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Abstract

Group divisible t-wise balanced designs are of utmost importance in com-
binatorial design theory, and have been widely used in many areas. For ¢t = 2,
group divisible designs were an essential ingredient in the recursive constructions
used in the seminal works of Wilson and Hanani (two of the founders of com-
binatorial design theory), which established necessary and sufficient conditions
for the existence of pairwise balanced designs. Much work has been done on
such designs. For t = 3, two definitions for 3-analogues of group divisible de-
signs — candelabra quadruple systems and group divisible 3-designs were first
introduced by Hanani in 1963. In 1994, Hartman gave a more comprehensive ac-
count of the 3-analogues of group divisible designs, which were applicable for the
generalization of Wilson’s (and Hanani’s) fundamental constructions to produce
3-wise balanced designs. In these 3-analogues of the fundamental constructions,
group divisible 3-designs (called H-designs in the sequel) are also used as essential
ingredients.

The research on Steiner quadruple systems — a special class of H-designs
with each group of size one can be traced back to 1840s. The first and second
complete proofs for the existence of such designs were given by Hanani in 1960s.
All the existing proofs are rather cumbersome, even though simplified proofs have
been given by Lenz in 1985 and by Hartman in 1994. For the existence of Steiner
quadruple systems with resolvability, the known complete solution was obtained
by a joint effort of Hartman, Ji and Zhu over twenty years long. As for the general
existence of resolvable H-designs, however, not much is known. In Chapters 2
and 3 of this dissertation, not only do we provide alternative existence proofs for
Steiner quadruple systems and resolvable Steiner quadruple systems, we give an
almost complete solution to the general existence problem of resolvable H-designs
and construct several infinite classes of nonuniform H-designs. As a consequence
of the existence result of resolvable H-designs, we establish the necessary and

sufficient conditions for the existence of resolvable G-designs in Chapter 2, which
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is another kind of 3-analogue of group divisible designs. As a byproduct, we
also show the existence of maximal resolvable packings of triples by quadruples,
minimal resolvable coverings of triples by quadruples and a class of uniformly

resolvable Steiner systems.

As applications of the theory of group divisible 3-wise balanced designs, two
open problems in group testing and optical networks are also discussed. First,
we give a complete solution to the problem posed by Jimbo et al. on the block
sequences of Steiner quadruple systems with error correcting consecutive unions
in Chapter 4. Such sequences are useful when considering the error detecting
and correcting capability of combinatorial group testing for consecutive posi-
tives, which is essential in view of applications such as DNA library screening.
Then in Chapter 5, we investigate the design of fault-tolerant routings with lev-
elled minimum optical indices, which plays an important role in the wavelength
division multiplexing optical networks. By introducing the new concept of a large
set of even levelled Fg,—design, we solve nearly one-third of the existence problem
for optimal routings with levelled minimum optical indices based on the theory

of 3-wise balanced designs and partitionable candelabra systems.

Keywords: BSCU, candelabra systems, fault-tolerant routings, H-designs, H-

frames, LELD, resolvable, Steiner quadruple systems



Contents

Acknowledgements iii
ES v
Abstract vii
Contents ix
Chapter 1 Introduction 1
1.1 Background . . . .. .. ... 1
1.2 Main Results . . . . . .. ... ... 6
Chapter 2 Resolvable H-designs 9
2.1 Imtroduction . . . . . . .. ..o 9
2.2 Recursive Constructions . . . . . . .. . ... ... L. 12
2.3 Resolvable H-designs with Group Size 4. . . . . . . .. ... ... 24
2.4 Applications of the Existence of RH(4™) . . .. ... ... .... 36
2.5 Resolvable H-designs with Group Size 12 . . . . . . . . . ... .. 48

Chapter 3 A New Existence Proof for Steiner Quadruple Systems 59

3.1
3.2
3.3
3.4

Introduction . . . . . ..o 29
Recursive Constructions . . . . . . .. ... ... L. 60
Alternative Existence Proof for H(2™) . . . . ... ... ... ... 65
Existence of H(2"u') with w =4,6,8 . . . ... .. ... .. ... 69



X ZHEJIANG UNIV, PH.D. DISSERTATION

Chapter 4 Block Sequences of Steiner Quadruple Systems with Er-

ror Correcting Consecutive Unions

4.1 Introduction . . . . . . . . . ...
4.2 Recursive Constructions . . . . . . . ... ... ... ... ...,
4.3 Direct Constructions . . . . . . . . ... .. ... ...

4.4 Existence of BSCUs . . . . . . . . . .

Chapter 5 Fault-Tolerant Routings with Levelled Minimum Opti-

cal Indices

5.1 Introduction . . . . . . . . ...
5.2 Definitions and Recursive Constructions . . . . . .. .. ... ..
5.3 Direct Constructions . . . . . . . .. .. ... ... .. .. .. ..

5.4 Infinite Families of LELDs . . . . . . . . . ... ... ... .. ..
Bibliography
Small Resolvable H-designs
Papers Completed

Resume

101

123

129

147

149



Chapter 1

Introduction

In this thesis, we focus on the construction of group divisible 3-wise balanced
designs. We give an almost complete solution to the general existence problem of
resolvable H-designs. Two applications of the theory of 3-wise balanced designs

in group testing and optical networks are also discussed.

1.1 Background

A t-wise balanced design (tBD) of type t-(v, K, \) is a pair (X, B), where
X is a v-set of points and B is a collection of subsets of X (blocks) with the
property that the size of every block is in the set K and every t-subset of X is
contained in exactly A blocks. A t-(v, K, \) design is also denoted by Sy(t, K, v)
or by B,[K, \;v]. If K = {k}, we simply write k for K and the ¢tBD is called a
t-design. If A = 1, the notation S(¢, K, v) is often used and the design is called a

Steiner system.

A 2-wise balanced design is also called a pairwise balanced design (PBD). A
group divisible design (GDD)is a triple (X, G, B) with the property that (X, GUB)
is a PBD and G is a partition of X into holes. PBDs and GDDs have been
studied extensively [03], and they have been used to obtain constructions for
various combinatorial designs, geometries, and orthogonal arrays. GDDs were
an essential ingredient in the recursive constructions used in the seminal works
of Wilson [67, 68] and Hanani [24, 26, 27] that established necessary and sufficient

conditions for the existence of Steiner systems S(2, K, v).

An S(3,4,v) is called a Steiner quadruple system of order v, denoted by
SQS(v). The necessary conditions for the existence of an SQS(v) are that v =
2,4 (mod 6) or v = 1. When v < 4, the system has no blocks, and when v = 4, it
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has one block. The smallest interesting system, SQS(8), was known to Kirkman
[18] in 1847. The unique (up to isomorphism) SQS(10) was attributed to Barrau
[1] as early as 1908 and to Richard Wilson in [12]. Several infinite families of
quadruple systems were constructed by Kirkman [18] and by Carmichael [I1].
The first complete proof for the existence of SQS(v) for all v = 2,4 (mod 6) was
given by Hanani [23] in 1960. The result is proved by induction using six recursive
constructions together with explicit constructions of an SQS(14) and an SQS(38).
In 1963, Hanani [25] gave a more sophisticated proof for the existence of SQS(v),
where two definitions for 3-analogues of group divisible designs — candelabra
quadruple systems and group divisible 3-designs (Hanani used quite different
terminology) were first introduced. Apart from Hanani’s two proofs, Hartman
[31, 32, 34] and Lenz [51] used the existence of candelabra quadruple systems
of type (¢ : s) with s € {1,2,4,8} to give a purely tripling existence proof,
which used only one type of construction and a small number of initial designs:
SQS(v) with v € {8,10, 14} and HQS(v : 8) with v € {26, 28, 32, 34, 38,40}. For
more information on Steiner quadruple systems, see the excellent survey paper

by Hartman and Phelps [30].

In 1994, Hartman [31] gave a comprehensive account of the 3-analogues
of group divisible designs, which were used for the generalization of Wilson’s
(and Hanani’s) fundamental constructions to produce Steiner systems S(3, K, v).
In this 3-analogues of the fundamental constructions, the most difficult thing
is to find appropriate definitions of “master” and “slave” 3-analogues of group
divisible designs. One feasible definition for 3-analogues of group divisible design
is: (X,G,B) is a G-design, if (X,G U B) is a 3-wise balanced design and G is
a partition of X into holes. This definition relates to Mills’ definition [55] of a
G-design G(m,r,k,3) and Hanani’s definition [25, Definition 2] of the systems
P,[K,1,v]. A G-design tends to be used for “master” designs in the 3-analogues
of the fundamental construction. Another important definition is: (X, G, B) is a
tripartite design if G is a partition of X into holes and every 3-element transverse
of G is contained in a unique block. Here a transverse of G is a subset of X
intersects each hole in at most one point. This definition contains Hanani’s

definition [25, Definition 3] of the systems P/ [K, 1, v], which was introduced for
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the first time to construct Steiner quadruple systems SQS(v). It also relates
to Hanani’s definition [28] of the transversal 3-design T3[s, 1; 7], Mills” definition
[55] of H-designs H(m,r, k,3) and Lens’ definition [52] of the divisible 3-design
D3D[k,r;v]. A tripartite design tends to be appropriate for “slave” designs
in the 3-analogues of the fundamental construction. Instead of the tripartite
design, we use the more general definition of group divisible t-design which was
first introduced by Hedvig Mohacsy and D.K. Ray-Chaudhuri in [58].

Let v be a non-negative integer, t be a positive integer and K be a set of
positive integers. A group divisible t-design of order v with block sizes from K,
denoted by GDD(t, K, v), is a triple (X, G, B) such that

(1) X is a set of v elements (called points);

(2) G ={G4,Gy, ...} is a set of nonempty subsets (called groups) of X which
partition X;

(3) B is a family of transverses (called blocks) of G, each of cardinality from K

(4) every t-element transverse 1" of G is contained in a unique block.

The type of the GDD(¢, K, v) is defined as the list (|G||G € G). If there are n;
groups of size g;, 1 < i < r, then we denote the group type by ¢'g5*---g'. A
GDD(t, K,v) is called uniform if all groups have the same size. Note that when
t = 2, the group divisible 2-design is the classical group divisible design. It is
clear that an S(¢, K, v) is a GDD(¢, K, v) of type 1V. Mills [57] used H(n, g, k, t)
design to denote the GDD(t, k, ng) of type g". In the sequel of this thesis, we use
H(g{"g5? - - - g') to denote the GDD(3,4, > n;g;) of type gi*gy? - - - g for short.

For the existence of uniform H-designs, Mills [57] in 1990, showed that for
n > 3, n # 5, an H(g") exists if and only if ng is even and g(n — 1)(n — 2)
is divisible by 3, and that for n = 5, an H(g°) exists if g is divisible by 4 or 6.
Recently, Ji [12] improved these results by showing that an H(g°) exists whenever

g is even, g # 2 and g # 10,26 (mod 48). We summarize the results as follows:
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Theorem 1.1.1. ([12, 57]) Forn >3 and n # 5, an H(g") exists if and only if
ng is even and g(n —1)(n —2) is divisible by 3. Forn =5, an H(g") exists when
g is even, g # 2 and g # 10,26 (mod 48).

For the nonuniform H-designs, however, not much is known yet. Recently,
Lauinger et. al. [50] provided a table of existence results for H-designs of all
types when the number of points v < 24. Keranen and Kreher [17] gave an

investigation of H(g%u!) with five holes.

An H(g") is said to be resolvable, denoted by RH(g"), if its block set B can
be partitioned into parallel classes Py, P, ..., P,, each of which is a partition of

the point set. In this case, we call Pi|Ps|...|P, a resolution of B.

When g = 1, an RH(1") is called a resolvable Steiner quadruple system of
order n, denoted by RSQS(n). The necessary conditions for the existence of an
RSQS(v) are that v = 4 or 8 (mod 12) or v = 1 or 2. In 1977, the only orders for
which an RSQS(v) was known were v = 2", and the only recursive construction
known was the doubling construction (i.e., a construction of an RSQS(2v) from
an RSQS(v)). In 1978, Booth [3] and Greenwell and Lindner [20] provided the
first examples with v not a power of two by constructing an RSQS(20) and an
RSQS(28). More examples were given by Hartman [29], where he constructed
RSQS(q + 1) for all prime powers ¢ = 7 (mod 12) with ¢ < 379, and RSQS(4p)
for p € {19,43,127,199, 223,271, 1603} [30].

The main recursive theorems for RSQS(v), i.e., two tripling constructions
were provided by Hartman in [31, 33], both of which assume some subsystem
structures on the input systems. Using the doubling and two tripling construc-
tions together with a large number of initial designs, Hartman [33] proved by
induction that the necessary condition v = 4 or 8 (mod 12) for the existence
of a resolvable SQS(v) is also sufficient for all values of v, with 23 possible ex-
ceptions. These last 23 undecided orders were removed by Ji and Zhu [13] in
2005 by using resolvable H-designs and resolvable candelabra systems. They also
constructed an RH(2") for each n € {10, 14,26, 146} and showed the existence of

RH(g") for all positive integers g. We summarize the results as follows:

Theorem 1.1.2. [33, 13] There exists an RH(1™) for each n = 4,8 (mod 12),
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an RH(2") for each n € {10,14,26,146} and an RH(g") for all integer g > 0.

Group divisible 3-wise balanced designs have attracted more researchers for
its various applications in combinatorial group testing for consecutive positives
[59], in the design of fault-tolerant routings in the context of optical networks

[15] and in the construction of optimal constant weight codes [10].

Group testing was proposed by Dorfman [16] in 1940s to do large scale
blood testing economically, and new applications of group testing have been
found recently in the fields such as DNA library screening, being error-prone, in
which it is desired to determine the set of all positive clones in an economical and
correct way. In 1999, Colbourn [I13] developed some strategy for group testing
when the clones are linearly ordered and the positive clones form a consecutive
subset of the set of all clones. Jimbo and his collaborators [60, 59, 61, 62] improved
Colbourn’s strategy by considering the error detecting and correcting capability
of group testing which is essential in view of applications such as DNA library
screening. Especially, Momihara and Jimbo [60, 59] suggested using a block
sequence with consecutive unions having minimum distance d (BSCU(¢, k, v|d))
to correct false negative or false positive clones in the pool outcomes. For more
details of the progress we refer to [13, 17, 60, 59, 61, 62, (4] and references there
in. In the cases of d = 2 and d = 3, systematic results about the existence
of BSCU(t, k,v|d)s can be found in [62, 60]. For the case of d = 4, Momihara
and Jimbo [59] recently showed the existence of a BSCU (3,4, v|4) for forty-seven

small values v < 500.

The design of routings in optical networks has been a topic of considerable
recent interest (see, for examples, [2, 5, 6, 7, 53]). In the model of WDM opti-
cal networks, namely, wavelength division multiplexing optical networks, routing
nodes are joined by fiber-optic links, and each link can support some fixed num-
ber of wavelengths. Each routing path uses a particular wavelength, and two
paths must use different wavelengths if they have common links. Most research
concentrates on determining the minimum total number of wavelengths used in
the network, which is related to two basic invariants — the arc-forwarding and

optical indices. The f-tolerant arc-forwarding and f-tolerant optical indices were
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introduced by Manuch and Stacho when they considered the fault-tolerant issues
in [53]. The parameter f represents the number of faults that can be toler-
ated in the optical network. The design of fault-tolerant routings with levelled
minimum optical indices plays an important role in the context of optical net-
works. However, not much is known for the existence of optimal routings with
levelled minimum optical indices besides the results established by Dinitz, Ling

and Stinson [15] via the partitionable Steiner quadruple systems approach.

