 = {2j : 0 < j ≤ n}.

Case (b) n = 2k + 1, k ≥ 0 and s = 1.

L0 = {2j : 0 < j ≤ k, 2k < j ≤ 3k + 1},

L1 = {2j : k < j ≤ 3k} ∪ {1},

L2 = {2j : 0 < j ≤ 2k} ∪ {1}.

Let G′
i = G(6n+2s, {1, 2, . . . , 3n+ s}\ (Li∪{3n+ s})), i ∈ {0, 1, 2}. By Lemma

2.2.7, each of G′
i and G(6n+2s, {3n+ s}) has a one-factorization. Hence, Gi has

a one-factorization with {{k, k + 3n + s} : 0 ≤ k ≤ 3n + s − 1} as one of the

one-factors for each i ∈ {0, 1, 2}.
Example 3.2.3. [31] Let n = 1 and s = 1. Construct a P (1, 2) on Z8 as follows:

D = {0, 4}, PR0 = {{3, 5}}, PR1 = {{1, 2}}, PR2 = {{6, 7}}.

Note that each of the graphs G0 = G(8, {1, 3, 4}), G1 = G(8, {2, 3, 4}) and G2 =

G(8, {1, 3, 4}) has a one-factorization with {{k, k + 4} : 0 ≤ k ≤ 3} as one of the

one-factors.
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Theorem 3.2.4. There exists an HF2((3n + s)3 : s) with a subdesign H(24) for

each pair of integers n ≥ 0 and s ≥ 1.

Proof. By Theorem 3.2.2, for each pair of integers n ≥ 0 and s ≥ 1, there is

a simple pairing P (n, 2s): D,Ri, PRi, such that {0, 3n + s} ⊂ D and Gi has

a one-factorization F
(1)
i |F (2)

i | . . . |F (4n+2s−1)
i with F

(1)
i = {{k, k + 3n + s} : 0 ≤

k ≤ 3n + s − 1} for each i ∈ {0, 1, 2}. Using this simple pairing, Hartman [31,

Theorem 3.4] constructed a CQS((6n + 2s)3 : 2s) on the point set X = {ai : a ∈
Z6n+2s, i ∈ {0, 1, 2}} ∪ {∞1,∞2, . . . ,∞2s} with three groups {{ai : a ∈ Z6n+2s} :

i ∈ {0, 1, 2}} and a stem {∞1,∞2, . . . ,∞2s}, as well as the block set B consisting

of the following three parts:

δ = {{∞j, (a + d)0, (b− d)1, (c + d)2} : a + b + c ≡ 0 (mod 6n + 2s),

d is the jth member of D, 1 ≤ j ≤ 2s},
ρ = {{(a + q)i, (a + t)i, bi+1, ci+2} : a + b + c ≡ 0 (mod 6n + 2s),

{q, t} ∈ PRi, i ∈ {0, 1, 2}}, and

φ = {{ai, bi, ci+1, di+1} : {a, b} ∈ F
(k)
i , {c, d} ∈ F

(k)
i+1, 1 ≤ k ≤ 4n + 2s− 1,

i ∈ {0, 1, 2}}.
Let

φ1 = {{ai, bi, ci+1, di+1} : {a, b} ∈ F
(1)
i , {c, d} ∈ F

(1)
i+1, i ∈ {0, 1, 2}}.

The desired HF2((3n + s)3 : s) will be on X with the group set G = {{ki, (k +

3n + s)i} : 0 ≤ k ≤ 3n + s − 1, i ∈ {0, 1, 2}} ∪ {{∞i,∞i+s} : 1 ≤ i ≤ s}, three

holes {{ki, (k + 3n + s)i} : 0 ≤ k ≤ 3n + s− 1} ∪ F0, i ∈ {0, 1, 2} and a common

hole F0 = {{∞i,∞i+s} : 1 ≤ i ≤ s}, as well as the block set B \ φ1.

Since {0, 3n + s} ⊂ D, without loss of generality we may assume 0, 3n + s

are respectively the first and (s + 1)th elements of D. Let

δ0 = {{∞j, (a + d)0, (b− d)1, (c + d)2} : a + b + c ≡ 0 (mod 6n + 2s),

a, b, c ∈ {0, 3n + s}, d is the jth member of D and j = 1 or s + 1}.
Note that δ0 ⊂ δ and δ0 forms the block set of an H(24) with the group set

{{0i, (3n+s)i} : i ∈ {0, 1, 2}}∪{{∞1,∞1+s}}. Hence, the above HF2((3n+s)3 :

s) contains a subdesign H(24).
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Example 3.2.3 (continued): Using the foregoing P (1, 2), we may construct a

CQS(83 : 2) on the point set X = {ai : a ∈ Z8, i ∈ {0, 1, 2}} ∪ {∞1,∞2} with

three groups {{ai : a ∈ Z8} : i ∈ {0, 1, 2}} and a stem {∞1,∞2}, as well as the

block set B consisting of the following three sets:

δ = {{∞1, a0, b1, c2}, {∞2, (a + 4)0, (b− 4)1, (c + 4)2} : a + b + c ≡ 0 (mod 8)},
ρ = {{(a + 3)0, (a + 5)0, b1, c2}, {(a + 1)1, (a + 2)1, b2, c0},

{(a + 6)2, (a + 7)2, b0, c1} : a + b + c ≡ 0 (mod 8)}, and

φ = {{ai, bi, ci+1, di+1} : {a, b} ∈ F
(k)
i , {c, d} ∈ F

(k)
i+1, 1 ≤ k ≤ 5, i ∈ {0, 1, 2}}.

Here, F
(1)
i |F (2)

i | . . . |F (5)
i is a one-factorization of Gi with F

(1)
i = {{k, k + 4} : 0 ≤

k ≤ 3} for each i ∈ {0, 1, 2}. Let φ1 = {{ki, (k + 4)i, k
′
i+1, (k

′ + 4)i+1} : 0 ≤
k, k′ ≤ 3, i ∈ {0, 1, 2}} ⊂ φ. The block set (δ ∪ ρ ∪ φ) \ φ1 forms an HF2(4

3 : 1)

on X with the group set {{ki, (k + 4)i} : 0 ≤ k ≤ 3, i ∈ {0, 1, 2}} ∪ {{∞1,∞2}},
three holes {{ki, (k + 4)i} : 0 ≤ k ≤ 3} ∪ F0, i ∈ {0, 1, 2} and a common hole

F0 = {{∞1,∞2}}. Furthermore, as a subset of δ, δ0 = {{∞1, a0, b1, c2}, {∞2, (a+

4)0, (b − 4)1, (c + 4)2} : a, b, c ∈ {0, 4}, a + b + c ≡ 0 (mod 8)} forms an H(24)

with group set {{0i, 4i} : i ∈ {0, 1, 2}} ∪ {{∞1,∞2}}.
As a consequence of Theorem 3.2.4, we have our first tripling construction

as follows.

Corollary 3.2.5. (Tripling Construction I) Let n ≡ 2s (mod 3) and s ≥ 1.

If there exists an IH(2n : 2s), then there exist both an IH(23n−2s : 2n) and an

IH(23n−2s : 2s).

Theorem 3.2.6. There exists an HF2((3n)3 : s) for each pair of integers n, s

such that 3n ≥ s ≥ 0.

Proof. For each pair of integers n, s such that 3n ≥ s ≥ 0 and (n, s) 6= (1, 1),

the proof is similar to that of Theorem 3.2.4. We may start from a particular

CQS((6n)3 : 2s) and partition the points of each group into disjoint pairs. Then,

we can remove the blocks formed by all these pairs from different groups. Such

a CQS((6n)3 : 2s) was constructed by Hartman in [32, Section 4] on X = {ai :

a ∈ Z6n, i ∈ {0, 1, 2}} ∪ {∞1,∞2, . . . ,∞2s} with three groups {{ai : a ∈ Z6n} :
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i ∈ {0, 1, 2}} and stem {∞1,∞2, . . . ,∞2s}, as well as the block set B containing

the following blocks:

φ = {{ai, bi, ci+1, di+1} : {a, b} ∈ F
(k)
i , {c, d} ∈ F

(k)
i+1, 1 ≤ k ≤ 6n− 1− 2r − 2h,

i ∈ {0, 1, 2}},

where F
(1)
i , F

(2)
i , . . . , F

(6n−1−2r−2h)
i are different disjoint partitions of pairs of Z6n

for each i ∈ {0, 1, 2} and r, h are non-negative integers such that 6n = 2s+2h+6r.

An HF2(3
3 : 1) can be constructed by applying Theorem 2.2.2 with a

CQS(33 : 1) in [23] and an H(24).

As a consequence of Theorem 3.2.6, we have our second tripling construction

as follows.

Corollary 3.2.7. (Tripling Construction II) Let n ≡ s (mod 3) and s ≥ 0. If

there exists an IH(2n : 2s), then there exists an IH(23n−2s : 2n) and an IH(23n−2s :

2s).

Theorem 3.2.8. (Doubling Construction) If there exists an H(2n), then there

exists an H(22n).

Proof. Let (X,G,B) be the given H(2n). Let F = {F1, . . . , F2(n−1)} be a one-

factorization of the multi-partite complete graph on X with partite set G. The

desired H(22n) is based on X×{0, 1} with 2n groups G×{i}, G ∈ G and i ∈ {0, 1}.
The block set is A = (B × {0, 1}) ∪ C, where C = {{(a, 0), (b, 0), (c, 1), (d, 1)} :

{a, b} ∈ Fi, {c, d} ∈ Fi, 1 ≤ i ≤ 2(n− 1)}.
The following two constructions are modifications of the filling holes con-

struction.

Lemma 3.2.9. Suppose that there exists an HFg(m
n : s),

1. if there exists an IH(gm : gs), then there exists an IH(gmn+s : gm+s). Fur-

thermore, if there is an H(gm+s), then there is an H(gmn+s);

2. if there exists an H(gm+ε(gs − gε)1) with ε = 0 or 1, then there exists an

H(gmn+ε(gs− gε)1).
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The following recursive construction for nonuniform H-designs was first given

in [50].

Lemma 3.2.10. [50] Let mn be even. If there exists an H((mn)r(s + t)1) and

an H(mns1t1), then there exists an H(mrns1t1).

3.3 Alternative Existence Proof for H(2n)

In this section, we give an alternative existence proof for H(2n) with n ≡
1, 2 (mod 3) and n 6= 5, which is mainly based on the recursive constructions

listed in Section 3.2. The proof is independent of the existence result of Steiner

quadruple systems. Hence, we also give a new proof for the existence of SQS(v)

in the meantime. First, we need the following initial ingredient designs.

Lemma 3.3.1. [25, 55, 57] There exists an H(2k) for each k ∈ {7, 11, 13}, an

H(6k) for each k ∈ {4, 6} and an IH(211 : 25).

Proof. An H(27) can be found in [25]. An H(211), an H(213) and an IH(211 : 25)

were constructed by Mills in [57]. An H(6k) for each k ∈ {4, 6} exists by [55,

Lemma 7] .

Lemma 3.3.2. There exists an H(225).

Proof. We construct an H(225) on X = Z25 × Z2 with the group set G = {Gi =

{(i, 0), (i, 1)} : i ∈ Z25}. The block set consists of the following quadruples with

m ∈ Z25, a ∈ Z2 and b ∈ Z2.

(m, a) (m + 5, b) (m + 7, b + 1) (m + 12, a + b + 1)

(m, a) (m + 2, b) (m + 3, b + 1) (m + 5, a + b)

(m, a) (m + 3, b) (m + 15, a) (m + 18, b)

(m, a) (m + 8, b) (m + 15, a + b) (m + 23, a + 1)

(m, a) (m + 7, b) (m + 20, a + b) (m + 22, b + 1)

(m, a) (m + 10, a) (m + 16, b) (m + 23, a + b + 1)

(m, a) (m + 2, a) (m + 10, b) (m + 20, a + b)

(m, a) (m + 6, b) (m + 16, b) (m + 18, a + b)

(m, a) (m + 2, b) (m + 3, b) (m + 9, a + b + 1)

(m, a) (m + 10, a + 1) (m + 13, b) (m + 19, a + b + 1)

(m, a) (m + 2, b) (m + 15, a + 1) (m + 22, a + b)



66 ZHEJIANG UNIV, PH.D. DISSERTATION

(m, a) (m + 10, a + 1) (m + 16, b) (m + 22, a + b + 1)

(m, a) (m + 8, b) (m + 10, b) (m + 15, a + b + 1)

(m, a) (m + 1, a + 1) (m + 7, b) (m + 19, a + b)

(m, a) (m + 16, b) (m + 22, a + b) (m + 23, a + b)

(m, a) (m + 14, a) (m + 23, b) (m + 24, a + b)

(m, a) (m + 3, b) (m + 11, b) (m + 22, a + b + 1)

(m, a) (m + 8, a) (m + 11, b) (m + 14, a + b)

(m, a) (m + 17, b) (m + 19, a) (m + 23, b)

(m, a) (m + 6, b) (m + 14, b + 1) (m + 17, a + 1)

(m, a) (m + 1, a + 1) (m + 9, b) (m + 18, a + b)

(m, a) (m + 9, b) (m + 23, b) (m + 24, a + b + 1)

(m, a) (m + 7, b) (m + 8, b) (m + 24, a)

(m, a) (m + 14, a + 1) (m + 15, b) (m + 24, a + b + 1)

(m, a) (m + 7, b) (m + 16, a + b + 1) (m + 24, a + 1)

(m, a) (m + 2, b) (m + 4, a + b) (m + 21, b + 1)

(m, a) (m + 1, b) (m + 12, b) (m + 14, a)

(m, a) (m + 2, b) (m + 11, a + 1) (m + 13, b + 1)

(m, a) (m + 1, b) (m + 12, b + 1) (m + 13, a + b + 1)

(m, a) (m + 4, b) (m + 21, a + b) (m + 23, b + 1)

(m, a) (m + 3, a) (m + 4, b) (m + 7, b)

(m, a) (m + 3, a + 1) (m + 4, b) (m + 7, b + 1)

(m, a) (m + 5, a) (m + 11, b) (m + 16, b)

(m, a) (m + 5, a + 1) (m + 11, b) (m + 16, b + 1)

(m, a) (m + 13, a) (m + 17, b) (m + 22, a + b + 1)

(m, a) (m + 4, b) (m + 12, a + 1) (m + 17, b + 1)

(m, a) (m + 6, b) (m + 10, b + 1) (m + 21, a + 1)

(m, a) (m + 13, a) (m + 16, b) (m + 21, a + b + 1)

(m, a) (m + 5, b) (m + 20, a + b) (m + 24, a + b)

(m, a) (m + 4, b) (m + 13, a + 1) (m + 16, b + 1)

(m, a) (m + 4, a) (m + 14, b) (m + 18, b)

(m, a) (m + 4, b) (m + 9, a + b) (m + 13, a)

(m, a) (m + 1, b) (m + 5, b + 1) (m + 6, a + b + 1)

(m, a) (m + 7, b) (m + 14, a + b + 1) (m + 21, a + 1)

(m, a) (m + 15, b) (m + 21, a + b + 1) (m + 21, a)

(m, a) (m + 5, b) (m + 17, b) (m + 22, a + b)

The following lemma is useful for us to unify the proofs following-up, which

also provides another proof for the existence of S(3, {4, 6}, v) with some small

initial ingredients.

Lemma 3.3.3. For each integer n ≥ 3, there exists a CS(3, {4, 6}, 2n + 2) of
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type (2n−2ε4ε : 2) with ε ∈ {0, 1}.

Proof. For each integer n ≥ 3, it is sufficient to prove that there exists an

S(3, {4, 6}, 2n+2) (X,A) such that the design has two particular points {x, y} ⊂
X with at most one block of size 6 containing both of them.

For n = 3, 4, the conclusion is true since an SQS(2n + 2) exists. For n = 5,

there exists an S(3, {4, 6}, 12) with two disjoint blocks of size 6 partitioning the

point set, which can be obtained from a GDD(3, {4, 6}, 12) of type 26 [25, Lemma

1].

For n > 5, assume that the conclusion is true for each i, 3 < i < n. The

proof proceeds by induction.

Firstly, suppose that there exists an S(3, {4, 6}, n + 1) (X,A) with two par-

ticular points {x, y} ⊂ X, such that there is at most one block of size 6 containing

{x, y}. Let F = {F1, . . . , Fn} be a one-factorization of the complete graph on X.

Construct an S(3, {4, 6}, 2n+2) on X×{0, 1} with block set B = (A×{0, 1})∪C,

where C = {{(a, 0), (b, 0), (c, 1), (d, 1)} : {a, b} ∈ Fi, {c, d} ∈ Fi, 1 ≤ i ≤ n}. It

is not difficult to check that there is at most one block of size 6 in B containing

{(x, 0), (y, 0)}.
Secondly, suppose that there exists an S(3, {4, 6}, n + 2) (X,A) with two

particular points {x, y} ⊂ X, such that there is at most one block of size 6

containing {x, y}. Take a point ∞ ∈ X \ {x, y} and let X ′ = (X \ {∞})×{0, 1}.
For each block A ∈ A containing ∞, construct a CS(3, {4, 6}, 2|A| − 2) of type

(2|A|−1 : 0) on (A \ {∞})×{0, 1}. For each block A not containing ∞, construct

a GDD(3, {4, 6}, 2|A|) of type 2|A| on A × {0, 1}. When |A| = 6, let A × {0}
and A × {1} be the two special blocks of size 6 of the input GDD(3, {4, 6}, 12)

of type 26. By Theorem 3.2.1, we get a CS(3, {4, 6}, 2n + 2) of type (2n+1 : 0),

which is actually an S(3, {4, 6}, 2n + 2) on X ′. Here, the input CS(3, {4, 6}, 6) of

type (23 : 0) contains only one block of size 6. The input CS(3, {4, 6}, 10) of type

(25 : 0) is actually an SQS(10) which contains only blocks of size 4. Take the two

points {(x, 0), (y, 1)} into consideration. If {∞, x, y} determine a block of size

6 in A, then there is no block of size 6 containing {(x, 0), (y, 1)}. If {∞, x, y}
determine a block of size 4 in A, then there is only one block of size 6 containing
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{(x, 0), (y, 1)}.

Lemma 3.3.4. There exists an H(2n) for each n ≡ 5 (mod 6), n ≥ 11 and an

IH(2n : 24) for each n ≡ 5 (mod 6), n ≥ 17.

Proof. For n = 11, an H(211) exists by Lemma 3.3.1. For n = 17, there exists

an HF2(5
3 : 2) with a subdesign H(24) by Theorem 3.2.4. Applying Lemma 3.2.9

with an H(27) from Lemma 3.3.1, we obtain an H(217) and an IH(217 : 24).

For each n = 6m + 5, m ≥ 3, there exists a CS(3, {4, 6}, 2m + 2) of type

(2m−2ε4ε : 2) with ε ∈ {0, 1} by Lemma 3.3.3. Apply Theorem 2.2.2 with an

HF2(3
k−1 : 2) and an H(6k) for k ∈ {4, 6} to obtain an HF2(6

m−2ε12ε : 5).

Applying Lemma 3.2.9 with an IH(211 : 25), an H(211) or an H(217), we get an

H(26m+5). Here, the input HF2(3
k−1 : 2) comes from Theorem 3.2.6 or Lemma

2.3.8, and the other ingredients are from Lemma 3.3.1. Since there exists an

H(64) with a subdesign H(24), the resulting H(2n) has a subdesign H(24).

Lemma 3.3.5. There exists an H(2n) for each n ≡ 7, 13 (mod 18) and n ≥ 7.

Proof. For each n = 18k + 7 and k ≥ 2, we obtain an IH(2n : 24) by applying

Corollary 3.2.5 with an IH(26k+5 : 24) from Lemma 3.3.4. Applying Lemma 3.2.9

with an H(24), we obtain an H(2n). For n = 7, 25, the design exists by Lemmas

3.3.1 or 3.3.2.

For each n = 18k + 13 and k ≥ 1, there is an H(2n) by applying Corollary

3.2.5 with an IH(26k+5 : 21) from Lemma 3.3.4. For n = 13, the design exists by

Lemma 3.3.1.

Lemma 3.3.6. There exists an H(2n) for each n ≡ 1 (mod 18).

Proof. For each n = 18k + 1 and k ≥ 1, the proof proceeds by induction. For

k = 1, an H(219) exists by applying Corollary 3.2.7 with an IH(27 : 21). When

k > 1, suppose that there exists an H(218i+1) for each i < k. By Lemma 3.3.5,

we have that an H(26j+1) exists for all j < 3k. Applying Corollary 3.2.7 with an

IH(26k+1 : 21), we get an H(218k+1).

Theorem 3.3.7. There exists an H(2n) for each n ≡ 1, 2 (mod 3) and n 6= 5.
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Proof. Combining Lemmas 3.3.4–3.3.6, we obtain an H(2n) for each n ≡ 1, 5 ( mod

6) and n 6= 5. By Theorem 3.2.8, we obtain an H(2m) for each m ≡ 2, 4 (mod 6)

and m 6= 10. An H(210) can be obtained by applying Corollary 3.2.7 with an

IH(24 : 21).

As a consequence of Theorem 3.3.7, we have the following corollary.

Corollary 3.3.8. There exists an SQS(v) for each v ≡ 2, 4 (mod 6).

Proof. The existence of SQS(v) with small orders of v = 4, 8, 10 was mentioned

in Section 3.1. Combining every two groups of an H(2n) to form a quadruple as

a new block, we get an SQS(2n) for each n ≡ 1, 2 (mod 3) and n ≥ 7.

3.4 Existence of H(2nu1) with u = 4, 6, 8

For the existence of nonuniform H-designs, Lauinger et al. [50] developed

a computational method and several recursive constructions for constructing H-

designs (called transverse Steiner quadruple systems as in [50]). They also pro-

vided an existence table for H-designs with the number of points v ≤ 24, where

the following small designs are needed.

Lemma 3.4.1. [50] There exists an H(2n41) for each n ∈ {4, 7, 10} and an

H(2n81) for each n ∈ {6, 7}.

Recently, Keranen et al. [47] settled the existence problem on H-designs of

type g4u1 except when g ≡ u ≡ 2 ( mod 4) and all except 40 parameter situations

when g ≡ u + 2 ≡ 0 (mod 4). In this section, we will establish several new

existence results for H(2nu1) with u = 4, 6, 8 by using the theory of candelabra

systems and H-frames. By [47, Theorem 3.1], we have the following the necessary

conditions.

Lemma 3.4.2. If there exists an H(2n41), then n ≡ 1 (mod 3) and n ≥ 4;

if there exists an H(2n61), then n ≡ 1 (mod 3) and n ≥ 7; if there exists an

H(2n81), then n ≡ 0, 1 (mod 3) and n ≥ 6.

Lemma 3.4.3. [55] There exists a CQS(6n : 0) for each n ≥ 0.
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Combining the existence results of SQS(v) and CQS(6n : 0), we have a more

strong result than that in Lemma 3.3.3.

Lemma 3.4.4. For each integer n ≥ 3, there exists a CS(3, {4, 6}, 2n + 2) of

type (2n : 2).

Proof. For each n = 3m + 0, 3m + 1, m ≥ 1, there exists a CQS(2n : 2) obtained

from an SQS(2n+2). For each n = 3m+2, m ≥ 1, there exists a CS(3, {4, 6}, 2n+

2) of type (2n : 2) obtained from a CQS(6(n+1)/3 : 0) by taking two points from

two distinct groups as stem points.

First, we give a complete solution to the existence of H(2n41) as follows.

Theorem 3.4.5. There exists an H(2n41) if and only if n ≡ 1 (mod 3) and

n ≥ 4.

Proof. For each n = 3k + 1 and n ≥ 10, there exists an H(6k+1) by Theorem

1.1.1. Applying Lemma 3.2.10 with m = 2, n = 3, s = 2, t = 4 and an H(2441),

we get an H(2n41). For n = 4, 7, the desired designs exist by Lemma 3.4.1.

Lemma 3.4.6. There exists an HF2(3
5 : 1).

Proof. The desired design is obtained by applying Theorem 2.2.2 with a CQS(35 :

1) [3] and an H(24).

Lemma 3.4.7. There exists an H(2761).

Proof. We construct an H(2761) on Z20 with group set G = {{i, i + 7} : 0 ≤ i ≤
6}∪{{14, 15, 16, 17, 18, 19}}. We list below the base blocks, which are developed

under the automorphism group G = 〈(0 1 2)(3 4 5)(6)(7 8 9)(10 11 12)(13)(14)

(15)(16)(17)(18)(19)〉.
{0, 4, 13, 18} {1, 2, 7, 15} {2, 3, 4, 15} {3, 9, 13, 18} {1, 9, 13, 17} {5, 6, 11, 14}
{0, 3, 8, 18} {4, 7, 10, 15} {1, 4, 12, 14} {0, 1, 4, 17} {0, 2, 5, 14} {0, 6, 9, 15}
{3, 4, 7, 17} {3, 11, 12, 18} {1, 7, 9, 18} {2, 10, 12, 14} {0, 4, 6, 19} {7, 10, 13, 17}
{0, 5, 6, 18} {0, 3, 5, 17} {1, 4, 5, 7} {4, 5, 9, 17} {4, 6, 7, 18} {8, 9, 12, 16}
{2, 8, 12, 15} {1, 4, 10, 13} {7, 11, 13, 16} {4, 6, 8, 12} {0, 9, 12, 18} {0, 1, 12, 19}
{1, 10, 12, 15} {3, 7, 8, 14} {1, 2, 11, 19} {3, 5, 13, 16} {0, 1, 5, 11} {0, 1, 13, 16}
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{0, 3, 6, 14} {8, 10, 11, 14} {2, 4, 7, 14} {7, 8, 12, 18} {3, 7, 12, 19} {3, 7, 9, 15}
{3, 8, 12, 17} {0, 6, 8, 11} {2, 8, 10, 18} {1, 9, 10, 11} {5, 7, 8, 10} {0, 4, 8, 14}
{1, 11, 13, 15} {5, 6, 7, 15} {3, 5, 11, 15} {5, 7, 13, 14} {1, 3, 11, 17} {6, 7, 8, 17}
{1, 12, 13, 18} {6, 7, 12, 14} {1, 3, 7, 13} {2, 6, 11, 15} {3, 11, 13, 19} {7, 12, 13, 15}
{7, 10, 11, 18} {0, 6, 10, 17} {6, 10, 11, 19} {1, 5, 10, 16} {0, 1, 2, 6} {3, 4, 5, 6}
{7, 8, 9, 13} {10, 11, 12, 13}

Lemma 3.4.8. There exists an H(21361).

Proof. We construct an H(21361) on Z26 ∪ {∞0, . . . ,∞5} with group set G =

{{i, i + 13} : 0 ≤ i ≤ 12} ∪ {{∞0, . . . ,∞5}}. We list below the base blocks,

which are developed under the cyclic group Z26:

{0, 15, 19,∞0} {0, 8, 20,∞0} {0, 9, 25,∞0} {0, 3, 24,∞0}
{0, 6, 11,∞1} {0, 10, 24,∞1} {0, 17, 18,∞1} {0, 4, 23,∞1}
{0, 12, 15,∞2} {0, 1, 18,∞2} {0, 6, 22,∞2} {0, 19, 24,∞2}
{0, 20, 25,∞3} {0, 4, 14,∞3} {0, 2, 9,∞3} {0, 15, 23,∞3}
{0, 20, 22,∞4} {0, 9, 12,∞4} {0, 1, 8,∞4} {0, 5, 16,∞4}
{0, 1, 15,∞5} {0, 17, 21,∞5} {0, 18, 20,∞5} {0, 3, 19,∞5}
{0, 10, 14, 18} {0, 5, 9, 10} {0, 2, 7, 14} {0, 2, 16, 19}
{0, 19, 23, 25} {0, 22, 23, 24} {0, 3, 9, 21} {0, 6, 15, 20}
{0, 11, 22, 25} {0, 9, 11, 19} {0, 4, 19, 20} {0, 3, 5, 23}
{0, 4, 18, 25} {0, 8, 17, 23} {0, 8, 10, 19} {0, 1, 6, 16}

Theorem 3.4.9. There exists an H(2n61) for each n ≡ 1 (mod 6) and n ≥ 7.

Proof. For n = 7, 13, the desired designs are constructed in Lemmas 3.4.7 and

3.4.8, respectively. For each n = 6m+1 with m ≥ 3, there exists a CS(3, {4, 6}, (n+

5)/3) of type (2(n−1)/6 : 2). Apply Theorem 2.2.2 with an HF2(3
k−1 : 1) and an

H(6k) for k ∈ {4, 6} to obtain an HF2(6
(n−1)/6 : 4). Applying Lemma 3.2.9 with

an H(2761), we get an H(2n61). Here, all the small ingredient designs are from

Theorem 3.2.6, Lemmas 3.3.1 and 3.4.6.

Lemma 3.4.10. There exists an H(21381).

Proof. We construct the desired H(21381) on Z34 with group set G = {{i, i+13} :

0 ≤ i ≤ 12} ∪ {{26, 27, 28, 29, 30, 31, 32, 33}}. We list below the base blocks,

which are developed under the following automorphism group:
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G = 〈(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)

(26 27)(28 29)(30 31)(32 33)〉
{1, 4, 7, 26} {2, 4, 20, 27} {8, 11, 16, 23} {0, 6, 11, 21} {9, 16, 24, 31} {1, 3, 21, 32}
{0, 15, 24, 31} {10, 11, 21, 27} {15, 18, 25, 31} {9, 21, 23, 24} {6, 9, 11, 33} {11, 18, 20, 26}
{0, 14, 18, 30} {6, 14, 17, 32} {7, 9, 11, 18} {0, 7, 11, 26} {6, 9, 17, 23} {3, 6, 22, 24}
{8, 20, 24, 32} {9, 10, 12, 30} {10, 21, 25, 29} {6, 16, 20, 23} {9, 10, 24, 33} {5, 7, 13, 29}
{2, 9, 10, 14} {13, 14, 20, 32} {0, 12, 17, 27} {7, 10, 11, 28} {3, 8, 20, 31} {10, 13, 19, 28}
{15, 16, 21, 31} {14, 19, 23, 32} {3, 7, 8, 27} {13, 19, 23, 30} {3, 12, 13, 21} {0, 8, 20, 26}
{0, 10, 19, 33} {16, 17, 20, 24} {0, 1, 20, 25} {1, 2, 19, 28} {2, 7, 12, 28} {1, 2, 11, 17}
{1, 13, 20, 29} {0, 14, 24, 29} {0, 2, 6, 12} {0, 17, 21, 23}

Lemma 3.4.11. There exists an H(2n81) for each n ≡ 0, 1 (mod 6), n ≥ 6 and

n 6= 12.

Proof. For n = 6, 7, 13, the desired designs come from Lemmas 3.4.1 and 3.4.10,

respectively. For each n = 6m + s, s ∈ {0, 1}, m ≥ 3, there exists a CS(3, {4, 6},
(n−s+6)/3) of type (2(n−s)/6 : 2). Apply Theorem 2.2.2 with an HF2(3

k−1 : s+1)

and an H(6k) for k ∈ {4, 6} to obtain an HF2(6
(n−s)/6 : s + 4). Applying Lemma

3.2.9 with an H(26+s81), we get an H(2n81). Here, the input designs are from

Theorem 3.2.6, Lemmas 3.3.1, 2.3.8, 3.4.1 and 3.4.6.

Lemma 3.4.12. There exists an H(2n81) for each n ≡ 3, 16 (mod 18), n ≥ 16

and n 6= 34.

Proof. For each n = 18k + 3 with k ≥ 1, there is an HF2((3(2k − 1) + 4)3 : 4)

by Theorem 3.2.4. By applying Lemma 3.2.9 with an H(26k+181) from Lemma

3.4.11, we get an H(2n81).

For each n = 18k+16 with k ≥ 0 and k 6= 1, there is an HF2((6k+5)3 : 5) by

Theorem 3.2.4. Applying Lemma 3.2.9 with an H(26k+681) from Lemma 3.4.11,

we get an H(2n81).

Combining Lemmas 3.4.11 and 3.4.12, we obtain

Theorem 3.4.13. There exists an H(2n81) for each n ≡ 0, 1, 3, 6, 7, 12, 13, 16 ( mod

18), n ≥ 6 except possibly for n = 12, 34.



Chapter 4

Block Sequences of Steiner Quadruple

Systems with Error Correcting Consecutive

Unions

Motivated by applications in combinatorial group testing for consecutive posi-

tives, we investigate a block sequence of a maximum packing MP(t, k, v) which

contains the blocks exactly once such that the collection of all blocks together

with all unions of two consecutive blocks of this sequence forms an error correct-

ing code with minimum distance d. Such a sequence is usually called a block

sequence with consecutive unions having minimum distance d, and denoted by

BSCU(t, k, v|d). In this chapter, we show that the necessary conditions for the

existence of BSCU(3, 4, v|4)s of Steiner quadruple systems, namely, v ≡ 2, 4

(mod 6) and v ≥ 4, are also sufficient except v = 8, 10.

4.1 Introduction

Let V be a finite set of v element and let X be a collection of k-subsets of V

with |X | = m. Let S = [x0, x1, . . . , xm−1] be a sequence of the elements in X . The

indices of the elements xi of S are considered modulo m. Define yi = xi ∪ xi+1

for each i, 0 ≤ i ≤ m − 1. The sequence S is called a cyclic sequence of X
with consecutive unions having minimum distance d, denoted as CSCU(k, v|d),

if C = {x0, . . . , xm−1, y0, . . . , ym−1} has minimum distance d. Note that the

distance between any two sets x and y is defined as d(x, y) = |(x ∪ y) \ (x ∩ y)|.
Furthermore, a CSCU(k, v|d) is said to be maximal if the number of elements in

X is maximum for given k, v and d, denoted as MCSCU(k, v|d).

The concept of an MCSCU is motivated by the applications in combinatorial

group testing for consecutive positives. Group testing was proposed by Dorfman
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[16] in 1940s to do large scale blood testing economically, and new applications

of group testing have been found recently in the fields such as DNA library

screening, being error-prone, in which it is desired to determine the set of all

clones containing a specific sequence of nucleotides in an economical and correct

way. A clone is positive if it contains the specific sequence, and negative otherwise.

One chooses arbitrarily a subset of clones called a group or pool, and test all clones

in the pool in one stroke by some chemical analysis. The pool is positive when

it contains at least one positive clone, and negative otherwise. Colbourn [13]

developed some strategy for group testing when the clones are linearly ordered

and the positive clones form a consecutive subset of the set of all clones, the

typical example being the problem of locating a sequence-tagged site (or STS)

among ordered clones. Jimbo and his collaborators [60, 59, 61, 62] improved

Colbourn’s strategy by considering the error detecting and correcting capability

of group testing which is essential in view of applications such as DNA library

screening. Especially, Momihara and Jimbo [60, 59] suggested using MCSCUs

of a combinatorial structure called t-packings to correct false negative or false

positive clones in the pool outcomes. For more details of such applications we

refer to [13, 17, 60, 59, 61, 62, 64] and references there in.

A t-packing of order v, block size k, briefly P(t, k, v), is an ordered pair (V,B),

where V is a finite set of v elements called points, and B is a set of k-subsets of

V called blocks, such that each t-tuple of distinct points of V is contained in at

most one block of B. In particular, a P(t, k, v) is said to be maximal, denoted

MP(t, k, v), if the number of blocks is maximum for given t, k and v. For t = 3

and k = 4, an MP(t, k, v) is denoted by MPQS(v) which has been described in

Section 2.4.

It is known (see [60]) that a CSCU(k, v|d) of B is maximal if B is the block

set of an MP(bk − d/2c+ 1, k, v). A CSCU(k, v|d) of B which is the block set of

an MP(t, k, v) is also called a block sequence of B with consecutive unions having

minimum distance d, briefly BSCU(t, k, v|d).

In the case of d = 2, Müller and Jimbo [62] showed that there exists a

BSCU(k, k, v|2) for every v ≥ vk for the following pairs of parameters k and
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vk: (k, vk) = (2, 6), (3, 8), (4, 11), (5, 12), (6, 17) and (7, 19), without introducing

the notion of block sequences of t-packings. In the case of d = 3, Momihara

and Jimbo [60] showed the existence of a BSCU(2, 3, v|3) for every v ≥ 10. For

the case of d = 4, it is clear that a BSCU(3, 4, v|4) forms an MCSCU(4, v|4).

Momihara and Jimbo [59] recently showed the existence of a BSCU(3, 4, v|4) for

forty-seven small values v ≤ 500 using the following two constructions.

Theorem 4.1.1. ([59]) Let v be an integer satisfying v ≡ 2, 4 (mod 6) and

v ≥ 14.

(1) If there exists a BSCU(3, 4, v|4), then there exists a BSCU(3, 4, 2v|4) which

contains a sub-BSCU(3, 4, v|4).

(2) If there exists a BSCU(3, 4, v|4), then there exists a BSCU(3, 4, 3v − 2|4)

which contains a sub-BSCU(3, 4, v|4).

It is not difficult to see ([59]) that if there exists a BSCU(3, 4, v|4), then

every two consecutive blocks must be disjoint. Furthermore, there does not exist

a BSCU(3, 4, v|4) for v ≤ 11 except for v = 4, in which there is only one block.

We call such a BSCU(3, 4, 4|4) trivial.

In this chapter, we write BSCU(3, 4, v|4) of the block sets of Steiner quadru-

ple systems as BSCU(v) for brevity. The necessary conditions for the existence

of a BSCU(v) are v ≡ 2, 4 (mod 6) and v ≥ 4. In the following sections, we will

prove that the above necessary conditions are also sufficient except v = 8, 10.

Our main tools are the recursive constructions used in the 3-design theory (see

[34, 37, 38] for the detailed information).

4.2 Recursive Constructions

A holey quadruple system of order v with a hole of order s, denoted by

HSQS(v : s), is a triple (X,S,A) where X is a set of v elements (called points),

S is an s-subset of X, and A is a collection of 4-subsets (called blocks) of X such

that every 3-subset T of X with T 6⊆ S is contained in a unique block of A and

no 3-subset of S is contained in any block of A.
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Let (X,S,G,A) be a CS(3, K, v) of type (gn1
1 gn2

2 . . . gnr
r : s) with S =

{∞1,∞2, . . . ,∞s}, where s ≥ 1. For 1 ≤ i ≤ s, let Bi = {A \ {∞i} | ∞i ∈
A ∈ A} and T = {A ∈ A | A ∩ S = ∅}. Then the (s + 3)-tuple (X \
S,G,B1,B2, . . . ,Bs, T ) is called an s-fan design. If block sizes of Bi, 1 ≤ i ≤ s,

and T are from Ki and KT , respectively, then the s-fan design is denoted by

s-FG(3, (K1, . . . , Ks, KT ),
∑r

i=1 nigi) of type gn1
1 gn2

2 . . . gnr
r .

A CSCU(4, v|4) of B which is the block set of an H(gn1
1 gn2

2 . . . gnr
r ) will be

denoted by CSCU-GDD(gn1
1 gn2

2 . . . gnr
r ) in this chapter. Similarly, we can define

CSCU-HSQS, CSCU-CQS, etc.

Now we apply the fundamental constructions in the 3-design theory, where

“filling in holes” and “weighting method” are always useful (see [34]). First, we

may think of one CSCU (the master design) as a cycle which can be cut off at any

place. Next, we view the sequence of the other cut-off CSCU (the sub-design)

as a segment, and insert it into some cut place of the master design to form a

bigger cycle. Then we calculate the number of the places in the master design

where the obtained bigger cycle is also a CSCU. If this number is positive, then

the construction succeeds. We explain it in detail as follows.

For any k-subset sequence S = [x0, x1, . . . , xm−1] with length m, define

σj(S) = [xj, xj+1, . . . , xm−1, x0, . . . , xj−1],

S = {x0 ∪ x1, x1 ∪ x2, . . . , xm−2 ∪ xm−1},
and

Ŝ = {x0 ∪ x1, x1 ∪ x2, . . . , xm−2 ∪ xm−1, xm−1 ∪ x0}.

Let U, V be two finite sets with |U | = u and |V | = v, where U is not

necessarily disjoint with V . Let S = [b0, b1, . . . , bp−1] be a CSCU(4, u|4) of B
which is a collection of 4-subsets of U with p = |B|, and T = [a0, a1, . . . , aq−1] be

a CSCU(4, v|4) of A which is a collection of 4-subsets of V with q = |A|. It is

clear that |b ∩ b′| ≤ 2 and |a ∩ a′| ≤ 2 for any distinct b, b′ ∈ B and a, a′ ∈ A.

We may assume that for any b ∈ B, we always have |b ∩ V | ≤ 2. Then for any

a ∈ A and b ∈ B, we always have |b ∩ a| ≤ 2. We view S as a cycle, cut T

between a0 and aq−1 and keep the order fixed. We insert T = [a0, a1, . . . , aq−1]
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into S between bi−1 and bi for some i, 0 ≤ i ≤ p − 1, and denote the bigger

cycle [a0, a1, . . . , aq−1, bi, bi+1, . . . , bi−1] by Si = [T, σi(S)]. Let M = {i | Si is a

CSCU(4, w|4) of B ∪A, 0 ≤ i ≤ p− 1}, where w = |U ∪ V |, and let |M | = m. If

m > 0, then we obtain a bigger CSCU(4, w|4) from the two small CSCUs. Next,

we estimate the value of m.

Let C = A∪B ∪ T ∪ σi(S)∪D, where D = {a0 ∪ bi−1, aq−1 ∪ bi}. We check

the distance between any two elements of C. First, we consider the case that

a0 ∩ bi−1 = ∅ and aq−1 ∩ bi = ∅. In this case, we have the following conclusions:

Since T is a CSCU of A, we have

Case (1): d(a, a′) ≥ 4 for any a, a′ ∈ A;

Case (2): d(c, c′) ≥ 4 for any c, c′ ∈ T ;

Case (3): d(a, c) ≥ 4 for any a ∈ A and c ∈ T .

Since S is a CSCU of B, we have

Case (4): d(b, b′) ≥ 4 for any b, b′ ∈ B;

Case (5): d(c, c′) ≥ 4 for any c, c′ ∈ σi(S);

Case (6): d(b, c) ≥ 4 for any b ∈ B and c ∈ σi(S).

Since |a0∩bi| ≤ 2, |aq−1∩bi−1| ≤ 2 and bi−1∩bi = ∅, we know that d(bi−1, bi) = 8,

d(a0 ∪ bi−1, bi) ≥ 6, and also

Case (7): d(a0 ∪ bi−1, aq−1 ∪ bi) ≥ 4.

Since |a ∩ b| ≤ 2, we have

Case (8): d(a, b) ≥ 4 for any a ∈ A, b ∈ B.

Since |a| = 4, |b| = 4 and |c| = 8 for any a ∈ A, b ∈ B and c ∈ T ∪ σi(S)∪D, we

have

Case (9): d(a, c) ≥ 4 for any a ∈ A and c ∈ σi(S) ∪D;

Case (10): d(b, c) ≥ 4 for any b ∈ B and c ∈ T ∪D.

Since |b ∩ V | ≤ 2 for any b ∈ B, we have

Case (11): d(c, c′) ≥ 4 for c ∈ T and c′ ∈ σi(S) ∪D.

Under the assumption that a0 ∩ bi−1 = ∅ and aq−1 ∩ bi = ∅, we still need

to consider the values of d(c, c′) for any c ∈ σi(S) and c′ ∈ D. Note that we
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should also check the distance between any two elements of C in the case that

a0 ∩ bi−1 6= ∅ or aq−1 ∩ bi 6= ∅.
Let N(aq−1) = {k | 0 ≤ k ≤ p − 1, aq−1 ∩ bk 6= ∅ or d(aq−1 ∪ bk, c) <

4 for some c ∈ Ŝ} and n(aq−1) = |N(aq−1)|. Also let α(aq−1) = |{k | 0 ≤ k ≤
p− 1, aq−1∩ bk 6= ∅}|. Then n(aq−1) = α(aq−1)+ |{k | 0 ≤ k ≤ p− 1, aq−1∩ bk =

∅ and d(aq−1 ∪ bk, c) < 4 for some c ∈ Ŝ}|. In order to estimate n(aq−1), we

consider the case that aq−1 ∩ bk = ∅. It is clear that for any index 0 ≤ l ≤ p− 1,

|(bl ∪ bl+1) ∩ aq−1| ≤ 4.

If there exists an index l such that |(bl ∪ bl+1)∩ aq−1| = 4, i.e., |bl ∩ aq−1| = 2

and |bl+1∩aq−1| = 2, then if d(bl∪bl+1, aq−1∪bk) < 4, we should have |(bl∪bl+1)∩
bk| ≥ 3. In the case that B is the block set of some 3-packing of order u, there is

at most one such k that |(bl ∪ bl+1) ∩ bk| = 4, that is, bk = (bl ∪ bl+1) \ aq−1, or

there are at most 4 such k that |(bl ∪ bl+1) ∩ bk| = 3, that is, bk are obtained by

choosing any three points from the four points in (bl ∪ bl+1) \ aq−1 and the other

one from the other points of U , which implies that |{k | 0 ≤ k ≤ p−1, aq−1∩bk =

∅ and d(aq−1 ∪ bk, bl ∪ bl+1) < 4}| ≤ 4.

If there exists an index l such that |(bl ∪ bl+1)∩ aq−1| = 3, i.e., |bl ∩ aq−1| = 2

and |bl+1 ∩ aq−1| = 1, or |bl ∩ aq−1| = 1 and |bl+1 ∩ aq−1| = 2, then we should have

|(bl∪bl+1)∩bk| = 4 if d(bl∪bl+1, aq−1∪bk) < 4. In the case that B is the block set

of some 3-packing of order u, there is at most one such k that |(bl ∪ bl+1)∩ bk| =
4, that is, bk is obtained by choosing four points from (bl ∪ bl+1) \ aq−1. If

there is another k′ such that |(bl ∪ bl+1) ∩ bk′| = 4, then |bk ∩ bk′| ≥ 3 because

|(bl ∪ bl+1) \ aq−1| = 5, which leads to a contradiction. In this case, we have

|{k | 0 ≤ k ≤ p− 1, aq−1 ∩ bk = ∅ and d(aq−1 ∪ bk, bl ∪ bl+1) < 4}| ≤ 1.

If |(bl ∪ bl+1) ∩ aq−1| ≤ 2, then we can easily check that there is no such

k that d(bl ∪ bl+1, aq−1 ∪ bk) < 4, that is, |{k | 0 ≤ k ≤ p − 1, aq−1 ∩ bk =

∅ and d(aq−1 ∪ bk, bl ∪ bl+1) < 4}| = 0.

Therefore, if we define γ(aq−1) = |{l | 0 ≤ l ≤ p−1, |(bl∪ bl+1)∩aq−1| = 4}|
and δ(aq−1) = |{l | 0 ≤ l ≤ p − 1, |(bl ∪ bl+1) ∩ aq−1| = 3}|, then under the

condition that aq−1 ∩ bk = ∅, there are at most 4γ(aq−1) + δ(aq−1) such k that

d(bl ∪ bl+1, aq−1 ∪ bk) < 4. So we have n(aq−1) ≤ α(aq−1) + 4γ(aq−1) + δ(aq−1).
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From the definition of γ(aq−1), we know that the existence of one such index l

in γ(aq−1) would imply both |bl ∩ aq−1| = 2 and |bl+1 ∩ aq−1| = 2. Also, from

the definition of δ(aq−1), the existence of one such index l in δ(aq−1) would imply

|bl∩aq−1| = 2 or |bl+1∩aq−1| = 2, but not both. Keeping in mind the possibilities

of occurrences of consecutive blocks in Ξ = {k | 0 ≤ k ≤ p− 1, |bk ∩ aq−1| = 2}
and one block in Ξ followed by one block in {k | 0 ≤ k ≤ p− 1, |bk ∩ aq−1| = 1},
we can know that these would imply 2γ(aq−1) + δ(aq−1) < 2β(aq−1), since γ and

δ are mutually exclusive, where β(aq−1) = |Ξ|.
Similarly, we can analyze the set N(a0) = {k | 0 ≤ k ≤ p − 1, a0 ∩ bk−1 6=

∅ or d(a0 ∪ bk−1, c) < 4 for some c ∈ Ŝ}, where n(a0) = |N(a0)|.
Then from the definitions of M , N(a0) and N(aq−1), we immediately have

that M ⊇ Zp\(N(a0)∪N(aq−1)) and m ≥ p−n(a0)−n(aq−1)+|N(a0)∩N(aq−1)| ≥
p− n(a0)− n(aq−1) + |E|, where E ⊆ N(a0) ∩N(aq−1).

Theorem 4.2.1. Suppose that there are both a CSCU-HSQS(u : v) and a BSCU(v).

Then there is a BSCU(u) when u ≥ 44 and u > v.

Proof. Let S = [b0, b1, . . . , bp−1] be a CSCU-HSQS(u : v) on U and T = [a0, a1, . . . ,

aq−1] be a BSCU(v) on V with V ⊂ U . By the definition of an HSQS(u : v),

we know that for any of its blocks, say b, we always have |b ∩ V | ≤ 2. We view

S as a cycle, cut T between a0 and aq−1 and keep the order fixed. Next, insert

T = [a0, a1, . . . , aq−1] into S between bi−1 and bi for some i, 0 ≤ i ≤ p − 1, and

denote the resultant cycle [a0, a1, . . . , aq−1, bi, bi+1, . . . , bi−1] by Si = [T, σi(S)].

Using the same notation as above, we prove the theorem as follows.

Since T is a BSCU(v), we have aq−1 ∩ a0 = ∅ since they are consecutive.

From the balanced property of t-designs, we also have n(a0) = n(aq−1). Then m ≥
p−n(a0)−n(aq−1) ≥ p−2(α(aq−1)+4γ(aq−1)+δ(aq−1)) > p−2α(aq−1)−8β(aq−1).

Here p = u(u− 1)(u− 2)/24− v(v− 1)(v− 2)/24, α(aq−1) = 2(u− 1)(u− 2)/3−
3(u − 2) − 2(v − 1)(v − 2)/3 + 3(v − 2) and β(aq−1) = 3(u − v). Then we have

m > p−2α(aq−1)−8β(aq−1) > 0 when u ≥ 44 and u > v. This means that there

is a BSCU(u) when u ≥ 44 and u > v.
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Theorem 4.2.2. Suppose that there are both a CSCU-CQS(mn : s) and a CSCU-

HSQS(m + s : s). Then there are both a CSCU-HSQS(mn + s : m + s) and a

CSCU-HSQS(mn + s : s) when mn ≥ 44, m + 2s ≥ 5 and m ≥ 2.

Proof. Let (X,S, {G1, . . . , Gn},B) be the CQS(mn : s). Then we construct an

HSQS(m + s : s) on S ∪ Gk, 1 ≤ k ≤ n, with S as the hole to obtain the

desired HSQS(mn + s : m + s) (or HSQS(mn + s : s), respectively). Let S0 =

[b0, b1, . . . , bp−1] be a CSCU-CQS(mn : s) and Tk = [ak
0, a

k
1, . . . , a

k
q−1] be a CSCU-

HSQS(m+s : s) on S∪Gk. Note that for each block b ∈ B, we have |b∩(S∪Gk)| ≤
2. View S0 as a cycle, and cut each Tk between ak

0 and ak
q−1. Then we insert

each Tk into S0 between bik−1 and bik one by one. Here, we require that ik 6= ik′

if k 6= k′.

Using the same notation, we have that p = m2n(n−1)(m+mn+3s−3)/24.

By counting the number rx of blocks in B containing a point x ∈ X, and the

assumption that m+2s ≥ 5, we know that rx ≤ m(n−1)(mn+m+2s−3)/6. By

counting the number rx,y of blocks in B containing a pair of distinct points {x, y}
of X, and the assumption that m ≥ 2, we also know that rx,y ≥ m(n − 1)/2.

Then we have max{α(ak
0), α(ak

q−1)} ≤ α = 4×m(n−1)(mn+m+2s−3)/6−6×
m(n− 1)/2 and max{β(ak

0), β(ak
q−1)} ≤ β = 6×m(n− 1)/2 for any 1 ≤ k ≤ n.

First, since m1 ≥ p−α(a1
0)−4β(a1

0)−α(a1
q−1)−4β(a1

q−1) ≥ p−2α−8β ≥ 1,

there exists one i1, 0 ≤ i1 ≤ p − 1, such that S1 = [. . . , bi1−1, T1, bi1 , . . .] is a

CSCU. Here, S1 is obtained by inserting T1 into S0 between bi1−1 and bi1 .

Next, we want to insert T2 into S1 between bi2−1 and bi2 , where 0 ≤ i2 ≤ p−1

and i2 6= i1, so that S2 = [. . . , bi1−1, T1, bi1 , . . . , bi2−1, T2, bi2 , . . .] is a CSCU. Since

|b∩(S∪G2)| ≤ 2 for each block b ∈ T1∪B, in order to estimate m2, the number of

the suitable places that we can properly inset T2 into S1, we only need to compute

the numbers of the consecutive unions c ∈ Ŝ1 = σi1(S0)∪{a1
q−1∪bi1 , a

1
0∪bi1−1}∪T1

such that |c ∩ a2
j | = 3 and 4, j = 0, q − 1, respectively, for the reason that

m2 ≥ p′ − n′(a2
0) − n′(a2

q−1) ≥ p − 1 − (α′(a2
0) + 4γ′(a2

0) + δ′(a2
0)) − (α′(a2

q−1) +

4γ′(a2
q−1) + δ′(a2

q−1)), where α′(a2
j) = |{k | 0 ≤ k ≤ p− 1, bk ∩ a2

j 6= ∅}| = α(a2
j),

γ′(a2
j) = |{l | |(cl ∪ cl+1) ∩ a2

j | = 4}|, δ′(a2
j) = |{l | |(cl ∪ cl+1) ∩ a2

j | = 3}| for

j = 0 and q − 1, and cl ∪ cl+1 ∈ Ŝ1. It is easy to know that there are no such
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unions in T1. We then consider the unions in {a1
q−1 ∪ bi1 , a

1
0 ∪ bi1−1} ∪ σi1(S0).

For the unions in σi1(S0), we know that 4γ(a2
j) + δ(a2

j) < 4β(a2
j) holds for j =

0, q − 1. For the unions in {a1
q−1 ∪ bi1 , a

1
0 ∪ bi1−1}, since |(a1

0 ∪ a1
q−1) ∩ a2

j | ≤ 2

for j = 0, q − 1, and a1
0 ∩ a1

q−1 = ∅, we know that the only possible cases are

the following: (1) both a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1 intersect a2
j at 3 elements; (2)

exactly one of a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1 intersects a2
j at 4 elements, and the

other at less than 3 points; (3) exactly one of a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1 intersects

a2
j at 3 elements, and the other at less than 3 points. In any case, we have

m2 ≥ p − 1 − 2α − 8β − 2 × 4 ≥ 1. This means that there exists at least one

such index i2 6= i1 so that S2 = [. . . , bi1−1, T1, bi1 , . . . , bi2−1, T2, bi2 , . . .] is a CSCU,

where S2 is obtained by inserting T2 into S1 between bi2−1 and bi2 .

Suppose we have inserted Tk into Sk−1 for k = 1, . . . , n−1, and let Sk denote

the obtained CSCU. We want to insert Tk+1 into Sk between bik+1−1 and bik+1

where 0 ≤ ik+1 ≤ p−1 and ik+1 6= il for any 1 ≤ l ≤ k. Similarly, we only need to

care about the unions in Ŝ0 ∪{a1
q−1 ∪ bi1 , . . . , a

k
q−1 ∪ bik , a

1
0 ∪ bi1−1, . . . , a

k
0 ∪ bik−1}.

Then we have mk+1 ≥ p−k−2α−8β−8k. It is easy to check that mk ≥ 1 for any

1 ≤ k ≤ n. So there exist n distinct indices 0 ≤ i1, i2, . . . , in ≤ p − 1 such that

when we insert each Tk into Sk−1 between bik−1 and bik , the obtained sequence is

a CSCU-HSQS(mn + s : s) when 1 ≤ k ≤ n, or a CSCU-HSQS(mn + s : m + s)

when 1 ≤ k ≤ n− 1.

For a CQS (X,S,G,B), we may view S as a special group, that is, let

S ∈ G, and we will write CQS (X,G,B) for convenience. If a block of size k

intersects each group in at most one point, we say it is k-partite (see [34]). For

any design (X,G,B), H-design or CQS, let P be a permutation on X. For each

G ∈ G, if P (G) = G, then the design (X,G, P (B)) is isomorphic to (X,G,B).

For a point x ∈ X, denote by Gx the group containing x. For a block B ∈ B,

let PB = {∏x∈B(x y) | y ∈ Gx and (x y) is a transposition}. Note that each

permutation in PB permutes each point of B to a point in the same group and

leaves any other point invariant.

Theorem 4.2.3. Let (X,G,B1, . . . ,Be, T ) be an e-FG(3, (K1, . . . , Ke, KT ), v) of

type gn1
1 gn2

2 . . . gnr
r . Suppose that there exist a CQS(mk1 : s1) for any k1 ∈ K1, an
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H(mkis1
i ) for any ki ∈ Ki with 2 ≤ i ≤ e, and an H(mk) for any k ∈ KT . Then

there exists a CQS ((mg1)
n1(mg2)

n2 . . . (mgr)
nr :

∑
1≤i≤e si). Furthermore, if

(1) the block set of each ingredient design can be arranged into a CSCU, and

for any A ∈ B1, the ingredient CQS(m|A| : s1) contains a 4-partite block,

(2) the master e-fan design has two disjoint blocks b, b′ ∈ T if e = 0, or b ∈ T
and b′ ∈ B1 if e 6= 0,

then there exists a CSCU-CQS ((mg1)
n1(mg2)

n2 . . . (mgr)
nr :

∑
1≤i≤e si) when

m ≥ max{5, si | 1 ≤ i ≤ e} and si 6= 1 for each 1 ≤ i ≤ e.

Proof. Let Il = {0, 1, . . . , l − 1} for any positive integer l and I0 = ∅. Denote

Gx = {x} × Im for x ∈ X, and Sj = {∞j} × Isj
for 1 ≤ j ≤ e, where {∞j | 1 ≤

j ≤ e}∩X = ∅. We construct the desired design on X ′ = (X × Im)∪S with the

group set G ′ = {G× Im | G ∈ G} and the stem S = S1 ∪ S2 ∪ . . . ∪ Se. Clearly,

(X × Im) ∩ S = ∅.
For each block A ∈ B1, construct a CSCU-CQS(m|A| : s1) on XA = (A ×

Im)∪S1 having {Gx | x ∈ A} as its group set, S1 as its stem, and AA as its block

set. Denote GA = {Gx | x ∈ A} ∪ {S1}.
For each block A ∈ Bj, 2 ≤ j ≤ e, construct a CSCU-GDD(m|A|s1

j) on

XA = (A× Im) ∪ Sj having GA = {Gx | x ∈ A} ∪ {Sj} as its group set and AA

as its block set.

For each block A ∈ T , construct a CSCU-GDD(m|A|) on XA = A × Im

having GA = {Gx | x ∈ A} as its group set and AA as its block set.

Let B = (∪1≤i≤eBi) ∪ T . Then ∪A∈BAA is the block set of a CQS ((mg1)
n1

(mg2)
n2 . . . (mgr)

nr :
∑

1≤i≤e si). We try to find a CSCU of ∪A∈BAA.

First, by our assumption, when e 6= 0, we can arrange B into a sequence

S ′ = [b0, b1, . . . , bp−1] where the blocks of B1 are consecutive with bp−2 ∈ B1 being

the tail-end, bp−1 ∈ T , and bp−2∩bp−1 = ∅; when e = 0, we simply let bp−2∩bp−1 =

∅. Next, we replace each block bi by a cut CSCU Ti = [ai
0, a

i
1, . . . , a

i
qi−1] of Abi

,

where ai
0 and ai

qi−1 are the two ends, and qi = |Abi
|, 0 ≤ i ≤ p − 1. By the

hypothesis and the definition of an H-design, without loss of generality, we may
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assume that ai
0 intersects each group in GA in at most one point. Now we have

the following Claim.

Claim: There exists a set of permutations {σk ∈ Pak
0
| 0 ≤ k ≤ p− 1} such that

in the cyclic sequence S = [σ0(T0), σ1(T1), . . . , σp−1(Tp−1)], we have σk−1(a
k−1
qk−1−1)∩

σk(a
k
0) = ∅ and d(σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0), σk−1(a

k−1
qk−1−1) ∪ σk(a

k
0)) ≥ 4 for any

0 ≤ k, l ≤ p− 1 and |k − l| ≥ 2.

We use a recursive method to prove this claim. Denote Γ0 = {σ ∈ Pa0
0
| ap−1

qp−1−1

∩ σ(a0
0) = ∅} ⊆ Pa0

0
. From the assumptions on ai

0 and bp−1, we know that |a0
0 ∩

ap−1
qp−1−1| ≤ 2. We consider all possible intersections of a0

0 and ap−1
qp−1−1. Let a0

0 =

{(x1, l1), (x2, l2), (x3, l3), (x4, l4)} and ap−1
qp−1−1 = {(y1, l

′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}.

We first consider the case that xi 6= ∞j for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e.

If |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 0, then |Γ0| = m4; if |{x1, x2, x3, x4} ∩
{y1, y2, y3, y4}| = 1, then |Γ0| = (m−1)m3; if |{x1, x2, x3, x4}∩{y1, y2, y3, y4}| = 2,

then |Γ0| = (m − 1)2m2. Next we consider the case that xi = ∞j for a

unique 1 ≤ i ≤ 4 and a unique 1 ≤ j ≤ e, which implies that sj ≥ 2. If

|{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 0, then |Γ0| = sjm
3; if |{x1, x2, x3, x4} ∩

{y1, y2, y3, y4}| = 1, then |Γ0| = sj(m−1)m2; if |{x1, x2, x3, x4}∩{y1, y2, y3, y4}| =
2, then |Γ0| = sj(m − 1)2m. So we know that |Γ0| ≥ min{m4, (m − 1)m3, (m −
1)2m2, sjm

3, sj(m − 1)m2, sj(m − 1)2m | sj ≥ 2} ≥ 1. Choose σ0 ∈ Γ0 and let

S0 = 〈σ0(T0)〉 be a non-cyclic sequence of σ0(T0), that is, 〈σ0(T0)〉 is exactly the

same as [σ0(To)] except that σ(a0
0) is not considered as a successor of σ(a0

q0−1).

Similarly, we denote Γ1 = {σ ∈ Pa1
0
| σ0(a

0
q0−1) ∩ σ(a1

0) = ∅} ⊆ Pa1
0
.

Again, we consider all possible intersections of a1
0 and σ(a0

q0−1). Let a1
0 =

{(x1, l1), (x2, l2), (x3, l3), (x4, l4)} and σ0(a
0
q0−1) = {(y1, l

′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}.

If yi 6= ∞j for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e, and all yi are distinct, then |Γ1| = m4

or (m− 1)m3 or (m− 1)2m2 or sjm
3 or sj(m− 1)m2 or sj(m− 1)2m, with sj ≥ 2

and 1 ≤ j ≤ e, depending on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal

to 0 or 1 or 2, and whether |{x1, x2, x3, x4}∩{∞j | 1 ≤ j ≤ e}| is equal to 0 or 1.

If yi 6= ∞j for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e, and exactly two of yi are equal, then

|Γ1| = m4 or (m − 1)m3 or (m − 2)m3 or (m − 1)2m2 or (m − 2)(m − 1)m2 or

sjm
3 or sj(m− 1)m2 or sj(m− 2)m2 or sj(m− 1)2m or sj(m− 2)(m− 1)m, with
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sj ≥ 2 and 1 ≤ j ≤ e, depending on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is

equal to 0 or 1 or 2, and whether |{x1, x2, x3, x4} ∩ {∞j | 1 ≤ j ≤ e}| is equal to

0 or 1. If yi 6= ∞j for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e, and yi1 = yi2 , yi3 = yi4 , but

these two values are not the same, then |Γ1| = m4 or (m− 2)m3 or (m− 2)2m2

or sjm
3 or sj(m− 2)m2 or sj(m− 2)2m, with sj ≥ 2 and 1 ≤ j ≤ e, depending

on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal to 0 or 1 or 2, and whether

|{x1, x2, x3, x4} ∩ {∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. If yi = ∞j for a unique

1 ≤ i ≤ 4 and a unique 1 ≤ j ≤ e, then all yi should be distinct, and |Γ1| = m4

or (m−1)m3 or (m−1)2m2 or sim
3 or si(m−1)m2 or (sj−1)m3 or si(m−1)2m

or (sj − 1)(m − 1)m2, with si ≥ 2, sj ≥ 2 and 1 ≤ i 6= j ≤ e, depending on

whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal to 0 or 1 or 2, and whether

|{x1, x2, x3, x4}∩ {∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. In any case, we know that

|Γ1| ≥ 1. Let S1 = 〈σ0(T0), σ1(T1)〉, where σ1 ∈ Γ1.

Suppose that there exists a set of permutations {σk ∈ Pak
0
| 0 ≤ k ≤

i − 1 < p − 2} such that σk−1(a
k−1
qk−1−1) ∩ σk(a

k
0) = ∅ and d(σl−1(a

l−1
ql−1−1) ∪

σl(a
l
0), σk−1(a

k−1
qk−1−1) ∪ σk(a

k
0)) ≥ 4 for any 0 ≤ k, l ≤ i − 1 and |k − l| ≥ 2.

Let Si−1 = 〈σ0(T0), σ1(T1), . . . , σi−1(Ti−1)〉.
For k = i, we try to find a permutation σi ∈ Pai

0
such that σi−1(a

i−1
qi−1−1) ∩

σi(a
i
0) = ∅ and d(σi−1(a

i−1
qi−1−1)∪σi(a

i
0), σl−1(a

l−1
ql−1−1)∪σl(a

l
0)) ≥ 4 for any 0 ≤ l <

i− 1.

Let ai
0 = {(x1, l1), (x2, l2), (x3, l3), (x4, l4)} and σi−1(a

i−1
qi−1−1) = {(y1, l

′
1), (y2, l

′
2),

(y3, l
′
3), (y4, l

′
4)}. Denote Γi = {σ ∈ Pai

0
| σi−1(a

i−1
qi−1−1) ∩ σ(ai

0) = ∅} ⊆ Pai
0
. We

first divide the problem into two possible cases.