Theorem 1.1.3. [15] For eachn, 5 < n < 8, n = 4F orn = 2(p* + 1) with
p € {7,31}, there exists an optimal, levelled (n — 2)-fault tolerant routing of I?n

that has levelled minimum optical indices.

1.2 Main Results

In this thesis, we give a near complete solution to the general existence prob-
lem of resolvable H-designs and construct several infinite classes of nonuniform
H-designs. As applications, two problems in group testing and optical networks
are also discussed.

In Chapter 2, we first describe several recursive constructions for resolv-
able H-designs based on the theory of uniformly resolvable candelabra systems
and resolvable H-frames. In particular, we will introduce a simple but power-
ful construction—group halving construction, as well as the product construction,
doubling construction and three tripling constructions. Combining several ini-
tial designs together with the recursive methods, we establish the main result as

follows.

Theorem 1.2.1. The necessary conditions gn = 0 (mod 4), g(n —1)(n — 2) =
0 (mod 3) and n > 4 for the existence of a resolvable H-design of type g™ are
sufficient for each g = 1,2,3,5,6,7,9,10,11 (mod 12), are sufficient for each
g =4,8 (mod 12) with two possible exceptions n = 73,149, and are sufficient for
each g = 0 ( mod 12) with sixteen possible exceptionsn € {15,21,27, 33,39, 69, 75,
87,105, 111,129, 147, 213, 231, 243, 321}.

As a corollary of the existence of RH(2")s, we provide an alternative exis-

tence proof for resolvable SQS(v)s, for which the known complete solution was
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obtained by a joint effort of Hartman [31, 33] and Ji and Zhu [13] over twenty
years long. As consequences of the above result, we show the existence of several

related designs.

Theorem 1.2.2. (i) The necessary conditions g = 1 and n = 4 or 8 (mod
12), or g is even, gn = 0 (mod 4) and g(n — 1)(n —2) = 0 (mod 3) for

the existence of a resolvable G-design of type g™ are also sufficient.

(ii) A mazimal resolvable packing (minimal resolvable covering) of triples by
quadruples of order v with the number of blocks meeting the upper (lower)

bound exists if and only if v =0 (mod 4).

(iii) There exits a uniformly resolvable Steiner system URS(3,{3,4},{rs,rs},v)
with r3 = 4 if and only if v =0 (mod 12).

All the known proofs for the existence of Steiner quadruple systems are
rather cumbersome, even though simplified proofs have been given by Hartman
[31, 32, 34], Lenz [51] et al., and much attention has been paid on the proofs of
the existence of SQS(v). In Chapter 3, we mainly provide an alternative existence
proof for Steiner quadruple systems by reestablishing the existence of H-designs
of type 2" based on the theory of candelabra systems and H-frames. By this
approach, several new infinite classes of nonuniform H-designs of types 2"u! with

u = 4,6,8 are also constructed.

Theorem 1.2.3. (i) There exists an H(2"4') if and only if n = 1 (mod 3)
and n > 4.

(i) There exists an H(2"6') for each n =1 (mod 6) and n > 7.

(iii) There exists an H(2"8) for eachn = 0,1,3,6,7,12,13,16 ( mod 18),n > 6
except possibly for n =12, 34.

In Chapter 4, we give an application of the theory of 3-wise balanced design
in the construction of block sequences of Steiner quadruple systems with consec-

utive unions having minimum distance 4, denoted by BSCU(v). The only orders
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for which a BSCU(v) was known were the forty-seven small values v < 500 es-
tablished by Momihara and Jimbo [59]. By the theory of 3-wise balanced design,

we completely determine the existence of BSCU(v)s as follows.

Theorem 1.2.4. The necessary conditions for the existence of a BSCU(v), namely,

v =2,4 (mod 6) and v > 4, are also sufficient with two exceptions v = 8, 10.

In Chapter 5, we give another application of the theory of 3-wise balanced
design in the design of fault-tolerant routings with levelled minimum optical
indices. Not much is known for the existence of such routings besides the results
established in Theorem 1.1.3 by Dinitz, Ling and Stinson [15]. By introducing
the new concept of a large set of even levelled lj;;-design of order v and index 2
((v, F; ,2)-LELD), and by the theory of 3-wise balanced designs and partitionable
candelabra systems, the existence problem for an optimal, levelled (v — 2)-fault
tolerant routing with levelled minimum optical indices of the complete network

with v nodes is solved nearly one-third.

Theorem 1.2.5. For each positive integern, 4 <n < 11 orn > 14, n = k (mod
144) with k € {2,6,8,11, 14, 18, 20, 22, 23, 30, 32, 34, 38, 44, 46, 47, 50, 54, 56, 59, 62,
66, 68, 70,78, 80,82, 83,86, 92,94, 95,98,102,104, 110, 114, 116, 118, 119, 126, 128,

130,131, 134,140, 142} and n # 34,50, there exists an (n,F;,2)—LELD and an
optimal, levelled (n — 2)-fault tolerant routing of I_(>n that has levelled minimum

optical indices.



Chapter 2

Resolvable H-designs

In this chapter, we mainly investigate the general existence problem of resolvable
H-designs and give a near complete solution to this problem. As applications,
not only do we provide an alternative existence proof for resolvable SQS(v)s,
we establish the existence results for several related designs, such as resolvable
G-designs, maximal resolvable packings, minimal resolvable coverings of triples

by quadruples and a class of uniformly resolvable Steiner systems.

2.1 Introduction

According to the necessary conditions for the existence of an RH(g"), the

general existence problem of RH(¢") can be separated into the following six parts:

(i) ¢g=1,5,7,11 (mod 12) and n = 4,8 (mod 12),
(ii) ¢ =2,10 (mod 12) and n = 2,4 (mod 6),
(iii) ¢ =3,9 (mod 12) and n =0 (mod 4),
(iv) g =4,8 (mod 12) and n = 1,2 (mod 3),
(v) g =6 (mod 12) and n =0 (mod 2),
(vi) g =0 (mod 12) and n € N.

Theorem 2.1.1. (Weighting Construction) If there exists an RH(g"), then there

is an RH((mg)™) for any positive integer m.

Proof. Let (X, G, B) be the given RH(¢") with G = {Gy,...,G,_1} and a reso-
lution of B, P(i), 1 <1i < (n— 1)(n — 2)g*/6. For each positive integer m, we
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will construct an RH((mg)"™) on X x Z,, with groups G; X Z,,,, 0 <i<n-—1as

follows.

For each block B € B, construct an RH(m?*) on B x Z,, with group set
{z x Z,, - x € B} and block set Apg, which has a resolution Pg(k), 1 <k < m?.
Such a design exists by Theorem 1.1.2. Let B’ = UgcpAp. Then B is the
block set of an RH((mg)™), which has a resolution Q;, = Upecpq)Pr(k), where
1<i<(n—1)(n—2)g%/6 and 1 < k < m? O
By the Weighting Construction above, the whole existence problem of RH(g")

depends on the solution of the following six cases:
(1) g=1and n =4,8 (mod 12),
(2) g=2and n = 2,4 (mod 6),
(3) g=3and n =0 (mod 4),
(4) g=4and n=1,2 (mod 3),
(5) g =6 and n =0 (mod 2),

(6) g=12and n € N.

Here, the only solved case is Case (1) by Theorem 1.1.2.

A regular graph (V, E) of degree k is said to have a one-factorization if the
edge set F can be partitioned into k parts E = F||Fy| ... |F) so that each F; is a
partition of the vertex set V into pairs. The parts F; are called one-factors. For

all even integers n, the complete graph on n vertices K, has a one-factorization.

Theorem 2.1.2. (Group Halving Construction) If there exists an RH((2g)"),
then there exists an RH(g*").

Proof. Let (X, G, B) be the given RH((2¢)") with G = {Gy, ..., Gp_1}. Therefore,
gn is even. Halve each group G into G and G;1, 0 < i < n—1. We will construct
an RH(¢g*") on the group set ¢’ = {G;;| 0 <i<n—1,5=0,1} as follows.
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For each i, 0 <i <n—1,let F* = {F},..., F} be a one-factorization of
the bipartite graph on G;o U G;;. Let

A={{a.b,c,d} : {a,b} € Fl, {c,d} € F/,0<4,i' <n—1,1<j<g},

then B’ = BU A is the block set of an H(g?") on the group set G’. It remains to

show that A can be partitioned into parallel classes.

For each 7,1 < j < g, let

A; ={{a,b,c,d} : {a,b} € F;,{c, d} € Ff/,O <i,i <n-—1}, and
A ={{{a,b},{c,d}} : {a,b} € Fi,{c,d} € F,0 < i,i <n—1}.

If we regard each pair in F;,O < i < n—1 as a vertex, we may construct a
multi-partite complete graph I'; on the vertex set X; = U?:_OIFJ? with partite set
{F} : 0 < i < n—1}, where two different vertices connect if and only if they
are from different factors F]’ Hence, A’ is the edge set of I';. That is to say we
obtain a GDD(2,2, gn) of type ¢g" on X; with group set {Fj,0 <i <n — 1} and
block set A’.

It is well-known that there always exists a resolvable GDD(2,2, gn) of type
g" when gn is even (see [11]). Hence, we can partition the blocks A’ of our
resulting GDD(2,2, gn) of type ¢" into parallel classes on X;. Therefore, A,
can also be partitioned in parallel classes of X. So does A = U;<j<,A;. This

completes the proof. n

By the Group Halving Construction above, the existence problems of the

six cases have the following recursive relations.
RH(4") = RH(2") = RH(1'")

RH(12") = RH(6°") = RH(3")

Hence, the general existence problem of RH(¢g™) depends on the following two

cases:
(4) g=4and n=1,2 (mod 3),

(6) g=12and n € N.
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Moreover, the solution of Case (4) implies two-thirds of that of Case (6) by the
Weighting Construction.

The remainder of this chapter is organized as follows. In Section 2.2, we
will describe several recursive constructions for resolvable H-designs based on
the theory of uniformly resolvable candelabra systems and resolvable H-frames.
Combining several initial designs together with the recursive methods established
in Section 2.2, we give an almost complete solution to the existence problem of
RH(4™) in Section 2.3. As consequences of this result, we show the necessary and
sufficient conditions of RH(2"), RH(6™) and RH(3") successively in Section 2.4.
Thus we provide an alternative existence proof for resolvable SQS(v)s. Further-
more, we show the existence of resolvable G-designs, maximal resolvable packings
of triples by quadruples, minimal resolvable coverings of triples by quadruples as
well as a class of uniformly resolvable Steiner systems. Finally in Section 2.5,
combining the recursive methods established in Section 2.2 and the existence re-
sults of resolvable H-designs and resolvable G-designs established in Sections 2.3
and 2.4, we show the necessary conditions for the existence of RH(12") are also

sufficient with sixteen possible exceptions.

2.2 Recursive Constructions

In this section, we shall describe several recursive constructions for resolvable

H-designs. First, we need the following definitions and notation.

Let s be a non-negative integer. A candelabra t-system (or t-CS) of order v
and block sizes from K, denoted by CS(¢, K,v), is a quadruple (X, S, G, A) that

satisfies the following properties:

(1) X is a set of v elements;
(2) S is an s-subset (called the stem of the candelabra) of X;

(3) G = {G41,Gs,...} is a set of non-empty subsets of X \ S, which partition
X\ S;

(4) A is a collection of subsets of X, each of cardinality from K;
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(5) every t-subset T of X with |T'N (S UG;)| < t, for all 4, is contained in a
unique block of A, and no t-subset of S U G;, for any i, is contained in any
block of A.

The group type of a t-CS (X, S, G, A) is defined as the list (|G||G € G : |S]). If
a t-CS has n; groups of size ¢g;, 1 < ¢ < r, and stem size s, then we use the
notation (g7'gy? ... gl : s) to denote the group type. A candelabra system with
t = 3 and K = {4} is called a candelabra quadruple system and denoted by
CQS(g1"g3* -~ 97" = 5).

A CS(t, K,v) (X, 5,G,.A) is said to be resolvable, denoted by RCS(¢, K, v),
if the block set A can be partitioned into several parts, each being a partition on
X or a partition on X \ (GUS) for some G € G (called a partial parallel class).
An RCS(t, K, v) is called uniform, denoted by URCS(t, K, v) if all the blocks in
each resolution class have the same size. If K = {4}, it is denoted by RCQS, for
which the number of parallel classes on X is (3 qeq|Gl)? — D geg IGI?)/6 and
the number of partial parallel classes on X \ (GU S) is |G|(|G| + 2|S| — 3)/6 for
each G € G.

Theorem 2.2.1. [71] For each integer n > 2, there exists an RCQS(3%"~V/3 .
1.

For non-negative integers q, g, k, and ¢, an H(q, g, k,t) frame (as in [35]),
denoted by HF(q, g, k, t), is an ordered four-tuple (X, G, B, F) with the following

properties:

1. X is a set of qg points;
2. G ={G1,Gs,...,G,} is an equipartition of X into ¢ groups;

3. F is a family {F;} of subsets of G called holes, which is closed under inter-
sections. Hence each hole F; € F is of the form F; = {G;,,G,,,..., G},
and if F; and F} are holes then F; N F} is also a hole. The number of groups

in a hole is its size; and
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4. B is a set of k-element transverses of G with the property that every t-
element transverse of G, which is not a t-element transverse of any hole
F; € F is contained in precisely one block of B, and no block contains a

t-element transverse of any hole.

If an HF(q, g, 4, 3) has n holes of size m + s, which intersect on a common hole of
size s, then we denote such a design by HF(m™ : s) with group size g, or shortly
by HF,(m" : s). If an HF(q, g,4, 3) has only one hole of size s, then we call it an
incomplete H-design of type (g7 : ¢°), denoted by IH(g? : ¢°).

An HF (m™ : s) (X,G,B,F) with F = {F; : 0 <i < n} and F; the common
hole of size s is said to be resolvable, denoted by RHF,(m™ : s), if its block set
can be partitioned into (nmg?(m + 2s — 3) + n(n — 1)(mg)?)/6 parts with the

following properties:

(1) For each hole F;, 1 < i < n, there are exactly mg?(m + 2s — 3)/6 parts,
each being a partition of X \ (Ugep, G);

(2) There are n(n — 1)(mg)?/6 parts, each being a parallel class on X.

An TH(¢g™"* : ¢°) (X, G, B, F) with the only hole F' of size s is said to be
resolvable, denoted by IRH(¢g™** : ¢%), if its block set can be partitioned into
(m+s—1)(m+ s — 2)g*/6 parts, (s — 1)(s — 2)g*/6 of which are partitions of
X\ (Uger G), and m(m + 2s — 3)g*/6 of which are parallel classes on X.

The construction given below is a generalization of the fundamental con-

struction for 3-wise balanced designs.