(a): Suppose that {x1, x2, x3, x4} ∩ {y1, y2, y3, y4} = {∞j} for some j, 1 ≤
j ≤ e. Then sj ≥ 2. For convenience, let x4 = y4 = ∞j. Then bi, bi−1 ∈ Bj

and |bi ∩ bi−1| ≤ 1. In a similar way to the above analysis, we can prove that

|Γi| ≥ (sj − 1)(m − 1)m2 ≥ 1. Now we choose σi,0 ∈ Γi, which satisfies that

σi−1(a
i−1
qi−1−1) ∩ σi,0(a

i
0) = ∅. If there exists an index l, 0 ≤ l < i − 1, such that

d(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) < 4, then exactly one of the two

blocks {bl−1, bl} belongs to Bj. The reason is explained below. If bl−1, bl ∈ Bj,

then since bi−1, bi ∈ Bj, we know that |(bi∪ bi−1)∩ (bl−1∪ bl)| ≤ |bi∩ bl−1|+ |bi−1∩
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bl−1|+|bi∩bl|+|bi−1∩bl| ≤ 4, and hence |(σi−1(a
i−1
qi−1−1)∪σi,0(a

i
0))∩(σl−1(a

l−1
ql−1−1)∪

σl(a
l
0))| ≤ 6, which is impossible, for in this case we would have d(σi−1(a

i−1
qi−1−1)∪

σi,0(a
i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4. On the other hand, if bl−1, bl 6∈ Bj, then

(∞j, l
′′
4) 6∈ σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0) for any l′′4 ∈ Isj

, so |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩

(σl−1(a
l−1
ql−1−1)∪ σl(a

l
0))| ≤ 6, which is again impossible. Then there are two cases

to be considered: bl−1 ∈ Bj, bl 6∈ Bj; and bl ∈ Bj, bl−1 6∈ Bj. We first assume that

bl−1 ∈ Bj and bl 6∈ Bj. Then clearly σl(a
l
0) ∩ Sj = ∅. Since we have supposed

that d(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) < 4, i.e., |(σi−1(a

i−1
qi−1−1) ∪

σi,0(a
i
0))∩(σl−1(a

l−1
ql−1−1)∪σl(a

l
0)))| ≥ 7, we should have that one of |σl−1(a

l−1
ql−1−1)∩

(σi−1(a
i−1
qi−1−1)∪ σi,0(a

i
0))| and |σl(a

l
0)∩ (σi−1(a

i−1
qi−1−1)∪ σi,0(a

i
0))| equals 4 and the

other at least 3. Since bl−1 ∈ Bj, then |bl−1 ∩ bi| ≤ 1 and |bl−1 ∩ bi−1| ≤ 1,

i.e., |(bl−1 ∪ {∞j}) ∩ (bi ∪ bi−1 ∪ {∞j})| ≤ 3, which implies that |σl−1(a
l−1
ql−1−1) ∩

(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0))| ≤ 3. Therefore it is necessary that |σl−1(a

l−1
ql−1−1) ∩

(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0))| = 3 and |σl(a

l
0) ∩ (σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0))| = 4. Then

we can let σl−1(a
l−1
ql−1−1) = {(x1, σi,0(l1)), (y1, l

′
1), (∞j,♦), (?, ∗)} and σl(a

l
0) =

{(x2, σi,0(l2)), (x3, σi,0(l3)), (y2, l
′
2), (y3, l

′
3)}, where♦ ∈ {σi,0(l4), l

′
4}. If♦ = σi,0(l4),

no permutation σ ∈ Γi satisfies that |(σi−1(a
i−1
qi−1−1) ∪ σ(ai

0)) ∩ (σl−1(a
l−1
ql−1−1) ∪

σl(a
l
0))| ≥ 7 except σ = σi,0. If ♦ = l′4, then all the permutations σi,1 ∈ Γi which

change (∞j, σi,0(l4)) to every element in {∞j} × (Zsj
\ {l′4}) and fix the other

three points in σi,0(a
i
0) satisfy that |(σi−1(a

i−1
qi−1−1)∪σi,1(σi,0(a

i
0)))∩(σl−1(a

l−1
ql−1−1)∪

σl(a
l
0)))| ≥ 7. So for such a pair (bl−1, bl), there are at most (sj − 1) σ ∈ Γi such

that d(σi−1(a
i−1
qi−1−1) ∪ σ(ai

0), σl−1(a
l−1
ql−1−1) ∪ σl(a

l
0)) < 4. Now we compute the

number of such pairs (bl−1, bl), or equivalently, the number of such bl. There are(
6
3

)− 2 = 18 triples in {x1, x2, x3, y1, y2, y3} excluding the two triples {x1, x2, x3}
and {y1, y2, y3}. Since each triple occurs in exactly one block of B, each block

of B contains exactly 4 triples, |bl ∩ {x1, x2, x3}| = 2, and |bl ∩ {y1, y2, y3}| = 2,

we know that there are at most b18/4c = 4 such bl. From the assumption,

we have |Γi| ≥ (m − 1)m2(sj − 1) > 4(sj − 1), which implies that there ex-

ists at least one permutation σi ∈ Γi such that σi−1(a
i−1
qi−1−1) ∩ σi(a

i
0) = ∅ and

d(σi−1(a
i−1
qi−1−1) ∪ σi(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4 for any 0 ≤ l < i− 1. For the

case that bl ∈ Bj and bl−1 6∈ Bj, we can also prove, in the same fashion as above,

that the same assertion holds.
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(b): Suppose that {x1, x2, x3, x4}∩{y1, y2, y3, y4} 6= {∞j} for any j, 1 ≤ j ≤
e. We further divide this case into two possible sub-cases.

(b.1): y1 = y2 = x1 and y3 = x2, i.e., σi−1(a
i−1
qi−1−1) = {(x1, l

′
1), (x1, l

′
2), (x2, l

′
3),

(y4, l
′
4)}. If y4 = x2, then |Γi| ≥ min{(m− 2)2m2, (m− 2)2msj | sj ≥ 2} ≥ 1. If

y4 6= x2, then |Γi| ≥ min{(m − 2)(m − 1)m2, (m − 2)(m − 1)msj | sj ≥ 2} ≥ 1.

In any case, we know that |Γi| ≥ 1. Assume that σi−1(a
i−1
qi−1−1) ∩ σi,0(a

i
0) = ∅.

We now prove that d(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4 for 0 ≤

l ≤ i − 1. If {x1, x2} ⊂ bl, then |bl ∩ (bi−1 ∪ bi)| = 2. Since al
0 is 4-partite, we

know that |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ σl(a

l
0)| ≤ 2, which makes d(σi−1(a

i−1
qi−1−1) ∪

σi,0(a
i
0), σl−1(a

l−1
ql−1−1)∪σl(a

l
0)) ≥ 4. If {x1, x2} ⊂ bl−1, then since y1 = y2 = x1, we

know that bi−1 ∈ B1 and thus bl−1 6∈ B1, implying that al−1
ql−1−1 is a block in some

ingredient H-design and therefore is 4-partite. So |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩

σl−1(a
l−1
ql−1−1)| ≤ 2, which ensures that d(σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪

σl(a
l
0)) ≥ 4. We still need to consider the case when {x1, x2} 6⊂ bl−1 and

{x1, x2} 6⊂ bl. If y4 = x2, then |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ σl(a

l
0)| ≤ 2, which

makes again d(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4. If y4 6= x2,

then |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ σl(a

l
0)| ≤ 3 and |(σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩

σl−1(a
l−1
ql−1−1)| ≤ 3, which also ensures that d(σi−1(a

i−1
qi−1−1)∪σi,0(a

i
0), σl−1(a

l−1
ql−1−1)∪

σl(a
l
0)) ≥ 4.

(b.2): All cases except (b.1), that is, σi−1(a
i−1
qi−1−1) ∈ {{(x1, l

′
1), (x1, l

′
2), (y3, l

′
3),

(y4, l
′
4)}, {(x1, l

′
1), (x2, l

′
2), (y3, l

′
3), (y4, l

′
4)}, {(x1, l

′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}, {(y1,

l′1), (y2, l
′
2), (y3, l

′
3), (y4, l

′
4)}}, where yi 6= xj for any i and j. A tedious calculation

shows that |Γi| ≥ min{(m− 2)m3, (m− 2)m2sj, (m− 1)2m2, (m− 1)2msj, (m−
1)m3, (m − 1)m2sj,m

4,m3sj | sj ≥ 2} ≥ 2(m − 2)m2 ≥ 1. Choose σi,0 ∈ Γi.

Then σi−1(a
i−1
qi−1−1) ∩ σi,0(a

i
0) = ∅. If there exists an index l, 0 ≤ l < i − 1, such

that d(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) < 4, then |(σi−1(a

i−1
qi−1−1) ∪

σi,0(a
i
0)) ∩ (σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0))| ≥ 7. Let R = {r ⊂ X ′ | r ⊂ σi−1(a

i−1
qi−1−1) ∪

σi,0(a
i
0), r 6⊂ σi−1(a

i−1
qi−1−1), r 6⊂ σi,0(a

i
0) and |r| = 3}, then |R| ≤ (

4
2

)×(
4
1

)×2 = 48.

Suppose that there are t1 l’s such that |(σi−1(a
i−1
qi−1−1)∪σi,0(a

i
0))∩ (σl−1(a

l−1
ql−1−1)∪

σl(a
l
0))| = 8 and t2 l’s such that |(σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ (σl−1(a

l−1
ql−1−1) ∪

σl(a
l
0))| = 7. For the former case, each block in {σl−1(a

l−1
ql−1−1), σl(a

l
0)} contains 4

triples from R. Even if there is one point in one of these two blocks with its second
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component being changed, we still have |(σi−1(a
i−1
qi−1−1)∪σi,0(a

i
0))∩(σl−1(a

l−1
ql−1−1)∪

σl(a
l
0))| ≥ 7, that is, d(σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0)), (σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) < 4. So

there are at most max{4(m− 1) + 1, 3(m− 1) + (sj − 1) + 1 | sj ≥ 2} = 4m− 3

σ ∈ Γi such that d(σi−1(a
i−1
qi−1−1) ∪ σ(ai

0), σl−1(a
l−1
ql−1−1) ∪ σl(a

l
0)) < 4. For the lat-

ter case, one block in {σl−1(a
l−1
ql−1−1), σl(a

l
0)} contains 4 triples and the other one

contains only one triple from R. Even if the second component of the uncommon

point is changed in the block which contains only one triple from R, we still have

|(σi−1(a
i−1
qi−1−1)∪ σi,0(a

i
0))∩ (σl−1(a

l−1
ql−1−1)∪ σl(a

l
0))| ≥ 7, that is, d(σi−1(a

i−1
qi−1−1)∪

σi,0(a
i
0)), (σl−1(a

l−1
ql−1−1)∪σl(a

l
0)) < 4. So there are at most max{m, sj | sj ≥ 2} =

m σ ∈ Γi such that d(σi−1(a
i−1
qi−1−1) ∪ σ(ai

0), σl−1(a
l−1
ql−1−1) ∪ σl(a

l
0)) < 4. Here,

8t1 + 5t2 ≤ |R| ≤ 48. Since t1 ≤ |R|/8 ≤ 6, we have t1(4m− 3) + t2m ≤ t1(4m−
3)+(48−8t1)m/5 = t1(2.4m−3)+9.6m ≤ 6(2.4m−3)+9.6m = 24m−18. From

the assumption that m ≥ 5, we have 2(m−2)m2 > 24m−18, which implies that

there exists at least one permutation σi ∈ Γi such that σi−1(a
i−1
qi−1−1)∩ σi(a

i
0) = ∅

and d(σi−1(a
i−1
qi−1−1) ∪ σi(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4 for any 0 ≤ l < i− 1.

Then we set Si = 〈Si−1, σi(Ti)〉 for 1 ≤ i ≤ p− 2.

When k = p − 1, we want to find a permutation σp−1 ∈ Pap−1
0

such that

σp−2(a
p−2
qp−2−1) ∩ σp−1(a

p−1
0 ) = ∅, σp−1(a

p−1
qp−1−1) = ap−1

qp−1−1 and d(σp−2(a
p−2
qp−2−1) ∩

σp−1(a
p−1
0 ), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4 for any 1 ≤ l < p − 2. By assumption,

bp−2 ∩ bp−1 = ∅. This implies that σp−2(a
p−2
qp−2−1) ∩ σp−1(a

p−1
0 ) = ∅ for any σp−1 ∈

Pap−1
0

. Denote Γp−1 = {σ ∈ Pap−1
0

| σ(ap−1
qp−1−1) = ap−1

qp−1−1}. Since bp−1 ∈ T is

replaced by the cut CSCU Tp−1 = [ap−1
0 , ap−1

1 , . . . , ap−1
qp−1−1], then, as we said in

Section 4.1, we have that ap−1
0 ∩ ap−1

qp−1−1 = ∅. This, together with σ(ap−1
qp−1−1) =

ap−1
qp−1−1, shows that |Γp−1| ≥ (m − 1)4 ≥ 1. Similar to the proof in (b.2), we

can prove that there are at most (24m− 18) σ ∈ Γi such that d(σp−2(a
p−2
qp−2−1) ∩

σ(ap−1
0 ), σl−1(a

l−1
ql−1−1)∪σl(a

l
0)) < 4 for some l, 1 ≤ l < p−2. From the assumption,

we have (m− 1)4 > 24m− 18. Thus we have proved the existence of σp−1.

Now we have finished the proof for the claim. For convenience, we use Tk

to denote σk(Tk) for 0 ≤ k ≤ p − 1. Then S = [T0, T1, . . . , Tp−1] satisfies the

conditions that ak−1
qk−1−1 ∩ ak

0 = ∅ and d(al−1
ql−1−1 ∪ al

0, a
k−1
qk−1−1 ∪ ak

0) ≥ 4 for any

0 ≤ k, l ≤ p− 1 and |k − l| ≥ 2. Next, we will prove S is actually a CSCU.
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To do this, we should check the distance between any two elements of C =

(
⋃p−1

i=0 Abi
) ∪ (

⋃p−1
i=0 Ti) ∪ (

⋃p−1
i=0 {ai−1

qi−1−1 ∪ ai
0}). Elements of C are classified into

three types.

Type I: a ∈ Abi
for some i, 0 ≤ i ≤ p− 1. If bi ∈ B1, we say that a belongs

to Type ICQS, otherwise, a belongs to Type IH.

Type II: c ∈ Ti for some i, 0 ≤ i ≤ p − 1. If bi ∈ B1, we say that c belongs

to Type IICQS, otherwise, c belongs to Type IIH.

Type III: c ∈ ⋃p−1
i=0 {ai−1

qi−1−1 ∪ ai
0}.

Since the resultant design is a CQS, we easily know the following

Case (1): d(a, a′) ≥ 4 for any two distinct a, a′ from Type I;

Case (2): d(a, c) ≥ 4 for any a from Type I and c from Type II, III, respec-

tively.

Since each Ti, 0 ≤ i ≤ p− 1, is a CSCU, we have

Case (3): d(c, c′) ≥ 4 for any c, c′ ∈ Ti, 0 ≤ i ≤ p− 1, from Type II.

For each a ∈ Abi
from Type IH, |a ∩Xbj

| ≤ 2 when a 6∈ Abj
, so

Case (4): d(c, c′) ≥ 4 for any c ∈ Ti from Type IIH and c′ ∈ Tj from Type

II.

For each a ∈ Abi
from Type ICQS, we know that bi ∈ B1 and |a ∩Xbj

| ≤ 2 when

bj ∈ B1 and a 6∈ Abj
, so

Case (5): d(c, c′) ≥ 4 for any c, c′ from Type IICQS.

If bi 6∈ B1, then by the definition of an H-design and our special arrangement

of B into S ′ = [b0, b1, . . . , bp−1], we know that |a ∩ a′| ≤ 1 for any a ∈ Abi
and

a′ ∈ Abi−1
, so

Case (6): d(c, ai−1
qi−1−1 ∪ ai

0) ≥ 4 for any c ∈ Ti from Type IIH.

If bi ∈ B1, then |a ∩Xbi
| ≤ 2 for any a 6∈ Abi

, so

Case (7): d(c, ai−1
qi−1−1 ∪ ai

0) ≥ 4 for any c ∈ Ti from Type IICQS.

Since aj
0 is 4-partite, we know that |aj

0 ∩Xbi
| ≤ 2 for any 1 ≤ i 6= j ≤ p− 1, and

then

Case (8): d(c, aj−1
qj−1−1 ∪ aj

0) ≥ 4 for any c ∈ Ti and 1 ≤ i 6= j ≤ p− 1.

Since ai
0 ∩ ai

qi−1 = ∅ and |ai−1
qi−1−1 ∩ ai

qi−1| ≤ 2, we have
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Case (9): d(ai−1
qi−1−1 ∪ ai

0, a
i
qi−1 ∪ ai+1

0 ) ≥ 4, 0 ≤ i ≤ p− 1.

From the property of S, we know that

Case (10): d(ai−1
qi−1−1 ∪ ai

0, a
l−1
ql−1−1 ∪ al

0) ≥ 4 for |i− l| ≥ 2.

Then we have proved that S is in fact a CSCU.

Theorem 4.2.4. In Theorem 4.2.3, if we change the condition (1) to be

(1′) the block set of each ingredient design can be arranged into a CSCU with

two consecutive 4-partite blocks,

then there exists a CSCU-CQS ((mg1)
n1(mg2)

n2 . . . (mgr)
nr :

∑
1≤i≤e si) when

m ≥ max{4, si | 1 ≤ i ≤ e} and si 6= 1 for each 1 ≤ i ≤ e.

Proof. Since the proof is similar to that of Theorem 4.2.3, we will look at only

those places which are different from Theorem 4.2.3.

First, without loss of generality, we may assume that both ai
0 and ai

qi−1 of

Ti = [ai
0, a

i
1, . . . , a

i
qi−1] are 4-partite for any i, 0 ≤ i ≤ p− 1.

Remember that in the proof of Theorem 4.2.3, we need m = 5 only in Case

(b.2). So we can omit the proof for all cases except for (b.2). We divide Case

(b.2) into two sub-cases.

(b.2.1): If xi = ∞j for some i and j, 1 ≤ i ≤ 4, 1 ≤ j ≤ e, then

|Γi| ≥ min{(m−1)2msj, (m−1)m2sj,m
3sj | sj ≥ 2} = (m−1)2msj ≥ 1. Assume

that σi−1(a
i−1
qi−1−1)∩σi,0(a

i
0) = ∅. If there exists an index l, 0 ≤ l < i−1, such that

d(σi−1(a
i−1
qi−1−1)∪ σi,0(a

i
0), σl−1(a

l−1
ql−1−1)∪ σl(a

l
0)) < 4, then, as we knew already in

Case (b.2) of Theorem 4.2.3, |(σi−1(a
i−1
qi−1−1)∪σi,0(a

i
0))∩(σl−1(a

l−1
ql−1−1)∪σl(a

l
0))| ≥ 7.

Again, let R = {r ⊂ X ′ | r ⊂ σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0), r 6⊂ σi−1(a

i−1
qi−1−1), r 6⊂

σi,0(a
i
0) and |r| = 3}, and then we know that |R| ≤ (

4
2

)× (
4
1

)× 2 = 48. Suppose

again that there are t1 l’s such that |(σi−1(a
i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ (σl−1(a

l−1
ql−1−1) ∪

σl(a
l
0))| = 8 and t2 l’s such that |(σi−1(a

i−1
qi−1−1) ∪ σi,0(a

i
0)) ∩ (σl−1(a

l−1
ql−1−1) ∪

σl(a
l
0))| = 7. For the former case, just as in Case (b.2) of Theorem 4.2.3, we

can prove that there are at most 3(m−1)+(sj−1)+1 = 3m+sj−3 σ ∈ Γi such

that d(σi−1(a
i−1
qi−1−1) ∪ σ(ai

0), σl−1(a
l−1
ql−1−1) ∪ σl(a

l
0)) < 4. Similarly, for the latter

case, we can prove that there are at most max{m, sj} = m σ ∈ Γi such that
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d(σi−1(a
i−1
qi−1−1)∪σ(ai

0), σl−1(a
l−1
ql−1−1)∪σl(a

l
0)) < 4. Since 8t1 +5t2 ≤ |R| ≤ 48, we

have t1 ≤ |R|/8 ≤ 6, and t1(3m+sj−3)+t2m ≤ t1(3m+sj−3)+(48−8t1)m/5 =

t1(1.4m + sj − 3) + 9.6m ≤ 6(1.4m + sj − 3) + 9.6m = 18m + 6sj − 18. From

the assumptions that m ≥ 4 and sj ≥ 2, we have (m− 2)m2sj > 18m + 6sj − 18,

which implies that there exists at least one permutation σi ∈ Γi such that

σi−1(a
i−1
qi−1−1) ∩ σi(a

i
0) = ∅ and d(σi−1(a

i−1
qi−1−1) ∪ σi(a

i
0), σl−1(a

l−1
ql−1−1) ∪ σl(a

l
0)) ≥ 4

for any 0 ≤ l < i− 1.

(b.2.2): If xi 6= ∞j for any i and j, 1 ≤ i ≤ 4, 1 ≤ j ≤ e, then the proof is

exactly the same as that for (b.2.1) except that sj is replaced by m.

Corollary 4.2.5. Let m ≥ 4 and gn ≥ 16. Assume that there exists an H(gn).

If there exists a CSCU-GDD(m4), then there exists a CSCU-GDD((mg)n).

Proof. In an H(gn), the number of blocks is λ0 = g3n(n−1)(n−2)
24

, the number of

blocks containing one point is λ1 = g2(n−1)(n−2)
6

, and the number of blocks con-

taining two distinct points is λ2 = g(n−2)
2

. There exist two disjoint blocks if and

only if λ0 >
(
4
1

)
(λ1 − 1) − (

4
2

)
(λ2 − 1) + 1. This inequality is satisfied provided

that gn ≥ 16. Then apply Theorem 4.2.4 with e = 0.

Theorem 4.2.6. There exists a CSCU-GDD(g4) for any g ≥ 5.

Proof. Let X = Z4×Zg. We build an H(g4) on X with the group set G = {{i}×
Zg | i ∈ Z4} and the block set B = {α(i, j, k) = {(0, i), (1, i + j), (2, k), (3, k +

j)} | i, j, k ∈ Zg}. Let T (j, k) = 〈α(0, j, k), α(1, j, k+1), . . . , α(g−1, j, k+g−1)〉,
Tj = 〈T (j, j), T (j, j + 1), . . . , T (j, j − 1)〉 and S = [T0, T1, . . . , Tg−1]. It is clear

that S = B if we view S as a block set. We will check that S is in fact a CSCU.

It is easy to check that any two consecutive blocks in S are disjoint and

d(α(i, j, k), α(i′, j′, k′)) ≥ 4 for any distinct (i, j, k) and (i′, j′, k′). Let ct be the

union of two consecutive blocks. Then d(α(i, j, k), ct) ≥ 4 for any ct ∈ Ŝ. Thus

we only need to consider the distance between any two unions. We part the

unions into the following three types.

Type I: c1(i, j, k) = α(i, j, k)∪α(i+1, j, k+1), 0 ≤ i ≤ g−2, 0 ≤ j, k ≤ g−1.

Type II: c2(j, k) = α(g − 1, j, k − 2) ∪ α(0, j, k), 0 ≤ j, k ≤ g − 1.
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Type III: c3(j) = α(g − 1, j − 1, j − 3) ∪ α(0, j, j), 0 ≤ j ≤ g − 1.

We should check that any two unions from these three types have distance

more than or equal to 4. Let nq be the number of points in c1(i, j, k)∩c1(i
′, j′, k′)

with the first coordinate being q, where q ∈ Z4. Then nq ≤ 2 for any q ∈ Z4. If

there are at least two nq’s of the c1(i, j, k)∩c1(i
′, j′, k′) having value no more than

1, then |c1(i, j, k)∩ c1(i
′, j′, k′)| ≤ 6, which means that d(c1(i, j, k), c1(i

′, j′, k′)) ≥
4.

Case (a): Two unions from Type I, say c1(i, j, k) = {(0, i), (0, i + 1), (1, i +

j), (1, i + j + 1), (2, k), (2, k + 1), (3, k + j), (3, k + j + 1)} and c1(i
′, j′, k′) =

{(0, i′), (0, i′+1), (1, i′+j′), (1, i′+j′+1), (2, k′), (2, k′+1), (3, k′+j′), (3, k′+j′+

1)}. We will show that |c1(i, j, k) ∩ c1(i
′, j′, k′)| ≤ 6 for any distinct (i, j, k) and

(i′, j′, k′). Note the fact that if l 6= l′ and g ≥ 5, then |{l, l + 1} ∩ {l′, l′ + 1}| ≤
1. Since each of the three parameters {i, j, k} is related to two different first

coordinates, it is easy to check that at least two of the nq’s having value no more

than 1. The details are listed below.

1). When i 6= i′, j 6= j′ and k 6= k′, we have n0 ≤ 1 and n2 ≤ 1.

2). When i 6= i′, j 6= j′ and k = k′, then k + j 6= k′ + j′, so n0 ≤ 1 and n3 ≤ 1.

3). When i 6= i′, j = j′ and k 6= k′, we have n0 ≤ 1 and n2 ≤ 1.

4). When i 6= i′, j = j′ and k = k′, then i + j 6= i′ + j′, so n0 ≤ 1 and n1 ≤ 1.

5). When i = i′, j 6= j′ and k 6= k′, then i + j 6= i′ + j′, so n1 ≤ 1 and n2 ≤ 1.

6). When i = i′, j 6= j′ and k = k′, then i + j 6= i′ + j′ and k + j 6= k′ + j′, so

n1 ≤ 1 and n3 ≤ 1.

7). When i = i′, j = j′ and k 6= k′, then k + j 6= k′ + j′, so n2 ≤ 1 and n3 ≤ 1.

Case (b): Two unions from Type I and Type II respectively, say c1(i, j, k) =

{(0, i), (0, i + 1), (1, i + j), (1, i + j + 1), (2, k), (2, k + 1), (3, k + j), (3, k + j + 1)}
and c2(j

′, k′) = {(0, g − 1), (0, 0), (1, j′ − 1), (1, j′), (2, k′ − 2), (2, k′), (3, k′ + j′ −
2), (3, k′+j′)}. Since 0 ≤ i ≤ g−2 in c1(i, j, k), we know that n0 ≤ 1. Since g ≥ 5,

we have |{k, k+1}∩{k′−2, k′}| ≤ 1, i.e., n2 ≤ 1. Then d(c1(i, j, k), c2(j
′, k′)) ≥ 4.
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Case (c): Two unions from Type I and Type III respectively, say c1(i, j, k) =

{(0, i), (0, i+1), (1, i+j), (1, i+j+1), (2, k), (2, k+1), (3, k+j), (3, k+j+1)} and

c3(j
′) = {(0, g − 1), (0, 0), (1, j′ − 2), (1, j′), (2, j′ − 3), (2, j′), (3, 2j′ − 4), (3, 2j′)}.

Since 0 ≤ i ≤ g − 2 and g ≥ 5, in a similar way, we can know that n0 ≤ 1 and

n1 ≤ 1.

Case (d): Two unions from Type II, say c2(j, k) = {(0, g − 1), (0, 0), (1, j −
1), (1, j), (2, k−2), (2, k), (3, k+j−2), (3, k+j)} and c2(j

′, k′) = {(0, g−1), (0, 0), (1,

j′−1), (1, j′), (2, k′−2), (2, k′), (3, k′+j′−2), (3, k′+ j′)}, where (j, k) and (j′, k′)

are distinct. Similar to Case (a), we can show that there are at least two nq’s

having value no more than 1.

Case (e): Two unions from Type II and Type III respectively, say c2(j, k) =

{(0, g − 1), (0, 0), (1, j − 1), (1, j), (2, k − 2), (2, k), (3, k + j − 2), (3, k + j)} and

c3(j
′) = {(0, g − 1), (0, 0), (1, j′ − 2), (1, j′), (2, j′ − 3), (2, j′), (3, 2j′ − 4), (3, 2j′)}.

It is readily checked that at least one of the following assertions holds:

(e.1): n1 ≤ 1 and n2 ≤ 1;

(e.2): n1 ≤ 1 and n3 ≤ 1.

Case (f): Two unions from Type III, say c3(j) = {(0, g − 1), (0, 0), (1, j −
2), (1, j), (2, j−3), (2, j), (3, 2j−4), (3, 2j)} and c3(j

′) = {(0, g−1), (0, 0), (1, j′−
2), (1, j′), (2, j′−3), (2, j′), (3, 2j′−4), (3, 2j′)}, where j 6= j′. Similar to Case (a),

we can prove that there are at least two nq’s having value no more than 1.

4.3 Direct Constructions

In this section, we directly construct some small CSCUs which will be used

in the recursive constructions. In order to save space, we list only a few examples.

The interested reader is referred to the authors or to the Web site [70] for a copy

of the detailed cyclic sequences of blocks.

Lemma 4.3.1. There exists a CSCU-CQS(gn : s) for each (g, n, s) ∈ {(4, 4, 2),

(4, 4, 4), (6, 3, 2), (6, 3, 4), (6, 5, 2), (6, 5, 4), (8, 3, 2), (12, 3, 2), (12, 3, 4), (12, 4, 2),

(12, 4, 4)}.
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Proof. We only list the sequence of a CSCU-CQS(44 : 2) on the point set X =
Z18, with the group set G = {{i, 4 + i, 8 + i, 12 + i} | i ∈ Z4} and the stem
S = {16, 17}.

S= [{6,7,12,17}, {4,10,11,16},{12,14,15,17},{2,5,7,16},{1,6,8,10},{2,7,9,17}, {5,10,15,16},
{0,1,2,14},{4,5,6,10},{1,3,14,16},{0,6,9,10}, {1,2,15,17},{3,6,9,16},{1,7,10,17},
{9,11,14,16},{3,5,6,17}, {2,4,13,14},{1,6,11,16},{3,13,14,17},{1,7,11,12},{2,8,9,14},
{0,7,11,13},{2,5,12,14},{4,6,7,8},{0,3,5,15},{6,10,12,13}, {1,3,4,15},{5,7,8,11},
{0,2,3,12},{4,7,9,11},{3,8,13,15}, {0,10,11,12},{2,5,9,15},{3,4,8,10},{0,6,12,15},
{2,4,8,11}, {3,9,12,15},{1,2,7,13},{4,8,14,15},{1,3,6,13},{2,4,9,10}, {0,7,12,14},
{5,6,9,11},{1,10,13,15},{3,5,9,14},{0,2,10,13}, {5,6,8,14},{0,1,3,7},{2,6,8,13},
{5,7,9,10},{1,11,13,14}, {2,5,8,10},{3,11,12,13},{0,2,5,6},{3,7,8,9},{1,4,10,14},
{2,6,9,12},{3,4,5,11},{1,2,10,12},{0,3,9,11},{1,2,4,6}, {8,10,13,14},{3,5,7,12},
{0,6,13,14},{1,3,8,11},{0,5,10,14}, {3,4,7,13},{9,10,12,14},{4,5,7,15},{1,6,12,14},
{8,9,11,15}, {0,3,4,6},{7,12,13,15},{4,6,9,14},{5,11,12,15},{0,3,8,14}, {4,11,13,15},
{0,7,8,10},{1,9,14,15},{0,2,4,7},{3,6,8,12}, {0,1,11,15},{2,7,8,12},{0,4,11,14},
{1,7,8,15},{3,4,12,14}, {0,7,9,15},{4,6,11,12},{1,3,9,10},{8,11,12,14},{1,2,3,5},
{0,4,10,15},{1,6,7,9},{0,2,8,15},{4,7,10,12},{1,2,9,11}, {8,10,12,15},{2,3,9,13},
{0,6,8,11},{5,13,14,15}, {2,3,6,7},{1,5,10,11},{0,4,9,13},{10,11,14,15},{5,6,7,13},
{2,4,12,15},{9,10,11,13},{1,5,8,12},{7,9,13,14},{0,1,4,5}, {2,6,11,15},{3,7,10,14},
{2,5,11,13},{1,4,9,12},{2,3,14,15}, {0,5,8,13},{2,7,10,15},{0,1,12,13},{6,7,14,15},
{4,5,8,9}, {2,7,11,14},{1,5,6,15},{8,9,12,13},{3,6,11,14},{4,5,12,13}, {6,7,10,11},
{0,1,8,9},{3,6,10,15},{1,5,7,14},{6,9,13,15}, {2,3,10,11},{4,5,14,16},{2,12,13,17},
{0,1,10,16},{2,4,5,17}, {8,9,10,16},{0,1,6,17},{3,5,10,13},{6,8,9,17},{12,13,14,16},
{5,8,15,17},{1,4,7,16},{0,5,9,12},{1,4,8,13},{5,10,12,17}, {0,2,9,16},{4,10,13,17},
{1,2,8,16},{0,9,14,17},{4,6,13,16}, {1,8,14,17},{5,6,12,16},{0,13,15,17},{7,9,12,16},
{1,4,11,17}, {0,3,13,16},{9,11,12,17},{3,5,8,16},{0,2,11,17},{1,12,15,16}, {3,4,9,17},
{0,6,7,16},{1,3,12,17},{0,5,11,16},{7,8,13,17}, {4,9,15,16},{0,5,7,17},{6,8,15,16},
{0,3,10,17},{8,11,13,16}, {4,6,15,17},{7,8,14,16},{6,11,13,17},{3,10,12,16},{4,7,14,17},
{2,11,12,16},{9,10,15,17},{2,3,4,16},{8,10,11,17},{0,14,15,16}, {2,3,8,17},{7,10,13,16},
{5,11,14,17},{2,13,15,16}].

Lemma 4.3.2. There exists a CSCU-GDD(gu) for each (g, u) ∈ {(3, 4), (4, 4),

(4, 5), (6, 5), (6, 6)}.