Theorem 2.2.2. Suppose that (X,S,T',A) is a 3-CS(m" : s) and oo € S. Let
Ky ={|A] :c0c€e Ae A} and Ky = {|A] : 0 & A € A}. If there exists an
HF,(t"=1 : a) for each ki € Ky and an H((gt)*?) for each ko € Ky, then there
exists an HF,((tm)™ : t(s—1)+a). Furthermore, if the 3-CS(m" : s) is uniformly
resolvable, and each of HF,(t*~' : a) and H((gt)*?) for k1 € Ky and ky € Ky is
resolvable, then the resultant HF,((tm)" : t(s — 1) 4+ a) is also resolvable.

Proof. Suppose (X, S,T', A) is the given URCS(m™ : s), where I' = {Gy,...,G,}
and A has a resolution A = (U<, Qi) U Q with each member of Q; being a
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partition of X \ (G; U S) and each member of Q being a partition of X. Define
Gl = {x} x {j} x Z,. Let X' = ((X \ {oo}) x Z; x Zy) U ({00} X Z, X Z,),
G ={G,; v € X\{oo},j € ZyU{GL ;:j € Za}, F ={F;: 0 <i < nj,
where Fy = {G/, ;1 x € S\{oo},j € Z} U{G ;:j € Z,}yand F; ={G ; : x €
Gi,j € Z;} U Fy for 1 <i <n. We will construct an RHF((tm)" : t(s — 1) + a)
on X’ with group set G’ and hole set F.

For each B € A and co € B, construct an RHF,(tZI"1 : a) on X} =
(B\ {oc}) X Z; x Zy) U ({00} x Z, x Z,;) with group set Gy = {G,; : © €
B\{oc},j € Ziy U{GL ; : j € Z.} and hole set Fp = {F, : x € B}, where
F, ={G,;:j € Z}UFy with Fy, = {G_; : j € Z,} being the common hole
of size a. Denote its block set by Cp, which has a resolution {Cg(z,j) : = €
B\{oo}, 1 <j <tg*(t+2a—3)/6}U{Cp(l) : 1 <1 < (|B]-1)(|B| -2)(tg)*/6}
with each Cp(z, ) being a partition of Xp \ (Ugep, ) and each Cp(l) being a
parallel class on XF.

For each B € A and oo ¢ B, construct an RH((gt)!?l) on X, = Bx Z; x Z,
with group set G = {{z} X Z; x Z, : * € B} and block set Cp, which can be
partitioned into parallel classes Cg(l), 1 <1 < (|B| — 1)(|B| — 2)(tg)?/6.

Then A" = (Jzo4Cp is the block set of the required design. We need to
partition the blocks into resolution classes.

For each member @) € Q;, 1 < i < n, suppose its block size is kg. Then
Po(l) = Ugpeq Cr(l) is a partition of X'\ (Ugep, G) for 1 <1 < (kg — 1)(kg —
2)(tg)*/6.

For each z € Ugep, G, 1 <i <n, Prj = Upeca g Cr(7, ) is a partition of
X'\ (Uger, G) for 1 < j < tg?*(t + 2a — 3)/6.

For each member @ € Q, suppose its block size is kg. Then Pj(l) =
UseqCa(1) is a partition of X' for 1 <1 < (kg — 1)(kq — 2)(tg)*/6.

Thus we obtain an RHF,((tm)" : t(s — 1) + a). O
Theorem 2.2.3. Suppose that there exists an RHF,(m" : s). If there exists an

IRH(g™™** : ¢g°), then there exists an IRH(g™"** : g™ ). Furthermore, if there is
an RH(g™**), then there is an RH(g™""*).



16 ZHEJIANG UNIV, PH.D. DISSERTATION

Proof. Let (X, G, B, F) be the given RHF (m™ : s5), F = {F}, : 0 < k < n} and
Fy be the common hole of size s. Then the block set B has a partition {P(k, j) :
1<k<nl1<j<mg*(m+2s—23)/6LU{P'(i):1<i<n(n—1)(mg)?/6}
such that (1) for each pair (k,j), 1 <k <nand 1 < j < mg*(m+ 2s — 3)/6,
P(k, j) is a partition of X \ (Ugep, G); (2) for each i, 1 <i < n(n —1)(mg)?/6,
P'(i) is a parallel class on X.

For 1 <k <n — 1, construct an IRH(¢™** : g°) on Jgep, G With group set
F}, and hole Fy. Denote the set of blocks by Ay. Then there are (m+s—1)(m+
s —2)g*/6 parts Q(k, j), such that for 1 < j < m(m + 2s — 3)g?/6, Q(k,7) is a
partition of Jgep, G for m(m +2s —3)g?/6 < j < (m+s—1)(m + s —2)g*/6,
each Q(k,j) is a partition of UGeFk\FO G. Then each P(k,j) U Q(k,j) with
1<k<n-1,1<j<mg*m+2s—3)/6 forms a parallel class on X. Each
Ui<k<n_1Q(k, 7) with m(m+2s—3)g*/6 < j < (m+s—1)(m+s—2)g*/6 forms
a partition of X \ (Ugep, G)- So the resultant design is an IRH(g™"** : g™*).

m+s)

Furthermore, if we construct an RH(g on Jgep, G with group set F,,

then we obtain an RH(g""*%). O

Theorem 2.2.4. (Product Construction) If there exist both an RH(g™) and an
RH(g"), then there exists an RH(¢g™") and an IRH(g™ : g").

Proof. Let (X, G, B) be the given RH(¢g™), where G = {Go, ...,G—1}. Applying
Theorem 2.1.1, we construct an RH((ng)™) on X’ = X x Z,, with the group set
G ={G,=G,; x Z,:0<i<m—1} and block set A.

For each i, 0 < ¢ < m — 1, construct an RH(¢") on G; x Z,, with group
set {G; x {l} : 1 € Z,} and block set C;, which has a resolution P;(k), 1 < k <
(n - 1)(n — 2)6?/6.

Since an RH(g¢") exists, gn is double even. For each i, 0 < i < m — 1, let
Fi={Fj,... ,Fi(n_l)} be a one-factorization of the complete multiple-graph on

g
G; X Z, with n parts in {G; x {l} : l € Z,}. Let

D={{a,bc,d}:{a,b} € Fj, {c,d} € F] ,0<i#i <m—1,1<j<g(n—1)},

then B = AU (U,'C;) UD is the block set of an H(g™") on the group set
G"'={G;x{l}:1€ Z,,0<i<m—1}. It is clear that U7 ,'C; has a resolution
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Q(k) = Uy ' Pi(k), 1 <k < (n—1)(n—2)g?/6. It remains to show that D can
be partitioned into parallel classes.

For each j, 1 <j < g(n—1), let

D; ={{a,b,c,d} : {a,b} € F} {c,d} € sz‘”() <i<i <m-—1}, and

D; ={{{a,b},{c.d}} : {a,b} € F}, {c,d} € F,0<i<i <m—1}.
If we regard each pair in F},O < i < m—1 as a vertex, we may construct a
multi-partite complete graph I'; on the vertex set X ]’ = U;ZBIF; with partite set
{F]:0 <1< m-—1}, where two different vertices connect if and only if they are
from different factors F; Hence, D, is the edge set of I';. That is to say we obtain
a GDD(2,2,gnm/2) of type (gn/2)™ on X} with group set {F},0 <i <m — 1}
and block set D;.

It is well-known that there always exists a resolvable GDD(2, 2, gnm/2) of
type (gn/2)™ when gnm/2 is even (see [14]). Hence, we can partition the block
set D; of our resulting GDD(2,2, gnm/2) of type (gn/2)™ into parallel classes
on X}. Therefore, D; can also be partitioned in parallel classes of X’. So does
D = Ui<j<g(n-1)D;. Thus, the desired H(g™") is resolvable.

For each i, 0 < i < m — 1, B'\ C; is the block set of an incomplete design
IRH(g™" : g") on X’ with group set G” and hole set {G; x {l} : [ € Z,}. O

With a similar proof to that of Theorem 2.2.4, we have the following theorem.

Here, we just need to fill each hole with the trivial design RH(g?).

Theorem 2.2.5. (Doubling Construction) If there ezists an RH(g"), then there
exists an RH(g*) and an IRH(g* : g*).

Our first tripling construction given below is on resolvable H-frames, which

is a generalization of the tripling construction for resolvable CQSs developed in
[43].

Theorem 2.2.6. (Tripling Construction I) Suppose there exists an RHF,(n? : s),
then there exists an RHF,((3n)? : s).

Proof. Start with a CQS(3® : 1) (as in [43]) on Zg U {co} with groups G; =
{i,i+3,i46},0 <i <2 and stem {oco}, whose block set B is generated by the
following 9 base blocks under the automorphism group ((036)(14 7)(2 5 8)(c0)).
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As: {0,1,2,00}, {0,4,8,00}, {0,5,7,00},
Ai: {1,3,2,6}, {1,3,5,7}, {2,6,5,7},
Aa: {4,7,5,8}, {3,6,5,8}, {3,6,4,7}.
View each base block as an ordered quadruple given above so that each block

B € B is ordered.

Since an RHF,(n? : s) exists, both gn and gs are even. We separate the

proof into the following two cases:

Case (1): When g is even, we will construct an RHF((3n)? : ) on X = (Zgx Z5 %
Zgnj2)U({00} X Zy X Zys/2) with groups G(w, j) = {x} x Zyx {j, j+n, ..., j+(5—
n}, v € Zy,0 < j <n—1,and G(00,j) = {oo} x Zy x{j,j+s,...,j+(5—1)s},
0 < j < s—1, and three holes F; = {G(7,5),G(i + 3,7),G(i +6,5) : 0 < j
n—1}US, 0 <i¢ <2, which intersect on a common hole S = {G(c0,j) : 0 < j
s—1}.

<
<

For each block B € B containing oo, construct an RHF,(n® : s) on Xp =
(B\{o0}) X Zy X Zgpja) U ({00} X Zy X Zgs9) with group set {G(z,j) : © €
B\{o0},0 <j <n—1}US, three holes {G(z,j) : 0 < j <n—1}US, z € B\{oo}
and a common hole S. Denote its block set by Ap, which has a resolution
{Pg(z,1) : x € B\{oo},1 <1< n(n+25s—3)g*/6}U{Pg(r',r,h) : 17/,r € Zy,1 <
h < (gn)?/4} such that each Pg(z,1) is a partition of (B \ {00, 2}) X Zy X Zyn /o
and each Pg(r’,r, h) is a parallel class on Xp.

For each block B = {a,b,¢,d} € B and oo ¢ B, we shall construct a special
H((gn)*) on B x Zy X Zyy, o with groups {z} X Zy X Zy,/5, © € B. Denote

CJ,B(kalaj) = {<a7i)’ (b7i+k)v (Cvj)’ (d>]+k)} and C,B(k) = {O,B(kvlvj) : i’j € ZQ}a

then Cjz = Ci3(0) UCx(1) is the block set of an H(2%) on B x Z,. For each A € Cl,
construct an RH((gn/2)*) on Ax Z,,, /5 with groups {a} x Zy,/2,a € A. Denote its
block set by B(A) and the (gn)?/4 parallel classes by P(A,h), 1 < h < (gn)?/4.
Then, Cp = Uaeey, B(A) is the block set of the desired H((gn)*).

Let D = (UpeB,cogsCr) U (UpeBooeAgp). By Theorem 2.2.2, D is the block
set of an HF,(((3n)? : s)). It remains to show the resolvability. This HF,(((3n)? :
s)) should be partitioned into 9g°n? parallel classes on X and g*n(3n+ 2s—3)/2
partial parallel classes on (Zy \ G;) X Zy X Zgy 5 for each i, 0 <4 < 2.
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For each i, 0 < ¢ < 2, let P(i,x,l) = Upep fu,0}cPr(2,1), 1 <1 < n(n+
2s —3)g?/6, v € G;. Then each P(i,x,1) is a partition of (Zy \ G;) X Zy X Zg 2.
The other g*n? partial parallel classes on (Zg\ G;) X Zy X Zgy, 2 can be obtained as
follows. Denote the three base blocks of Ay by By, By, By in order. For 0 <7 < 2,
let B; = {37+ B; : 0 < j <2} and for 7,7 € Zy, let P(i,r',r) = {Cx(1,7,r) :
B € B;}. Then P(i,7’,r) is a partial class on (Zy \ G;) x Zy. Note that for
0<i<2, Uprez,P(i,r",r) = Upep,Cx(1). Let P(i,r',r,h) = Uacp(ir)P(A, D).
Then, these P(i,7’,r, h)s with r',r € Zy and 1 < h < (gn)?/4 are g°n? partial
parallel classes on (Zg \ G;) X Za X Zgpn/s.

Now we give the required 9¢g?n? parallel classes on X. Denote the three base
blocks of A; by Ay, A1, As in order. Let Dy = Ag, D1 = A1+3 = {4,6,8,1}, Dy =
Ay+6 ={8,3,2,4}. Let A(¢,0) be as follows and A(i, j) = {3j+B : B € A(7,0)}
for 0 < j < 2.

A(1,0) = {{0,4, 8,0}, Ao, A1, Aa},

A(2,0) = {{0,1,2, 00}, Bo, B1, B2},
A(0,0) = {{0,5,7, 00}, Do, D1, D2}
Let
P'(1,5,7,7) ={Cly+3; (0,7, 7" +7),Clhy 435 (0,7" + 1,7), Clay 35 (0,7 + 7+ 1,7 + 1)},

Pl(27j7 T'/7 T) :{CIB()+3]'(07TI + Ty ’I"l), 03314»3]'(077"5 Tl + 1)5 ClBQ«FSj (O,T' + 1,7,/ +r+ 1)}7
Pl(07j7 T/v T) :{ClDo+3j(17T/7 71/ + T)? C/Dl+3j(17 71, +r+ 1,,,,,/)’ C/DQ+3j(17 71/ + la 71/ +r+ 1)}

Let P'(i,j,7",7,h) = Uacpr(ijr P (A h) and P"(i,j,r',r,h) = Pg(r',r,h) U
P'(i,j,7",r,h), where B € A(i,j) and oo € B. Then P"(i,j,r",r,h) for 0 <
i,j <2, 7,1 € Zy,1 < h<(gn)?*/4 are the desired 9¢g°n? parallel classes on X.

So D has the resolution {P(i,z,1) : 0 <i < 2,2 € G;,1 <l <n(n+2s—
3)g? /6 YU{P(i,r',m,h) : 0 <i <27 r € Zy,1 < h < (gn)?/4}U{P"(i,7,7',7,h) :
0<14,7<2,7,r€Zy1<h<(gn)*/4}, and the HF,(((3n)* : s)) is resolvable.

Case (2): When g is odd, both n and s must be even, we will construct an
RHF,((3n)* : s) on X with groups G'(z,k,j) = {a} x {k} x {j,j+%,...,7 +
(g—15} 2z € Zy, k€ Zy,0<j <5 —1,and G'(00,k,j) = {00} x {k} x
{j.i+%...,+@—-13} ke Z,, 0 <j < 5—1, and three holes F] =
(G'(i, %, 5),G'(i + 3.k, §), G'(i + 6,k j) 1 k€ Zp,0<j <2 —1}US, 0<i<2,
which intersect on a common hole S" = {G'(00, k,j) : k € Z,,0 < j < 5 — 1},



20 ZHEJIANG UNIV, PH.D. DISSERTATION

For each block B € B containing oo, construct an RHF,(n® : s) on Xp =
(B \ {o0}) X Zy X Zyns2) U ({00} X Zy X Zys2) with group set {G'(x,k, j) :
v € B\ {oohk € Z,,0 < j < 5§ — 1} US, three holes {G'(z,k,j) : k €
Z5,0 < j <5 —-1}US, z € B\ {oco} and a common hole S’. Denote its
block set by Ap, which has a resolution {Pg(x,l) : © € B\ {oo},1 <[ <
n(n+ 2s — 3)g*/6} U{Pg(r',r,h) : r',r € Z3,1 < h < (gn)?/4} such that each
Pg(x,1) is a partition of (B \ {oo,2}) X Zy X Zg,/2 and each Pg(r',r,h) is a
parallel class on Xp.

The remaining proof of this case is the same as that of Case (1). O

The construction of resolvable H-frames given below is used for our second
tripling construction on resolvable H-designs. It is a generalization of that for
resolvable Steiner quadruple systems proposed by Hartman in [31], which have
played an important role in the construction of RSQS(v). The following notations

are needed.
For x € Z,, we define |z| by
r, f0<xz<n/2

x| = ‘
—x, ifn/2<z<n.

Forn >2and L C{1,2,...,[n/2]}, define G(n, L) to be the regular graph with
vertex set Z, and edge set E given by {z,y} € E if and only if |z — y| € L.

The following lemma is proved by Stern and Lenz in [65].

Lemma 2.2.7. Let L C{1,2,...,n}. Then G(2n,L) has a one-factorization if
and only if 2n/gcd(j,2n) is even for some j € L.

Let g be a positive integer and m = lem(g, 6). For non-negative integers n
and s, a B,-pairing, By(n, s) consists of four subsets D, Ry, Ry, Ry of Z,,,14s and
three subsets PRy, PRy, PRy of Zynigs X Zmntgs With the following properties
for each i € {0, 1,2}:

(1) Cardinality and symmetry conditions

(a’> |D| = gs, |RZ| = mn/Sv
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(b) D=-D.

(2) Partitioning conditions
(a) PR; is a partition of R; into pairs, thus |PR;| = mn/6,
(b) Zmn+gs = D|Ro|R1|R2.

(3) Pairing conditions

Let L; = {lz —y| : {z,y} € PR;} and N = {mn/g + s,2(mn/g +
s),-o» Lg/2)(mn/g + 5)},

(a) NN L; =0 and (mn+ gs)/2 ¢ L;,

(b) [Li| = mn/6,

(c) the complement G; of the graph G(mn + gs,L; U N) has a one-

factorization.

Suppose that m = lem(g,12). Let Sy, Si, S2, Ro, R1, Ry be subsets of Zn g6
and PSy, PSy, PSy be subsets of Z,,,495 X Zymntgs- A Bg-pairing By(n, s) with
D, Ry, Ry, Ry, PRy, PRy and PRy, is said to be resolvable, denoted by RB,(n, s),
if the following properties are satisfied for each ¢ € {0, 1, 2}:

(1) Cardinality and symmetry conditions
(c) |Ss| = mn/3, |R;| = mn/6.
(2) Partitioning conditions
(c¢) PS; is a partition of \S; into pairs, thus |PS;| = mn/6,
(d) Zmntgs = D|Ri|Si| Ria|(=Ric).
(3) Pairing conditions
Let O; = {|x — y| : {z,y} € PS;},
(d) NNO; =0 and (mn+ gs)/2 ¢ O;,
(e) |0;| =mn/6, L; N O; = 0, and all members of O; are odd,
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(f) the complement G} of the graph G(mn + gs, L; UO; U N) has a one-

factorization.

When g = 1, a By(n,s) is a simple pairing, and an RB,(n,s) is a resolv-
able pairing in [31], which are used to construct CQSs and RCQSs, respectively.
The following theorem gives the relation between B,-pairings and H-frames with

group size g.

Theorem 2.2.8. Suppose that m = lem(g,6) and there exists a By(n,s). Then
there exists an HFy((mn/g + s)* : s). Furthermore, if m = lem(g,12) and the
By(n, s) is resolvable, then the HF,((mn/g+s)* : s) is also resolvable. Moreover,
if k(mn/g+s) € D forallk, 0 < k < g—1, then the resultant RHF,((mn/g+s)? :
s) has a sub-design RH(g").

Proof. Let X = (Zyptgs X Z3)U{00g, 001, . . ., 0045—1 }. Define the groups G(i,j) =
{(k(mn/g+s)+i,7) :0<k<g—1},0<i<mn/g+s—1,5 €{0,1,2},
G(00,j) = {ookstj : 0 <k <g—1},0 < j < s—1andholeset F = {Fy, Fy, F5, S}
with S = {G(00,7): 0 < j <s—1}and F; = SU{G(4,j) : 0 <i <mn/g+s—1},
7=0,1,2.

Fori € {0,1,2}, let D, R;, R;, Si, PR;, PS; be aresolvable By-pairing RB,(n, s).
Let F?*7'|F?* be a one-factorization of the graph G(mn + gs, {m}), where m is
the k-th member of O; for 1 < k < mn/6. Let F™"/*T | prm/3+2) | prmn/3tes—g
be a one-factorization of the complement of the graph G(mn + gs, L, UO; U N).
Then it is natural that F!|F2|...|F2™™/*9°79 is a one-factorization of the com-
plement of the graph G(mn + gs, L; U N).

We construct an HF,((mn/g + s)* : s) (X,G,B,F) with the block set B

consisting of the following three parts:

(1) {o0j,(a,0),(b,1),(c,2)}, where a+b+c =d (mod mn+ gs), d is the j-th
member of D and 0 < j < gs.

(2) {(a+q7i)7 (a—i_t?i)? (b’i+1)’ (C’i+2>}7 where a+b+c =0 (HlOd mn+98)>
{q,t} € PR; and ¢ € {0, 1, 2}.
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(3) {(a,1), (b,4), (¢,i + 1), (d,i + 1)}, where {a,b} € F] and {c,d} € Fl,,
i€{0,1,2} and j=1,2,...,2mn/3 + gs — g.

Now, we partition them into (partial) parallel classes.

First, we give the partial parallel classes. Define F/ = {F/(k) : 0 < k <
(mn+gs)/2—1}. For each i € {0, 1,2}, the (mn + gs)(mn+ 3gs — 3g) /6 partial
parallel classes missing the hole F; are defined as follows:

Py(j.k) = {{(a,i+ 1), (b + 1), (¢;i +2), (d,i +2)} : {a, b} = F1(m),

{c,d} = F/,(m +k),0 <m < (mn+gs)/2 — 1},

where mn/3+1<j<2mn/34+gs—gand 0 <k < (mn+gs)/2—1. It is clear
that each P;(j, k) forms a partition of X \ (Ugep, G)-

Next, we give the (mn+gs)? complete parallel classes. For each (a, b, c) such
that a + b+ ¢ =0 (mod mn + gs), let P(a,b,c) be comprised of gs blocks from
Part (0), mn/2 blocks from Part (p) and mn/4 blocks from Part (¢) as follows:

Part (0): {{o0j,(a +d,0),(b—d,1),(c+d,2)} : dis the j-th member of D,0 <
Jj < gs}.
Part (p):

{(a+q,0),(a+1,0),(b—u,1),(c+u,2)} for i =0,

{(a +u,0),(b+q,1),(b+1t1),(c—u,2)} fori=1,

{(a —u,0),(b+u,1),(c+¢q,2),(c+1,2)} fori=2,
where {q,t} is the j-th pair in PR; and u is the j-th member of R;, 1 < j < mn/6.
Part (¢): To select the blocks of Part (¢), let PA;|PB; be a partition of P.S; into
parts of size mn/12. Then the blocks of Part (¢) are all those of the forms:

{(a+s,0),(a+5,0),(b+1t1),(b+1,1)},
{(b+u,1),(b+4,1),(c+w,2),(c+w'2)},
{(c+9,2),(c+v,2),(a+20),(a+2,0)},

where the pairs {s, s'}, {t,t'}, {u, v}, {w,w'},{y,y'} and {z, 2’} are the j-th (1 <
Jj < mn/12) pairs selected from the sets PA;, PB; according to the parities of

a,b and ¢, as follows:
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(i) If a,b and ¢ are all even, then {s,s'} € PAy,{t,t'} € PA, {u,v'} €
PBy,{w,w'} € PBy,{y,y'} € PAy,{z,2'} € PBy.

(i) If just a is even, then {s,s'} € PBy, {t,t'} € PBy,{u,u'} € PA;,{w,w'} €
PBQ, {y,y,} S PAQ, {Z,Z’} c PAO

(iii) If just b is even, then {s,s'} € PBy,{t,t'} € PBy,{u,u'} € PA;,{w,w'} €
PAy {y,y'} € PBy,{2,2'} € PA,.

(iv) If just c is even, then {s,s'} € PAy, {t,t'} € PA;,{u,v'} € PBy,{w,w'} €
PAQ, {y,y/} c PBQ, {Z,Z’} c PB()

It is clear that each P(a, b, ¢) forms a partition of X. Note that for all (a, b, ¢)
such that a+b+c¢ = 0 (mod mn+gs), the blocks of Part (¢) cover all the blocks
of the form {(z,i + 1), (y,i + 1), (2, + 2), (w,i + 2)}, where {z,y} € F/,, and
{z,w} € Fiﬁz such that 1 < 7,5/ < mn/3 and {j,j'} is an appropriate pair,
i € {0,1,2}. Thus, the desired HF,((mn/g + s)* : s) is resolvable.

Moreover, if k(mn/g + s) € D for each k, 0 < k < g — 1, without loss of
generality we may assume k(mn/g + s) is the (ks)th element of D. Let

8o = {{ooks, (a+d,0),(b—d,1),(c+d,2)} :a+b+c=0 (mod mn+ gs),
a,b,c € {i(lmn/g+s):0<i<g—1},dis the (ks)th member of D,
0<k<g-1}

Note that 6y C & and &, forms the block set of an RH(g*) with the group set
H{k(mn/g + s),i) : 0 < k < g—1} i € {0,1,2}} U {{oogs : 0 < k <
g —1}} and parallel classes {{00(itjtrt1)s, ((i +1)(mn/g+s),0), ((7 +1)(mn/g +
s), 1), (k+0)(mn/g+s),2)} :0<1<g—1},i+j+k =0 (mod g). Hence, the
RHF,((mn/g + s)® : s) contains a subdesign RH(g*). O

2.3 Resolvable H-designs with Group Size 4

First, we give our second tripling construction for resolvable H-designs with

groups size 4 by constructing resolvable By-pairings. In order to construct such
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structures, we describe a special class of B,-pairings with extra properties. Sup-
pose that D, R;, PR;, i € {0,1,2} form a By(n,s) on Z44s. 1f there exist three
subsets Ao, A1, Ay of Z,,,44s and three subsets PAy, PA;, PAs of Zynigs X Zinntgs
satisfying the following conditions for each i € {0, 1,2}:

(2) PA; is a partition of A; into pairs. Let O) = {|z — y| : {z,y} € PA;},

(a) |0)| = mn/12, all Op, O}, O} are disjoint and of odd members,
(b) (U0 NIV U(UiZoLi)) = 0 and (mn + gs)/2 ¢ O;,

then let

S() - Al U AQ, Sl - AO U (—Az), SQ - (—Ao) U (—Al),
P50:PA1UPA2, P31:PAOU(—PA2), PSQZ(—PA())U(—PA1>,

Ry = —(Ro\ A), Ry = Ry \ Ay and Ry = —(Ry \ Ay).

It is readily checked that D, R;, PR;, S;, PS;, R;, i € {0,1,2} form an RB,(n, s).

Now, we are in a position to construct RB4(n,s) for any n > 0 and s > 1.
We list the components D, PR;, PA;, i € {0,1,2} for short or D, PR;, PS;, R;,
i €{0,1,2} fully.

Lemma 2.3.1. For each pair of integers n > 0 and s > 1, there exists an
RBy(n,s).

Proof. When n = 0, we take D = Zygn4s) and R, = S; = R; = 0 for each
i €{0,1,2}. When n > 0,s > 0, the desired RBy(n, s) is constructed directly as

follows:

(1) For s odd and n even, let

D={(Bn+s)j:0<j<3U{Bn+s)i+j:0<i<31<j<(s—1)/20r3n+(s—
1)/24+1<5<3n+s—1},
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PRo={{j,—j}:(s—1)/2+1<j<(s—1)/24+mnor Bn+s)+(s—1)/24+n+1<j<
Bn+s)+ (s—1)/2+ 2n},

PRi={{j,—j}:(s—=1)/24+2n+1<j<(s—1)/24+3nor Bn+s)+(s—1)/24+1<
i< @Bn+s)+(s—1)/2+n},

PRy ={{j,—j}:(s—1)/24n+1<j5<(s—1)/24+2nor Bn+s)+(s—1)/24+2n+1<
Ji<(Bn+s)+(s—1)/2+ 3n},

PAo={{(s—1)/2+j,8n+35s— (s —1)/2—j}: 1 <j <n},

PA ={{(s—1)/24+2n+j,d4n+s+(s—1)/2—j}:1<j<n—-1}U{{lOn—(s—1)/2—
1,10n — (s — 1)/2 — 2}},
PA={{(s—1)/24+n+j6n+s+(s—1)/24+2—5}:2<j<nU{{(s—1)/2+n+
1,1ln+4s — (s —1)/2 — 2}}.

(2) For s even and n even, let

D={(B3n+5)j,3n+35)/24+(Bn+s)j:0<7<3U{Bn+s)i+j:0<:i<3,1<;5<
(s—2)/20r3n+s/24+1<j<3n+s—1},

PRy = {{j,—j} : (s—2)/24+1 < j<(s—2)/24nor (s—2)2+n+1<j<
2n+(s—2)/2+ 1 and j # (3n+ s)/2},

PRy ={{j,—j}:2n+(s—2)/2+2<j<3n+s/2or3n+s+(s—2)/24+n+1<j<
3n+s+(s—2)/2+2n+1and j#3n+ s+ (3n+s)/2},

PRy ={{j,—j}:3n+s+(s—2)/241 < j < 3n+s+(s—2)/2+norbn+s+(s—2)/2+2 <
j<6bn+s+(s—2)/2},

PAo={{(s—2)/24j,(s—2)/2+2n+1—j}:1<j<nand j#n/2} U{{lln+3s+
(s+2)/2,10n+ (s +2)/2 + 3s — 1}},

PAL = {{(s—2)/)2+2n+14+458n+2s+(s+2)/2—4} :1 < j<nandj#
n/2} U{{10n+3s+ (s+2)/2—2,3n+ s+ (s —2)/2+2n + 1}},

PA ={{3n+s+(s—2)/2+j,Tm+2s+(s+2)/2—1—5}:1<j<n}

(3) For s even and n odd,

(3.1) n >3 odd, let

D={(Bn+s)j:0<5<3lU{Bn+s)i+5:0<:<3,1<j<(s=2)/20r3n+
(s—2)/2+42<j<3n+s—1}U{x((s—2)/2+1),£(6n+s+ (s—2)/2+ 1)},
PRo={{j,—j}:(s—-2)/24+2<j<(s—2)/24n+1lor(s—2)/2+2n+2<j<
(s —2)/2+3n+1},

PRy ={{j,—j}: (s—2)/24n+2 < j < (s—2)/24+2n+1or (5n+s)+(s—2)/24+1 <
J< (5n+s)+ (s —2)/2+n},

PRy ={{j,—j}:3n+s+(s—2)/241<j<3n+s+(s—2)/2+nor3n+s+
(s—2)24n+1<j<3n+s+(s—2)/2+2n},
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PAo={{(s—2)/242n+j,10n+4s— (s —2)/2—1—j} : 2 < j <n}U{(s—2)/2+
3,(s—2)/2+3n+ 1},

PA ={{(s-2)/2+n+j,6n+s+(s—2)/2+2—-35}:2<ji<n}u{{dn+s+
(s —2)/2+1,11n+4s — (s — 1)/2 — 2}},
PAy={{(s—2)/2+3n+s+j,bn+s+(s—2)/2+1—5}:1<j<n}

(3.2) n=1, let

D={B+s);:0<j<3}U{B+9)i+7:0<i<3,1<j<(s—2)/20r3+(s—
2)/242<j<34s—1}U{=((s —2)/2+ 1), £((s — 2)/2+2)},

PRy = {{j,~j} (s = 2)/2+3 < j < (s~ 2)/2+ 4},

PRy ={{j,—j}:34+s+(s—2)/24+1<j<3+s+(s—2)/2+2},

PRy ={{j,—j}:34+s+(s—2)/2+3<j<3+s+(s—2)/2+4},

PAo = {{(s —2)/2+3, (s — 2)/2 + 4}},

PA = {{3+ s+ (s—2)/2+2,8+2s+ (s +2)/2}},
PAy={{3+s+(s—2)/2+3,5+2s+ (s +2)/2}}.