Proof. We only list two examples here. First, we list the sequence of a CSCU-
GDD(34) on the point set X = Z12 with the group set G = {{i, 4 + i, 8 + i} | i ∈
Z4}.

S= [{0,1,2,3},{4,5,6,7},{8,9,10,11},{0,1,6,7},{4,5,10,11},{8,9,2,3}, {0,1,10,11},
{4,5,2,3},{8,9,6,7},{0,5,10,3},{4,9,2,7},{8,1,6,11}, {0,5,2,7},{4,9,6,11},
{8,1,10,3},{0,5,6,11},{4,9,10,3},{8,1,2,7}, {0,9,6,3},{4,1,10,7},{8,5,2,11},
{0,9,10,7},{4,1,2,11},{8,5,6,3}, {0,9,2,11},{4,1,6,3},{8,5,10,7}].
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Next, we list the sequence of a CSCU-GDD(44) on the point set X = Z16

with the group set G = {{i, 4 + i, 8 + i, 12 + i} | i ∈ Z4}.
S= [{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15},{0,1,6,7}, {4,5,10,11},{8,9,14,15},

{2,3,12,13},{0,1,10,11},{4,5,14,15}, {2,3,8,9},{6,7,12,13},{2,3,4,5},{0,1,14,15},
{6,7,8,9}, {10,11,12,13},{0,2,5,7},{4,6,9,11},{8,10,13,15},{1,3,12,14},{0,5,6,11},
{4,9,10,15},{3,8,13,14},{1,2,7,12},{0,5,10,15}, {3,4,9,14},{2,7,8,13},{1,6,11,12},
{2,4,7,9},{6,8,11,13}, {1,10,12,15},{0,3,5,14},{4,6,13,15},{0,2,9,11},{1,3,8,10},
{5,7,12,14},{0,6,9,15},{3,4,10,13},{1,7,8,14},{2,5,11,12}, {0,3,9,10},{4,7,13,14},
{1,2,8,11},{5,6,12,15},{2,4,11,13}, {1,6,8,15},{3,5,10,12},{0,7,9,14},{1,3,4,6},
{0,2,13,15}, {5,7,8,10},{9,11,12,14},{0,3,6,13},{1,4,7,10},{5,8,11,14},{0,7,10,13},
{5,9,12,15},{1,4,11,14},{2,5,8,15},{3,6,9,12}, {1,2,4,15},{0,11,13,14},{3,5,6,8},
{7,9,10,12}].

Lemma 4.3.3. There exists a CSCU-HSQS(v : s) for each (v, s) ∈ {(16, 4), (20, 8),

(22, 10), (26, 10)}.

Proof. Here we only list the sequence of a CSCU-HSQS(16 : 4) on the point set
X = Z16 with the hole set {0, 1, 2, 3}.

S= [{3,4,11,12},{0,1,6,7},{8,9,10,11},{0,1,4,5},{2,3,6,7}, {8,9,12,13},{0,2,4,6},
{8,9,14,15},{0,2,5,7},{8,10,12,14}, {0,3,4,7},{8,10,13,15},{0,3,5,6},{8,11,12,15},
{4,5,6,7}, {8,11,13,14},{2,3,4,5},{12,13,14,15},{1,3,5,7},{10,11,14,15}, {1,3,4,6},
{10,11,12,13},{1,2,5,6},{9,11,13,15},{1,2,4,7}, {9,11,12,14},{0,1,10,15},{2,7,8,9},
{0,1,11,14},{2,7,10,15}, {0,1,12,13},{2,7,11,14},{9,10,12,15},{3,6,11,14},{0,1,8,9},
{3,6,10,15},{2,7,12,13},{4,5,10,15},{3,6,8,9},{0,2,12,15}, {4,5,8,9},{3,6,12,13},
{4,5,11,14},{1,3,12,15},{9,10,13,14}, {5,6,12,15},{0,2,8,10},{4,5,12,13},{0,2,9,11},
{1,3,8,10}, {0,2,13,14},{1,3,9,11},{4,7,8,10},{1,3,13,14},{4,7,9,11}, {5,6,8,10},
{2,4,9,13},{0,3,8,11},{4,7,13,14},{1,5,10,12}, {0,3,9,13},{4,7,12,15},{5,6,13,14},
{0,3,10,12},{2,4,8,11}, {0,3,14,15},{5,6,9,11},{2,4,10,12},{1,5,9,13},{0,4,8,12},
{1,5,14,15},{6,7,10,12},{2,4,14,15},{1,5,8,11},{6,7,9,13}, {0,4,10,14},{6,7,8,11},
{0,4,9,15},{2,6,11,13},{3,5,8,12}, {0,4,11,13},{6,7,14,15},{3,5,11,13},{2,6,10,14},
{3,5,9,15}, {1,7,8,12},{3,5,10,14},{2,6,8,12},{1,7,10,14},{2,6,9,15}, {0,5,8,13},
{1,7,9,15},{0,5,12,14},{4,6,11,15},{0,5,9,10}, {1,7,11,13},{4,6,12,14},{3,7,8,13},
{0,5,11,15},{4,6,8,13}, {3,7,11,15},{4,6,9,10},{3,7,12,14},{1,2,8,13},{3,7,9,10},
{1,2,12,14},{0,6,13,15},{1,2,9,10},{0,6,8,14},{1,2,11,15}, {0,6,9,12},{5,7,8,14},
{1,4,13,15},{0,6,10,11},{5,7,13,15}, {1,4,9,12},{5,7,10,11},{1,4,8,14},{5,7,9,12},
{2,3,8,14}, {1,4,10,11},{2,3,13,15},{0,7,9,14},{2,3,10,11},{0,7,8,15}, {1,6,9,14},
{0,7,11,12},{1,6,8,15},{2,5,10,13},{3,4,8,15}, {1,6,10,13},{2,3,9,12},{0,7,10,13},
{2,5,9,14},{3,4,10,13}, {2,5,11,12},{3,4,9,14},{1,6,11,12},{2,5,8,15}].

Lemma 4.3.4. There exists a BSCU(v) for each v ∈ {20, 22, 26, 34, 38}.
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Proof. Here we only show the existence of a BSCU(20). Take X = Z19 ∪{∞} as
the point set. Let

A= [{0,4,5,6},{2,7,12,14},{1,3,4,9},{0,8,14,17},{∞,1,7,9}, {5,11,18,2},
{0,1,3,7},{2,6,11,17}, {∞,1,10,13},{14,16,18,2},{7,15,0,6},{1,8,9,12},
{5,6,13,15}, {1,2,12,17},{∞,8,9,13}],

and S = [A,A+1, A+2, . . . , A+18], where additions are taken modulo 19. Then

S is the required BSCU(20).

4.4 Existence of BSCUs

First, we denote the set of all positive integers v such that an S(t,K, v) exists

is denoted by Bt(K).

Theorem 4.4.1. ([38]) B3({4, 5, 6}) = {v > 0 | v ≡ 0, 1, 2 (mod 4) and v 6=
9, 13}.

Lemma 4.4.2. ([59]) There exists a BSCU(v) for v ∈ {14, 16, 32, 46, 56}.

Lemma 4.4.3. If there exists a CSCU-GDD(gn), then there exists a CSCU-

GDD((mg)n) for any integer m ≥ 3.

Proof. Combining Lemma 4.3.2 with Theorem 4.2.6, we know that there exists a

CSCU-GDD(m4) for any m ≥ 3.

Let S = [b0, . . . , bq−1] be the CSCU-GDD(gn). For any bi ∈ S, there is a

CSCU-GDD(m4), denoted Si, on the point set bi×Im for any integer m ≥ 3. Let

S ′ = [S0, . . . , Sq−1]. Then it is easy to check that S ′ is a CSCU-GDD((mg)n).

Lemma 4.4.4. There exists a CSCU-CQS(12n : s) for each s ∈ {8, 10} and

n ≥ 4.

Proof. For each n ≡ 0, 1 (mod 3) and n ≥ 4, there exists an S(3, 4, 2n + 2).

Deleting two points from this design yields a 2-FG(3, ({3}, {3}, {4}), 2n) of type

2n. By counting the numbers of blocks in the S(3, 4, 2n + 2) containing t, where

t = 0, 1, 2, common points, we can know that in the 2-FG(3, ({3}, {3}, {4}), 2n)
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of type 2n, when n ≥ 4, there exist two disjoint blocks with one of size 4 and

the other of size 3. For each s ∈ {8, 10}, applying Theorem 4.2.3 with a CSCU-

CQS(63 : s− 6) and a CSCU-GDD(64), we obtain a CSCU-CQS(12n : s). Here,

the ingredient designs come from Theorem 4.2.6 and Lemma 4.3.1.

For any n ≡ 2 (mod 3) and n ≥ 5, there is a CQS(6
n+1

3 : 0) by Lemma 3.4.3.

For n = 5, 8, 11, it can be checked from the detailed construction in [55] for each

of these CQS(6
n+1

3 : 0) that there exist two disjoint blocks a and b intersecting

two groups, say g1 and g2, in two points, respectively. So there are two points

y ∈ g1 and z ∈ g2 not covered by a and b. Choose x ∈ a ∩ g2 and delete x, y.

Then we obtain a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 10) of type 2n with two disjoint

blocks a \ {x} ∈ B1 and b ∈ T . For n ≥ 14, let x, y be two points from different

groups gx, gy, respectively, and g be a group disjoint from a block containing x, y.

By deleting x and y, we obtain a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2n) of type 2n

with two disjoint blocks gx \ {x} ∈ B1 and g ∈ T . Then for each s ∈ {8, 10}, by

applying Theorem 4.2.3 with a CSCU-CQS(63 : s−6), a CSCU-CQS(65 : s−6), a

CSCU-GDD(64) and a CSCU-GDD(66), we obtain a CSCU-CQS(12n : s), where

the ingredient designs come from Theorem 4.2.6, Lemmas 4.3.1 and 4.3.2.

Lemma 4.4.5. There exists a BSCU(v) for each v ≡ 8, 10 (mod 12) and v ≥ 12.

Proof. For each v ∈ {20, 22, 32, 34, 46}, there is a BSCU(v) by Lemmas 4.3.4 and

4.4.2. For v = 44, there is a BSCU(v) by applying Theorem 4.1.1.(1) with a

BSCU(22).

For each v ≡ 8, 10 (mod 12) and v ≥ 56, there is a CSCU-CQS(12n : s)

where v = 12n + s, n ≥ 4 and s ∈ {8, 10} by Lemma 4.4.4. Then by applying

Theorem 4.2.2 with a CSCU-HSQS(12+s : s), we obtain a CSCU-HSQS(12n+s :

12 + s), and furthermore, by applying Theorem 4.2.1 with a BSCU(12 + s), we

obtain a BSCU(12n + s), where the ingredient CSCU-HSQSs come from Lemma

4.3.3.

Lemma 4.4.6. There exists a CSCU-GDD(12u) for each u ∈ {5, 6}.

Proof. From Lemma 4.3.2, we know that there exists a CSCU-GDD(45). Apply-

ing Lemma 4.4.3 with m = 3, we obtain a CSCU-GDD(125).
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From Theorem 1.1.1, we know that there exists an H(36). Applying Corollary

4.2.5 with a CSCU-GDD(44) from Lemma 4.3.2, we obtain a CSCU-GDD(126).

Lemma 4.4.7. There exists a CSCU-CQS(12n : s) for each n ∈ {5, 8} and

s ∈ {2, 4}.

Proof. For each n ∈ {5, 8}, there is an S(3, 5, 3n+2) in [28]. Deleting two points

gives a 2-FG(3, ({4}, {4}, {5}), 3n) of type 3n, which is also a 1-FG(3, ({4}, {4, 5}),
3n) of type 3n. By counting the numbers of blocks in the S(3, 5, 3n+2) containing

t, where t = 0, 1, 2, common points, we can know that in the 2-FG(3, ({4}, {4}, {5}),
3n) of type 3n, when n = 5, 8, there exist two disjoint blocks with one of size 5

and the other of size 4. For each s ∈ {2, 4}, by applying Theorem 4.2.4 with a

CSCU-CQS(44 : s), a CSCU-GDD(44) and a CSCU-GDD(45), which come from

Lemmas 4.3.1 and 4.3.2, we obtain a CSCU-CQS(12n : s).

Lemma 4.4.8. There exists a CSCU-CQS(12n : s) for s ∈ {2, 4} and n ≡ 0, 1, 3

(mod 4), n ≥ 7, n 6= 8, 12.

Proof. For each n ≡ 0, 1, 3 (mod 4), n ≥ 7 and n 6= 8, 12, there exists an

S(3, {4, 5, 6}, n + 1) (X,B) by Theorem 4.4.1. Let x, y be two points of X, and

b1, b2, . . . , bw be the blocks in B containing both x and y. Then {b1 \ {x, y}, b2 \
{x, y}, . . . , bw \ {x, y}} is a partition of X \ {x, y}, and 2 ≤ |bi \ {x, y}| ≤ 4 for

i = 1, 2, . . . , w. Let u ∈ b1 \ {x, y}, v ∈ b2 \ {x, y}, and b be a block containing

both u and v. If w ≥ 7, which would happen if n ≥ 27, then there must exist one

bi \{x, y}, say i = i0, which is disjoint with b. Deleting u from this 3-BD yields a

1-FG(3, ({3, 4, 5}, {4, 5, 6}), n) of type 1n with two disjoint blocks b\{u} ∈ B1 and

bi0 ∈ T . For each n ≡ 1, 3 (mod 6), there exists an S(3, 4, n + 1). By counting

the numbers of blocks in the S(3, 4, n + 1) containing t, where t = 0, 1, 2, com-

mon points, we can know that there exist two disjoint blocks b, b′ when n ≥ 7.

Deleting one point x ∈ b from this 3-BD yields a 1-FG(3, ({3}, {4}), n) of type

1n with two disjoint blocks b \ {x} ∈ B1 and b′ ∈ T . For n = 16, there exists an

S(3, 5, 17) from [28]. By the same method as above, we know that there exists a

1-FG(3, ({4}, {5}), n) of type 1n with two disjoint blocks, one in B1 and the other
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in T . For n = 20, 24, there exist an S(3, 6, 22) and an S(3, 6, 26) from [28]. In a

similar fashion, we can prove the existence of two disjoint blocks in each of these

two Steiner systems. Deleting two points from one of these two disjoint blocks

yields a 1-FG(3, ({4, 5}, {5, 6}), n) of type 1n with two disjoint blocks, one in B1

and the other in T . For n = 11, 17, 23, just as in the proof of Lemma 4.4.4, we

can know that there exist two disjoint blocks in the CQS(6
n+1

6 : 0). Deleting one

point from one of these two disjoint blocks yields a 1-FG(3, ({3, 5}, {4, 6}), n) of

type 1n with two disjoint blocks, one in B1 and the other in T . Now for each

s ∈ {2, 4}, by applying Theorem 4.2.3 with a CSCU-CQS(12h : s) and a CSCU-

GDD(12h+1) for each h ∈ {3, 4, 5}, we obtain a CSCU-CQS(12n : s). Here, the

ingredient designs come from Theorem 4.2.6, Lemmas 4.3.1, 4.4.6 and 4.4.7.

Lemma 4.4.9. There exists a BSCU(12n+s) for s ∈ {2, 4}, n ≡ 0, 1, 3 (mod 4),

n ≥ 4 and n 6= 12.

Proof. For each n ≡ 0, 1, 3 (mod 4), n ≥ 4 and n 6= 12, there exists a CSCU-

CQS(12n : s) for s ∈ {2, 4} by Lemmas 4.3.1, 4.4.7 and 4.4.8. Then by apply-

ing Theorem 4.2.2 with a CSCU-HSQS(12 + s : s) and Theorem 4.2.1 with a

BSCU(12 + s), we obtain a BSCU(12n + s). Here, the ingredient designs come

from Theorem 4.1.1, Lemmas 4.3.3 and 4.4.2, where the BSCU(14) in Theorem

4.1.1 is actually a CSCU-HSQS(12 + 2 : 2).

Lemma 4.4.10. There exists a BSCU(48n + 26) for any n ≥ 0.

Proof. A BSCU(26) was shown in Lemma 4.3.4. For each integer n ≥ 1, as was

shown in the proof of Lemma 4.4.4, there exists a 2-FG(3, ({3}, {3}, {4}), 2(3n +

1)) of type 23n+1 with two disjoint blocks, one being of size 4 and the other

of size 3. Applying Theorem 4.2.3 with a CSCU-CQS(83 : 2) and a CSCU-

GDD(84), we obtain a CSCU-CQS(163n+1 : 10). Then by applying Theorem

4.2.2 with a CSCU-HSQS(26 : 10) and Theorem 4.2.1 with a BSCU(26), we

obtain a BSCU(48n + 26). Here, the ingredient designs come from Theorem

4.2.6, Lemmas 4.3.1, 4.3.3 and 4.3.4.

Lemma 4.4.11. There exists a BSCU(12n+s) for n ∈ {1, 3, 12} and s ∈ {2, 4}.
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Proof. For each v ∈ {14, 16, 38}, there is a BSCU(v) by Lemmas 4.3.4 and 4.4.2.

For each v ∈ {40, 148}, there is a BSCU(v) by applying Theorem 4.1.1.(1) with

a BSCU(u) for u ∈ {20, 74} in Lemmas 4.3.4 and 4.4.10, respectively.

For v = 146, there exists an S(3, 6, 26) in [28]. Deleting two points gives

a 2-FG(3, ({5}, {5}, {6}), 24) of type 46, which is also a 1-FG(3, ({5}, {5, 6}), 24)

of type 46. It can be easily shown that this 2-FG(3, ({5}, {5}, {6}), 24) has two

disjoint blocks with one of size 6 and the other of size 5. Applying Theorem

4.2.3 with a CSCU-CQS(65 : 2), a CSCU-GDD(65) and a CSCU-GDD(66), we

obtain a CSCU-CQS(246 : 2). Then applying Theorem 4.2.2 with a CSCU-

HSQS(26 : 2) and Theorem 4.2.1 with a BSCU(26), we obtain a BSCU(146).

Here, the ingredient designs come from Theorem 4.1.1, Lemmas 4.3.1 and 4.3.2,

where the BSCU(26) in Theorem 4.1.1 is actually a CSCU-HSQS(26 : 2).

Lemma 4.4.12. There exists a BSCU(v) for v ≡ 28 (mod 48).

Proof. Combining Lemmas 4.4.9 and 4.4.11, we have the fact that there exists a

BSCU(12n + 2) for each n ≡ 1 (mod 2). Then apply Theorem 4.1.1.(1).

Combining Lemmas 4.4.5 and 4.4.9–4.4.12, we have the following conclusion.

Theorem 4.4.13. The necessary conditions for the existence of a BSCU(v),

namely, v ≡ 2, 4 (mod 6) and v ≥ 4, are also sufficient with two exceptions

v = 8, 10.





Chapter 5

Fault-Tolerant Routings with Levelled

Minimum Optical Indices

The design of fault-tolerant routings with levelled minimum optical indices plays

an important role in the context of optical networks. However, not much is known

for the existence of optimal routings with levelled minimum optical indices be-

sides the results established by Dinitz, Ling and Stinson via the partitionable

Steiner quadruple systems approach. In this chapter, we introduce a new con-

cept of a large set of even levelled
−→
P3-design of order v and index 2, denoted by

(v,
−→
P3, 2)-LELD, which is equivalent to an optimal, levelled (v− 2)-fault tolerant

routing with levelled minimum optical indices of the complete network with v

nodes. Based on the theory of 3-wise balanced designs and partitionable cande-

labra systems, several infinite classes of (v,
−→
P3, 2)-LELDs are constructed. As a

consequence, the existence problem for optimal routings with levelled minimum

optical indices is solved nearly one-third.

5.1 Introduction

The design of routings in optical networks has been a topic of considerable

recent interest (see, for examples, [2, 5, 6, 7, 53]). In the model of WDM opti-

cal networks, namely, wavelength division multiplexing optical networks, routing

nodes are joined by fiber-optic links, and each link can support some fixed num-

ber of wavelengths. Each routing path uses a particular wavelength, and two

paths must use different wavelengths if they have common links. Most research

concentrates on determining the minimum total number of wavelengths used in

the network, which is related to two basic invariants – the arc-forwarding and

optical indices. The f -tolerant arc-forwarding and f -tolerant optical indices were
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introduced by Maňuch and Stacho when they considered the fault-tolerant issues

in [53]. The parameter f represents the number of faults that can be tolerated

in the optical network. That is, we can provide a routing between any two nodes

even if some number (up to f) of nodes and/or links fail. In this chapter, we

focus on the fault-tolerant routings in the complete optical network.

We first review definitions of several desirable properties that we are going to

investigate in the setting of fault-tolerant routings. These terms have previously

been defined in papers such as [6, 21, 22].

Let G = (V (G), A(G)) be a symmetric directed graph, i.e., (u, v) ∈ A(G)

implies (v, u) ∈ A(G). An f -fault tolerant routing is a set of directed paths in G,

say Rf = {Pi(u, v) : u 6= v, 0 ≤ i ≤ f}, where the following two properties are

satisfied:

1. every Pi(u, v) is a directed path in G from vertex u to vertex v, and

2. for all vertices u and v where u 6= v, the f + 1 paths Pi(u, v) (0 ≤ i ≤ f)

are internally vertex disjoint.

For 0 ≤ i ≤ f , define Li = {Pi(u, v) : u 6= v}, which is called the ith level

of the routing. For convenience, we write Rf in the form Rf = (L0,L1, . . . ,Lf ).

It is clear that Rj = (L0,L1, . . . ,Lj) is a j-fault tolerant routing, for 0 ≤ j ≤ f .

Therefore an f -fault tolerant routing can be regarded as a sequence of j-fault

tolerant routings for 0 ≤ j ≤ f , namely, (R0, . . . ,Rf ).

The load −→π (e) on an arc e ∈ A(G) is defined to be the number of paths in

the routing that contain the arc e. Define −→π (Rf ) = max{−→π (e) : e ∈ A(G)}.
Further, define −→π f (G) = minRf

{−→π (Rf )} and call −→π f (G) the f -fault tolerant

arc-forwarding index of G. The routing Rf is said to be optimal if −→π f (G) =
−→π (Rf ), and to be optimal, levelled if −→π j(G) = −→π (Rj), for all 0 ≤ j ≤ f .

Let n ≥ 2 be a positive integer and let
−→
Kn denote the complete symmetric

directed graph on a set of n vertices, say X. By [15, 21, 22], we have

Theorem 5.1.1. Suppose there is an f -fault tolerant routing of
−→
Kn, say Rf =

(L0,L1, . . . ,Lf ). Then 0 ≤ f ≤ n− 2 and −→π f (
−→
Kn) ≥ 2f + 1 for all f , 0 ≤ f ≤

n− 2. Furthermore, equality is attained (i.e., the routing is an optimal, levelled

routing) if and only if the following properties are satisfied:
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1. L0 consists of all the arcs in
−→
Kn (that is, L0 comprises n(n − 1) directed

paths, each having length one), and

2. for 1 ≤ j ≤ n−2, Lj consists of n(n−1) directed paths, each having length

two, such that every arc in
−→
Kn is in exactly two directed paths in Lj.

The following theorem was proved in [15, 21, 22].

Theorem 5.1.2. [15, 21, 22] For each integer n ≥ 2, there exists an optimal,

levelled (n− 2)-fault tolerant routing of
−→
Kn.

Let W be a set of wavelengths. A wavelength assignment to the directed

paths inRf is defined to be a map α : Rf →W such that α(P ) 6= α(Q) whenever

P,Q ∈ Rf are two directed paths that share a common arc. Let −→w (Rf ) denote

the minimum cardinality of a set W such that an assignment of wavelengths for

Rf exists that satisfies the previous property. Denote −→w f (G) = minRf
{−→w (Rf )}

and call−→w f (G) the f -fault tolerant optical index of G. It is obvious that−→w f (G) ≥
−→π f (G). An optimal, levelled f -fault tolerant routingRf is said to have minimum

optical indices if −→w (Ri) = −→w i(G) for all i such that 0 ≤ i ≤ f .

For 0 ≤ i ≤ f , construct a graph whose vertices are the directed paths in Li.

Two vertices are defined to be adjacent if they have a common arc. This graph

is called the path graph of Li. In many applications, it could be desirable that

wavelength assignments for Ri−1 do not change when we determine wavelength

assignments for Ri. Under this assumption, it is easy to see that we require

at most δi “extra” wavelengths when we proceed the assignment from Ri−1 to

Ri, where δi is the chromatic number of the path graph of Li, for 0 ≤ i ≤ f .

Define −→w L(Ri) =
∑i

j=0 δj, 0 ≤ i ≤ f . It is clear that −→w (Ri) ≤ −→w L(Ri).

An optimal, levelled f -fault tolerant routing Rf is said to have levelled minimum

optical indices if −→w L(Ri) = −→w i(G) for all i such that 0 ≤ i ≤ f . A routing having

levelled minimum optical indices has minimum optical indices. The converse is

not true. Here is a counterexample given in [15].

Example 5.1.3. [15] The unique 1-fault tolerant routing of
−→
K3 has minimum

optical indices, but it does not have levelled minimum optical indices.
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Proof. The unique 1-fault tolerant routing R1 of
−→
K3 on X = {0, 1, 2} is as

follows:

L0 : (0, 1)3, (0, 2)2, (1, 0)1, (1, 2)2, (2, 0)1, (2, 1)3

L1 : (0, 2, 1)1, (0, 1, 2)1, (1, 2, 0)3, (1, 0, 2)3, (2, 1, 0)2, (2, 0, 1)2

Here, the superscripts denote wavelengths. The wavelength assignment shows

that −→w (R0) = 1 and −→w (R1) = 3, which is minimal.

It is clear that −→w L(R0) = −→w (R0) = 1. However, when we proceed the

assignment from R0 to R1, three “extra” wavelengths should be used. That is
−→w L(R1) = 4. Therefore, the routing R1 does not have levelled minimum optical

indices.

The path graph of L0 contains no edges, so δ0 = 1. For each i, 1 ≤ i ≤ f ,

the path graph of Li is a union of disjoint cycles. It is straightforward that
−→w L(Ri) ≥ −→π i(

−→
Kn) ≥ 2i + 1, equality holds when δi = 2 for all 1 ≤ i ≤ f , which

happens if and only if all the cycles have even length. So we have

Theorem 5.1.4. An optimal, levelled (n − 2)-fault tolerant routing of
−→
Kn, say

Rn−2 = (L0,L1, . . . ,Ln−2) has levelled minimum optical indices if and only if the

following property is satisfied:

3. The path graph of each Li (1 ≤ i ≤ n− 2) has only even cycles.

Based on the theory of 3-wise balanced designs and partitionable cande-

labra systems, Ji [39] gave a simple new proof for the existence of large sets of

Steiner triple systems. In this chapter, via a similar approach we will concentrate

on constructing optimal, levelled (n − 2)-fault tolerant routings Rn−2 with lev-

elled minimum optical indices of the complete directed graph
−→
Kn. The following

results are known.

Theorem 5.1.5. [15] For each n, 5 ≤ n ≤ 8, n = 4k or n = 2(pk + 1) with

p ∈ {7, 31}, there exists an optimal, levelled (n− 2)-fault tolerant routing of
−→
Kn

that has levelled minimum optical indices.

The chapter is organized as follows. In Section 5.2, we first define a new class

of combinatorial objects, large sets of even levelled (n,
−→
P3, 2)-design (LELDs),
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which are equivalent to the optimal, levelled (n− 2)-fault tolerant routings with

levelled minimum optical indices. Then, we present a recursive construction

for LELDs by using the theory of 3-wise balanced designs and partitionable

candelabra systems. In Section 5.3, some small ingredient designs are constructed

directly. Combining these ingredient designs together with the recursive methods

established in Section 5.2, we are able to give several infinite classes of LELDs

in Section 5.4, which imply the existence of the corresponding routings having

levelled minimum optical indices.

5.2 Definitions and Recursive Constructions

Let
−→
P3 = (a, b, c) be a directed path which contains two arcs (a, b) and (b, c).

Let λ
−→
Kn be the directed multigraph on n vertices in which each ordered pair of

vertices is joined by λ arcs. A
−→
P3-decomposition of λ

−→
Kn is a partition of the arcs

of λ
−→
Kn into paths isomorphic to

−→
P3, which is also called a

−→
P3-design of order n and

index λ and denoted by (n,
−→
P3, λ)-design. A similar concept of P3-decomposition

of the undirected graph was given in [46]. If a set B of
−→
P3 paths contains exactly

one path from u to v for every two vertices u, v of
−→
Kn, then we call the set B

a level. A level is said to be even if its path graph has only even cycles. An

(n,
−→
P3, 2)-design is said to be levelled (even levelled) if it is a level (an even level),

which is denoted by (n,
−→
P3, 2)-LD ((n,

−→
P3, 2)-ELD).

A large set of (n,
−→
P3, 2)-LD, denoted by (n,

−→
P3, 2)-LLD, is a partition B1,B2,

. . . ,Bn−2 of all
−→
P3 paths in

−→
Kn such that each Bi forms an (n,

−→
P3, 2)-LD. If each

Bi is even levelled, then we call the partition a large set of (n,
−→
P3, 2)-ELD, which

is denoted by (n,
−→
P3, 2)-LELD.

As a consequence of Theorems 5.1.1 and 5.1.4, we have the following theorem.

Theorem 5.2.1. Suppose that B1,B2, . . . ,Bn−2 form an (n,
−→
P3, 2)-LLD. Let L0

consist of all arcs in
−→
Kn, Li consist of all paths in Bi, 1 ≤ i ≤ n − 2, then

Rn−2 = (L0,L1, . . . ,Ln−2) is an optimal, levelled (n− 2)-fault tolerant routing of
−→
Kn. The reverse is also true. Furthermore, Rn−2 has levelled minimum optical

indices if and only if B1,B2, . . . ,Bn−2 form an (n,
−→
P3, 2)-LELD.

By Theorems 5.1.2 and 5.1.5, we have the following corollaries.
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Corollary 5.2.2. There exists an (n,
−→
P3, 2)-LLD for any integer n ≥ 2.

Corollary 5.2.3. For each n, 5 ≤ n ≤ 8, n = 4k or n = 2(pk + 1) with

p ∈ {7, 31}, there exists an (n,
−→
P3, 2)-LELD.

In the remainder of this section, we will present a recursive construction for

LELDs via partitionable candelabra systems having even levelled property. First,

we give some notations and terminology. The interested reader may refer to [14]

for the undefined terms as well as a general overview of design theory.

A candelabra
−→
P3-system of order n, denoted by (n,

−→
P3)-CS, is a quadruple

(X,S,G,A) that satisfies the following properties:

1. X is the vertex set of
−→
Kn;

2. S is a subset of X of size s;

3. G = {G1, G2, . . .} is a set of non-empty subsets of X \ S, which partition

X \ S;

4. A consists of all
−→
P3 paths of

−→
Kn not contained in any subgraph spanned by

S ∪G for each G ∈ G.

A group divisible
−→
P3-design of order n and index λ, denoted by (n,

−→
P3, λ)-

GDD is a triple (X,G,B) such that

1. X is the vertex set of
−→
Kn;

2. G = {G1, G2, · · · } is a set of nonempty subsets of X which partition X;

3. B is a family of
−→
P3 paths of

−→
Kn such that each path intersects any given

group in at most one point;

4. each arc from two different groups is contained in exactly λ paths of B.

By the group type of an (n,
−→
P3)-CS and an (n,

−→
P3, λ)-GDD, we use the same

notations as t-CS and GDD(t,K, v) respectively. An (n,
−→
P3, 2)-GDD (X,G,B) is

called a level, denoted by (n,
−→
P3, 2)-LGDD, if B contains exactly one path from
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u to v, for every two vertices u, v from two different groups. An (n,
−→
P3, 2)-GDD

is called even levelled, denoted by (n,
−→
P3, 2)-ELGDD, if it is an even level, that is

its path graph has only even cycles.

An (n,
−→
P3)-CS of type (ga1

1 ga2
2 . . . gar

r : s) (X,S,G,A) with s ≥ 2 is called

partitionable, denoted by (n,
−→
P3)-PCS, if the path set A can be partitioned into

components Ax (x ∈ G,G ∈ G) and A1, A2, . . ., As−2 with the following two

properties: (i) for any x ∈ G and G ∈ G, Ax is the path set of an (n,
−→
P3, 2)-GDD

of type 1n−s−|G|(|G| + s)1 with G ∪ S as the long group; (ii) for 1 ≤ i ≤ s − 2,

(X \ S,G,Ai) is an (n − s,
−→
P3, 2)-GDD of type ga1

1 ga2
2 . . . gar

r . If each component

of an (n,
−→
P3)-PCS is levelled (even levelled), then we denote it as (n,

−→
P3)-LPCS

((n,
−→
P3)-ELPCS).

In order to use an (n,
−→
P3)-ELPCS to construct an (n,

−→
P3, 2)-LELD, we need a

holey large set. Let X be an n-element set and Y be an s-subset of X with s ≥ 2.

Let
−→
X (3) and

−→
Y (3) denote all

−→
P3 paths in the complete symmetric directed graph

on X and Y , respectively. A holey large set of (n,
−→
P3, 2)-LD on X with a hole

Y , denoted by (n, s;
−→
P3, 2)-HLLD, is a partition of

−→
X (3) \ −→Y (3) into components

A1, A2, . . ., An−2 with the properties that (1) for 1 ≤ i ≤ n − s, each (X,Ai)

is an (n,
−→
P3, 2)-LD; (2) for n − s + 1 ≤ i ≤ n − 2, each Ai is the path set of an

(n,
−→
P3, 2)-LGDD of type 1n−ss1 with the long group Y . If each component of an

(n, s;
−→
P3, 2)-HLLD is even, then we denote it by (n, s;

−→
P3, 2)-HLELD.

A generalized
−→
P3-frame, denoted by F(

−→
P3, v{m}), is a collection of triples

{(X,G,Br) : r ∈ X}, where X is the vertex set of
−−→
Kvm, G is a partition of X

into v sets of m points each, such that (X \G,G \ {G},Br) is a ((v− 1)m,
−→
P3, 2)-

GDD of type mv−1 for each r ∈ G and G ∈ G, ∪r∈XBr consists of all the
−→
P3

paths intersecting every given group in at most one point, and all Br, r ∈ X are

pairwise disjoint. If each component of an F(
−→
P3, v{m}) is levelled (even levelled),

then we denote it by LF(
−→
P3, v{m}) (ELF(

−→
P3, v{m})).

Now, we give several recursive constructions for LELDs.

Theorem 5.2.4. Suppose there exists an H(gn) and an ELF(
−→
P3, 4{m}), then

there exists an ELF(
−→
P3, n{gm}).

Proof. Let (X,G,B) be an H(gn). Let X ′ = X × Zm and G ′ = {G′ = G × Zm :
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G ∈ G}. We will construct an ELF(
−→
P3, n{gm}) on X ′ with group set G ′.

For each B ∈ B, construct an ELF(
−→
P3, 4{m}) on B × Zm with group set

{x×Zm : x ∈ B}. Denote the path set by AB which can be partitioned into 4m

subsets AB(x, i), (x, i) ∈ B×Zm, such that each AB(x, i) is a (3m,
−→
P3, 2)-ELGDD

of type m3 on (B \ {x})× Zm with group set {y × Zm : y ∈ B \ {x}}.
For each x ∈ X and i ∈ Zm, let C(x, i) =

⋃
x∈B∈BAB(x, i). It is easy to

check that C(x, i) is a (gm(n − 1),
−→
P3, 2)-ELGDD of type (gm)n−1 with group

set G ′ \ {G′ : x ∈ G}. In fact, since every two distinct blocks B and B′ from

the set {B : x ∈ B ∈ B} have at most one common point besides x, every two

paths from AB(x, i) and AB′(x, i) respectively have no common arc. Then by

the definition of path graph, C(x, i) is even.

Since all C(x, i) with x ∈ X and i ∈ Zm are disjoint, they form an ELF(
−→
P3,

n{gm}).

Theorem 5.2.5. Suppose there exists an (n,
−→
P3)-ELPCS of type (g1

0g
a1
1 ga2

2 . . . gar
r :

s) with n =
∑

1≤i≤r aigi+g0+s. If there is a (gi+s, s;
−→
P3, 2)-HLELD for 1 ≤ i ≤ r,

then there is an (n, g0 + s;
−→
P3, 2)-HLELD. Furthermore, if a (g0 + s,

−→
P3, 2)-LELD

exists, then there is an (n,
−→
P3, 2)-LELD.

Proof. Let (X,S,G,A) be the given (n,
−→
P3)-ELPCS of type (g1

0g
a1
1 ga2

2 . . . gar
r : s).

By the definition, A can be partitioned into subsets Ay (y ∈ G and G ∈ G)

and Ai (1 ≤ i ≤ s − 2) with the properties that each Ay is the path set of an

(n,
−→
P3, 2)-ELGDD of type 1n−|G|−s(|G|+ s)1 with the long group G ∪ S and that

each (X \ S,G, Ai) is an (n− s,
−→
P3, 2)-ELGDD of type g1

0g
a1
1 ga2

2 · · · gar
r .

Let G0 be the special group with |G0| = g0. For each G ∈ G with G 6= G0,

suppose the given (|G|+ s, s;
−→
P3, 2)-HLELD consists of |G| (|G|+ s,

−→
P3, 2)-ELDs

with path sets By (y ∈ G) and s− 2 (|G|+ s,
−→
P3, 2)-ELGDDs of type 1|G|s1 with

the long group S and path sets BG
i (1 ≤ i ≤ s− 2).

For each y ∈ G, G ∈ G with G 6= G0, let Cy = Ay

⋃By. Since the path

graph of Cy is the disjoint union of path graphs of Ay and By, each (X, Cy) is

an (n,
−→
P3, 2)-ELD. For 1 ≤ i ≤ s − 2, let Ci = Ai

⋃
(
⋃

G∈G,G 6=G0
BG

i ). It is easy

to check that the path graph of Ci is also the disjoint union of path graphs of
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all its components. Then each Ci is the path set of an (n,
−→
P3, 2)-ELGDD of type

1n−g0−s(g0 +s)1 with the long group G0∪S. So {Cy : y ∈ G ∈ G, G 6= G0}
⋃{Ay :

y ∈ G0}
⋃{Ci : 1 ≤ i ≤ s− 2} forms an (n, g0 + s;

−→
P3, 2)-HLELD.

Finally, suppose the given (g0 + s,
−→
P3, 2)-LELD on G0

⋃
S has g0 + s − 2

disjoint (g0 + s,
−→
P3, 2)-ELDs with path sets By (y ∈ G0) and Bi (1 ≤ i ≤ s− 2),

respectively. Then the (X,Ay ∪ By) and the (X, Ci

⋃Bi) are all (n,
−→
P3, 2)-ELDs,

and these n− 2 ELDs form an (n,
−→
P3, 2)-LELD.

Theorem 5.2.6. Suppose that there exists an e-FG(3, (K1, K2, . . . , Ke, KT ),
∑r

i=1

aigi) of type ga1
1 ga2

2 . . . gar
r . If there is an (mk1 + t,

−→
P3)-ELPCS of type (mk1 : t)

for each k1 ∈ K1, an ELF(
−→
P3, (ki + 1){m}) for each ki ∈ Ki, 2 ≤ i ≤ e, and an

ELF(
−→
P3, k{m}) for each k ∈ KT , then there is an (m

∑r
i=1 aigi+t+(e−1)m,

−→
P3)-

ELPCS of type ((mg1)
a1(mg2)

a2 . . . (mgr)
ar : t + (e− 1)m).

Proof. Let (X,G,A1,A2, . . . ,Ae,AT ) be an e-FG(3, (K1, K2, . . . , Ke, KT ),
∑r

i=1

aigi) of type ga1
1 ga2

2 . . . gar
r . Let S = {∞} × Zs, where s = t + (e − 1)m. We

shall construct the desired design on X ′ = (X × Zm) ∪ S with the group set

G ′ = {G′ = G× Zm : G ∈ G} and the stem S, where (X × Zm) ∩ S = ∅.
Denote Gx = {x} × Zm for x ∈ X and GA = {Gx : x ∈ A} for any subset

A of X. Denote S1 = {∞} × Zt and Si = {∞} × {t + (i − 2)m, t + (i − 2)m +

1, . . . , t + (i− 1)m− 1} for 2 ≤ i ≤ e.

For each block A ∈ A1, construct an (m|A|+ t,
−→
P3)-ELPCS of type (m|A| : t)

on (A× Zm) ∪ S1 having group set GA and stem S1. Denote its path set by DA.

By the definition, DA can be partitioned into subsets DA(x, i) ((x, i) ∈ A× Zm)

and DA(j) (2 ≤ j ≤ t − 1) with the properties that each DA(x, i) is the path

set of an (m|A|+ t,
−→
P3, 2)-ELGDD of type 1m(|A|−1)(m + t)1 with the long group

Gx ∪ S1 and that each (A × Zm, GA,DA(j)) is an (m|A|,−→P3, 2)-ELGDD of type

m|A|.

For each block A ∈ Ai, 2 ≤ i ≤ e, construct an ELF(
−→
P3, (|A| + 1){m}) on

(A × Zm) ∪ Si having group set GA ∪ {Si}. Denote its path set by CA. By the

definition, CA can be partitioned into subsets CA(x, i) ((x, i) ∈ (A × Zm) ∪ Si)

with the property that each CA(x, i) is the path set of an (m|A|,−→P3, 2)-ELGDD
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of type m|A| with the group set GA when x = ∞ or (GA ∪ {Si}) \ {Gx} when

x ∈ A.

For each block A ∈ AT , construct an ELF(
−→
P3, |A|{m}) on A × Zm having

group set GA. Denote its path set by BA. By the definition, BA can be partitioned

into subsets BA(x, i) ((x, i) ∈ A × Zm) with the property that each BA(x, i) is

the path set of an (m(|A| − 1),
−→
P3, 2)-ELGDD of type m|A|−1 with the group set

GA \ {Gx}.
For any x ∈ X and i ∈ Zm, let

F(x, i) =
( ⋃

x∈A∈A1

DA(x, i)
) ⋃ ( ⋃

x∈A∈Ai,2≤i≤e

CA(x, i)
) ⋃ ( ⋃

x∈A∈AT

BA(x, i)
)
.

For any 2 ≤ i ≤ t− 1, let

F(∞, i) =
⋃

A∈A1

DA(∞, i).

For any t + (j − 2)m ≤ i ≤ t + (j − 1)m− 1, 2 ≤ j ≤ e, let

F(∞, i) =
⋃

A∈Aj

CA(∞, i).

Let

F =
( ⋃

x∈X,i∈Zm

F(x, i)
) ⋃ ( ⋃

2≤i≤s−1

F(∞, i)
)
.

For each x ∈ G and i ∈ Zm, F(x, i) is the path set of an (m
∑r

i=1 aigi + t +

(e− 1)m,
−→
P3, 2)-ELGDD of type 1m(

Pr
i=1 aigi−|G|)(m|G|+ t + (e− 1)m)1 with the

long group G′ ∪ S. Each (X ′,G ′,F(∞, i)) is an (m
∑r

i=1 aigi,
−→
P3, 2)-ELGDD of

type (mg1)
a1(mg2)

a2 . . . (mgr)
ar . So they form an (m

∑r
i=1 aigi+t+(e−1)m,

−→
P3)-

ELPCS of type ((mg1)
a1(mg2)

a2 . . . (mgr)
ar : t + (e− 1)m).

5.3 Direct Constructions

Lemma 5.3.1. There does not exist a (3h,
−→
P3, 2)-ELGDD of type h3 for any odd

integer h > 0.
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Proof. Suppose that there exists a (3h,
−→
P3, 2)-ELGDD of type h3, then we can

construct such a design (X,B) on Z3h with group set {{i, i + 3, . . . , i + 3(h −
1)} : 0 ≤ i ≤ 2}, where |B| = 6h2. From the definition, we know that the

three vertices in each path are from distinct groups, i.e., distinct modulo 3. For

each B = (x, y, z) ∈ B, let B̂ ≡ (x, y, z) (mod 3) be the path restricted to

Z3. Let A = {B ∈ B|B̂ ∈ {(0, 1, 2), (1, 2, 0), (2, 0, 1)}} and A′ = {B ∈ B|B̂ ∈
{(0, 2, 1), (2, 1, 0), (1, 0, 2)}}. Then it is easy to check that B is the disjoint union

of A and A′. Since any two paths coming from A and A′ respectively have no

common arc, they can not be in the same cycle in the path graph of B. But

|A| = |A′| = 3h2 is odd, neither A nor A′ can be partitioned into even cycles

only, which leads to a contradiction.

By Lemma 5.3.1, we have the following corollaries.

Corollary 5.3.2. Let h > 0 be an odd integer and s ≥ 3. There does not exist

an ELF(
−→
P3, 4{h}) and a (3h + s,

−→
P3)-ELPCS of type (h3 : s).

By an exhaustive computer search, we have

Lemma 5.3.3. There does not exist an (8,
−→
P3)-ELPCS of type (23 : 2).

Lemma 5.3.4. There exist both a (9,
−→
P3, 2)-LELD and a (10,

−→
P3, 2)-LELD.

Proof. We construct the design on Zn for each n ∈ {9, 10}. We list the paths

of the initial (n,
−→
P3, 2)-ELD, which will be developed under the automorphism

group G = 〈(0 1 2 . . . n− 3)(n− 2)(n− 1)〉.
n = 9 : (0, 2, 1) (1, 2, 0) (2, 3, 0) (3, 8, 0) (4, 8, 0) (5, 4, 0) (6, 5, 0) (7, 6, 0) (8, 7, 0)

(0, 1, 2) (1, 4, 2) (2, 6, 1) (3, 7, 1) (4, 5, 1) (5, 7, 1) (6, 8, 1) (7, 5, 1) (8, 6, 1)

(0, 1, 3) (1, 4, 3) (2, 8, 3) (3, 8, 2) (4, 6, 2) (5, 7, 2) (6, 5, 2) (7, 3, 2) (8, 4, 2)

(0, 2, 4) (1, 3, 4) (2, 7, 4) (3, 7, 4) (4, 6, 3) (5, 2, 3) (6, 4, 3) (7, 8, 3) (8, 6, 3)

(0, 3, 5) (1, 0, 5) (2, 0, 5) (3, 1, 5) (4, 1, 5) (5, 3, 4) (6, 8, 4) (7, 6, 4) (8, 5, 4)

(0, 3, 6) (1, 0, 6) (2, 5, 6) (3, 0, 6) (4, 1, 6) (5, 3, 6) (6, 7, 5) (7, 3, 5) (8, 2, 5)

(0, 4, 7) (1, 6, 7) (2, 4, 7) (3, 2, 7) (4, 0, 7) (5, 8, 7) (6, 0, 7) (7, 2, 6) (8, 5, 6)

(0, 4, 8) (1, 7, 8) (2, 1, 8) (3, 1, 8) (4, 5, 8) (5, 0, 8) (6, 2, 8) (7, 0, 8) (8, 1, 7)

It is readily checked that the path graph consists of a 72-cycle.
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n = 10 :

(0, 2, 1) (1, 2, 0) (2, 3, 0) (3, 7, 0) (4, 7, 0) (5, 4, 0) (6, 4, 0) (7, 5, 0) (8, 6, 0) (9, 8, 0)

(0, 1, 2) (1, 4, 2) (2, 4, 1) (3, 9, 1) (4, 6, 1) (5, 6, 1) (6, 9, 1) (7, 8, 1) (8, 5, 1) (9, 7, 1)

(0, 1, 3) (1, 4, 3) (2, 7, 3) (3, 9, 2) (4, 6, 2) (5, 3, 2) (6, 8, 2) (7, 5, 2) (8, 9, 2) (9, 6, 2)

(0, 2, 4) (1, 3, 4) (2, 6, 4) (3, 8, 4) (4, 2, 3) (5, 8, 3) (6, 7, 3) (7, 9, 3) (8, 6, 3) (9, 5, 3)

(0, 3, 5) (1, 0, 5) (2, 8, 5) (3, 2, 5) (4, 9, 5) (5, 8, 4) (6, 5, 4) (7, 9, 4) (8, 3, 4) (9, 7, 4)

(0, 3, 6) (1, 0, 6) (2, 0, 6) (3, 7, 6) (4, 9, 6) (5, 1, 6) (6, 3, 5) (7, 4, 5) (8, 2, 5) (9, 4, 5)

(0, 4, 7) (1, 5, 7) (2, 8, 7) (3, 0, 7) (4, 1, 7) (5, 2, 7) (6, 5, 7) (7, 2, 6) (8, 7, 6) (9, 3, 6)

(0, 4, 8) (1, 6, 8) (2, 9, 8) (3, 1, 8) (4, 3, 8) (5, 0, 8) (6, 7, 8) (7, 1, 8) (8, 1, 7) (9, 0, 7)

(0, 5, 9) (1, 5, 9) (2, 1, 9) (3, 1, 9) (4, 8, 9) (5, 6, 9) (6, 0, 9) (7, 2, 9) (8, 0, 9) (9, 0, 8)

It is readily checked that the path graph consists of a 28-cycle and a 62-cycle.

Lemma 5.3.5. There exists an ELF(
−→
P3, 4{2}).

Proof. We construct the design on Z8 with group set {{i, i + 4} : 0 ≤ i ≤ 3}.
We first construct below an initial (6,

−→
P3, 2)-ELGDD of type 23 on the group set

{{i, i + 4} : 1 ≤ i ≤ 3} with the path graph consisting of four 6-cycles.

(2, 1, 7) (2, 3, 1) (2, 5, 3) (2, 7, 5) (3, 1, 6) (3, 2, 1) (3, 5, 2) (3, 6, 5)

(6, 3, 5) (6, 5, 7) (1, 2, 3) (6, 7, 1) (7, 2, 5) (7, 5, 6) (7, 6, 1) (1, 6, 7)

(5, 2, 7) (7, 1, 2) (5, 6, 3) (1, 7, 2) (5, 3, 2) (5, 7, 6) (6, 1, 3) (1, 3, 6)

Developing the above paths under the automorphism group G = 〈π : i → i + 1〉,
we get eight (6,

−→
P3, 2)-ELGDDs all together, which form an ELF(

−→
P3, 4{2}).

Lemma 5.3.6. There exists an ELF(
−→
P3, 5{4}).

Proof. We construct the design on Z20 with group set {{i, i + 5, i + 10, i + 15} :

0 ≤ i ≤ 4}. We list the path set of an initial (16,
−→
P3, 2)-ELGDD of type 44 on the

group set {{i, i+5, i+10, i+15} : 1 ≤ i ≤ 4} with a multiplicative automorphism

group G′ = 〈(0)(1 3 9 7)(2 6 18 14)(4 12 16 8)(5 15)(10)(11 13 19 17)〉.
(19, 12, 8) (13, 2, 6) (9, 16, 17) (9, 8, 7) (6, 19, 8) (6, 13, 7) (1, 14, 2)

(13, 7, 14) (16, 18, 4) (16, 7, 9) (1, 19, 17) (4, 12, 11) (16, 3, 7) (14, 17, 1)

(13, 6, 4) (6, 4, 17) (19, 8, 1) (13, 6, 17) (17, 6, 9) (6, 3, 12) (11, 19, 13)

(6, 8, 2) (6, 19, 13) (8, 17, 11) (1, 17, 8) (18, 2, 9) (17, 16, 8) (9, 17, 8)

(8, 6, 14) (7, 1, 13) (4, 18, 7) (14, 8, 16) (18, 1, 14) (8, 2, 19) (1, 8, 14)

(4, 11, 18) (1, 7, 4) (19, 3, 6) (8, 16, 4) (11, 3, 17) (7, 3, 9) (14, 8, 11)

(12, 3, 4) (7, 19, 6) (2, 14, 18) (1, 18, 9) (4, 7, 6) (19, 11, 7)

The path graph of this ELGDD consists of one 188-cycle and one 4-cycle. Devel-

oping the initial ELGDD under the automorphism group G = 〈π : i → i+1〉, we

get twenty (16,
−→
P3, 2)-ELGDDs all together, which form an ELF(

−→
P3, 5{4}).
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Lemma 5.3.7. There exists an ELF(
−→
P3, 6{4}).

Proof. We construct the design on Z24 with group set {{i, i + 6, i + 12, i + 18} :

0 ≤ i ≤ 5}. We list the path set of an initial (20,
−→
P3, 2)-ELGDD of type 45 on the

group set {{i, i+6, i+12, i+18} : 1 ≤ i ≤ 5} with a multiplicative automorphism
group G′ = 〈η : i → 17i〉.

(15, 5, 20) (19, 3, 22) (11, 13, 21) (11, 7, 20) (14, 3, 7) (9, 14, 22) (10, 17, 19)

(9, 14, 7) (5, 19, 14) (15, 4, 19) (8, 16, 21) (15, 11, 16) (9, 23, 19) (7, 21, 22)

(11, 19, 22) (2, 3, 16) (3, 16, 23) (9, 4, 13) (21, 5, 22) (21, 2, 13) (21, 19, 20)

(14, 17, 22) (19, 17, 15) (13, 15, 16) (3, 19, 14) (20, 3, 22) (20, 10, 15) (15, 20, 22)

(16, 15, 23) (11, 20, 1) (11, 21, 10) (20, 23, 16) (14, 5, 16) (10, 14, 21) (15, 14, 17)

(8, 19, 23) (7, 3, 17) (10, 13, 23) (13, 21, 20) (7, 16, 8) (23, 22, 20) (3, 19, 16)

(8, 1, 4) (9, 11, 8) (1, 16, 20) (9, 13, 17) (16, 14, 19) (7, 23, 21) (10, 19, 9)

(1, 5, 8) (14, 9, 10) (17, 20, 7) (17, 2, 13) (20, 19, 11) (20, 9, 7) (15, 16, 2)

(11, 13, 4) (21, 8, 23) (3, 13, 20) (20, 11, 3) (10, 23, 7) (16, 17, 13) (22, 17, 3)

(21, 7, 10) (14, 16, 1) (1, 20, 15) (8, 19, 15) (8, 22, 19) (21, 1, 16) (19, 4, 11)

(21, 23, 1) (4, 1, 21) (13, 22, 2) (13, 14, 23) (23, 15, 19) (16, 2, 3) (11, 9, 16)

(11, 16, 13) (15, 5, 13) (14, 3, 23) (16, 19, 2) (7, 22, 20) (17, 21, 22) (10, 23, 13)

(2, 21, 4) (23, 2, 10) (9, 1, 10) (11, 21, 8) (4, 7, 11) (1, 9, 16) (16, 3, 17)

(13, 11, 14) (17, 14, 19) (1, 8, 4) (10, 9, 5) (1, 23, 22) (3, 2, 11) (8, 9, 17)

(13, 10, 8) (7, 22, 15) (15, 17, 7) (3, 10, 1) (16, 7, 9) (11, 4, 3) (21, 17, 19)

(3, 4, 5) (22, 23, 20) (10, 7, 17) (7, 5, 14) (1, 8, 21) (4, 1, 2) (4, 14, 13)

(14, 16, 5) (22, 7, 9) (1, 17, 3) (22, 2, 21) (14, 9, 11) (13, 20, 21) (22, 14, 5)

(19, 10, 9) (4, 20, 1) (19, 2, 23) (1, 20, 9) (19, 15, 10) (3, 4, 2) (1, 15, 2)

(2, 4, 15) (22, 21, 11) (10, 11, 2) (4, 8, 17) (8, 13, 16) (23, 10, 8) (13, 3, 5)

(10, 13, 3) (22, 15, 1) (8, 15, 22) (10, 14, 11) (9, 20, 4) (14, 13, 15) (5, 10, 20)

(7, 16, 9) (8, 5, 13) (20, 21, 13) (5, 7, 3) (23, 10, 2) (13, 2, 15) (7, 20, 5)

(17, 14, 1) (10, 11, 1) (5, 16, 19) (2, 17, 22) (5, 2, 1) (7, 8, 3) (4, 23, 20)

(23, 15, 7) (4, 5, 9) (1, 17, 10) (5, 1, 9) (5, 9, 2) (20, 16, 23)

The path graph of this ELGDD consists of two 152-cycles, two 6-cycles and one

4-cycle. Developing the initial ELGDD under the automorphism group G = 〈π :

i → i + 1〉, we get twenty four (20,
−→
P3, 2)-ELGDDs all together, which form an

ELF(
−→
P3, 6{4}).

Lemma 5.3.8. There exists an (11,
−→
P3)-ELPCS of type (33 : 2).

Proof. We construct the design on Z11 with the group set {{i, i + 3, i + 6} : 0 ≤
i ≤ 2} and the stem {9, 10}. We first construct an initial (11,

−→
P3, 2)-ELGDD of

type 1651 with the long group {0, 3, 6, 9, 10} and the following path set.
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(9, 2, 4) (4, 3, 2) (0, 2, 8) (5, 9, 4) (0, 5, 2) (0, 8, 5) (1, 2, 0) (1, 4, 3) (3, 1, 4)

(7, 9, 2) (2, 8, 3) (10, 7, 2) (7, 8, 10) (7, 0, 1) (7, 0, 4) (2, 1, 6) (5, 6, 7) (7, 4, 6)

(2, 6, 5) (10, 2, 7) (4, 9, 5) (1, 3, 5) (8, 4, 6) (1, 0, 7) (8, 4, 9) (6, 7, 4) (5, 1, 10)

(0, 5, 4) (7, 10, 5) (5, 7, 9) (6, 4, 1) (6, 2, 5) (4, 1, 6) (10, 4, 5) (6, 8, 2) (4, 0, 7)

(2, 5, 0) (9, 8, 7) (2, 9, 7) (2, 3, 8) (8, 7, 10) (8, 10, 7) (6, 5, 8) (7, 3, 8) (4, 7, 3)

(5, 8, 0) (3, 7, 5) (5, 3, 2) (8, 5, 3) (0, 2, 7) (4, 0, 1) (9, 5, 1) (2, 4, 10) (3, 4, 8)

(3, 1, 2) (1, 0, 4) (1, 8, 9) (1, 5, 10) (3, 7, 1) (8, 2, 0) (5, 10, 1) (10, 1, 8) (7, 5, 0)

(1, 9, 8) (1, 10, 2) (7, 1, 3) (4, 10, 8) (8, 9, 1) (3, 4, 7) (8, 3, 5) (2, 1, 9) (10, 8, 1)

(8, 6, 4) (6, 1, 7) (2, 6, 1) (0, 8, 1) (4, 5, 9) (2, 10, 4) (5, 2, 3) (5, 7, 6) (8, 6, 2)

(7, 2, 9) (9, 7, 8) (1, 7, 6) (4, 8, 0) (5, 6, 8) (9, 1, 5) (9, 4, 2) (10, 5, 4) (4, 2, 10)

It is readily checked that the path graph consists of four 6-cycles and one 66-cycle.

Developing the paths under the automorphism group G = 〈(0 1 2 3 4 5 6 7 8)(9)(10)〉,
we get nine (11,

−→
P3, 2)-ELGDDs all together, which form an (11,

−→
P3)-ELPCS of

type (33 : 2).

Lemma 5.3.9. There exists a (14,
−→
P3)-ELPCS of type (43 : 2).

Proof. We construct the design on Z14 with the group set {{i, i+3, i+6, i+9} : 0 ≤
i ≤ 2} and the stem {12, 13}. We list below the path sets of two initial (14,

−→
P3, 2)-

ELGDDs of type 1861 with the long group {0, 3, 6, 9, 12, 13}, both of which have

an automorphism group G′ = 〈(0)(1 5)(2 10)(3)(4 8)(6)(7 11)(9)(12)(13)〉.
The first initial ELGDD with the path graph consisting of two 74-cycles and one
4-cycle:

(1, 13, 8) (0, 2, 10) (8, 0, 4) (8, 11, 9) (5, 12, 7) (6, 1, 7) (10, 9, 8)

(2, 4, 10) (7, 1, 0) (11, 10, 13) (13, 5, 1) (9, 2, 1) (3, 11, 8) (12, 2, 7)

(3, 4, 10) (9, 4, 11) (11, 13, 7) (7, 12, 2) (1, 11, 13) (2, 0, 5) (4, 2, 3)

(0, 4, 1) (5, 3, 8) (7, 1, 9) (1, 6, 7) (11, 12, 4) (13, 10, 2) (5, 7, 6)

(11, 1, 8) (7, 5, 3) (1, 10, 3) (12, 4, 8) (8, 11, 0) (4, 13, 2) (2, 13, 1)

(7, 3, 10) (5, 10, 0) (4, 8, 6) (5, 4, 12) (8, 1, 13) (13, 4, 11) (8, 0, 11)

(0, 5, 11) (5, 8, 1) (5, 2, 9) (2, 7, 11) (2, 8, 6) (5, 0, 2) (3, 10, 1)

(9, 11, 2) (7, 8, 12) (2, 6, 8) (11, 10, 6) (4, 9, 11) (10, 8, 13) (2, 12, 7)

(6, 10, 4) (1, 6, 2) (11, 9, 1) (2, 5, 9) (3, 11, 7) (12, 1, 5) (8, 3, 1)

(8, 9, 2) (6, 7, 10) (2, 11, 0) (4, 2, 12) (8, 3, 5) (13, 11, 4) (12, 1, 2)

(0, 11, 8) (7, 6, 1) (6, 8, 5) (10, 5, 12) (9, 5, 8) (2, 11, 3)

The second initial ELGDD with the path graph consisting of two 76-cycles:

(7, 11, 13) (9, 4, 1) (10, 2, 12) (4, 8, 1) (10, 12, 8) (1, 8, 9) (8, 12, 7)
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(4, 7, 6) (8, 3, 2) (6, 7, 2) (11, 5, 3) (1, 9, 7) (10, 13, 2) (4, 9, 2)

(11, 2, 9) (11, 7, 12) (9, 1, 2) (0, 5, 2) (7, 13, 8) (5, 12, 1) (11, 2, 6)

(6, 5, 8) (8, 4, 13) (11, 9, 5) (1, 6, 10) (5, 0, 10) (7, 4, 0) (9, 2, 11)

(11, 1, 7) (3, 10, 4) (4, 3, 7) (8, 1, 12) (12, 11, 10) (10, 4, 0) (2, 3, 5)

(8, 13, 1) (7, 3, 4) (6, 1, 5) (11, 0, 1) (2, 10, 1) (3, 5, 2) (0, 4, 11)

(0, 7, 8) (1, 4, 6) (11, 6, 2) (12, 10, 5) (4, 10, 3) (6, 4, 11) (10, 6, 11)

(8, 5, 0) (3, 4, 7) (12, 2, 4) (13, 7, 5) (5, 10, 13) (10, 5, 13) (5, 7, 12)

(9, 11, 4) (4, 12, 8) (5, 11, 0) (13, 4, 2) (12, 5, 7) (3, 11, 5) (13, 5, 4)

(5, 1, 3) (7, 4, 2) (1, 13, 11) (1, 9, 8) (0, 2, 5) (5, 6, 8) (10, 0, 4)

(8, 2, 9) (10, 0, 7) (10, 7, 9) (2, 4, 6) (2, 7, 3) (13, 2, 7)

Let G = 〈(0 2 4 6 8 10)(1 3 5 7 9 11)(12)(13)〉. Developing the above

two initial designs under the automorphism group G, we get twelve (14,
−→
P3, 2)-

ELGDDs all together, which form a (14,
−→
P3)-ELPCS of type (43 : 2).

Lemma 5.3.10. There exists an (18,
−→
P3)-ELPCS of type (44 : 2).

Proof. We construct the design on Z18 with the group set {{i, i+4, i+8, i+12} :

0 ≤ i ≤ 3} and the stem {16, 17}. Let

G = 〈(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16)(17)〉, and G′ = 〈η : i → 7i〉.

We list below the path set of an initial (18,
−→
P3, 2)-ELGDD of type 11261 on Z18

with the long group {0, 4, 8, 12, 16, 17} and the automorphism group G′, where
the path graph consists of one 264-cycle and three 4-cycles.

(6, 12, 1) (1, 5, 3) (6, 4, 14) (1, 13, 14) (5, 14, 17) (8, 14, 6) (0, 10, 6)

(6, 15, 2) (8, 5, 13) (15, 6, 3) (3, 2, 8) (4, 15, 2) (13, 11, 12) (9, 16, 10)

(15, 10, 1) (2, 11, 6) (13, 4, 9) (15, 0, 13) (10, 2, 12) (15, 9, 8) (4, 2, 15)

(8, 15, 3) (0, 1, 3) (11, 17, 1) (4, 2, 9) (7, 3, 14) (13, 3, 10) (4, 9, 3)

(5, 17, 6) (3, 0, 14) (16, 2, 15) (2, 17, 13) (7, 10, 8) (4, 11, 13) (17, 5, 7)

(17, 2, 3) (0, 3, 13) (13, 7, 16) (5, 13, 14) (3, 4, 11) (6, 13, 7) (10, 17, 15)

(7, 13, 12) (10, 3, 9) (14, 0, 3) (8, 6, 1) (6, 0, 13) (12, 9, 13) (3, 5, 1)

(2, 8, 9) (1, 14, 16) (3, 16, 13) (17, 3, 13) (2, 1, 10) (10, 1, 8) (11, 4, 5)

(13, 8, 1) (9, 2, 16) (4, 3, 6) (3, 1, 16) (9, 17, 2) (1, 17, 15) (9, 16, 14)

(13, 0, 2) (16, 6, 11) (5, 8, 3) (4, 13, 1) (8, 6, 14) (16, 1, 2) (1, 12, 6)

(11, 3, 0) (9, 11, 15) (9, 5, 12) (5, 1, 0) (3, 9, 15) (6, 2, 0) (0, 15, 14)

(6, 3, 17) (16, 7, 6) (9, 0, 6) (13, 2, 6) (4, 10, 7) (0, 15, 1) (14, 11, 7)

(4, 6, 5) (17, 13, 6) (6, 16, 5) (14, 2, 13) (1, 3, 12) (11, 10, 8) (1, 8, 11)

(5, 6, 10) (14, 10, 0) (6, 11, 16) (14, 1, 17) (2, 9, 8) (13, 2, 5) (2, 4, 14)

(9, 4, 3) (14, 3, 12) (7, 11, 0) (15, 6, 17) (10, 4, 6) (6, 2, 12) (17, 6, 9)
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(14, 5, 16) (11, 9, 12) (13, 15, 17) (2, 10, 12) (14, 13, 5) (7, 1, 6) (16, 9, 3)

(15, 10, 11) (5, 2, 4) (1, 11, 17) (2, 14, 7) (9, 1, 0) (3, 15, 4) (5, 8, 1)

(12, 11, 6) (1, 12, 7) (10, 16, 5) (13, 8, 14) (6, 15, 11) (17, 1, 14) (8, 13, 9)

(0, 7, 15) (1, 7, 9) (4, 7, 14) (1, 4, 5) (9, 1, 4) (3, 6, 9) (9, 4, 1)

(14, 1, 9) (11, 16, 13) (11, 5, 9) (16, 9, 7) (1, 15, 13)

Developing the above initial design under the automorphism group G, we get

sixteen (18,
−→
P3, 2)-ELGDDs all together, which form an (18,

−→
P3)-ELPCS of type

(44 : 2).