(4) For s odd and n odd,

(4.1) s >

(4.2) s>

3 odd and n > 3 odd, let
D={Bn+3s)j7Bn+s)/24+Bn+s5)j:0<j<3U{Bn+s)i+j:0<:<3,1<
j<(s—3)/20r3n+(s—3)/2+3<j<3n+s—1}U{E((s—3)/2+1),£(3n+
s+3n+(s—3)/2+2)},
PRo={{j,—j}:(s—3)/2+2<j<(s—3)/24+n+1lor(s—3)/24+n+2<j<
2n+ (s —3)/2+2 and j # (3n + s)/2},

PRy ={{j,—J}: 2n+(s—-3)/243 < j < 3n+(s—3)/2+2 or 3n+s+(s—3)/2+n+1 <
i<3n+s+(s—3)/24+2n+1and j#3n+s+ (3n+s)/2},

PRy ={{j,—j}:3n+s+(s—3)/2+1<j<3n+s+(s—3)/24+nordn+s+
(s—3)/2+2<j<6n+s+(s—3)/2+1},
PAo={{(s=3)/24+j,(s=3)/2+2n+3—j}:2<j<n+landj#n+3—(n+
3)/2} U{{11n + 3s + (s +3)/2 — 2,10n + (s + 3)/2 + 35 — 2}},

PA1 = {{(s—3)/2+2n+2+j,8n+2s+ (s+3)/2—j}:1<j<nandj#
(n—=1)/24+2}U{{10n+3s+ (s+3)/2—4,3n+ s+ (s —3)/2+2n+ 1}},

PAs = {{3n+s+(s—3)/24j,Tn+2s+ (s +3)/2—1—j}:1<j<n}.

3 odd and n =1 odd, let
D={(3+5)j,(3+)/2+(B3+5)j:0<j<3}U{B+s)i+j:0<i<31<j<
(s—3)/20r3+(s4+3)/2<j<3+s—1}U{£((s—3)/2+1),£((s—3)/2+2)},
PRo={{j,—j}: (s +3)/2+1<j<(s+3)/2+2},

PR ={{j,—Jj}:3+s+(s—3)/2+1<j<3+s+(s—3)/2+2},

PRy ={{j,—j}:3+s+(s+3)/2+1<j<3+s+(s+3)/2+1},
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PAo={{(s+3)/2+1,(s+3)/2+2}},
PA ={{3+s+(s—3)/2+1,7T+2s+ (s+3)/2}},
PAs={{3+s+(s+3)/2+1,7+2s+ (s —3)/2}}.

(4.3) For s =1 and n > 3 odd, let
D={Bn+1)i:0<i<3},
PRo={{j,—j5}:1<j<(n+1)/20r Bn+1)/24n+1<75<3n}U{{j,—j—1}:
3n+1+4(n+1)/241<j <3n+1+Bn+1)/2—1}U{{3n+1+ (Bn+1)/2,3(3n+
)= (n+1)/2-1}},
PRy ={{j,—j} :3n+1+1<j <3n+1+(n+1)/20r 3n+1+Bn+1)/2+n+1<
J<2Bn+ 1) UL, —j— 1} s (4 1)/2+ 1< 5 < (Bn+1)/2— 13U {{(Bn+
1)/2,4B8n+1) — (n +1)/2 — 1},
PRy ={{j,—j}:(3n+1)/2+1<j<(3n+1)/24+nor3n+1+Bn+1)/2+1<
j<3n+1+(Bn+1)/2+n},
PAo={{j,—j—1}:3n+1+(n+1)/24+1<j<3n+1+@Bn+1)/2—-1}U{{(n+
1)/2 — 1,43+ 1) — (n +1)/2}},
PA ={{j,—7-1}:(n+1)/2+1<j<(Bn+1)/2—-1} U{{3n+2,3n+ 3}},
PAy = {{(B3n+1)/2+1+43Bn+1)—Bn+1)/2-4}:1<j<(n+1)/2}U
{3n+1+@Bn+1)/24+43n+14+Bn+1)/2+n—-4}:1<j< (n—-3)/2} UV,
where V={{3n+1+Bn+1)/2+n,3B3n+1)—Bn+1)/2—n+1}} forn>5
and V = {{17,22}} when n = 3.

(4.4) For s=1and n =1, let
D ={0,1,8,15},
PRy = {{2,3},{4,6}}, PR1 = {{5,11},{9,14}}, PR, = {{7,13},{10,12}},
PSo = {{7,10},{9,14}}, PS; = {{6,7},{10,13}}, PS2: = {{2,3},{6,9}},
Ro = {4,14}, Ry = {5,11}, R, = {3,4}. O

Combining Theorem 2.2.8 and Lemma 2.3.1, we obtain the following theo-

rem.

Theorem 2.3.2. Suppose thatn > 0 and s > 1. There exists an RHFy((3n+s)? :
s). When (n,s) # (1,1), the RHF,((3n+s)3 : s) exists with a sub-design RH(4%).

As a consequence of Theorem 2.3.2, we have our second tripling construction

for resolvable H-designs with group size 4 as follows.

Corollary 2.3.3. (Tripling Construction II) Let n = 2s (mod 3) and s > 1. If
there exists an IRH(4™ : 4%), then there exist both an IRH(43"~2% : 4™) and an
IRH(4%"2 . 4%). Furthermore, if there exists an RH(4™) or an RH(4%), then
there exists an RH(43"2%), as well as an IRH(43"2% : 4*) when (n,s) # (5,1).
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The construction given below is a variation of the construction for resolvable

candelabra quadruple systems in [33].

Theorem 2.3.4. Suppose that n > 1, s = 1,2 (mod 3) and 3s > 5n. There
exists an RHF,((3n)? : s).

Proof. Letn > 1, s = 1,2 (mod 3) and 3s > 5n. Take Y = {00, 001, ...,0045-1}
and let X = (Zy9, X Z3) UY. We will construct an RHF,((3n)? : s) (X, G, B, F)
with groups G(i,j) = {(i + 3kn,j) : k € Z4}, i € Zs,, j € Zs, and G(o0,j) =
{o0sk+j 1 k € Z4}, 0 < j < s—1, and three holes F; = {G(3,j) : i € Z3,} U S,
0 < j <2, which intersect on a common hole S = {G(c0,7):0<j<s—1}. In
the sequel we shall write x; for the ordered pair (z,7) € Z2, X Z3.

Let h = (12n — 4s)/2. Since 3s > 5n, h is even and h < 8n/3. As in [33,
Theorem 2.1], let

Hf ={{n—i,9n—-3+1}:2<i<3n+1,i#0 (mod 3)}, and
Hy={{3n—4,3n+i}:1<i<3n-—2,i#0 (mod 3)}.

It is easy to check that |H{| = 2n and |Hj| = 2n — 1. Let H; be any subset of
H} of cardinality h/2, i = 1,2 and H = H; U H,, which satisfies the following

properties:

(1) |H| =h=(12n—4s)/2 < 8n/3.
(2) The pairs in H are disjoint, i.e., |U{x7y}eH{x,y}| = 2h.

(3) Let LH ={|Jy—=x|: {x,y} € H}, then |LH| = hand LHN{3,6,...,6n} =
0.

(4) The distances between members of H; are odd.

(5) {x,y} = {1,2} (mod 3) for each {z,y} € H.

Since H; & Hi and all distances between members of H; are odd, the graph
G(12n,{1,2,...,6n}\(LH J{3n,6n})) has a one-factorization F|Fy| ... |Fian—2n—4a
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by Lemma 2.2.7. Let Fio,_op—3|Fi2n—2n—2|Fion—2n—1 be a one-factorization of the
graph G(12n,{3n,6n}). Then it is natural that F}|Fy|...|Fi2,_2n,—1 is a one-
factorization of the graph G(12n,{1,2, ...,6n} \ LH). Using the above set of
pairs H and the one-factorization of the graph G(12n,{1,2,...,6n}\ LH), Hart-
man [33, Theorem 2.1] constructed a resolvable RCQS((12n)? : 4s) on X with
group set {Z19, x{i} : i € Z3} and stem Y, as well as the block set B’ and its reso-
lution P containing the following 6n(12n—2h—1) partitions of Zis, x {i+1, 142}
for each 7 € Zs:

Pux = {{xis1, Yit1, zito, tive} - {x,y} is the mth member of F,,
{z,t} is the (m + k)th member of F,,m =1,2,...,6n},

where u=1,2,...,12n —2h — 1, and £k =0,1,...,6n — 1.

For each i € Z3, let 3; be the union of partitions F;, , with 12n —2h — 3 <
u<12n—2h —1and 0 <k < 6n — 1. Then we have that B = B'\ (Ucz, ) is
the block set of the desired RHF4((3n)? : s) on X with group set G and hole set
F, where B has a resolution P\ {P, . : 12n —2h —3 <u < 12n—2h — 1,0 <
k<6n-—1,i€ Zs}. O

As a consequence of Theorem 2.3.4, we have our third tripling construction

as follows.

Corollary 2.3.5. (Tripling Construction III) Let n = s = 1 or 2 (mod 3) and
14s > bn. If there exists an IRH(4" : 4°), then there exists an IRH(43"72% : 4™)
and an IRH(4%"% : 4%).

In the sequel of this section, we shall establish the existence of resolvable
H-designs with group size 4 by using the recursive constructions having been

developed. The following initial designs are needed.

Lemma 2.3.6. There exists an RH(4%).

Proof. Let the point set be Zy, and the group set be {{j,7+5,...,7+15}:j =
0,1,---,4}. We list the base blocks as follows, which are developed by adding 2
modulo 20:
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{3,4,7,11} {6,10,17,18}  {0,2,9,13} {5,8,19,1}  {12,14,15,16}
{8,9,16,17}  {11,19,0,2} {18,4,12,15}  {3,6,10,14} {1,5,7,13}
{1,7,9,18} {11,13,14,15}  {19,5,6,12}  {8,10,2,4}  {16,17,0,3}
{1,12,18,19}
Each of the first three rows forms a parallel class. The last block covers the four

residues modulo 4, hence gives a parallel class by adding 4 modulo 20. [

Lemma 2.3.7. There exists an RH(47).

Proof. Let the point set be Zsg, and the group set be {{j,j + 7,...,j + 21} :
j=0,1,---,6}. We list the base blocks as follows, each of which is developed
by adding 2 modulo 28:

{3,7,11,23} {27,9,15,17}  {13,14,19,1}  {2,4,10,20} {18,22,26,6}
{24,0,5,16} {8,12,21,25}

{0,1,9,12} {21,25,2,10}  {18,20,5,14}  {22,24,27,4}  {13,15,17,23}
{16,19,7,8} {26,3,6,11}

{3,6,18,21} {8,9,19,24} {20,5,7,11} {10,15,16,0}  {4,14,17,1}
{25,2,12,13}  {22,23,26,27}

{2,4,6,24} {1,5,7,23} {9,12,20,21}  {16,18,22,0}  {3,8,11,13}
{10,15,19,27}  {14,17,25,26}
{3,4,7,8} {21,26,2,13}  {22,23,24,25} {14,17,20,11} {18,19,0,9}

{27,1,10,12}  {16,5,6,15}
{2,7,13,24} {5,7,22,24} {7,12,13,18}  {12,18,21,27} {13,15,16,18}

The seven blocks in the ith and (i + 1)th rows form a parallel class for each
1 = 1,3,5,7,9. Each block of the last row covers the four residues modulo 4,

hence gives a parallel class by adding 4 modulo 28. O]

Lemma 2.3.8. There exists an RHFy(3° : 2).

Proof. We first construct an HF5(3% : 2) on Z3y U {o0y,...,003}, with groups
Gy = {j,j +15}, j = 0,1,--- 14, G, = {00;,00442}, i = 0,1, five holes
Fl ={G}, G5, G0} US,i=0,1,...,4 and a common hole S’ = {G' , G }.
We list below the set of base blocks B’ = AU®O, which will be is developed under
the automorphism group (o), where o/ = (012 3...28 29)(00g)(001)(002)(003).

{0,1,13,22}  {0,3,4,7} {0,14,16,27}  {0,6,18,19}
{0,3,6,24}  {0,19,21,22} {0,1,2,8} {0,11,19, 27}
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{0,2,29, 000}  {0,4,22,000}  {0,7,16,000}  {0,6,17,000}
{0,3,12,001}  {0,2,24,001}  {0,16,29,001} {0,4,11,00:}
{0,19,28, 002}  {0,13,27,002}  {0,8,26,002}  {0,6,7, 002}
{0,3,9,005}  {0,22,29,005} {0,14,26,00s} {0,11,13, 003}

O: {0,2,18,28}  {0,5,14,18}  {0,1,14,19}  {0,2,25,27}
{0,3,8,25} {0,7,12,28}  {0,7,14,25}  {0,1,6,25}
{0,10,19,26}  {0,9,10,29}  {0,12,20,22}  {0,6,16,22}
{0,3,20,23}  {0,21,25,26}  {0,7,17,24}  {0,10,21,28}
{0,20,24,26}  {0,13,17,21}

For each block B = {a,b,c,d} € B', construct an RH(2%) with group set
{{z,2'} : x € B}, where 2’ = x + 30 when x € Z35 or 2’ = 00;44 when z =
o0;, and block set Ap having a resolution Pg(1) = {{a,b,¢,d},{a’,V,c,d'}},
Pp(2) = {{a,b,d,d'},{d,V,c,d}}, Pp(3) = {{a,V,c,d'},{d',b,c,d}}, Pg(4) =
{{a,V,,d},{a’,b,c,d'}}. Let B=Upgep Ap. It is clear that B is the set of base
blocks of an HF4(3° : 2) on X = Zg U {0, . .., 007} with the group set G; =
(j+15k:0<k<3},j=0,1,-,14, Go, = {00i0s : 0 <k <3}, i =0,1, five
holes F; = {G;,Giy5,Giv10} U S, i € Z5, a common hole S = {G,, G, } and
an automorphism group («), where a = (012 3...28 29)(30 31 32 33...58 59)
(00p) - .. (007). Now, we need to give the resolution. The design should contain
16 x 30 parallel classes on X and 8 x 4 partial parallel classes on X \ (Uger,G)
for each 7 € Zs.