Lemma 5.3.11. There exists a (22,
−→
P3)-ELPCS of type (45 : 2).

Proof. We construct the design on Z22 with the group set {{i, i+5, i+10, i+15} :

0 ≤ i ≤ 4} and the stem {20, 21}. Let

G = 〈(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20)(21)〉, and

G′ = 〈(0)(1 3 9 7)(2 6 18 14)(4 12 16 8)(5 15)(10)(11 13 19 17)(20)(21)〉.

We list below the path set of an initial (22,
−→
P3, 2)-ELGDD of type 11661 on Z22

with the long group {0, 5, 10, 15, 20, 21} and the automorphism group G′, where

the path graph consists of one 180-cycle, one 88-cycle, two 60-cycles, one 40-cycle

and one 4-cycle.

(5, 11, 12) (6, 10, 13) (1, 14, 16) (0, 3, 13) (1, 16, 12) (7, 0, 19) (7, 8, 17)

(3, 18, 17) (18, 8, 0) (6, 0, 4) (18, 17, 4) (19, 12, 5) (0, 16, 7) (19, 20, 12)

(7, 21, 14) (10, 9, 4) (2, 1, 5) (8, 7, 17) (5, 1, 3) (12, 7, 14) (7, 10, 2)

(7, 6, 0) (15, 11, 6) (7, 3, 6) (19, 21, 1) (18, 5, 16) (21, 2, 3) (10, 12, 9)

(21, 13, 17) (9, 3, 1) (6, 7, 2) (4, 10, 16) (10, 3, 19) (12, 8, 18) (1, 19, 20)

(11, 0, 13) (8, 20, 14) (14, 17, 19) (4, 21, 12) (5, 6, 11) (0, 6, 4) (16, 6, 5)

(6, 9, 17) (9, 6, 21) (13, 9, 21) (3, 5, 4) (18, 21, 9) (12, 7, 4) (17, 2, 4)

(17, 9, 2) (16, 14, 9) (20, 8, 11) (11, 8, 4) (19, 16, 2) (1, 8, 4) (5, 3, 4)

(11, 16, 0) (4, 10, 19) (15, 4, 2) (16, 18, 3) (19, 11, 10) (20, 13, 7) (8, 6, 3)

(17, 7, 5) (4, 8, 13) (4, 15, 14) (17, 12, 1) (11, 15, 19) (7, 8, 15) (9, 13, 15)

(8, 13, 19) (16, 3, 0) (1, 5, 14) (8, 7, 10) (10, 2, 6) (7, 3, 9) (8, 12, 20)

(21, 13, 12) (17, 0, 9) (15, 6, 11) (2, 20, 9) (18, 1, 20) (18, 8, 15) (11, 13, 14)

(19, 15, 4) (7, 20, 11) (11, 17, 1) (18, 11, 2) (14, 18, 10) (4, 13, 15) (7, 19, 10)

(6, 17, 18) (2, 14, 12) (20, 1, 12) (12, 11, 9) (14, 15, 1) (0, 14, 2) (15, 13, 3)

(7, 13, 1) (11, 18, 2) (18, 15, 3) (20, 6, 14) (21, 4, 6) (17, 14, 20) (18, 16, 21)

(2, 16, 13) (4, 11, 21) (17, 18, 19)
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Developing the above initial design under the automorphism group G, we get

twenty (22,
−→
P3, 2)-ELGDDs all together, which form a (22,

−→
P3)-ELPCS of type

(45 : 2).

Lemma 5.3.12. There exists a (20,
−→
P3)-ELPCS of type (63 : 2).

Proof. We construct the design on Z20 with the group set {{i, i + 3, . . . , i + 15} :

0 ≤ i ≤ 2} and the stem {18, 19}. Let

G = 〈(0 2 4 6 8 10 12 14 16)(1 3 5 7 9 11 13 15 17)(18)(19),

(0)(1 5 7 17 13 11)(2 10 14 16 8 4)(3 15)(6 12)(9)(18)(19)〉, and

G′ = 〈(0)(1 7 13)(2 14 8)(3)(4 10 16)(5 17 11)(6)(9)(12)(15)(18)(19)〉.

We list below the path set of a (20,
−→
P3, 2)-ELGDD of type 11281 on Z20 with the

long group {0, 3, 6, 9, 12, 15, 18, 19} and the automorphism group G′. The path

graph consists of one 54-cycle, one 264-cycle and one 6-cycle.

(7, 2, 19) (10, 3, 16) (2, 6, 14) (4, 16, 15) (3, 13, 1) (17, 13, 19) (7, 17, 11)

(8, 0, 5) (5, 0, 17) (15, 11, 16) (11, 12, 14) (3, 4, 8) (8, 4, 17) (3, 8, 5)

(4, 0, 16) (0, 8, 10) (17, 18, 4) (4, 12, 17) (4, 10, 0) (0, 2, 5) (4, 19, 11)

(1, 7, 0) (1, 5, 2) (15, 16, 13) (5, 14, 10) (13, 5, 18) (16, 10, 12) (7, 15, 13)

(4, 1, 3) (6, 17, 7) (6, 8, 2) (13, 7, 3) (4, 18, 8) (5, 16, 18) (2, 6, 4)

(8, 11, 0) (12, 4, 7) (14, 12, 7) (7, 12, 8) (11, 9, 17) (9, 14, 2) (0, 1, 14)

(1, 16, 11) (17, 5, 6) (13, 4, 9) (8, 1, 19) (13, 18, 11) (11, 19, 7) (2, 7, 18)

(17, 6, 7) (1, 2, 8) (3, 7, 10) (19, 17, 16) (17, 11, 3) (9, 7, 5) (2, 11, 15)

(12, 13, 4) (16, 19, 2) (7, 6, 10) (2, 11, 12) (14, 1, 13) (18, 1, 2) (17, 2, 0)

(14, 15, 16) (16, 8, 19) (2, 10, 16) (0, 16, 7) (10, 5, 9) (17, 19, 10) (14, 11, 3)

(5, 1, 12) (18, 17, 1) (7, 9, 16) (15, 13, 5) (9, 2, 13) (13, 14, 12) (6, 1, 16)

(2, 3, 8) (13, 0, 7) (12, 17, 14) (10, 2, 18) (19, 1, 11) (10, 3, 17) (1, 14, 15)

(9, 11, 16) (5, 13, 15) (4, 9, 13) (10, 8, 13) (10, 15, 14) (6, 11, 17) (16, 17, 13)

(2, 18, 13) (19, 4, 14) (5, 15, 2) (11, 14, 9) (11, 10, 1) (13, 16, 6) (14, 3, 17)

(18, 14, 4) (11, 4, 2) (4, 7, 6) (14, 8, 9) (8, 16, 6) (18, 4, 17) (1, 9, 16)

(12, 4, 5) (19, 2, 1) (15, 5, 14)

Developing the above initial design under the automorphism group G, we get

eighteen (20,
−→
P3, 2)-ELGDDs all together, which form a (20,

−→
P3)-ELPCS of type

(63 : 2).

Lemma 5.3.13. There exists a (32,
−→
P3)-ELPCS of type (65 : 2).
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Proof. We construct the design on Z32 with the group set {{i, i + 5, . . . , i + 25} :

0 ≤ i ≤ 4} and the stem {30, 31}. Let

G = 〈(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29)(30)(31)〉, and

G′ = 〈(0)(1 7 19 13)(2 14 8 26)(3 21 27 9)(4 28 16 22)(5)(6 12 24 18)(10)(11

17 29 23)(15)(20)(25)(30)(31)〉.

We list below the path set of a (32,
−→
P3, 2)-ELGDD of type 12481 on Z32 with the

long group {0, 5, 10, 15, 20, 25, 30, 31} and the automorphism group G′. The path
graph consists of one 752-cycle, four 36-cycles, two 18-cycles and one 4-cycle.

(24, 30, 28) (28, 17, 14) (19, 24, 25) (12, 7, 13) (24, 8, 10) (15, 13, 23) (29, 17, 12)

(26, 31, 29) (27, 8, 2) (2, 13, 27) (6, 13, 25) (16, 5, 7) (19, 4, 6) (11, 23, 26)

(28, 30, 11) (16, 9, 27) (22, 17, 13) (8, 22, 20) (31, 21, 13) (17, 29, 11) (21, 23, 30)

(9, 29, 10) (12, 2, 18) (18, 7, 23) (16, 26, 12) (10, 22, 26) (27, 18, 4) (23, 28, 16)

(28, 30, 16) (5, 13, 23) (25, 3, 7) (23, 22, 25) (0, 22, 12) (28, 29, 4) (23, 13, 7)

(2, 24, 15) (18, 11, 28) (18, 14, 9) (5, 28, 18) (17, 12, 19) (7, 10, 19) (15, 17, 8)

(6, 4, 27) (16, 24, 21) (6, 25, 29) (21, 30, 8) (20, 7, 2) (16, 15, 24) (2, 4, 1)

(5, 8, 9) (12, 22, 1) (3, 16, 30) (21, 16, 25) (15, 16, 9) (24, 17, 2) (26, 9, 19)

(12, 21, 15) (26, 25, 11) (18, 1, 24) (19, 8, 26) (24, 5, 21) (8, 3, 26) (22, 19, 2)

(20, 8, 11) (17, 20, 16) (14, 26, 5) (10, 13, 19) (15, 23, 13) (0, 14, 7) (9, 13, 24)

(19, 23, 1) (3, 19, 4) (21, 14, 24) (20, 2, 12) (13, 30, 22) (28, 26, 20) (31, 22, 9)

(14, 29, 0) (3, 16, 19) (12, 20, 27) (31, 17, 18) (15, 24, 16) (22, 28, 11) (22, 9, 10)

(29, 7, 31) (20, 12, 1) (0, 6, 11) (1, 25, 8) (4, 8, 11) (3, 5, 29) (19, 0, 28)

(16, 7, 1) (30, 6, 23) (17, 30, 1) (7, 14, 22) (29, 22, 16) (25, 28, 14) (15, 21, 6)

(2, 20, 18) (17, 3, 15) (2, 5, 28) (7, 5, 17) (11, 15, 2) (26, 31, 12) (4, 30, 27)

(3, 11, 26) (13, 31, 27) (11, 12, 6) (28, 13, 22) (23, 24, 14) (11, 21, 10) (29, 23, 9)

(18, 27, 2) (12, 22, 16) (17, 19, 20) (11, 3, 30) (13, 2, 17) (5, 12, 14) (28, 15, 2)

(1, 22, 0) (2, 19, 22) (21, 4, 20) (8, 15, 1) (4, 7, 15) (11, 22, 0) (5, 8, 28)

(3, 17, 13) (2, 14, 25) (17, 3, 8) (0, 2, 21) (8, 0, 27) (30, 18, 12) (27, 25, 3)

(22, 24, 3) (18, 10, 8) (24, 28, 23) (10, 18, 23) (29, 26, 19) (19, 31, 8) (21, 6, 0)

(5, 6, 1) (7, 10, 29) (19, 18, 30) (4, 26, 30) (4, 9, 8) (1, 23, 15) (25, 12, 23)

(16, 23, 0) (0, 21, 16) (17, 23, 24) (12, 24, 30) (27, 23, 19) (8, 1, 14) (4, 27, 31)

(19, 0, 7) (23, 25, 12) (23, 5, 21) (26, 29, 10) (20, 21, 28) (3, 29, 5) (27, 26, 23)

(31, 1, 17) (23, 22, 27) (12, 4, 5) (1, 26, 18) (29, 3, 27) (8, 15, 16) (3, 27, 24)

(3, 12, 15) (8, 17, 31) (9, 12, 27) (30, 7, 4) (11, 8, 16) (30, 12, 8) (27, 13, 22)

(31, 13, 1) (24, 3, 13) (11, 24, 5) (19, 3, 22) (14, 2, 26) (18, 9, 13) (19, 27, 9)

(31, 11, 8) (1, 21, 12) (26, 9, 3) (25, 16, 4) (0, 6, 14) (4, 19, 5) (21, 25, 14)

(24, 2, 0) (25, 1, 12) (14, 3, 24) (9, 29, 18) (7, 18, 10) (1, 9, 5) (13, 1, 18)

(23, 3, 11) (30, 8, 21) (1, 8, 31) (3, 20, 22) (25, 13, 3) (10, 4, 18) (7, 12, 20)
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(18, 24, 6) (10, 21, 3) (2, 10, 9) (24, 23, 16) (30, 26, 28) (8, 12, 13) (14, 19, 17)

(13, 15, 21) (24, 22, 8) (10, 2, 28) (2, 22, 6) (7, 20, 11) (27, 16, 17) (19, 11, 27)

(27, 30, 9) (3, 0, 11) (8, 24, 11) (4, 10, 29) (18, 0, 29) (12, 24, 31) (22, 2, 1)

(20, 1, 3) (22, 23, 25) (8, 29, 30) (7, 9, 2) (9, 0, 1) (11, 20, 29) (26, 1, 28)

(16, 10, 18) (4, 28, 24) (18, 3, 20)

Developing the above initial design under the automorphism group G, we get

thirty (32,
−→
P3, 2)-ELGDDs all together, which form a (32,

−→
P3)-ELPCS of type

(65 : 2).

Lemma 5.3.14. There exists a (23,
−→
P3)-ELPCS of type (63 : 5).

Proof. We construct the design on Z23 with group set {{i, i + 3, . . . , i + 15} : 0 ≤
i ≤ 2} and stem {18, 19, 20, 21, 22}. Let

G1 = 〈(0 2 4 6 8 10 12 14 16)(1 3 5 7 9 11 13 15 17)(18)(19)(20)(21)(22)〉,
G2 = 〈(0 2 4 6 8 10 12 14 16)(1 3 5 7 9 11 13 15 17)(18)(19)(20)(21)(22),

(0)(1 5 7 17 13 11)(2 10 14 16 8 4)(3 15)(6 12)(9)(18)(19)(20)(21)(22)〉,
G′ = 〈(0)(1 7 13)(2 14 8)(3)(4 10 16)(5 17 11)(6)(9)(12)(15)(18)(19)(20)(21)

(22)〉, and

G′′ = 〈(0)(1 5 7 17 13 11)(2 10 14 16 8 4)(3 15)(6 12)(9)(18)(19)(20)(21)(22),

(0 6 12)(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(18)(19)(20)(21)(22)〉.

We list below the path set of an (18,
−→
P3, 2)-ELGDD of type 63 on Z18 with group

set {{i, i+3, . . . , i+15} : 0 ≤ i ≤ 2} and the automorphism group G′′. The path

graph consists of six 36-cycles.

(4, 9, 5) (17, 16, 3) (10, 8, 6) (9, 10, 17) (9, 8, 16) (0, 5, 16) (11, 3, 13)

(6, 1, 17) (13, 17, 0) (14, 0, 16) (5, 6, 10) (14, 7, 3)

Then, we list below the path set of a (23,
−→
P3, 2)-ELGDD of type 112111 on Z23 with

the long group {0, 3, 6, 9, 12, 15, 18, 19, 20, 21, 22} and the automorphism group

G′. The path graph consists of one 138-cycle, three 84-cycles and one 6-cycle.
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(21, 7, 8) (6, 7, 1) (16, 22, 11) (19, 8, 10) (1, 7, 12) (10, 16, 6) (13, 5, 22)

(16, 3, 7) (7, 4, 9) (19, 1, 11) (11, 10, 22) (20, 16, 17) (19, 7, 2) (2, 6, 11)

(7, 12, 17) (18, 4, 2) (14, 7, 22) (6, 17, 8) (10, 21, 5) (18, 10, 17) (14, 22, 10)

(2, 0, 5) (14, 9, 2) (4, 14, 22) (15, 11, 17) (20, 5, 4) (4, 12, 16) (5, 16, 12)

(8, 15, 10) (1, 10, 0) (16, 21, 2) (10, 20, 2) (17, 20, 1) (22, 2, 1) (8, 1, 18)

(16, 19, 5) (16, 17, 20) (2, 12, 13) (4, 16, 3) (4, 17, 12) (17, 10, 18) (22, 2, 4)

(5, 14, 15) (0, 1, 7) (6, 1, 4) (14, 2, 12) (2, 4, 20) (17, 0, 11) (11, 18, 1)

(22, 1, 17) (20, 5, 13) (16, 15, 13) (1, 0, 4) (21, 16, 5) (14, 1, 21) (0, 2, 14)

(5, 11, 6) (14, 8, 9) (2, 10, 15) (2, 7, 19) (18, 17, 16) (2, 6, 14) (2, 18, 1)

(9, 5, 2) (16, 9, 4) (14, 5, 0) (11, 3, 8) (1, 15, 8) (1, 19, 17) (9, 4, 1)

(5, 15, 8) (13, 7, 3) (21, 11, 7) (15, 10, 4) (2, 19, 10) (19, 8, 7) (5, 2, 3)

(7, 14, 20) (2, 20, 7) (1, 6, 10) (5, 1, 20) (4, 0, 7) (5, 9, 14) (17, 13, 21)

(15, 13, 2) (21, 14, 16) (1, 18, 14) (11, 5, 9) (6, 8, 5) (12, 10, 1) (2, 17, 6)

(11, 14, 0) (12, 2, 8) (9, 1, 10) (9, 5, 17) (11, 19, 16) (3, 17, 2) (5, 10, 19)

(12, 8, 11) (3, 16, 4) (5, 22, 10) (13, 3, 1) (4, 1, 0) (3, 4, 7) (7, 17, 18)

(14, 17, 3) (7, 20, 14) (8, 3, 5) (0, 14, 4) (4, 18, 2) (22, 1, 8) (13, 6, 10)

(17, 21, 7) (7, 9, 1) (1, 22, 11) (15, 17, 13) (10, 1, 9) (16, 8, 18) (12, 7, 4)

(16, 1, 15) (7, 14, 21) (0, 4, 5) (3, 14, 5) (16, 2, 21) (5, 21, 16) (1, 5, 19)

(1, 11, 15) (11, 12, 17) (4, 8, 19) (1, 4, 6) (20, 4, 8) (18, 17, 7)

Develop the initial (18,
−→
P3, 2)-ELGDD of type 63 under the automorphism group

G1 to get three (18,
−→
P3, 2)-ELGDDs of type 63, and develop the initial (23,

−→
P3,

2)-ELGDD of type 112111 under the automorphism group G2 to get eighteen

(23,
−→
P3, 2)-ELGDDs of type 112111, all of which form a (23,

−→
P3)-ELPCS of type

(63 : 5).

5.4 Infinite Families of LELDs

Now, we are in a position to establish several infinite classes for the existence

of LELDs by recursion.

Lemma 5.4.1. There exists an (n,
−→
P3, 2)-LELD for any integer n ≥ 6 with n ≡

2, 6, 14 (mod 16) or n ≡ 8 (mod 12) and n 6= 34, 50.

Proof. For n = 6, 8, there is an (n,
−→
P3, 2)-LELD by Corollary 5.2.3.

For each n = 16m + 2, n = 16m + 6 or n = 16m + 14, n ≥ 14 and

n 6= 34, 50, there is a 1-FG(3, ({3, 4, 5}, {4, 5, 6}), (n − 2)/4) of type 1(n−2)/4,

which is obtained by deleting one point from an S(3, {4, 5, 6}, (n + 2)/4) (see
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[38]). Applying Theorem 5.2.6 with a (4k−2,
−→
P3)-ELPCS of type (4k−1 : 2) and an

ELF(
−→
P3, k{4}) with k ∈ {4, 5, 6}, we get an (n,

−→
P3)-ELPCS of type (4(n−2)/4 : 2).

Then, applying Theorem 5.2.5 with a (6,
−→
P3, 2)-LELD, we obtain an (n,

−→
P3, 2)-

LELD. Here, the input (4k− 2,
−→
P3)-ELPCSs of types (4k−1 : 2) with k ∈ {4, 5, 6}

exist by Lemmas 5.3.9–5.3.11. The input ELF(
−→
P3, 5{4}) and ELF(

−→
P3, 6{4}) exist

by Lemmas 5.3.6 and 5.3.7. The input ELF(
−→
P3, 4{4}) is obtained by applying

Theorem 5.2.4 with an H(24) and an ELF(
−→
P3, 4{2}), which exist by Theorem

1.1.1 and Lemma 5.3.5, respectively.

For each n = 12m− 4 and m > 1, there is a 1-FG(3, ({3, 5}, {4, 6}), 2m− 1)

of type 12m−1, which is obtained by deleting one point from an S(3, {4, 6}, 2m)

(see [25]). Applying Theorem 5.2.6 with a (6k − 4,
−→
P3)-ELPCS of type (6k−1 : 2)

and an ELF(
−→
P3, k{6}) with k ∈ {4, 6}, we get a (12m − 4,

−→
P3)-ELPCS of type

(62m−1 : 2). Then, applying Theorem 5.2.5 with an (8,
−→
P3, 2)-LELD, we obtain

an (n,
−→
P3, 2)-LELD. Here, the input (6k− 4,

−→
P3)-ELPCSs of types (6k−1 : 2) with

k ∈ {4, 6} exist by Lemmas 5.3.12 and 5.3.13. The ELF(
−→
P3, k{6}) with k ∈ {4, 6}

is obtained by applying Theorem 5.2.4 with an H(3k) and an ELF(
−→
P3, 4{2}).

Lemma 5.4.2. There exists an (n,
−→
P3, 2)-LELD for each positive integer n ≡

11, 23 (mod 36).

Proof. For n = 11, we obtain the design by applying Theorem 5.2.5 with a

(5,
−→
P3, 2)-LELD and an (11,

−→
P3)-ELPCS of type (33 : 2). Simultaneously, we get

an (11, 5;
−→
P3, 2)-HLELD.

For each n = 36m + 11 or n = 36m + 23 and n ≥ 23, there is a 1-

FG(3, (3, 4), (n − 5)/6) of type 1(n−5)/6, which is obtained by deleting one point

from an SQS((n+1)/6) (see [23]). Applying Theorem 5.2.6 with a (23,
−→
P3)-ELPCS

of type (63 : 5) from Lemma 5.3.14 and an ELF(
−→
P3, 4{6}), we get an (n,

−→
P3)-

ELPCS of type (6(n−5)/6 : 5). Since there exists an (11, 5;
−→
P3, 2)-HLELD and an

(11,
−→
P3, 2)-LELD, we obtain the desired (n,

−→
P3, 2)-LELD by Theorem 5.2.5.

Combining Corollary 5.2.3, Lemmas 5.3.4, 5.4.1 and 5.4.2, we have the fol-

lowing theorem.

Theorem 5.4.3. For each positive integer n, 4 ≤ n ≤ 11 or n ≥ 14, n ≡ k ( mod

144) with k ∈ {2, 6, 8, 11, 14, 18, 20, 22, 23, 30, 32, 34, 38, 44, 46, 47, 50, 54, 56, 59, 62,
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66, 68, 70, 78, 80, 82, 83, 86, 92, 94, 95, 98, 102, 104, 110, 114, 116, 118, 119, 126, 128,

130, 131, 134, 140, 142} and n 6= 34, 50, there exists an (n,
−→
P3, 2)-LELD and an

optimal, levelled (n − 2)-fault tolerant routing of
−→
Kn that has levelled minimum

optical indices.
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Small Resolvable H-designs

Lemma .0.4. There exists an RH(419).

Proof. In [10, Lemma 5.4], Cao, Ji and Zhu constructed an H(219) on Z38 with
group set {{j, j + 19}, j = 0, 1, · · · , 18} and the following shortened list of base
blocks.

{0,2,16,25} {0,2,15,24} {0,4,10,11} {0,4,31,32} {0,8,20,22} {0,8,24,26}
{1,3,17,26} {1,3,16,25} {1,5,11,12} {1,5,32,33 } {1,9,21,23} {1,9,25,27}
{0,1,2,3} {1,2,4,6} {0,1,4,5} {1,2,5,9} {0,1,6,12} {1,2,7,23}
{0,1,8,16} {0,1,9,30} {1,2,10,13} {0,1,10,22} {1,2,11,31} {0,1,13,23}
{0,1,14,15} {1,2,15,18} {1,2,16,37} {1,2,17,27} {0,1,17,21} {1,2,19,25}
{1,2,22,35} {1,2,24,34} {1,2,26,30} {0,1,26,29} {1,3,7,31} {0,2,8,23}
{0,2,10,12} {1,3,21,24} {0,3,6,15} {0,3,8,18} {0,3,9,21} {1,4,14,22}

Here, the blocks of the last five rows are developed by a multiplier 7 of order 3.

These 90 blocks and the blocks in the first two rows form the set B′ of all base

blocks, which are developed under the automorphism group 〈(0 2 . . . 34 36)(1 3 . . .

35 37)〉.
For each block B = {a, b, c, d} ∈ B′, construct an H(24) with group set

{{x, x + 38} : x ∈ B} and block set AB = {{a + 38i, b + 38(i + k), c + 38j, d +

38(j + k)} : i, j, k ∈ Z2}. Let B = ∪B∈B′AB. It is clear that B is the set

of base blocks of an H(419) on I76 = {0, 1, 2, . . . , 75} with group set {{j, j +

19, j + 38, j + 57}, j = 0, 1, · · · , 18} and an automorphism group 〈α〉, where

α = (0 2 . . . 34 36)(1 3 . . . 35 37)(38 40 . . . 72 74)(39 41 . . . 73 75). Now, we need

to show the resolution.

Note that there are several blocks in B, each of which contains exactly one

element from each cycle of α. We first list below some of these blocks and denote

them by ∆, each block of which gives a parallel class when developed under the

automorphism group 〈α〉.
{1, 2, 54, 75} {1, 2, 60, 73} {0, 1, 64, 67} {0, 3, 44, 53} {0, 7, 52, 59}
{0, 7, 63, 58} {0, 7, 60, 67} {7, 14, 74, 69} {7, 14, 40, 55} {0, 11, 44, 55}
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{0, 11, 61, 64} {11, 22, 51, 46} {11, 22, 62, 65} {0, 33, 66, 51} {38, 39, 2, 3}
{38, 39, 9, 30} {39, 40, 15, 18} {39, 40, 16, 37} {38, 39, 26, 29} {38, 45, 14, 21}
{38, 45, 25, 20} {45, 52, 32, 15} {38, 45, 22, 29} {45, 52, 29, 12} {45, 52, 36, 31}
{45, 52, 2, 17} {38, 45, 30, 13} {38, 49, 22, 33} {38, 49, 6, 17} {38, 49, 23, 26}
{49, 60, 34, 29} {49, 60, 14, 5} {38, 49, 20, 15} {38, 71, 28, 13} {38, 1, 2, 41}
{38, 1, 4, 43} {38, 1, 14, 53} {38, 1, 26, 67} {38, 3, 6, 53} {38, 7, 14, 59}
{38, 7, 28, 73} {38, 7, 22, 67} {45, 14, 29, 50} {38, 7, 30, 51} {38, 21, 4, 67}
{38, 11, 6, 55} {38, 11, 2, 51} {38, 33, 28, 51} {0, 39, 40, 3} {0, 39, 42, 5}
{0, 39, 52, 15} {1, 40, 53, 18} {0, 39, 64, 29} {0, 45, 66, 35} {0, 45, 68, 13}
{0, 59, 42, 29} {0, 49, 60, 33} {0, 71, 66, 13} {38, 1, 47, 30} {38, 7, 63, 20}
{45, 14, 70, 15} {45, 14, 74, 31} {38, 11, 61, 26} {49, 22, 72, 29} {49, 22, 62, 27}
{0, 39, 9, 68} {1, 40, 16, 75} {1, 40, 22, 73} {0, 45, 25, 58} {7, 52, 32, 53}
{7, 52, 36, 69} {0, 49, 23, 64} {11, 60, 34, 67} {11, 60, 24, 65} {11, 60, 14, 43}

Then we shift each of the remaining base blocks in B by a suitable automorphism

αi for some integer i. The result is listed below, where the blocks in each of the

four consecutive rows, namely the ith, (i + 1)th, (i + 2)th and (i + 3)th rows for

i ∈ {4k + 1 : k = 0, 1, . . . , 38}, form a parallel class.