Note that each block B € A covers all but one, say j, distinct residues
modulo 5. Then for each ¢ € {1,2,3,4} and a fixed s € Z5, Pp(i) gives a partial
parallel class on X \ (Uger,,,G) when developed by the automorphisms {a®*** :
k € Zs}. That is, UpeaAp gives 32 partial parallel classes on X \ (Uger G) for

each i € Z5 when developed under («).

Then we shift each block B € UgcoAp by a suitable automorphism ag €
(a)). The result is listed below, where the blocks in each of the four consecutive
rows, namely the ith, (i + 1)th, (¢ +2)th and (i + 3)th rows for i € {4dk+1: k =
0,1,...,15}, form a parallel class.

{1,37,38,002}  {3,44,46,003}  {6,40,28,004}  {34,7,16,005}  {32,8,9,006}
{30,11,13,007}  {31,36,45,49}  {35,10,19,53}  {15,20,59,33}  {57,29,52,24}
{18,51,26,43}  {47,50,25,12}  {55,27,54,000} {17,48,23,42}  {4,41,21,58}
{39,22,56,0}  {2,5,14,001}

{32,6,24,004}  {2,5,44,005}  {3,9,40,006}  {8,19,51,007}  {35,10,49,23}
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(11,46, 55,29}
(36,43,20,1}
(52,53, 58,47}
{55, 26,9, 44}
(37,43, 23,29}
(19,35, 18, 005}
(34,11, 16, 32}
{1,15,27, 0035}
(2,3,16,21}
{7,20,24, 28}
(23,33,42,19}
{45, 28,12, 006}
(21,27,7,13}
{1,34,51,24}
(57, 6,37, 26}
(51,58,33,49}
(31,11, 22,59}
{17,25,13, 002}
(7.47,28,35)
{17,20,25, 12}
(18,21, 56, 43}
{48,39,13, 14}
(15,57,35,7}
{24,1,40, 004}
(54,8, 50, 003}
(5,38, 14, 007}
(35,25, 29,31}
{0,7,12, 28}
{41,21,32,9}
(40,42, 35,37}
(43,46, 51, 38}
{16, 18, 40, 005}
(10,2, 39, o7}
(51,42, 46,47}
(34,25, 29,30}
(36, 25,4, 006}
(47,19,41, 001 }
{24,31,10, 004}
(59,9, 18,55}
(27, 36,37, 26}
(57,34,41,52}
(7,17,56,33)

{33,38,17,21}
{0,4,22, 000}
{31,42,14, 003}
{10,12,5, 7}
{52,25,31, 003}
{51,59, 47, c0g }
{22,53,6,41}
{32,39,48, 004}
{10, 41, 54, 29}
{9,52, 26,30}
{31,37,8, 002}
{52,58,38,44}
{53,0,10,47}
{23,56,31,18}
{36,20,2, 007}
{50,42, 19, 003}
{3,6,53,56}
{27,29,21, 001}
{15,5,39,41}
{2,53,27,58}
{3, 46,50, 24}
{6,19,33, 006}
{42, 4,11, 007}
{10,30, 4, 36}
{16,18,41, 43}
{19,22,9,12}
{45, 34,13, 002}
{23,55,47, 001}
{31,11,50,27}
{13,26, 10, coz}
{49, 56,5, 000}
{23,9,22, 001}
{55,3,21, 006}
{14,6,13, 003}
{50,33,7,11}
{8,11,17, 003}
{28, 34, 44,20}
{51,22,57,16}
{3,12,13,2}
{23,30,35,21}
{59,43,25, 003}
{3,9,20, 000}

{57,28,41,16}
{56,30,7,001}

{54,57,14,17}
{45,48,27, 001 }
{2, 40,58, 002}

{34,36,58, 005 }
{17,49,12, 44}
{14,46,43, 000 }

{39,25,8, 005}
{33,9,50, 000}
{49,5,48, 001}

{8, 40, 2, 005}
{43, 46, 52, co7}
{32,9,18, 004}

{30, 34,22, 000}
{26,59, 16,49}
{28,31,40, 001}

{33,6,53,26}
{56, 42, 55, 005 }
{7,28,2,3}

{18, 58,39, 16}
{24, 4, 45,52}
{573 37 147 004}

{49,56,1,17}
{52,4,12,44}
{27,59,26, 004}

{30, 50, 54,56}
{32, 45,49, 53}
{0,6,46, 52}

{39, 47, 5, OOQ}
{16,2,45, 005}
{31, 44, 58, 006 }

{12,13,48,37}
{26, 45, 54, 005}

{13,49, 30, 000}
{33,39,50, 004}
{42,15,21, 007}

{40, 59, 38, 006 }
{53,25,18,50}
{0,4,11, 001}

{43,19,29,35}
{15, 22, 59,40}
{3, 46,30, 002}

{20, 57,36, 000}
{4,44,23,30}
{16, 54,12, 006 }

{44,47,23, 003}
{5,36,41,0}
{10,29,8, 005}

{11,0, 39, 006 }
{46, 48,15, 000}
{20, 27,37, 44}

{34, 44, 53,30}
{19,29,8,15}
{25,59,6, 005}

{41,54,8, 002}
{45,57,35,37}
{48,19, 24, 43}

{21,58,38,15}
{43, 35,42, cor}
{48,1,5,39}

{46,32,15, 001 }
{40,50, 1,8}
{10, 13,49, o7}

{59,39,18,25}
{50,27,34, 15}

{4, 46,24, 56}
{8,20,28,0}
{36,38,1,3}

{51, 35,47, cor}
{56,5,6,55}
{45,22,57,13}

{4,41,16,32}
{55,17,54, 003}
{42,14,11, 004}

{48, 24,34, 10}
{0,37,14,55}
{1, 38,45, 26}

{37, 97 1, 005}
{38,45, 55, 32}
{52,54,51, 004}

{59, 32,49, 52}
{47,21,58, 001}
{57,17,51,23}

{20, 33,17, 006}
{22, 36,48, 003}
{2,54,1, 007}

{31,5,53, 000}
{15, 28,32,36}
{38,20, 58,0}

{27,29,26, 000 }
{40,23,37, 002}
{337 77 147 005}

{53,54,29, 18}
{19,55,6, 004}
{4,24,28,0}
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{48,38,12,14}

{42,51,22,11}

{0,34,52,000}  {30,3,42,001}  {1,7,8, 002} {2,13,15,005}  {31,35,53, 004}
{33,36,45,005} {32,38,39,006} {44,55,57, 007} {24,26,12,22}  {18,50,6,46}
{56,28,14,54}  {41,43,29,9}  {19,21,37,47}  {49,58,59,48}  {11,20,51,40}
{25,5,16,23}  {10,17,27,4}

{0,7,16,000}  {30,32,24,001} {33,9,40,005}  {31,12,44,003} {1,5,53,004}
{2,35,14,005}  {3,39,10,006}  {15,56,28,007} {50,52,38,48}  {55,27,43,23}
{19,51,37,17}  {8,13,22,26}  {6,41,20,54}  {58,59,42,47}  {4,11,18,29}
{36,46,57,34}  {25,45,49,21}

{30,7,46,000}  {0,34,41,001}  {31,20,59,005} {3,36,42,003}  {2,8,49, 004}
{43,47,54,005}  {1,9,57,006}  {29,13,55,007} {38,39,22,27}  {50,23,28,45}
{37,14,21,32}  {24,33,4,53}  {10,11,16,5}  {6,18,56,58}  {19,40,44,15}
{26,17,51,52}  {48,25,35,12}

{30,36,17,000}  {0,46,59,001}  {51,29,47,002} {5,57,34,005}  {11,13,40, 004}
{3,7,44,005}  {16,35,14,006} {23,37,19,007} {24,25,38,43}  {1,33,56,28}
{53,26,31,18}  {27,4,39,55}  {48,21,8,41}  {50,32,10,12}  {6,42,22,58}
{54,15,49,20}  {45,52,2,9}

As a corollary of the Tripling Construction II, we obtain

Theorem 2.3.9. If there exists a constant M > 6, such that for every n =
1,2 (mod 3) in the range M < n < 3M, there exists an IRH(4™ : 4'7), then for
every n = 1,2 (mod 3) and n > M, there exists an IRH(4™ : 4'7).

Proof. First, we claim that there exists an IRH(4!" : 4%) for each s € {1,2,4,5,7}.
Applying the Tripling Construction IT with (n,s) = (7,2) and an RH(47) in
Lemma 2.3.7, we obtain an RH(4'7), an IRH(4'7 : 4%) and an IRH(4'7 : 47). An
IRH(4'7 : 4°) can be constructed by applying Theorem 2.2.3 with an RHF,(3° : 2)
in Lemma 2.3.8 and an RH(4%) in Lemma 2.3.6. The designs with a hole of sizes
1 or 2 are actually an RH(4'7).

The above statement yields that the existence of an IRH(4" : 417) implies
the existence of an TRH(4" : 4°) for all s € {1,2,4,5,7,17}. The proof proceeds
by induction. Let n > 3M and n = 1,2 (mod 3). Assume that for each n’, M <
n' < n,n = 1,2 (mod 3), there exists an IRH(4™ : 4'7). Write n = 3m — 2s,
where s = 7,5,1,17,4,2 when n = 1,2,4,5,7,8 (mod 9), respectively. It is
easy to check that M < m < n and m = 1,2 (mod 3). Applying the Tripling

Construction II, the conclusion then follows. O
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Lemma 2.3.10. For each integern = 1,2 ( mod 3),n >4 andn ¢ {73,149, 181,
599}, there exists an RH(4").

Proof. Let L be the list of pairs (n,s) such that an IRH(4™ : 4%) is known. For
every two pairs (n,s) and (n',s’), define (n,s) < (n',s') if n < n' or, n =n’
and s < s’. We will compute the output of the Tripling Constructions I, II and
IIT, the Doubling Construction and the Product Construction by a computer
programme, which involves the following steps:

Step 1: Initialize L. Let L = {(4,1),(4,2),(5,1),(5,2),(7,1),(7,2),(13,1),
(13,2),(13,5),(19,1),(19,2), (41, 1), (41,2) }. The designs with 13 groups can be
constructed by applying Tripling Construction IT with (n, s) = (5,1). The designs
with 19 or 41 groups are constructed in the Appendix. Sort L in ascending order.

Let (n, s) be the smallest pair in L.

Step 2: Check whether (n, s) satisfies the Tripling Construction II’s condi-
tion, i.e., n = 2s (mod 3) and (n,s) # (5,1). If not, go to Step 3. If yes, update
L by adding pairs (3n — 2s,n), (3n — 2s,4) and (3n — 2s, k) for all k such that
(n, k) € L. Sort the updated L in ascending order, then go to Step 4.

Step 3: Check whether n — s = 0 (mod 3). If not, go to Step 4. If yes,
write n — s = 3% - t, such that t > s and 31 ¢, or s < t < 3s and 3|t. Check
whether (¢ 4 s, s) satisfies the Tripling Construction II’s condition, i.e., t + s =
2s (mod 3) and (t + s,s) # (5,1), or the Tripling Construction III's condition,
ie., t =0 (mod 3) and 9s > 5t. If yes, update L by adding pairs (3n — 2s,n)
and (3n —2s, k) for all k such that (n, k) € L. Furthermore, add (3n — 2s,4) into
L if (t + s, s) satisfies the Tripling Construction II's condition. Sort the updated
L in ascending order, then go to Step 4.

Step 4: Apply the Doubling Construction and the Product Construction.
Update L by adding the pair (2n, k) for all k£ such that (n,k) € L. For each m
such that (m,1) € L, update L by adding pairs (mn,n), (mn,m) and (mn, k)
for all k£ such that (n,k) or (m,k) € L. Sort the updated L in ascending order.
Let (n, s) be the next smallest pair in the updated L, then go to Step 2.

The programme was run with n < 2000 and s < 64, and produced two

results as follows:
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Result 1: For each n = 1,2 (mod 3) and 4 < n < 1285, there exists an
RH(4™) with four possible exceptions {73,149, 181, 599}.

Result 2: There exists an IRH(4™ : 4'7) for all n = 1,2 (mod 3) and 1285 <
n < 3855.

By Theorem 2.3.9, there exists an IRH(4" : 417) for alln = 1,2 (mod 3) and
n > 1285. Hence there exists an RH(4™) by Theorem 2.2.3. This completes the
proof. ]

Lemma 2.3.11. There exists an RH(4™) for each n € {181,599}.

Proof. For n = 181, there exists an RCQS(1'® : 1) obtained from an RSQS(16).
By Theorem 2.3.2, there exists an RHF4(4% : 1), thus an RHF,4(123 : 1) exists
by Tripling Construction I. Applying Theorem 2.2.2 with an RH(48') and an
RCQS(1% : 1), we get an RHF (12" : 1). Then applying Theorem 2.2.3 with an
RH(4!3), we obtain an RH(4'81).

For n = 599, there exists an RCQS(17 : 1) obtained from an RSQS(8). By
Theorem 2.3.2, there exists an RHF4(85% : 4). Applying Theorem 2.2.2 with the
RCQS(17 : 1), the RHF4(85% : 4) and an RH(340%), we get an RHF,(85" : 4).
Applying Theorem 2.2.3 with an TRH(4% : 41) gives the desired RH(4°%?). Here,
the input TRH(4% : 4%) can be constructed by applying Tripling Construction II
with (n,s) = (31,2) and an RH(4%!). O

Combining Lemmas 2.3.10 and 2.3.11, we obtain the main result in this

section.

Theorem 2.3.12. The necessary conditions n =1 or 2 (mod 3) and n > 4 for
the existence of an RH(4™) are sufficient except possibly for n € {73,149}.

2.4 Applications of the Existence of RH(4")

In this section, we give several applications of the existence result of resolv-
able H-designs of group size 4 stated in Theorem 2.3.12.

Firstly, we establish the necessary and sufficient conditions for the existence
of resolvable H-designs of group size 2. As a corollary of Theorem 2.3.12, we have

the following result by the Group Halving Construction.
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Lemma 2.4.1. There exists an RH(2") for each n = 2,4

{146,298}

Lemma 2.4.2. There exists an RH(6°).

Proof. Let the point set be Z3 and the group set be {{j,j + 6, ...