{0, 1, 2, 3} {5, 6, 8, 10} {12, 13, 16, 17} {19, 20, 23, 27} {24, 25, 30, 36}
{31, 32, 37, 15} {33, 34, 4, 7} {26, 29, 35, 9} {14, 21, 18, 22} {38, 39, 40, 41}
{43, 44, 46, 48} {50, 51, 54, 55} {57, 58, 61, 65} {62, 63, 68, 74} {59, 60, 75, 47}
{66, 73, 42, 49} {56, 67, 52, 70} {45, 53, 69, 71} {64, 28, 72, 11}
{0, 1, 8, 16} {2, 3, 11, 32} {4, 5, 14, 26} {17, 18, 27, 9} {6, 7, 19, 29}
{20, 21, 34, 35} {22, 23, 10, 13} {12, 33, 30, 24} {25, 36, 31, 37} {39, 40, 45, 61}
{42, 43, 50, 58} {46, 47, 55, 38} {51, 52, 60, 63} {65, 66, 75, 57} {72, 73, 48, 49}
{53, 54, 67, 70} {64, 71, 69, 59} {41, 62, 56, 74} {28, 68, 44, 15}
{1, 2, 15, 18} {5, 6, 20, 3} {7, 8, 23, 33} {10, 11, 27, 31} {13, 14, 34, 9}
{37, 0, 22, 32} {25, 26, 12, 16} {17, 24, 21, 19} {38, 39, 48, 60} {40, 41, 53, 63}
{49, 50, 64, 47} {44, 45, 61, 65} {51, 52, 69, 75} {73, 74, 58, 68} {59, 66, 42, 56}
{55, 62, 67, 71} {70, 43, 29, 35} {46, 54, 28, 30} {72, 36, 4, 57}
{1, 2, 19, 25} {3, 5, 9, 33} {4, 6, 12, 27} {8, 10, 18, 20} {11, 13, 31, 34}
{14, 17, 22, 32} {16, 23, 30, 37} {0, 7, 28, 35} {39, 40, 60, 73} {41, 42, 66, 70}
{46, 47, 72, 75} {51, 53, 57, 43} {48, 50, 56, 71} {61, 64, 74, 44} {38, 49, 67, 63}
{58, 62, 68, 69} {29, 36, 65, 59} {52, 54, 24, 26} {15, 55, 21, 45}
{0, 3, 6, 15} {1, 4, 14, 22} {11, 18, 32, 8} {9, 16, 37, 27} {12, 19, 30, 10}
{26, 33, 20, 28} {36, 5, 13, 7} {34, 17, 21, 29} {31, 35, 24, 25} {38, 40, 48, 50}
{39, 41, 59, 62} {46, 49, 52, 61} {64, 67, 72, 44} {54, 57, 63, 75} {66, 73, 60, 68}
{74, 47, 42, 53} {70, 43, 55, 58} {45, 56, 69, 65} {71, 2, 23, 51}
{0, 7, 25, 20} {9, 16, 34, 17} {11, 18, 5, 31} {6, 13, 28, 35} {19, 26, 3, 24}
{23, 30, 21, 15} {32, 1, 37, 27} {33, 2, 4, 36} {38, 45, 66, 73} {47, 54, 75, 65}
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{42, 49, 46, 50} {51, 58, 55, 53} {64, 71, 44, 62} {60, 74, 40, 69} {61, 63, 39, 48}
{59, 67, 41, 43} {57, 52, 10, 22} {56, 29, 14, 70} {12, 72, 8, 68}
{7, 14, 36, 31} {9, 16, 21, 25} {13, 20, 8, 23} {11, 18, 34, 24} {30, 37, 22, 5}
{15, 29, 19, 35} {17, 0, 32, 12} {33, 6, 4, 10} {38, 45, 63, 58} {47, 54, 72, 55}
{49, 56, 43, 69} {44, 51, 59, 53} {57, 64, 41, 62} {73, 42, 71, 65} {52, 66, 46, 60}
{67, 40, 70, 61} {27, 68, 2, 48} {26, 75, 28, 39} {1, 50, 3, 74}
{0, 14, 18, 9} {2, 16, 34, 10} {11, 25, 37, 20} {22, 5, 26, 13} {6, 17, 28, 1}
{24, 35, 30, 3} {31, 4, 21, 7} {12, 23, 32, 27} {38, 45, 60, 67} {49, 56, 40, 73}
{47, 54, 42, 57} {55, 62, 64, 58} {39, 53, 65, 48} {61, 72, 69, 59} {63, 74, 50, 46}
{71, 75, 43, 44} {8, 15, 51, 41} {19, 68, 52, 36} {66, 29, 70, 33}
{11, 22, 6, 28} {2, 13, 30, 20} {12, 23, 24, 36} {8, 19, 31, 34} {15, 26, 0, 33}
{18, 29, 14, 32} {10, 21, 1, 35} {4, 37, 27, 7} {17, 25, 3, 5} {45, 52, 68, 58}
{40, 47, 70, 53} {51, 65, 55, 71} {42, 63, 67, 75} {43, 54, 66, 61} {38, 60, 72, 56}
{57, 41, 49, 44} {74, 69, 59, 39} {48, 50, 64, 73} {46, 9, 16, 62}
{11, 22, 7, 37} {2, 13, 4, 15} {17, 28, 19, 14} {23, 34, 36, 1} {5, 16, 29, 25}
{24, 35, 21, 27} {33, 6, 3, 31} {10, 18, 30, 32} {38, 59, 42, 67} {40, 61, 58, 52}
{44, 55, 66, 39} {51, 62, 46, 68} {53, 64, 49, 41} {60, 71, 57, 63} {54, 65, 74, 69}
{70, 72, 47, 56} {9, 20, 43, 73} {45, 8, 48, 12} {26, 75, 0, 50}
{11, 22, 14, 5} {13, 24, 0, 34} {19, 3, 9, 7} {4, 26, 16, 29} {10, 32, 6, 28}
{31, 15, 23, 18} {17, 12, 8, 20} {49, 60, 55, 61} {40, 51, 68, 58} {53, 64, 43, 67}
{62, 73, 74, 48} {52, 63, 54, 65} {59, 70, 72, 75} {57, 41, 47, 45} {56, 39, 36, 30}
{38, 21, 25, 71} {27, 66, 69, 35} {37, 44, 46, 2} {1, 50, 42, 33}
{0, 33, 28, 13} {2, 35, 14, 10} {4, 6, 20, 29} {22, 24, 37, 8} {32, 36, 25, 26}
{5, 7, 21, 30} {19, 27, 1, 3} {49, 60, 51, 46} {53, 64, 62, 68} {44, 66, 56, 69}
{42, 75, 70, 55} {40, 73, 52, 48} {50, 58, 74, 38} {39, 41, 54, 63} {17, 18, 65, 47}
{12, 15, 59, 71} {61, 34, 9, 43} {23, 72, 57, 11} {67, 31, 45, 16}
{0, 4, 10, 11} {6, 14, 30, 32} {1, 3, 16, 25} {9, 13, 19, 20} {49, 44, 40, 52}
{38, 42, 69, 70} {46, 54, 66, 68} {41, 45, 72, 73} {7, 8, 48, 50} {17, 18, 59, 63}
{21, 22, 65, 43} {34, 35, 47, 57} {5, 12, 71, 61} {33, 28, 62, 74} {29, 37, 53, 55}
{51, 58, 36, 26} {39, 23, 31, 64} {67, 2, 75, 27} {15, 60, 24, 56}
{0, 1, 44, 50} {2, 3, 48, 56} {4, 5, 52, 64} {7, 8, 61, 71} {10, 11, 65, 69}
{17, 18, 73, 41} {13, 14, 74, 46} {29, 30, 54, 58} {19, 21, 63, 49} {20, 22, 66, 43}
{24, 27, 70, 42} {9, 12, 60, 68} {25, 32, 57, 45} {53, 16, 33, 39} {37, 38, 55, 23}
{6, 51, 59, 15} {62, 26, 72, 36} {47, 31, 75, 35} {28, 67, 34, 40}
{0, 2, 48, 50} {1, 3, 59, 62} {7, 14, 66, 42} {10, 17, 52, 56} {9, 16, 51, 49}
{4, 11, 60, 40} {6, 13, 38, 46} {8, 15, 61, 55} {19, 26, 69, 73} {23, 30, 70, 64}
{21, 28, 44, 72} {18, 32, 74, 65} {12, 33, 75, 45} {57, 58, 37, 5} {29, 68, 54, 20}
{27, 41, 53, 36} {71, 35, 39, 25} {22, 63, 31, 43} {34, 67, 24, 47}
{7, 21, 49, 65} {0, 14, 70, 46} {9, 23, 73, 56} {4, 25, 60, 54} {11, 32, 64, 44}
{17, 28, 50, 72} {13, 24, 57, 63} {20, 31, 48, 38} {15, 26, 43, 67} {16, 27, 66, 40}
{8, 19, 75, 71} {18, 29, 53, 59} {30, 34, 61, 62} {45, 52, 5, 37} {74, 47, 10, 22}
{68, 33, 1, 51} {69, 35, 3, 42} {39, 12, 41, 36} {6, 55, 2, 58}
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{0, 11, 72, 52} {13, 24, 75, 71} {15, 26, 61, 51} {17, 28, 42, 38} {21, 32, 68, 74}
{19, 3, 47, 45} {14, 36, 64, 39} {22, 6, 56, 40} {23, 7, 53, 48} {4, 37, 54, 50}
{2, 35, 63, 43} {16, 18, 70, 41} {59, 60, 25, 29} {65, 67, 9, 12} {62, 69, 1, 33}
{58, 31, 5, 46} {57, 30, 27, 55} {20, 66, 44, 8} {34, 73, 10, 49}
{0, 2, 53, 62} {6, 10, 54, 55} {8, 16, 66, 68} {12, 20, 74, 38} {7, 9, 61, 70}
{3, 5, 56, 65} {11, 15, 59, 60} {13, 17, 44, 45} {19, 27, 39, 41} {57, 58, 22, 24}
{48, 49, 18, 26} {46, 47, 21, 31} {51, 52, 29, 1} {67, 32, 4, 50} {64, 33, 30, 72}
{40, 35, 25, 43} {34, 75, 42, 14} {28, 73, 71, 23} {63, 36, 69, 37}
{38, 39, 6, 12} {41, 42, 9, 25} {44, 45, 16, 28} {47, 48, 19, 1} {50, 51, 29, 33}
{53, 54, 0, 10} {55, 56, 4, 8} {59, 61, 27, 13} {60, 62, 30, 7} {40, 43, 11, 23}
{49, 52, 24, 32} {63, 70, 15, 5} {64, 71, 31, 21} {73, 37, 3, 65} {58, 34, 14, 66}
{69, 26, 22, 72} {17, 57, 75, 2} {18, 67, 46, 36} {35, 74, 20, 68}
{38, 41, 8, 18} {45, 52, 28, 4} {40, 47, 6, 10} {49, 56, 15, 13} {54, 61, 34, 14}
{60, 67, 16, 24} {51, 58, 7, 33} {57, 64, 31, 35} {55, 62, 26, 20} {59, 73, 25, 3}
{66, 42, 22, 36} {70, 53, 19, 27} {39, 50, 9, 37} {29, 43, 71, 11} {12, 72, 46, 30}
{32, 65, 44, 2} {74, 5, 68, 0} {17, 69, 21, 75} {23, 63, 1, 48}
{38, 52, 18, 9} {45, 59, 33, 16} {47, 68, 24, 4} {49, 60, 6, 28} {51, 62, 19, 25}
{42, 53, 32, 22} {55, 66, 7, 31} {50, 61, 8, 26} {63, 74, 21, 13} {67, 40, 15, 11}
{43, 54, 14, 20} {56, 58, 34, 5} {65, 69, 37, 0} {41, 10, 1, 71} {64, 30, 36, 75}
{17, 57, 70, 3} {44, 27, 48, 35} {46, 12, 39, 2} {23, 72, 29, 73}
{38, 49, 29, 25} {51, 62, 0, 34} {53, 75, 5, 3} {44, 66, 18, 31} {46, 68, 4, 26}
{57, 41, 11, 6} {40, 73, 14, 10} {48, 43, 33, 13} {50, 52, 27, 36} {60, 64, 15, 16}
{72, 42, 20, 22} {45, 47, 23, 32} {69, 71, 8, 17} {67, 30, 1, 59} {56, 19, 35, 39}
{24, 63, 70, 2} {74, 12, 54, 7} {55, 21, 65, 28} {9, 58, 37, 61}
{38, 42, 10, 11} {39, 43, 32, 33} {41, 49, 23, 25} {51, 59, 37, 1} {53, 16, 18, 58}
{61, 24, 27, 69} {40, 3, 8, 52} {63, 26, 31, 47} {44, 7, 15, 74} {71, 34, 4, 45}
{50, 13, 22, 72} {75, 0, 14, 73} {48, 17, 35, 68} {20, 65, 62, 28} {21, 66, 46, 29}
{6, 55, 56, 30} {67, 36, 57, 9} {70, 5, 60, 12} {19, 64, 2, 54}
{38, 1, 13, 61} {39, 2, 17, 65} {41, 4, 24, 75} {45, 8, 30, 40} {51, 14, 0, 42}
{46, 10, 18, 58} {43, 7, 25, 66} {50, 15, 20, 68} {67, 36, 12, 64} {53, 22, 19, 55}
{54, 23, 34, 52} {63, 32, 16, 49} {57, 26, 31, 73} {3, 74, 70, 6} {62, 28, 72, 35}
{21, 60, 37, 47} {9, 48, 27, 71} {11, 56, 5, 69} {33, 44, 29, 59}
{45, 14, 32, 53} {40, 9, 34, 42} {47, 16, 3, 67} {46, 15, 23, 55} {38, 7, 5, 71}
{49, 18, 6, 59} {51, 20, 22, 54} {57, 26, 4, 70} {61, 37, 27, 43} {60, 36, 2, 69}
{63, 1, 13, 72} {65, 0, 33, 39} {29, 68, 50, 25} {11, 56, 44, 21} {10, 62, 66, 19}
{28, 74, 48, 12} {35, 75, 17, 58} {31, 52, 8, 64} {24, 73, 30, 41}
{38, 21, 18, 50} {45, 28, 22, 40} {51, 24, 8, 68} {42, 15, 32, 60} {53, 26, 5, 67}
{46, 19, 20, 70} {57, 30, 4, 75} {71, 6, 29, 59} {44, 17, 35, 69} {61, 34, 36, 39}
{52, 25, 11, 55} {43, 16, 14, 58} {13, 73, 41, 1} {49, 12, 65, 37} {47, 10, 72, 0}
{54, 27, 74, 31} {9, 48, 23, 64} {7, 56, 2, 62} {3, 63, 33, 66}
{49, 22, 14, 43} {51, 24, 0, 72} {53, 37, 5, 41} {42, 26, 16, 67} {44, 28, 2, 62}
{38, 33, 12, 46} {40, 4, 18, 65} {68, 32, 7, 54} {64, 30, 19, 58} {66, 36, 10, 50}
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{45, 9, 23, 70} {21, 60, 69, 13} {20, 59, 75, 3} {29, 74, 71, 31} {34, 55, 52, 8}
{1, 47, 63, 27} {73, 11, 39, 17} {35, 57, 25, 61} {15, 48, 6, 56}
{38, 8, 24, 64} {39, 3, 16, 63} {41, 7, 34, 73} {43, 13, 25, 65} {45, 15, 31, 71}
{1, 40, 42, 6} {10, 49, 54, 22} {11, 50, 55, 33} {12, 51, 59, 4} {5, 44, 52, 17}
{18, 57, 66, 2} {21, 60, 74, 19} {37, 48, 46, 14} {58, 27, 62, 28} {29, 68, 32, 72}
{30, 70, 0, 53} {9, 61, 35, 56} {36, 47, 20, 69} {26, 75, 23, 67}
{0, 39, 51, 23} {1, 40, 55, 27} {3, 42, 64, 36} {5, 45, 49, 35} {6, 46, 52, 29}
{8, 48, 56, 20} {12, 53, 59, 33} {9, 50, 60, 30} {13, 58, 72, 10} {18, 63, 74, 16}
{32, 43, 61, 19} {66, 31, 75, 11} {68, 37, 73, 25} {26, 65, 28, 67} {15, 54, 2, 44}
{17, 62, 21, 57} {34, 41, 14, 70} {24, 38, 4, 71} {7, 47, 22, 69}
{7, 52, 73, 25} {0, 45, 63, 20} {2, 47, 72, 4} {9, 54, 41, 29} {11, 56, 40, 35}
{13, 58, 49, 5} {15, 60, 65, 31} {19, 64, 42, 32} {14, 66, 46, 22} {17, 38, 70, 12}
{53, 16, 57, 23} {74, 37, 62, 27} {39, 8, 43, 3} {50, 33, 68, 24} {61, 34, 48, 6}
{51, 21, 75, 1} {28, 67, 36, 44} {30, 69, 18, 59} {26, 71, 10, 55}
{0, 59, 63, 33} {11, 60, 55, 23} {13, 62, 41, 27} {4, 53, 65, 30} {17, 66, 40, 35}
{2, 51, 74, 16} {21, 70, 72, 37} {19, 68, 43, 1} {12, 61, 47, 15} {31, 42, 56, 14}
{34, 38, 44, 7} {46, 9, 52, 20} {67, 36, 50, 26} {39, 3, 54, 25} {6, 45, 10, 49}
{8, 48, 18, 58} {28, 73, 5, 75} {24, 69, 29, 57} {22, 64, 32, 71}
{11, 60, 57, 9} {2, 62, 52, 27} {13, 73, 43, 0} {4, 75, 65, 7} {6, 46, 59, 30}
{14, 56, 45, 8} {1, 41, 55, 26} {5, 47, 53, 16} {3, 49, 61, 25} {66, 29, 68, 31}
{71, 34, 51, 19} {42, 15, 54, 28} {74, 20, 48, 23} {18, 63, 22, 64} {33, 40, 17, 38}
{37, 44, 35, 67} {36, 69, 21, 39} {12, 58, 32, 72} {24, 70, 10, 50}
{1, 43, 70, 33} {39, 2, 45, 23} {40, 3, 48, 18} {42, 5, 52, 26} {53, 16, 63, 7}
{46, 9, 59, 31} {50, 13, 64, 27} {71, 34, 47, 12} {51, 14, 74, 8} {73, 4, 58, 10}
{38, 11, 44, 17} {55, 28, 41, 37} {75, 21, 67, 24} {65, 22, 56, 30} {72, 36, 49, 20}
{69, 35, 62, 25} {15, 60, 0, 66} {32, 54, 6, 57} {19, 61, 29, 68}
{38, 1, 55, 21} {39, 3, 59, 24} {40, 5, 46, 17} {42, 7, 50, 22} {43, 8, 56, 26}
{44, 13, 58, 27} {64, 33, 54, 23} {68, 37, 48, 28} {47, 16, 41, 29} {45, 14, 67, 12}
{71, 2, 69, 25} {57, 30, 52, 36} {62, 35, 53, 11} {61, 34, 70, 0} {6, 65, 10, 73}
{31, 4, 72, 63} {66, 49, 32, 19} {74, 9, 18, 51} {15, 60, 75, 20}
{38, 7, 53, 9} {42, 11, 64, 33} {45, 14, 57, 23} {47, 16, 56, 12} {44, 13, 74, 19}
{52, 28, 46, 22} {49, 25, 75, 20} {48, 31, 73, 5} {51, 34, 66, 8} {65, 0, 55, 3}
{54, 27, 50, 30} {2, 41, 15, 63} {32, 39, 26, 72} {10, 21, 70, 43} {18, 29, 58, 69}
{59, 60, 4, 17} {61, 24, 37, 40} {71, 6, 35, 68} {67, 36, 62, 1}
{38, 11, 60, 33} {49, 22, 45, 37} {40, 13, 42, 15} {44, 17, 41, 9} {50, 34, 46, 30}
{64, 21, 54, 1} {62, 19, 74, 32} {66, 23, 51, 31} {56, 20, 72, 5} {8, 47, 18, 68}
{12, 57, 26, 71} {10, 55, 2, 61} {4, 63, 29, 75} {16, 65, 36, 69} {35, 39, 28, 67}
{7, 14, 70, 53} {6, 27, 48, 73} {58, 59, 24, 25} {3, 52, 43, 0}
{38, 8, 58, 22} {40, 10, 64, 28} {39, 9, 59, 23} {3, 42, 7, 49} {5, 44, 11, 65}
{15, 54, 25, 45} {2, 41, 19, 61} {14, 55, 20, 67} {16, 57, 24, 72} {17, 62, 29, 71}
{0, 52, 32, 46} {26, 27, 68, 69} {33, 34, 47, 50} {30, 37, 60, 43} {74, 75, 12, 13}
{18, 63, 70, 1} {6, 51, 66, 35} {4, 53, 48, 21} {73, 36, 56, 31}
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{0, 45, 28, 73} {7, 52, 35, 63} {6, 65, 24, 56} {2, 51, 30, 58} {4, 53, 33, 67}
{13, 62, 37, 71} {11, 60, 19, 47} {21, 70, 8, 42} {23, 72, 32, 38} {26, 27, 40, 41}
{5, 16, 66, 61} {43, 44, 14, 17} {54, 57, 22, 31} {39, 50, 3, 36} {75, 48, 12, 15}
{74, 9, 20, 69} {10, 59, 68, 25} {55, 18, 64, 29} {1, 46, 34, 49}
{0, 71, 12, 46} {2, 42, 18, 65} {4, 44, 19, 66} {6, 48, 37, 38} {1, 47, 21, 61}
{3, 49, 27, 67} {10, 11, 50, 51} {22, 23, 69, 52} {7, 8, 54, 57} {28, 35, 56, 63}
{17, 24, 39, 60} {20, 31, 40, 73} {74, 43, 26, 33} {72, 45, 36, 9} {14, 55, 58, 29}
{30, 41, 70, 5} {53, 16, 68, 13} {59, 32, 62, 15} {25, 64, 34, 75}

Lemma .0.5. There exists an RH(441).

Proof. In [10, Lemma 5.2], Cao, Ji and Zhu constructed an H(241) on Z82 with
group set {{j, j + 41}, j = 0, 1, · · · , 40} and the following shortened list of base
blocks, which are developed by the automorphism group 〈α′, β′〉, where α′ =
(0 1 . . . 80 81) and β′ is a multiplier 37 of order 5 in Z82.

B′ : {0,1,2,4} {0,1,5,6} {0,1,7,8} {0,1,9,10} {0,1,11,12} {0,1,13,14}
{0,1,15,16} {0,1,17,18} {0,1,19,20} {0,1,21,22} {0,1,23,24} {0,1,27,28}
{0,1,29,30} {0,1,31,32} {0,1,33,34} {0,1,35,36} {0,1,39,43} {0,1,40,80}
{0,1,44,79} {0,2,5,7} {0,2,6,8} {0,2,9,12} {0,2,10,13} {0,2,11,15}
{0,2,14,16} {0,2,17,19} {0,2,18,24} {0,2,20,48} {0,2,21,26} {0,2,28,46}
{0,2,29,50} {0,2,30,72} {0,2,32,58} {0,2,35,49} {0,2,55,66} {0,2,56,69}
{0,2,63,75} {0,3,7,22} {0,3,9,56} {0,3,12,64} {0,3,15,70} {0,3,17,61}
{0,3,19,29} {0,3,24,52} {0,3,27,76} {0,3,33,55} {0,3,43,58} {0,4,9,72}
{0,4,10,58} {0,4,14,38} {0,4,39,77} {0,4,48,65}

For each block B = {a, b, c, d} ∈ B′, construct an H(24) with group set

{{x, x + 82} : x ∈ B} and block set AB = {{a + 82i, b + 82(i + k), c + 82j, d +

82(j + k)} : i, j, k ∈ Z2}. Let B = ∪B∈B′AB. It is clear that B is the set of base

blocks of an H(441) on I164 = {0, 1, 2, . . . , 163} with group set G = {{j, j +41, j +

82, j + 123}, j = 0, 1, · · · , 40} and an automorphism group 〈α, β〉, where

α = (0 1 . . . 80 81)(82 83 . . . 162 163) and

β =





β′(x), if x < 82,

β′(x− 82) + 82, if x ≥ 82.

Now, we need to show the resolution.

Note that there are several blocks in B, each of which contains exactly one
even and one odd elements from each cycle of α. We first list below some of these
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blocks and denote them by ∆, each block of which gives a parallel class when
developed under the automorphism group 〈α2, β〉.

{0, 1, 87, 88} {0, 1, 93, 94} {0, 1, 101, 102} {0, 1, 103, 104} {0, 1, 105, 106}
{0, 1, 109, 110} {0, 1, 111, 112} {0, 1, 113, 114} {0, 1, 115, 116} {0, 1, 117, 118}
{0, 1, 126, 161} {0, 3, 91, 138} {0, 3, 97, 152} {0, 3, 125, 140} {82, 83, 5, 6}
{82, 83, 7, 8} {82, 83, 9, 10} {82, 83, 11, 12} {82, 83, 13, 14} {82, 83, 15, 16}
{82, 83, 17, 18} {82, 83, 19, 20} {82, 83, 21, 22} {82, 83, 23, 24} {82, 83, 27, 28}
{82, 83, 29, 30} {82, 83, 31, 32} {82, 83, 33, 34} {82, 83, 35, 36} {82, 85, 9, 56}
{82, 85, 15, 70} {82, 85, 43, 58} {82, 1, 44, 161} {82, 2, 5, 89} {82, 2, 17, 101}
{82, 2, 35, 131} {82, 4, 39, 159} {0, 83, 126, 79} {0, 84, 99, 19} {0, 84, 117, 49}
{0, 84, 145, 75} {0, 85, 9, 138} {0, 85, 27, 158} {0, 85, 43, 140} {82, 1, 87, 6}
{82, 1, 89, 8} {82, 1, 91, 10} {82, 1, 93, 12} {82, 1, 97, 16} {82, 1, 101, 20}
{82, 1, 105, 24} {82, 1, 109, 28} {82, 1, 111, 30} {82, 1, 113, 32} {82, 1, 115, 34}
{82, 1, 117, 36} {82, 2, 87, 7} {82, 2, 93, 15} {82, 2, 99, 19} {82, 2, 117, 49}
{82, 2, 145, 75} {82, 3, 89, 22} {82, 3, 91, 56} {82, 3, 97, 70} {82, 3, 125, 58}
{82, 4, 121, 77} {0, 83, 5, 88} {0, 83, 7, 90} {0, 83, 9, 92} {0, 83, 11, 94}
{0, 83, 13, 96} {0, 83, 15, 98} {0, 83, 17, 100} {0, 83, 19, 102} {0, 83, 23, 106}
{0, 83, 27, 110} {0, 83, 29, 112} {0, 83, 31, 114} {0, 83, 33, 116} {0, 83, 35, 118}
{0, 84, 5, 89} {0, 84, 11, 97} {0, 84, 17, 101} {0, 84, 63, 157} {0, 85, 7, 104}
{0, 1, 89, 90} {0, 1, 95, 96} {0, 1, 97, 98}

Then we shift each of the remaining base blocks in B by a suitable automorphism

αiβj for some integers i and j. The result is listed below, where the blocks in

each of the eleven consecutive rows, namely the ith, (i + 1)th, . . ., and (i + 10)th

rows for i ∈ {11k + 1 : k = 0, 1, . . . , 7}, form a parallel class.

{0, 1, 2, 4} {5, 6, 10, 11} {7, 8, 14, 15} {12, 13, 21, 22}
{16, 17, 27, 28} {18, 19, 31, 32} {23, 24, 38, 39} {25, 26, 42, 43}
{29, 30, 48, 49} {33, 34, 54, 55} {35, 36, 58, 59} {40, 41, 67, 68}
{44, 45, 73, 74} {46, 47, 77, 78} {81, 56, 76, 51} {60, 37, 75, 52}
{20, 57, 69, 53} {64, 66, 70, 72} {61, 63, 79, 3} {82, 83, 84, 86}
{87, 88, 92, 93} {89, 90, 96, 97} {94, 95, 103, 104} {98, 99, 109, 110}
{100, 101, 113, 114} {105, 106, 120, 121} {107, 108, 124, 125} {111, 112, 130, 131}
{115, 116, 136, 137} {117, 118, 140, 141} {122, 123, 149, 150} {126, 127, 155, 156}
{128, 129, 159, 160} {162, 139, 85, 157} {153, 145, 138, 135} {144, 147, 163, 91}
{158, 161, 119, 134} {142, 146, 151, 132} {65, 148, 152, 71} {50, 133, 143, 62}
{80, 154, 102, 9}
{0, 1, 40, 80} {2, 3, 46, 81} {4, 6, 9, 11} {5, 7, 14, 17}
{8, 10, 18, 21} {13, 15, 24, 28} {20, 22, 34, 36} {25, 27, 42, 44}
{29, 31, 49, 77} {30, 32, 51, 56} {33, 35, 61, 79} {69, 71, 16, 37}
{48, 50, 78, 38} {43, 45, 75, 19} {26, 62, 41, 47} {72, 64, 57, 54}
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{65, 67, 39, 52} {53, 60, 70, 66} {82, 83, 115, 116} {84, 85, 119, 120}
{88, 89, 128, 86} {90, 91, 134, 87} {92, 94, 97, 99} {96, 98, 102, 104}
{101, 103, 110, 113} {112, 114, 122, 125} {106, 108, 117, 121} {93, 95, 107, 109}
{124, 126, 141, 143} {127, 129, 145, 151} {146, 138, 148, 118} {131, 133, 152, 157}
{162, 154, 132, 142} {147, 139, 130, 156} {161, 111, 155, 158} {137, 140, 144, 159}
{73, 23, 100, 160} {153, 63, 76, 105} {136, 74, 59, 150} {12, 123, 149, 55}
{163, 58, 135, 68}
{0, 2, 63, 75} {1, 4, 8, 23} {3, 6, 12, 59} {7, 10, 19, 71}
{11, 14, 26, 81} {13, 16, 30, 74} {15, 18, 39, 67} {28, 31, 55, 22}
{17, 20, 50, 72} {21, 24, 64, 79} {37, 41, 46, 27} {56, 60, 66, 32}
{38, 42, 52, 76} {69, 53, 36, 48} {43, 25, 73, 58} {82, 84, 111, 132}
{83, 85, 113, 155} {86, 88, 118, 144} {87, 89, 150, 162} {90, 93, 99, 146}
{92, 95, 104, 156} {91, 94, 106, 161} {97, 100, 114, 158} {102, 105, 126, 154}
{107, 110, 134, 101} {130, 133, 163, 103} {139, 143, 149, 115} {121, 125, 135, 159}
{141, 145, 98, 136} {124, 108, 96, 151} {33, 34, 117, 119} {77, 78, 116, 120}
{57, 49, 160, 152} {44, 80, 122, 148} {131, 123, 70, 62} {138, 140, 65, 68}
{153, 9, 5, 147} {29, 112, 128, 47} {40, 142, 127, 54} {45, 129, 157, 35}
{51, 137, 61, 109}
{0, 1, 122, 162} {2, 4, 90, 92} {3, 5, 94, 97} {6, 8, 98, 101}
{7, 9, 100, 104} {10, 12, 106, 108} {11, 13, 110, 112} {14, 16, 116, 144}
{15, 17, 118, 123} {18, 20, 128, 146} {19, 21, 130, 151} {23, 25, 135, 95}
{24, 26, 138, 82} {30, 32, 85, 96} {33, 35, 89, 102} {36, 38, 99, 111}
{39, 42, 133, 103} {44, 47, 143, 105} {28, 31, 129, 139} {34, 37, 140, 86}
{54, 57, 87, 109} {41, 45, 132, 113} {49, 53, 141, 107} {46, 50, 142, 84}
{75, 79, 114, 152} {69, 73, 117, 134} {136, 137, 56, 58} {119, 120, 76, 80}
{126, 163, 48, 52} {148, 150, 72, 74} {121, 157, 55, 68} {88, 124, 81, 71}
{149, 153, 77, 43} {147, 66, 78, 161} {91, 29, 63, 155} {127, 65, 62, 131}
{115, 22, 60, 159} {154, 61, 51, 160} {27, 145, 156, 67} {70, 83, 125, 59}
{40, 158, 64, 93}
{82, 84, 14, 16} {83, 85, 18, 20} {86, 88, 22, 28} {87, 89, 25, 53}
{90, 92, 29, 34} {91, 93, 37, 55} {94, 96, 41, 62} {95, 97, 43, 3}
{98, 100, 48, 74} {99, 101, 52, 66} {102, 104, 75, 4} {103, 105, 77, 8}
{106, 108, 5, 17} {109, 112, 39, 9} {110, 113, 45, 7} {114, 117, 51, 61}
{118, 121, 60, 6} {119, 122, 70, 10} {111, 115, 38, 19} {124, 128, 56, 80}
{127, 131, 2, 40} {129, 133, 13, 30} {116, 35, 36, 120} {135, 54, 58, 141}
{138, 57, 63, 146} {140, 59, 67, 150} {149, 68, 78, 161} {153, 46, 24, 163}
{107, 26, 42, 125} {134, 27, 69, 126} {148, 21, 23, 142} {156, 49, 73, 130}
{154, 47, 81, 145} {155, 65, 33, 144} {159, 15, 31, 147} {132, 32, 71, 136}
{72, 143, 137, 12} {50, 139, 123, 76} {160, 79, 162, 0} {1, 157, 11, 151}
{44, 158, 64, 152}
{82, 1, 27, 110} {83, 2, 30, 113} {84, 3, 33, 116} {85, 4, 36, 119}
{86, 5, 39, 122} {89, 8, 47, 87} {90, 10, 14, 98} {91, 11, 23, 107}
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{92, 12, 38, 138} {93, 13, 40, 143} {95, 15, 45, 153} {101, 21, 75, 88}
{99, 20, 24, 121} {104, 25, 31, 160} {114, 35, 44, 96} {97, 18, 32, 158}
{105, 26, 42, 134} {130, 51, 72, 100} {108, 29, 53, 102} {147, 68, 16, 120}
{127, 49, 55, 103} {124, 46, 56, 162} {135, 57, 19, 118} {48, 131, 132, 52}
{50, 133, 139, 58} {54, 137, 145, 64} {59, 142, 154, 73} {66, 149, 163, 0}
{43, 126, 144, 63} {17, 156, 148, 41} {60, 117, 141, 34} {9, 128, 106, 61}
{74, 157, 109, 28} {7, 140, 161, 69} {150, 70, 159, 80} {151, 76, 125, 81}
{115, 37, 129, 71} {79, 136, 6, 152} {111, 65, 22, 94} {62, 146, 155, 77}
{123, 78, 112, 67}
{0, 83, 111, 30} {1, 84, 114, 33} {2, 85, 117, 36} {3, 86, 124, 46}
{4, 88, 92, 12} {5, 89, 96, 17} {6, 90, 98, 19} {7, 91, 103, 23}
{10, 94, 110, 34} {11, 95, 113, 59} {9, 93, 119, 55} {15, 99, 126, 65}
{13, 97, 127, 71} {16, 101, 105, 38} {21, 106, 112, 77} {40, 125, 134, 22}
{43, 128, 140, 31} {24, 109, 130, 76} {35, 120, 150, 8} {47, 133, 138, 37}
{49, 135, 141, 25} {58, 144, 154, 14} {56, 142, 104, 39} {107, 26, 146, 68}
{129, 48, 87, 45} {131, 51, 137, 57} {122, 42, 132, 53} {147, 67, 161, 81}
{121, 41, 139, 63} {160, 70, 162, 50} {158, 78, 108, 52} {82, 74, 149, 64}
{153, 60, 118, 66} {73, 157, 20, 123} {32, 143, 18, 152} {80, 69, 145, 102}
{155, 75, 54, 148} {72, 156, 159, 79} {28, 100, 115, 61} {151, 44, 136, 29}
{27, 116, 62, 163}
{1, 87, 49, 148} {82, 2, 103, 26} {83, 3, 111, 47} {84, 4, 113, 52}
{85, 5, 115, 75} {89, 9, 145, 76} {90, 11, 102, 72} {91, 12, 110, 38}
{92, 13, 125, 65} {88, 10, 97, 78} {94, 16, 104, 70} {96, 18, 144, 79}
{15, 98, 17, 101} {29, 112, 69, 109} {44, 127, 6, 123} {24, 108, 30, 114}
{22, 106, 31, 116} {23, 107, 33, 118} {21, 105, 35, 119} {51, 135, 71, 99}
{42, 126, 63, 150} {7, 163, 59, 151} {50, 134, 80, 122} {55, 139, 28, 121}
{8, 93, 20, 154} {39, 124, 56, 100} {45, 130, 64, 156} {74, 159, 25, 129}
{77, 149, 34, 143} {0, 86, 14, 120} {81, 147, 48, 142} {66, 67, 157, 158}
{53, 54, 152, 153} {57, 60, 146, 161} {162, 137, 46, 73} {131, 160, 62, 43}
{133, 140, 32, 37} {132, 27, 141, 36} {136, 61, 117, 40} {19, 138, 58, 95}
{41, 155, 68, 128}

Lemma .0.6. There exists an RH(129).

Proof. In [57], Mills constructed an H(69) on Z27×Z2 with group set {{(m, 0), (m+

9, 0), (m + 18, 0), (m, 1), (m + 9, 1), (m + 18, 1)} : m ∈ Z9}} and the following 42

forms of blocks, where m ∈ Z27, a, b ∈ Z2.

{(m, a), (m + 2, a), (m + 5, b), (m + 7, b)},{(m, a), (m + 5, b), (m + 12, a + b), (m + 20, a + b + 1)}
{(m, a), (m + 1, a), (m + 5, b), (m + 6, b)},{(m, a), (m + 5, b), (m + 10, a + 1), (m + 21, a + b + 1)}
{(m, a), (m + 1, a), (m + 7, b), (m + 8, b)},{(m, a), (m + 5, b), (m + 12, a + b + 1), (m + 17, a + 1)}
{(m, a), (m + 2, a), (m + 8, b), (m + 10, b)},{(m, a), (m + 6, b), (m + 13, a + b + 1), (m + 19, a + 1)}
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{(m, a), (m + 2, b), (m + 12, b), (m + 17, a)},{(m, a), (m + 1, b), (m + 15, a + b + 1), (m + 17, a + 1)}
{(m, a), (m + 1, b), (m + 2, a + b), (m + 4, b)},{(m, a), (m + 1, b), (m + 12, a + b + 1), (m + 14, b + 1)}
{(m, a), (m + 2, a + 1), (m + 5, b), (m + 8, b)},{(m, a), (m + 2, a + 1), (m + 7, b), (m + 23, a + b + 1)}
{(m, a), (m + 3, a), (m + 7, b), (m + 20, a + b)},{(m, a), (m + 2, a + 1), (m + 6, b), (m + 21, a + b + 1)}
{(m, a), (m + 4, b), (m + 8, a), (m + 15, a + b)},{(m, a), (m + 4, b), (m + 8, a + 1), (m + 16, a + b + 1)}
{(m, a), (m + 1, a + 1), (m + 5, b), (m + 6, b + 1)},{(m, a), (m + 3, a), (m + 16, b), (m + 23, a + b + 1)}
{(m, a), (m + 3, a), (m + 11, b), (m + 14, b + 1)},{(m, a), (m + 4, b), (m + 14, b + 1), (m + 21, a + b)}
{(m, a), (m + 1, a + 1), (m + 7, b), (m + 8, b + 1)},{(m, a), (m + 5, b), (m + 10, a), (m + 16, a + b + 1)}
{(m, a), (m + 6, b), (m + 12, a + b), (m + 19, a)},{(m, a), (m + 2, a + 1), (m + 10, b), (m + 24, a + b)}
{(m, a), (m + 2, a + 1), (m + 19, b), (m + 22, b)},{(m, a), (m + 4, b), (m + 10, a + b), (m + 20, a + b)}
{(m, a), (m + 1, b), (m + 11, b), (m + 12, a + b)},{(m, a), (m + 3, a), (m + 15, b), (m + 19, a + b + 1)}
{(m, a), (m + 1, b), (m + 11, b + 1), (m + 13, a)},{(m, a), (m + 1, b), (m + 14, b), (m + 16, a + b + 1)}
{(m, a), (m + 1, b), (m + 3, a + 1), (m + 4, b + 1)},{(m, a), (m + 3, a + 1), (m + 11, b), (m + 15, a + b)}
{(m, a), (m + 3, a + 1), (m + 8, b), (m + 22, a + b)},{(m, a), (m + 1, b), (m + 13, a + 1), (m + 15, a + b)}
{(m, a), (m + 3, b), (m + 6, b + 1), (m + 17, a + 1)},{(m, a), (m + 5, b), (m + 11, a + b), (m + 19, a + b)}
{(m, a), (m + 3, a + 1), (m + 7, b), (m + 10, b + 1)},{(m, a), (m + 3, b), (m + 13, a + b + 1), (m + 17, a)}
{(m, a), (m + 2, a), (m + 6, b), (m + 23, a + b + 1)},{(m, a), (m + 1, b), (m + 2, a + b + 1), (m + 25, b)}

For each form of blocks, taking m = 0 and a, b ∈ Z2, we get four blocks.

Thus we get 168 base blocks of the H(69) all together, denote the set by B′′,
which are developed by (+1 mod 27,−). Define a map φ : (x, y) → 27y + x,

for each element (x, y) ∈ Z27 × Z2. Then B′ = φ(B′′) is the base block set of an

H(69) on I54 = {0, 1, . . . , 53} with group set {{m,m + 9, . . . , m + 45} : m ∈ Z9}
and an automorphism group 〈(0 1 . . . 26)(27 28 . . . 53)〉.

For each block B = {a, b, c, d} ∈ B′, construct an H(24) with group set

{{x, x+54} : x ∈ B} and block set AB = {{a+54i, b+54(i+k), c+54j, d+54(j+

k)} : i, j, k ∈ Z2}. Let B = ∪B∈B′AB. It is clear that B is the set of base blocks of

an H(129) on I108 = {0, 1, . . . , 107} with group set {{m,m+9, . . . , m+99} : m ∈
Z9} and an automorphism group 〈α〉 with α = (0 1 . . . 26)(27 28 . . . 53)(54 55 . . .

80)(81 82 . . . 107). Now we need to show the resolution.

Note that there are several blocks in B, each of which contains exactly one

element in each cycle of α. We first list below some of these blocks and denote

them by ∆, each block of which gives a parallel class when developed under the

automorphism group 〈α〉.
{0, 28, 59, 87} {0, 28, 61, 89} {0, 29, 60, 102} {0, 30, 61, 91} {0, 28, 86, 60}
{0, 28, 88, 62} {0, 28, 56, 106} {0, 28, 84, 58} {0, 28, 95, 70} {0, 29, 93, 71}
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{0, 32, 66, 98} {0, 32, 93, 74} {0, 29, 88, 77} {0, 30, 60, 98} {0, 32, 91, 75}
{0, 31, 89, 70} {0, 30, 88, 64} {27, 1, 59, 87} {27, 1, 61, 89} {27, 1, 83, 58}
{27, 1, 57, 85} {27, 1, 65, 93} {27, 1, 66, 95} {27, 1, 67, 96} {27, 5, 93, 74}
{27, 3, 67, 98} {27, 3, 87, 71} {27, 3, 65, 96} {27, 3, 61, 91} {27, 1, 88, 62}
{27, 2, 91, 78} {27, 3, 89, 76} {27, 3, 88, 64} {54, 82, 5, 33} {54, 82, 7, 35}
{54, 83, 7, 50} {54, 82, 32, 6} {54, 82, 34, 8} {54, 82, 2, 52} {54, 82, 30, 4}
{54, 82, 41, 16} {54, 82, 15, 44} {54, 83, 39, 17} {54, 86, 12, 44} {54, 86, 39, 20}
{54, 85, 8, 42} {54, 83, 34, 23} {54, 83, 33, 21} {54, 84, 6, 44} {54, 86, 37, 21}
{81, 55, 5, 33} {81, 55, 7, 35} {81, 55, 29, 4} {81, 55, 11, 39} {81, 55, 12, 41}
{81, 55, 13, 42} {81, 56, 12, 44} {81, 59, 39, 20} {81, 56, 10, 51} {81, 57, 33, 17}
{81, 59, 37, 16} {81, 57, 11, 42} {81, 57, 7, 37} {81, 55, 32, 6} {81, 55, 34, 8}
{81, 56, 37, 24} {81, 57, 35, 22} {81, 57, 38, 15} {81, 57, 34, 10} {0, 55, 30, 85}
{0, 59, 39, 98} {0, 57, 33, 98} {0, 59, 37, 102} {0, 58, 35, 97} {0, 55, 32, 87}
{0, 82, 41, 70} {0, 86, 39, 74} {0, 83, 34, 77} {0, 56, 32, 88} {0, 83, 33, 75}
{0, 56, 35, 91} {0, 86, 37, 75} {0, 84, 34, 64} {0, 57, 34, 101} {0, 61, 40, 98}
{0, 62, 41, 101} {27, 82, 5, 60} {27, 55, 5, 87} {27, 82, 7, 62} {27, 55, 7, 89}
{27, 55, 3, 85} {27, 55, 11, 93} {27, 55, 12, 95} {27, 56, 12, 98} {27, 83, 6, 77}
{27, 83, 8, 64} {27, 57, 8, 103} {27, 57, 13, 98} {27, 57, 11, 96} {27, 84, 15, 73}
{0, 67, 34, 98} {27, 82, 13, 69} {27, 84, 6, 71} {27, 85, 10, 74} {27, 86, 11, 73}
{54, 1, 84, 31} {54, 1, 93, 41} {54, 3, 87, 44} {54, 5, 91, 48} {54, 4, 89, 43}
{54, 28, 86, 6} {54, 1, 88, 35} {54, 28, 88, 8} {54, 28, 84, 4} {54, 28, 95, 16}
{54, 29, 93, 17} {54, 32, 93, 20} {54, 2, 86, 34} {54, 29, 87, 21} {54, 2, 89, 37}
{54, 32, 91, 21} {54, 30, 88, 10} {54, 3, 88, 47} {54, 6, 94, 46} {54, 7, 94, 44}
{81, 1, 59, 33} {81, 28, 61, 8} {81, 1, 61, 35} {81, 1, 65, 39} {81, 1, 66, 41}
{81, 1, 67, 42} {81, 2, 66, 44} {81, 29, 62, 10} {81, 2, 64, 51} {81, 3, 67, 44}
{81, 3, 65, 42} {81, 30, 69, 19} {81, 30, 70, 23} {81, 3, 61, 37} {54, 13, 87, 46}
{81, 28, 57, 4} {81, 28, 67, 15} {81, 30, 60, 17} {81, 31, 64, 20} {81, 32, 65, 19}
{0, 82, 59, 33} {0, 82, 61, 35} {0, 55, 93, 41} {0, 55, 96, 44} {0, 59, 93, 44}
{0, 57, 87, 44} {0, 59, 91, 48} {0, 84, 61, 37} {0, 55, 86, 33} {0, 55, 88, 35}
{0, 82, 56, 52} {0, 82, 69, 44} {0, 85, 62, 42} {0, 56, 86, 34} {0, 56, 89, 37}
{0, 84, 60, 44} {0, 60, 94, 46} {0, 61, 94, 44} {0, 62, 95, 47} {27, 82, 61, 8}
{27, 55, 83, 4} {27, 83, 59, 7} {27, 83, 60, 23} {27, 83, 62, 10} {27, 57, 87, 17}
{27, 59, 91, 16} {27, 84, 69, 19} {27, 84, 70, 23} {27, 55, 86, 6} {0, 67, 87, 46}
{27, 57, 89, 22} {27, 86, 65, 19} {27, 57, 92, 15} {27, 57, 88, 10} {54, 28, 5, 87}
{54, 28, 7, 89} {54, 1, 30, 85} {54, 1, 42, 98} {54, 5, 39, 98} {54, 29, 7, 104}
{54, 29, 6, 102} {54, 3, 33, 98} {54, 5, 37, 102} {54, 4, 35, 97} {54, 30, 7, 91}
{54, 1, 32, 87} {54, 1, 34, 89} {54, 28, 2, 106} {54, 28, 15, 98} {54, 32, 12, 98}
{54, 31, 8, 96} {54, 2, 32, 88} {54, 2, 35, 91} {54, 30, 6, 98} {54, 3, 34, 101}
{81, 28, 7, 62} {81, 1, 29, 58} {81, 5, 39, 74} {81, 29, 5, 61} {81, 29, 6, 77}
{81, 29, 8, 64} {81, 3, 33, 71} {81, 30, 15, 73} {81, 30, 16, 77} {81, 1, 32, 60}
{54, 13, 33, 100} {54, 13, 34, 98} {81, 1, 34, 62} {81, 28, 3, 58} {81, 28, 13, 69}
{81, 2, 37, 78} {81, 3, 35, 76} {81, 30, 6, 71} {81, 31, 10, 74} {81, 3, 38, 69}
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{81, 3, 34, 64} {27, 84, 16, 77} {0, 67, 33, 100} {27, 2, 64, 105} {27, 3, 62, 103}
{54, 85, 35, 16} {54, 84, 34, 10} {0, 82, 34, 62} {0, 82, 30, 58} {54, 8, 95, 47}
{81, 28, 59, 6} {0, 83, 61, 50} {0, 83, 60, 48} {0, 67, 88, 44} {27, 82, 57, 4}
{54, 8, 41, 101} {81, 28, 5, 60}

Then we shift each of the remaining base blocks in B by a suitable automorphism

αi for some integer i. The result is listed below, where the blocks in each of

the six consecutive rows, namely the ith, (i + 1)th, . . ., and (i + 5)th rows for

i ∈ {6k + 1 : k = 0, 1, . . . , 40}, form a parallel class.

{0, 1, 5, 6} {2, 30, 7, 35} {3, 4, 10, 11} {8, 36, 15, 43} {12, 13, 14, 16}
{19, 20, 48, 17} {21, 22, 51, 52} {23, 24, 34, 9} {25, 26, 37, 39} {18, 46, 47, 49}
{27, 28, 32, 33} {40, 41, 42, 38} {54, 55, 59, 60} {56, 84, 61, 89} {57, 58, 64, 65}
{62, 90, 69, 97} {66, 67, 68, 70} {73, 74, 102, 71} {75, 76, 105, 106} {77, 78, 88, 63}
{80, 81, 91, 92} {72, 107, 86, 93} {83, 85, 95, 100} {94, 96, 99, 101} {44, 45, 103, 104}
{53, 82, 31, 87} {50, 79, 29, 98}
{0, 1, 11, 12} {2, 3, 42, 17} {4, 5, 18, 47} {6, 7, 48, 50} {8, 10, 20, 25}
{14, 19, 53, 31} {9, 38, 16, 32} {15, 44, 21, 36} {23, 26, 29, 40} {13, 41, 51, 52}
{24, 27, 35, 39} {43, 45, 28, 33} {54, 55, 65, 66} {56, 57, 95, 97} {58, 59, 98, 73}
{60, 61, 74, 103} {62, 63, 104, 106} {70, 75, 82, 87} {64, 69, 76, 84} {71, 100, 78, 94}
{72, 101, 77, 80} {83, 88, 93, 99} {86, 90, 67, 102} {89, 92, 105, 85} {22, 79, 37, 68}
{34, 91, 49, 107} {81, 30, 96, 46}
{0, 5, 12, 47} {2, 6, 10, 17} {9, 11, 14, 16} {13, 42, 18, 21} {1, 3, 7, 51}
{25, 27, 8, 22} {4, 33, 23, 26} {15, 20, 52, 36} {24, 53, 29, 32} {19, 48, 38, 41}
{30, 31, 44, 46} {43, 45, 49, 39} {54, 56, 66, 71} {55, 59, 63, 70} {60, 62, 65, 67}
{72, 74, 78, 95} {58, 87, 64, 106} {57, 86, 76, 79} {80, 83, 61, 75} {68, 73, 105, 89}
{69, 98, 88, 91} {102, 103, 104, 100} {92, 97, 77, 85} {99, 101, 107, 82} {93, 96, 28, 35}
{34, 90, 40, 84} {37, 94, 50, 81}
{0, 2, 8, 10} {1, 31, 9, 23} {3, 6, 43, 20} {11, 15, 21, 4} {7, 12, 17, 50}
{13, 18, 24, 5} {22, 26, 30, 38} {19, 47, 51, 25} {14, 42, 16, 39} {27, 28, 34, 35}
{46, 49, 32, 36} {37, 40, 52, 29} {54, 56, 62, 64} {55, 84, 65, 79} {57, 60, 97, 74}
{58, 61, 91, 102} {66, 70, 76, 59} {63, 68, 73, 106} {69, 72, 80, 83} {71, 101, 78, 81}
{77, 107, 85, 99} {95, 98, 75, 88} {86, 87, 93, 94} {89, 90, 103, 105} {44, 45, 100, 96}
{48, 104, 33, 92} {67, 41, 53, 82}
{0, 30, 11, 15} {1, 4, 16, 47} {2, 5, 13, 43} {3, 6, 19, 53} {7, 37, 14, 44}
{17, 20, 24, 10} {8, 9, 40, 41} {21, 22, 28, 29} {18, 46, 52, 26} {23, 51, 36, 38}
{25, 27, 35, 49} {54, 59, 65, 73} {56, 60, 91, 99} {55, 85, 66, 70} {61, 64, 76, 107}
{69, 72, 58, 92} {62, 63, 94, 95} {68, 96, 100, 74} {79, 80, 86, 87} {71, 77, 84, 90}
{93, 67, 104, 106} {82, 57, 89, 105} {31, 33, 97, 102} {75, 81, 34, 42} {83, 88, 12, 50}
{101, 48, 103, 45} {39, 98, 78, 32}
{0, 28, 30, 4} {1, 29, 12, 14} {3, 31, 15, 17} {5, 33, 46, 21} {7, 35, 22, 51}
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{8, 37, 47, 25} {6, 38, 18, 50} {9, 41, 48, 2} {11, 42, 19, 53} {20, 49, 27, 16}
{24, 26, 32, 34} {39, 40, 23, 52} {54, 57, 61, 74} {55, 83, 89, 63} {56, 84, 85, 87}
{65, 93, 67, 90} {58, 86, 88, 62} {64, 92, 75, 77} {66, 94, 78, 80} {72, 101, 106, 68}
{71, 100, 81, 95} {59, 91, 97, 105} {69, 99, 103, 79} {96, 70, 98, 73} {10, 13, 107, 60}
{43, 45, 102, 104} {44, 76, 82, 36}
{0, 2, 32, 34} {3, 5, 36, 26} {4, 33, 37, 25} {8, 38, 43, 30} {1, 31, 14, 18}
{9, 39, 15, 53} {12, 44, 49, 6} {24, 29, 7, 13} {16, 48, 27, 35} {11, 41, 45, 21}
{46, 20, 22, 50} {54, 82, 94, 96} {56, 84, 97, 72} {55, 83, 70, 99} {59, 88, 98, 76}
{57, 89, 69, 101} {68, 100, 107, 61} {71, 102, 79, 86} {58, 60, 90, 92} {74, 104, 80, 91}
{65, 73, 106, 85} {103, 77, 64, 66} {42, 17, 75, 63} {67, 95, 51, 52} {23, 78, 10, 93}
{47, 105, 28, 62} {19, 81, 87, 40}
{0, 31, 37, 47} {1, 32, 36, 17} {2, 5, 44, 21} {4, 7, 42, 18} {3, 6, 46, 26}
{9, 12, 43, 29} {16, 20, 10, 30} {8, 14, 48, 27} {45, 19, 23, 51} {41, 15, 25, 53}
{39, 13, 50, 52} {34, 35, 49, 24} {54, 83, 86, 89} {55, 57, 88, 78} {58, 87, 91, 79}
{59, 61, 94, 96} {60, 90, 73, 77} {62, 93, 99, 82} {69, 101, 106, 63} {67, 98, 102, 56}
{100, 74, 75, 71} {92, 68, 76, 107} {105, 81, 66, 70} {64, 97, 104, 85} {72, 103, 28, 38}
{11, 95, 22, 80} {65, 40, 84, 33}
{0, 6, 12, 19} {1, 7, 21, 42} {3, 10, 43, 47} {5, 13, 46, 52} {30, 31, 8, 9}
{34, 35, 14, 15} {37, 11, 17, 45} {48, 22, 50, 25} {49, 23, 24, 20} {28, 2, 16, 18}
{51, 27, 4, 44} {33, 36, 40, 26} {54, 86, 64, 70} {55, 85, 93, 97} {56, 59, 98, 75}
{57, 60, 95, 71} {62, 65, 105, 58} {69, 72, 103, 89} {73, 77, 67, 87} {68, 74, 61, 82}
{92, 66, 76, 104} {96, 99, 80, 83} {100, 101, 88, 63} {91, 94, 102, 78} {38, 41, 107, 84}
{79, 53, 81, 29} {90, 39, 106, 32}
{27, 1, 12, 41} {28, 2, 14, 43} {29, 3, 16, 18} {30, 5, 15, 47} {32, 10, 17, 22}
{33, 11, 45, 26} {31, 8, 39, 46} {44, 19, 24, 13} {40, 42, 21, 23} {53, 4, 9, 20}
{49, 25, 6, 37} {54, 60, 66, 73} {55, 62, 95, 99} {85, 86, 63, 64} {83, 57, 61, 89}
{87, 88, 67, 68} {96, 70, 76, 104} {98, 72, 74, 102} {91, 65, 77, 106} {105, 56, 90, 71}
{101, 78, 84, 94} {97, 75, 107, 59} {35, 38, 69, 82} {52, 80, 36, 92} {79, 0, 58, 48}
{100, 50, 81, 7} {103, 51, 34, 93}
{27, 29, 5, 7} {28, 3, 6, 9} {31, 33, 10, 0} {37, 12, 16, 4} {38, 13, 21, 35}
{43, 18, 8, 11} {39, 15, 20, 34} {47, 24, 30, 40} {36, 14, 46, 25} {45, 48, 2, 32}
{41, 42, 52, 26} {81, 55, 66, 95} {82, 56, 69, 71} {83, 58, 68, 100} {85, 63, 70, 75}
{84, 61, 92, 99} {98, 73, 78, 67} {94, 96, 72, 74} {106, 54, 57, 60} {59, 93, 101, 107}
{80, 90, 97, 103} {104, 105, 88, 62} {50, 51, 89, 64} {102, 76, 23, 19} {86, 91, 44, 22}
{1, 87, 65, 17} {49, 77, 79, 53}
{27, 3, 13, 44} {28, 4, 34, 18} {29, 7, 40, 48} {31, 8, 12, 20} {33, 36, 21, 25}
{47, 50, 9, 16} {35, 11, 15, 45} {6, 19, 39, 52} {17, 51, 32, 38} {41, 42, 53, 1}
{81, 83, 60, 77} {82, 57, 61, 76} {84, 86, 65, 67} {88, 63, 71, 85} {87, 62, 79, 55}
{94, 70, 75, 89} {105, 54, 64, 95} {90, 66, 96, 80} {91, 69, 74, 58} {92, 93, 97, 98}
{10, 14, 99, 107} {2, 5, 72, 106} {68, 73, 24, 30} {102, 103, 26, 0} {100, 101, 22, 23}
{49, 78, 59, 46} {56, 37, 43, 104}
{27, 1, 32, 6} {0, 13, 34, 44} {2, 35, 42, 50} {4, 39, 45, 52} {3, 40, 47, 53}
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{31, 5, 38, 12} {48, 49, 24, 25} {28, 29, 14, 16} {33, 37, 41, 21} {51, 26, 43, 46}
{81, 59, 92, 100} {83, 60, 64, 72} {82, 85, 71, 78} {86, 62, 66, 96} {84, 58, 89, 63}
{55, 68, 88, 101} {61, 74, 95, 105} {99, 73, 106, 80} {90, 91, 65, 94} {104, 107, 56, 67}
{8, 9, 102, 77} {54, 57, 7, 20} {69, 103, 30, 36} {15, 70, 76, 23} {11, 93, 97, 17}
{18, 75, 87, 10} {98, 19, 22, 79}
{60, 9, 76, 29} {96, 43, 84, 5} {27, 86, 37, 97} {32, 7, 91, 94} {65, 12, 13, 69}
{1, 61, 67, 20} {103, 107, 30, 10} {3, 59, 8, 64} {31, 63, 41, 74} {106, 26, 90, 38}
{21, 77, 2, 58} {70, 44, 50, 78} {6, 88, 101, 22} {25, 33, 93, 100} {66, 72, 24, 4}
{95, 98, 81, 85} {47, 105, 55, 36} {52, 57, 62, 19} {92, 15, 73, 0} {39, 42, 28, 35}
{89, 40, 18, 83} {102, 53, 87, 11} {17, 46, 54, 68} {48, 23, 80, 56} {45, 104, 82, 34}
{75, 49, 51, 79} {16, 71, 99, 14}
{77, 106, 28, 31} {19, 20, 85, 87} {48, 76, 86, 34} {94, 97, 53, 30} {16, 44, 81, 82}
{13, 72, 24, 59} {33, 61, 35, 64} {70, 73, 27, 3} {80, 2, 95, 18} {50, 105, 91, 39}
{17, 23, 56, 63} {9, 65, 69, 32} {6, 43, 104, 83} {107, 0, 67, 15} {92, 41, 45, 58}
{55, 57, 7, 51} {62, 36, 74, 22} {98, 99, 46, 42} {75, 79, 4, 14} {21, 78, 88, 11}
{68, 96, 26, 1} {84, 5, 103, 52} {38, 40, 100, 102} {8, 90, 37, 93} {60, 10, 54, 47}
{66, 49, 29, 89} {71, 101, 25, 12}
{99, 100, 58, 60} {98, 75, 25, 6} {103, 106, 83, 69} {81, 5, 66, 17} {59, 64, 16, 24}
{87, 91, 70, 80} {93, 14, 22, 90} {72, 19, 56, 3} {97, 102, 54, 62} {76, 78, 28, 18}
{46, 51, 2, 40} {30, 35, 42, 20} {39, 67, 71, 45} {38, 13, 44, 32} {49, 77, 27, 55}
{86, 61, 11, 26} {9, 92, 15, 84} {89, 37, 101, 52} {31, 36, 41, 47} {65, 68, 0, 34}
{48, 105, 1, 95} {21, 104, 94, 43} {23, 79, 29, 73} {12, 96, 74, 7} {53, 82, 85, 33}
{50, 107, 88, 10} {57, 4, 8, 63}
{32, 61, 24, 54} {5, 34, 91, 94} {86, 6, 10, 92} {88, 37, 47, 105} {60, 9, 46, 77}
{100, 21, 80, 15} {79, 28, 11, 69} {102, 49, 87, 8} {26, 81, 93, 41} {82, 83, 43, 18}
{70, 107, 33, 39} {30, 85, 35, 90} {55, 7, 67, 20} {59, 62, 48, 1} {104, 0, 4, 66}
{14, 98, 22, 63} {57, 65, 44, 50} {13, 97, 101, 23} {25, 3, 64, 99} {42, 71, 103, 38}
{72, 73, 52, 53} {76, 78, 27, 29} {96, 17, 106, 12} {2, 58, 68, 19} {89, 36, 40, 95}
{84, 31, 45, 74} {75, 51, 56, 16}
{69, 21, 62, 29} {76, 26, 16, 90} {41, 42, 73, 74} {27, 31, 10, 20} {38, 39, 107, 55}
{65, 14, 80, 30} {33, 34, 8, 37} {32, 9, 67, 75} {97, 45, 102, 50} {72, 47, 52, 68}
{83, 87, 12, 22} {106, 82, 40, 44} {94, 43, 28, 86} {11, 95, 103, 53} {46, 24, 58, 63}
{1, 2, 60, 61} {48, 78, 59, 36} {35, 92, 51, 85} {91, 66, 17, 6} {96, 99, 84, 88}
{79, 0, 64, 15} {101, 77, 81, 57} {25, 3, 89, 100} {105, 56, 7, 18} {93, 98, 23, 4}
{71, 19, 104, 13} {49, 54, 5, 70}
{77, 2, 8, 69} {26, 82, 92, 16} {67, 18, 23, 83} {21, 107, 4, 64} {52, 55, 65, 42}
{89, 10, 95, 29} {80, 57, 7, 14} {78, 27, 62, 12} {59, 60, 47, 49} {5, 88, 15, 56}
{19, 102, 11, 68} {38, 39, 99, 100} {50, 53, 84, 70} {96, 20, 25, 63} {87, 61, 44, 46}
{98, 73, 51, 40} {101, 48, 22, 105} {3, 9, 97, 103} {45, 104, 1, 93} {66, 13, 106, 0}
{35, 90, 94, 41} {76, 79, 6, 36} {31, 34, 74, 54} {17, 72, 58, 33} {30, 85, 86, 28}
{75, 24, 37, 71} {81, 32, 91, 43}
{9, 37, 74, 76} {18, 101, 25, 95} {26, 2, 60, 73} {19, 79, 66, 33} {100, 50, 54, 35}
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{63, 64, 11, 13} {27, 55, 69, 17} {40, 68, 80, 28} {61, 89, 36, 38} {47, 22, 93, 96}
{7, 92, 15, 103} {94, 41, 78, 53} {46, 51, 57, 65} {52, 0, 86, 102} {21, 49, 88, 90}
{56, 5, 44, 75} {62, 12, 70, 23} {30, 85, 99, 20} {3, 6, 91, 104} {24, 82, 34, 98}
{84, 4, 59, 1} {29, 58, 48, 105} {67, 42, 77, 10} {16, 107, 87, 39} {81, 31, 8, 97}
{83, 32, 45, 106} {43, 71, 72, 14}
{90, 92, 14, 16} {69, 71, 0, 5} {22, 104, 106, 26} {20, 103, 30, 98} {31, 6, 38, 27}
{82, 2, 4, 86} {102, 76, 8, 10} {66, 42, 101, 34} {75, 50, 85, 45} {99, 21, 107, 13}
{61, 37, 15, 56} {3, 89, 96, 23} {33, 35, 41, 43} {52, 80, 64, 39} {100, 47, 53, 81}
{1, 84, 65, 25} {83, 88, 95, 73} {62, 40, 72, 24} {91, 93, 97, 87} {48, 77, 55, 17}
{12, 67, 19, 74} {18, 46, 57, 59} {32, 7, 78, 54} {58, 60, 9, 11} {68, 70, 49, 51}
{105, 29, 63, 44} {79, 28, 36, 94}
{24, 55, 18, 92} {20, 75, 85, 6} {5, 62, 43, 73} {52, 0, 35, 22} {82, 2, 14, 97}
{81, 29, 87, 50} {7, 89, 45, 100} {1, 56, 39, 68} {102, 53, 31, 91} {4, 86, 11, 93}
{71, 46, 9, 66} {94, 15, 47, 90} {59, 34, 64, 13} {21, 106, 83, 10} {69, 17, 23, 79}
{37, 42, 101, 107} {49, 78, 95, 44} {76, 27, 32, 70} {63, 12, 103, 26} {74, 25, 57, 36}
{61, 96, 48, 28} {30, 60, 41, 72} {38, 40, 98, 88} {105, 80, 84, 99} {19, 77, 67, 33}
{54, 3, 16, 104} {8, 65, 51, 58}
{41, 43, 76, 78} {48, 77, 53, 83} {12, 13, 95, 64} {27, 55, 2, 79} {59, 33, 99, 47}
{80, 0, 82, 24} {100, 51, 31, 63} {88, 93, 44, 50} {26, 57, 9, 73} {34, 11, 98, 81}
{7, 10, 72, 102} {8, 92, 97, 30} {67, 14, 20, 75} {23, 106, 84, 19} {91, 68, 45, 52}
{29, 4, 89, 104} {17, 74, 6, 94} {25, 28, 87, 101} {58, 5, 42, 71} {1, 61, 21, 96}
{32, 62, 39, 69} {15, 16, 56, 85} {18, 22, 66, 86} {37, 40, 70, 54} {103, 107, 3, 38}
{36, 65, 46, 60} {35, 90, 49, 105}
{57, 58, 14, 15} {1, 59, 9, 70} {24, 56, 62, 16} {72, 76, 12, 32} {27, 86, 39, 71}
{3, 60, 64, 23} {96, 43, 26, 82} {90, 65, 41, 44} {34, 89, 95, 42} {31, 8, 93, 100}
{50, 106, 83, 46} {101, 48, 88, 36} {28, 85, 97, 47} {40, 68, 78, 52} {105, 107, 5, 7}
{20, 49, 66, 69} {17, 19, 77, 94} {61, 37, 67, 51} {73, 21, 54, 2} {4, 87, 91, 25}
{29, 33, 10, 45} {98, 99, 74, 75} {79, 80, 38, 13} {6, 92, 18, 104} {0, 84, 35, 103}
{53, 81, 55, 30} {102, 22, 63, 11}
{67, 96, 50, 37} {94, 17, 104, 33} {81, 5, 92, 46} {89, 10, 40, 97} {16, 71, 18, 74}
{45, 49, 55, 65} {44, 72, 58, 6} {59, 39, 47, 107} {95, 15, 100, 20} {98, 19, 9, 66}
{75, 27, 88, 42} {87, 90, 21, 25} {14, 105, 31, 91} {43, 101, 24, 86} {85, 61, 93, 80}
{79, 28, 32, 62} {26, 2, 68, 99} {54, 82, 11, 13} {51, 0, 35, 12} {1, 56, 60, 7}
{77, 78, 3, 4} {106, 53, 36, 64} {8, 38, 70, 57} {22, 23, 83, 84} {73, 103, 30, 34}
{102, 52, 29, 63} {41, 69, 48, 76}
{0, 2, 87, 77} {7, 64, 14, 54} {81, 3, 92, 15} {6, 34, 89, 91} {61, 35, 76, 51}
{63, 10, 65, 13} {16, 74, 78, 4} {1, 57, 88, 24} {100, 20, 30, 86} {32, 37, 69, 107}
{98, 99, 83, 58} {9, 95, 47, 82} {39, 41, 71, 73} {101, 48, 85, 5} {96, 45, 53, 56}
{50, 26, 31, 18} {72, 75, 52, 38} {59, 33, 97, 44} {11, 94, 70, 19} {93, 40, 68, 43}
{22, 106, 62, 12} {105, 25, 8, 90} {36, 67, 17, 79} {21, 23, 80, 55} {102, 103, 28, 29}
{66, 42, 104, 27} {46, 49, 84, 60}
{29, 3, 71, 73} {26, 56, 68, 45} {105, 106, 36, 11} {5, 6, 89, 90} {102, 23, 80, 2}
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{25, 107, 64, 12} {93, 41, 44, 100} {103, 27, 7, 96} {54, 57, 42, 19} {1, 61, 13, 74}
{40, 99, 77, 34} {67, 46, 53, 88} {8, 38, 75, 79} {51, 52, 92, 94} {83, 84, 9, 10}
{101, 49, 82, 30} {14, 69, 70, 18} {58, 32, 65, 39} {21, 22, 59, 60} {95, 43, 47, 91}
{97, 17, 104, 24} {63, 37, 20, 76} {16, 98, 81, 28} {33, 62, 72, 50} {48, 78, 55, 31}
{66, 15, 0, 85} {4, 86, 87, 35}
{39, 13, 80, 55} {99, 101, 50, 52} {74, 23, 90, 16} {70, 48, 27, 89} {25, 86, 94, 46}
{47, 104, 31, 61} {0, 82, 88, 8} {81, 5, 38, 100} {35, 64, 14, 56} {37, 12, 71, 60}
{10, 69, 22, 84} {57, 32, 36, 78} {106, 2, 87, 40} {9, 96, 103, 30} {43, 98, 54, 29}
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