(mod 6) and n ¢

G430} =

0,1,---,5}. We list the base blocks of an RH(6°) as follows:

Part 1:  {7,9,14,16}, {5,10,27,32},  {1,3,12,14},
{2,5,16,19}, {1,11,20,30},  {1,4,11,14}.
Part 2. {0,2,4,9}, {14,21,22,30}, {6,11,34,3},
{18,31,5,10},  {12,16,26,1},  {19,20,23,24},
{25,32,33,35}, {7,27,28,29}, {8,13,15,17}.
Part 3: {11,16,27,32}, {1,14,17,34},  {2,13,21,30},
{5,9,24, 28}, {19,23,4,8}, {35,7,12,22},
{18,20,3,10},  {26,31,6,15},  {0,25,29,33}.
Part 4: {18,32,33,34}, {1,5,16,27}, {19,29,9,10},
{14,22,23,0},  {20,21,24,25}, {12,17,3,7},
{2,11,15,31},  {8,30,35,4}, {6, 13,26, 28}.
Part 5: {9,22,23,31},  {17,25,26,33}, {29,0,16,20},
{4,7,12,15}, {14,21,35,1},  {8,10,11,18},
{5,13,24,32},  {2,27,30,34},  {19,28,3,6}.
Part 6:  {0,2,5,15}, {9, 30,4, 7}, {29,31,12,14},
{23,27,16,20}, {3,10,25,32},  {24,26,35,1},
{11,13,21,28}, {6,19,22,33},  {17,18,34,8}.
Part 7:  {1,10,14,33},  {4,11,19,32},  {31,9,12,26},
{13,15,16,18}, {0,5,20,21}, {24,25,34, 35},
{2,17,27,28},  {22,23,3,6}, {7,8,29,30}.

Here, the base blocks are developed by adding 2 modulo 36. The elements of
each block in Part 1 cover the residues modulo 4, hence each block in Part 1
gives a parallel class when developed by adding 4 modulo 36. The elements of
blocks in each of the other parts are different. Hence, each of these parts forms

a parallel class. O

Lemma 2.4.3. There ezists an RH(2'%) and an RH(2%%).

Proof. An RH(2'%) was constructed in [13]. For RH(2%%®), there exists an
RHF(1% : 1) which is actually an RH(2?). By the Tripling Construction I,
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there is an RHF5(9% : 1) and an RHF,(27° : 1). Applying Theorem 2.2.2 with an
RCQS(3° : 1) from Theorem 2.2.1, an RHF5(9% : 1) and an RH(18%), we get an
RHF,(27° : 1).

Now we need a URCS(3,{4,6},12) of type (1'! : 1) which is constructed as
follows. Let X;, ¢ = 1,2, be two disjoint point sets of size 6. Let B = {{a,b,c,d} :
{a,0} € Fj {c,d} € F},0<j <4} U{X;:i=1,2}, where {F}:0<j <4} isa
one-factorization of the complete graph on X;, ¢« = 1,2. Then B is the block set of
a URCS(3,{4,6},12) of type (1! : 1) on X; U X, with any point as a stem. Here,
B has a resolution {Pj;, : 0 < j <4,0 <k <2}U{Q}, where P;;, = {{a,b,c,d} :
{a,b} is the mth member of F}, {c,d} is the (m + k)th member of F?,1 < m <
3}and Q = {X,; :i=1,2}.

Applying Theorem 2.2.2 with the above URCS(3, {4,6},12), an RHF,(27%~1 :
1) and an RH(54%) for k € {4,6}, we get an RHF,(27'! : 1). Applying Theorem
2.2.3 with an RH(2%), we get an RH(22%). Here, the input RH(54°) can be ob-
tained from an RH(6°) in Lemma 2.4.2 by applying the Weighting Construction
with m = 9. O

Combining Lemmas 2.4.1 and 2.4.3, we obtain

Theorem 2.4.4. The necessary conditions n = 2 or 4 (mod 6) and n > 4 for

the existence of an RH(2") are also sufficient.

As a consequence of Theorem 2.4.4, we have the following corollary by the

Group Halving Construction.

Corollary 2.4.5. The necessary condition v = 4 or 8 (mod 12) for the existence
of an RSQS(v) is also sufficient.

Note that the proof of Corollary 2.4.5 is independent of the existence of
RSQSs but individual designs of small orders. Hence, we provide an alternative
existence proof for resolvable SQS(v)s. The existence problem for such designs
is a challenging one in combinatorial designs theory. A complete solution was
obtained by a joint effort of Hartman [31, 33] and Ji and Zhu [13] over twenty
years long. This new proof is beneficial not only from the tripling constructions,

but also from the Group Halving Construction developed in Section 2.2.
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Secondly, we establish the necessary and sufficient conditions for the exis-
tence of resolvable H-designs of group sizes 6 and 3. The following construction
for resolvable H-designs is similar as but much stronger than the Product Con-

struction in Theorem 2.2.4.

Lemma 2.4.6. Suppose that there exist both an RH(g*") and an RH(g*"). Then
there exists an RH(g*"!).

Proof. Let (X, G, B) be the given RH(g**), where G = {Gy, ..., Gay 1}. Let F =
{Fi,...,F5 1} be a one-factorization of the complete graph on Zs,. Applying
Lemma 2.1.1, we construct an RH((tg)?*) on X' = X x Z; with the group set
G ={G, =G, xZ : 0 <i<2u—1} and a resolution of the block set A,
Py | Py |-+ | P, where s = (2u — 1)(2u — 2)(tg)?/6.

Since an RH(g?") exists, gt is even. For each i, 0 < i < 2u — 1, let F' =
{Fi, ..., F;(t_l)} be a one-factorization of the complete multiple-graph on G; x Z;
with ¢ parts {G; x {l} : 1 € Z;}. For any {a,b} € F* and {c,d} € FY, construct
a block {a,b,c,d}, where 1 <m < g(t—1) and {x,y} € F,, with 2 <n <2u—1.
Denote the set of all these blocks by A’. Here, for any fixed r, 0 < r <tg/2 —1,
the blocks {a,b,c,d} with {a,b} being the k-th edge of FZ, {c,d} being the
(k +7)-th edge of F}% with 1 < k < tg/2 form a partition of the set G}, U G,
Hence, for each {z,y} € F),, we can obtain g(t — 1) - tg/2 parts each of which
partitions G, U G In total, we can get (2u —2) - g(t — 1) - tg/2 parallel classes.

For 1 < k < u, let the k-th edge of F} be {x,y}. Construct an RH(g*) on
G, U G, with group set {G, x {l},G, x {l} : | € Z;}. Denote its block set by
Ck, which can be partitioned into parallel classes Q(k, 1),...,Q(k, (2t — 1)(2t —
2)g%/6). Let C = Uj<p<uCr. Here, for each fixed j, 1 < j < (2t — 1)(2t — 2)g?/6,
Ur<k<u@(k, j) forms a parallel class.

Let " = {G; x {I} : 0 < i < 2u-—1,1l € Z}, it is easy to check that
(X', 6", AU A UC) is an H(¢**). By the construction, the number of parallel
classes is (2u—1)(2u—2)(tg)*/6+ (2u—2)-g(t—1)-tg/2+ (2t —1)(2t — 2)g*/6 =
(2ut — 1)(2ut — 2)g*/6. Hence, the resultant H-design is resolvable. O

Theorem 2.4.7. There exists an RH(6") for each n =0 (mod 2) and n > 2.
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Proof. For each n = 2 or 4 (mod 6) and n > 4, there exists an RH(6™) by the
Weighting Construction with an RH(2") from Theorem 2.4.4 and m = 3.

For n = 6, there exists an RH(6°) from Lemma 2.4.2. For each n = 6h and
h > 2, the proof proceeds by induction. Assume that for each n’ = 0 (mod 6)
and n' < n, there exists an RH(6™). Thus there exists an RH(6*) for each
k=0 (mod 2) and k < n. By Lemma 2.4.6, an RH(6") exists since there exists
an RH(6%) and an RH(6%"). O

As a corollary of Theorem 2.4.7, we have the following result by the Group

Halving Construction.

Theorem 2.4.8. The necessary conditions n = 0 (mod 4) and n > 4 for the

existence of an RH(3"™) are also sufficient.

Thirdly, we completely determine the existence of resolvable G-designs.

A G-design of order v with block sizes from K, denoted by G(t, K,v), is a
triple (X, G, A) that satisfies the following properties:

(1) X is a set of v elements;
(3) G ={G1,Gs, ...} is a set of nonempty subsets of X, which partition X;
(4) A is a family of subsets of X, each of cardinality from K;

(5) every t-subset T' of X with |T"N G;| < t, for all i, is contained in a unique

block, and no t-subset of G;, for any i, is contained in any block.

The type of the G(t, K, v) is defined as the list (|G||G € G). In this chapter,
we denote a G(3,{4},v) of type ¢" by G(g") for short. Recently, Zhuralev et
al. [09] investigated the existence of such designs (called group divisible Steiner
quadruple systems as in [09]). A table was provided that includes existence results
when the number of points is not more than 24. They also proved the following

theorem in [69].
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Theorem 2.4.9. There exists a G(g") if and only if g =1 and n =2 or 4 (mod
6), or g is even and g(n —1)(n —2) =0 (mod 3).

A G(g") is said to be resolvable, denoted by RG(g"), if its block set can
be partitioned into parallel classes. It is clear that the necessary conditions for

the existence of an RG(g") are ¢ = 1 and n = 4 or 8 (mod 12), or g is even,
gn =0 (mod 4) and g(n — 1)(n —2) =0 (mod 3).

Lemma 2.4.10. If there exists an RH(g*) with g even, then there exist both an
RG((29)!) and an RG(g*).

Proof. Let (X,G,B) be the given RH(¢g*), where G = {Go,...,Go_1}. Let
F ={Fi,..., Fy 1} be a one-factorization of the complete graph on Zy,.

For 0 <i <2t —1,let 7' = {F{,...,F, |} be a one-factorization of the
complete graph on G;. Let Fj = {f(0),..., fi(g/2—1)}. Forall 1 <n <2t -2,
1<j<g—1,0<k<g/2—1,itis easy to see that

{ffOVf(I+k):0<1<g/2—1{z,y} € Fn}

is a partition of X. Denote the set of all these blocks by A.

Then it is easy to check that (X,G’, AU B) is an RG((2¢)") with group set
G ={G, UG, : {z,y} € Fy_1}.

Furthermore, if we adjoin the parallel classes formed by {f7(1) U f/(I + k) :
0<1<g/2—1,{z,y} € F,} into the RG((2¢)"), wheren =2t—1,1 < j < g—1,
0 <k <g/2—1, then we obtain an RG(g*) with group set G. O

Lemma 2.4.11. If there exists an RG(g"), then there exists an RG((2mg)") for

any positive integer m.

Proof. Let (X, G, B) be the given RG(¢") with G = {G4,Gs,...,G,} and a reso-
lution of B, P;, 1 <i <r, where r = ((gn — 1)(gn —2) — (9 — 1)(g — 2))/6. Let
X' = X X Zyy, and G, = G X Zop, 1 < k < n. We will construct an RG((2mg)")
on X’ with group set G’ = {G}, : 1 < k <n}.

For each block B € B, construct an RH((2m)?) on B x Zs,, with group set
{x X Zs,, - © € B} and block set Ap having resolution classes Pg(j), 1 < j <
(2m)2.
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Let I' be a multi-partite complete graph on the vertex set X with partite
set G. Denote its edge set by E. Then F is the block set of a GDD(2,2, gn)
of type g" on X with group set G. Since an RG(g") exists, gn is even. There
exists a resolvable GDD(2,2, gn) of type ¢" by [l1], i.e., E has a resolution
{Qi:1<i<g(n—1)}on X.

For each x € X, let F* = {FY¥,...,F5 _,} be a one-factorization of the
complete graph on x X Zy,,. For each edge {z,y} € F, let

Eay = {{a.b,c,d} : {a,b} € Ff {c,d} € FY,1 <k <2m —1}.

Then C = (Upes An) U(Uys yyer Eapy) is the block set of the required G((2mg)™).

We need to give its required resolution classes.

For each P;, 1 <14 <r, P}; = Ugcp, Pn(j) is a parallel class of X', where
1 <j<(2m)2

For each Q;, 1 <1 < g(n— 1), and for each pair of k,l with 1 <k <2m —1
and 0 <[ <m—1,

Qi = U {{a,b,c,d} : where {a,b} is the jth member of F} and
{x,y}GQi
{c,d} is the (j + [)th member of FY/,1 < j < m}

is a parallel class of X'.

Thus we obtain an RG((2mg)"). O

Theorem 2.4.12. The necessary conditions g =1 andn =4 or 8 (mod 12), or
g is even, gn =0 (mod 4) and g(n —1)(n—2) =0 (mod 3) for the existence of
an RG(g™) are also sufficient.

Proof. According to the necessary conditions for the existence of an RG(¢"), we

partition the parameters into seven classes as follows:
(1) g=1and n=4,8 (mod 12),
(2) g =2 (mod 12) and n = 2,4 (mod 6),

(3) g =4 (mod 12) and n = 1,2 (mod 3),
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(4) g =6 (mod 12) and n =0 (mod 2),
(5) g =8 (mod 12) and n = 1,2 (mod 3),
(6) g =10 (mod 12) and n = 2,4 (mod 6),
(7) g =0 (mod 12) and n € N.

For Case (1), an RG(1") is actually an RSQS(n), whose existence has been solved
completely [33, 13]. For Cases (2), (4) and (6), an RG(¢g") can be obtained
by applying Lemma 2.4.10 with an RH(¢"). For Cases (3), (5) and (7), we
continue to partition them into two subcases (A) g = 4,20, 12 (mod 24) and (B)
g =16,8,0 (mod 24). For Subcase (A), an RG(¢") can be obtained by applying
Lemma 2.4.10 with an RH((g/2)?"). For Subcase (B), the existence of an RG(g")
can be obtained by applying Lemma 2.4.11 with an RG(4") or an RG(12"). O

Finally, we give two applications of the existence result of resolvable G-

designs.

A packing quadruple system (covering quadruple system, respectively) of or-
der v, denoted by PQS(v) ( CQS(v)) is a pair (X, B), where X is a set of car-
dinality n and B is a set of 4-subsets of X such that every 3-subset of X is
contained in at most one (at least one) block of B. Note that we use a bold black
letter “C” in the notation “CQS” to distinguish it from the one of candelabra
quadruple system.

A PQS(v) (CQS(v)) (X, B) is called mazimal (minimal), denoted by MPQS(v)
(MCQS(v)), if there does not exist any PQS(v) (CQS(v)) (X,.A) with |A| > |B]
(JA] < |B|). We denote by p(v) (c(v)) the number of blocks in an MPQS(v)
(MCQS(v)).

The Johnson bound [44] j(v) for the packing numbers is given by
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Here, |x| denotes the largest integer not greater than x.

When v = 2,4 (mod 6), Hanani [23] showed that p(v) = j(v) by con-
structing an SQS(v). Deleting a point and all blocks containing it from an
SQS(v+1) yields that p(v) = j(v) for v = 1,3 (mod 6). Brouwer [9] showed that
p(v) = j(v) for all v = 0 (mod 6). Recently, Ji [10] showed that the last packing
number for v =5 (mod 6) is equal to Johnson bound with 21 undecided values
v="0k+5 ke {m:misodd,3<m <35 m#£17,21}U{45,47,75,77,79,159}.

The Schonheim bound [51] s(v) for the covering numbers is given by

v—1 v—2

(v) 2 s(v) = [ [—5=[5111.

Here, [x]| denotes the smallest integer not less than z.

Mills [55] has shown that c¢(v) = s(v) for all v # 7 (mod 12). Kalbfleisch
and Stanton [15] and Swift [66] have noted that ¢(7) = s(7) + 1. Mills [50]
has also proved that ¢(499) = s(499). Hartman et al. [35] have shown that
c(v) = s(v) for all v > 52423. Recently, Ji [11] proved that c¢(v) = s(v) for
all v = 7 (mod 12) with an exception v = 7 and possible exceptions of v =
12k+7,k€{1,2,3,4,5,7,8,9,10, 11,12, 16, 21, 23, 25, 29}.

A PQS(v) (CQS(v)) is called resolvable, denoted by RPQS(v) (RCQS(v)),

if its block set can be partitioned into parallel classes.

An RPQS(v) (RCQS(v)) (X, B) is called maximal (minimal), denoted by
MRPQS(v) (MRCQS(v)), if there does not exist any RPQS(v) (RCQS(v)) (X, .A)
with |A| > |B| (|A| < |B|). It is easy to see that the necessary condition for the
existence of an MRPQS(v) (MRCQS(v)) is v = 0 (mod 4).

Maximal resolvable packings and minimal resolvable coverings with strength
t = 2 are fundamental problems in combinatorial designs theory (see, for exam-
ples, [18, 49]). Tt is nature and interesting to consider the corresponding problems
for strength ¢ = 3. For the existence of MRPQS(v) and MRCQS(v), we need
only to consider the case v = 0 (mod 12), since an RSQS(v) is simply both
an MRPQS(v) and an MRCQS(v). Now, we focus on the investigation of the
existence of MRPQS(v) and MRCQS(v) with v = 12¢ for all ¢ > 1. Denote by
p'(v) (¢ (v)) the number of blocks in an MRPQS(v) (MRCQS(v)). Since v = 12t,
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it is easy to check that p'(v) < 3t(24t> — 6t — 1) and ¢/(v) > 3t(24t* — 6t + 1).
In the sequel, when we talk about an MRPQS(v) (MRCQS(v)) we will mean
the RPQS(v) (RCQS(v)) with the number of blocks meeting the previous upper
(lower) bound for p'(v) ((v)).

Lemma 2.4.13. There exist both an MRPQS(12) and an MRCQS(12).

Proof. 1t is easy to check that p/(12) < 51 and /(12) > 57.

Let X = Zg x Zy with two subsets A = Zg x {0} and B = Zg x {1}. It is
casy to check that Fy = {{0,1},{2,4},{3,5}}, I, = {{4,5},{0,2},{1,3}}, F5s =
{{0,3},{2,5}, {1,4}}, Fiu = {{2,3},{0,4}, {1, 5} } and F5 = {{0,5}, {1, 2}, {3,4}}
form a one-factorization of the complete graph on Zg. Let ffk ={(z,7), (y,7)},
where {x,y} is the k-th member of F;,;1 < k <3,1<i<5and j€ Zy. Then
{F/ = {fljk :1 <k <3}:1<i <5} is a one-factorization of the complete
graph on Zg x {j} for each j € Zy. We will construct an MRCQS(12) and an
MRPQS(12) on X as follows.

For MRPQS(12), {f U fliy 1 1 <k <3} with (4,1) € ({2,3,4,5} X Z5) U
({1} x (Zs5 \ {0})) are the first 14 parallel classes. Next, {f7, U fP, ., fi, U
flise flors U flops) for s € Zs are the last 3 parallel classes. It is clear that all
the blocks in these 17 parallel classes form an MRPQS(12).

For MRCQS(12), {f2, U fley 1 < k < 3} with (i,1) € ({3,5} x Z3) U
({1,2,4} x (Z5\ {0})) are the first 12 parallel classes. Next, {f}; U f} : i =
1,2,4} and {1 U fl1 fia U fiaen Fivgw U fiagp} for i € {1,2,4} and (1) €
{(1,2),(2,1)} are the last 7 parallel classes. It is clear that all the blocks in these
19 parallel classes form an MRCQS(12). O

Now, we give a complete solution to the existence problem of MRPQSs and
MRCQSs as follows.

Theorem 2.4.14. An MRPQS(v) (MRCQS(v)) with the number of blocks meet-
ing the upper (lower) bound exists if and only if v =0 (mod 4).

Proof. Start from an RG(12") based on X with |X| = 12¢. It is easy to check that
an RG(12") contains 18t(4t + 3)(t — 1) blocks. Adjoining these 18¢(4t + 3)(t — 1)
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blocks with ¢ disjoint MRPQS(12)s based on the ¢ different groups of the RG(12¢),
we obtain 3t(24t?—6t—1) blocks which cover the triples of X at most once. Hence,
we have an MRPQS(12t). Similarly, we can obtain an MRCQS(12t). ]

An S(t, K,v) (X, B) is said to be resolvable, denoted by RS(t, K,v), if the
block set B can be partitioned into parallel classes. A parallel class is uniform if
all blocks in the parallel class have the same size. A uniformly resolvable Steiner
system, URS(t, K, R, v), is an RS(t, K,v) such that all the blocks in each parallel
class have the same size, where R is a multiset with |R| = |K| and for each k € K
there corresponds a positive r, € R such that there are exactly r; parallel classes

of size k.

When ¢t = 2, much work has been done on uniformly resolvable pairwise
balanced designs, see [I]. However, for ¢ > 2, not much is known for uniformly
resolvable t-wise balanced design. For each v = 4,8 (mod 12), an RSQS(v) is
actually a URS(3, {4, k}, {r4, 7}, v) with r, = 0 for any k # 4. So it is interesting
to investigate the existence of a URS(3, {4, k}, {74, 7}, v) with 7, > 0, where the
smallest nontrivial case is k = 3. First, we give the necessary conditions for the
existence of a URS(3,{3,4}, {rs,rs},v).

Lemma 2.4.15. If there exists a URS(3,{3,4},{rs,rs4},v) with r5 > 0, then
v =0 (mod 12) and r3 =1 (mod 3).

Proof. If there exists a URS(3,{3,4}, {rs,74},v), then v = 0 (mod 12) since v
must be divided by both 3 and 4. Let v = 12k, £ > 1. Since there are r3 parallel

classes of size 3,

_(1§k)_(12k/3)><7“3><(§)_72k2—18k+1—r3
A O Y e R 3 |

Since r4 is an integer, we have r3 =1 (mod 3). O

Lemma 2.4.16. For each positive integer n, there does not exist a URS(3,{3,4},
{rs,r4},12n) with r3 = 1.
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Proof. Suppose that there exists a URS(3, {3,4}, {rs, 74}, 12n) with r3 = 1. Re-
garding each block in the parallel class of size 3 as a group, we get an RG(3""),
which leads to a contradiction by Theorem 2.4.12. O]

Lemma 2.4.17. There exists a URS(3,{3,4},{rs,rs},12) with rs =4 and ry =
17.

Proof. We will construct a URS(3,{3,4}, {rs,r4},12) with 73 = 4 on X =
{a,b,c} x Zy x Z,. For convenience, we write xij for the ordered triple (z,1,7) €

X. Arrange the points of X in the following array.

a00 al0 a0l «all
b00 510 b01 b1l
c00 10 c0l cl1

Take the four parallel classes with blocks of size three below:

Ty = {{aij, bij,cij} i € Zy,j € Zo},
Ty = {{aij,bij,c(i +1)j} i € Zo,j € Zy},
Ty = {{aij, b(i + 1), cij} i € Zo,j € 2o},
Ty = {{aij,b(i + 1)j,c(i + 1)j} s i € Zy,j € Zs}.
Let F;, 1 =1,2,...,5 be a one-factorization of the complete graph on the vertex

set {a,b,c} x Zy and ff be the jth member of F;. Without loss of generality, we
may assume Fy = {{a0, al}, {00,b1}, {c0,cl}}.

The first five parallel classes with blocks of size four are given below:

Q1 = {{a0yj,aly,b0j,b15} : j € Zy} U {{c00, 10, c01, c11}},
Q> = {{a0j,alj,c0j,clj} : j € Zy} U{{b00,b10,5601,b11}},
Qs = {{b0j,b14,c07,clj} : j € Zy} U {{a00,al0,a01,all}},
Q4 = {{a00, a10, 01,511}, {600, b10, c01, c11}, {00, ¢10,a01, all}},
Qs = {{a00, al0, c01, c11}, {600, 510, a01, all}, {c00, c10,b01,b11}}.

The remaining twelve parallel classes with blocks of size four P, with ¢ =

2,3,4,5 and m = 0, 1,2 are obtained as follows:

Pom = { L7 % {0}, 1™ x (1)} 11 < j < 3).
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Then (U1§i§4ﬂ) U(UlgiSSQi) U(UQSiSS,OSmSQPi,m> is the block set of a URS(B,
{3,4},{rs,rs},12) with r3 = 4 and r4 = 17. O

Theorem 2.4.18. There exits a URS(3,{3,4},{rs,ra},v) with r3 = 4 if and
only if v =10 (mod 12).

Proof. For each v = 12¢, start from an RG(12") on X with group set G and
block set B. For each group G € G, construct a URS(3,{3,4}, {rs, r4},12) with
rs = 4 on G with block set Bg. Then B U (UgegBg) is the block set of a
URS(3,{3,4},{r3, 74}, v) with r3 = 4. O

2.5 Resolvable H-designs with Group Size 12

As in Section 2.3, we first give our second tripling construction for resolvable
H-designs with groups size 12 by constructing resolvable Bjs-pairings. Combin-
ing this tripling construction together with the Product Construction and the
existence result of resolvable H-designs and resolvable G-designs stated in Sec-
tions 2.3 and 2.4, we give a near complete solution to the existence problem of
resolvable H-designs with group size 12. Finally, a main result of this chapter is

given to close this section.

Lemma 2.5.1. There ezists an RBy2(n, s).

Proof. When n = 0, we take D = Zj9,119s and R; = S; = R; = (0. When
n > 0,s > 0, the desired RBj2(n, s) is constructed directly as follows:

(1) For s odd and n even, let

D={(n+s)j:0<j<11}U{(n+s)i+j:0<i<11,n/2+1<j<n/2+4s—1},

PRo={{j,—j}:1<j<n/2orb5n+s)+1<j<5n+s)+n/2orn+s+1<j<
n+s+n/2orn+s+n/2+s<j<2n+s)—1},

PRy = {{j,—j} :2(n+s)+1 < j<2n+s)+n/2or2(n+s)+n/2+s<j<
3n+s)—lord(n+s)+1<j<4(n+s)+n/2ord(n+s)+n/2+s<j<5n+s)—1},

PRy = {{j,—j} :3(n+s)+1<j<3n+s)+n/2or3n+s)+n/2+s<j<
dn+s)—lorn/2+s<j<n+s—lorbn+s)+n/24+s<j<6(n+s)—1}.

PAy={{j,7(n+s) =j}: 1 <j<n/2yU{{5(n+s)+7j,2(n+s) —j}: 1 <j<n/2},
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PA ={{2(n+s)+75(n+s)—j}:1<j<n/2}U{{dn+s)+4,3n+s)—j}:1<
J<n/2},
PAy = {{3(n+s)+j,4(n+s)—j}: 1 <j<n/2}U{{n+s—7,8(n+s)+j:1<j<n/2}}.

(2) For s even and n odd,

(2.1) n>

(22) n=

3, let

D={(n+s)j:0<j<11}U{(n+s)i+j:0<i<11,1<j<(s—2)/20orn+
s—(s=2)/2<j<n+s—-1}U{(n+s)i+(s—2)/2+1,(n+s)i' —(s—2)/2—1:
i=0,1,2,6,7,8,i' =4,5,6,10,11, 12},

PRy ={{j,—j} :s/24+1<j<n+s/2o0r3(n+s)+s/2 < j<3(n+s)+n+s/2—1},
PRy ={{j,—j}:n+s+s/2+1<j<n+s+n+s/2orbn+s)+s/2<j<
5(n+s)+n+s/2—1},

PRy ={{j,—j}:2(n+s)+s/24+1<j<2(n+s)+n+s/2ord(n+s)+s/2<
j<4(n+s)+n+s/2—1}.
PAy={{s/2+j,n+s/2—35}:1<j<(n—-1)/2}U{{3(n+s)+s/2—1+79(n+
s)—s/2—4}:1<j<(n—=-1)/2 U{{n+s/2,3(n+s)+n+s/2 —2}},

PA ={{(n+s)+s/2+45n+s)+n+s/2—3j}:1<j<n},

PA; ={{2(n+s)+s/24+j,4n+s)+n+s/2—j}:1<j<n}

1, let

D = Zyageen) \{£((n+ )i +5/2+1) : 0 < i < 5},
PRy ={{s/2+ 1,11(s + 1) +s/2},{s+ 1+ s/2+ 1,10(s + 1) + s/2}},

PR ={{2(s+1)+s/2+1,9(s+ 1)+ s/2},{3(s + 1+ s/2+1,8(s+ 1) + s/2}},
PRy ={{4(s+1)+s/24+1,7(s+ 1) +s/2},{B(s+ 1) +s/2+1,6(s + 1) + s/2}}.
PAo={{s/2+1,10(s+ 1) + s/2}},

PA ={{2(s+1)+s/2+1,8(s+ 1) + s/2}},

PAy ={{4(s+1)+s/2+1,6(s+ 1)+ s/2}}.

(3) For s even and n even,

(3.1) n>

4, let
D={(n+s)j:0<j<11}U{(n+s)i+j:0<i<1l,n/24+1<j<n/2+s—1},
PRo={{j,—j}:1<j<n/2orn/24+s<j<n+s—lor2n+s)+1<j<
2(n+s)+n/2or2(n+s)+n/24+s<j<3(n+s)—1}

PRy = {{j,—j} :n+s+1<j<n+s+n/2orn+s+n/2+s<j<
2(n+s)—1or5(n+s)+1 < j < 5(n+s)+n/2or5(n+s)+n/2+s < j < 6(n+s)—1},
PRy = {{j,—j}:3(n+s)+1<j7<3n+s)+n/2or3(n+s)+n/2+s<j<
4(n+s)—1lor4(n+s)+1 < j < 4(n+s)+n/2or 4(n+s)+n/2+s < j < 5(n+s)—1}.
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(3.2) s>

(3.3) For

PAy = {{j,12(n+s)—1—5}:1<j<n/2-1}U{{2(n+s)+4,10(n+s)—1—j}:
1<ji<n/2-1}U{{n/2,11(n+s)+n/2—1},{2(n+s)+n/2,9(n+s)+n/2—1}},
PA ={{(n+s)+411(n+s)—1—3}:1<5j<n/2-1}U{{B(n+s)+j,7(n+
s)—1—34}:1<j<n/2-1}U{{(n+s)+n/2,10(n+s) +n/2 —1},{5(n+s)+
n/2,6(n+s)+n/2—1}},

PA; ={{3(n+9)+59n+s)—1—4}:1<j<n/2-1}U{{d(n+s)+j,8(n+
$)—1—35}1:1<i<n/2-1}U{{3(n+s)+n/2,8(n+s)+n/2—-1},{4(n+s)+
n/2,7(n+s)+n/2—1}}.

2 even and n = 2, let
D={(2+8)i+j:0<i<20r9<i<11,0<j<s+1}U{(2+s)i+j:3<i<
8,0<j<s/2—2o0rj=s/2+1ors/2+4<j<s+1},

PRo={{j,—j} :3(s+2) +5/2—1<j<3(s+2)+s/20r3(s+2)+5/2+2<
J<3(s+2)+s/243},

PRy = {{j,—j} 1 A(s+2) +5/2—1<j<4d(s+2)+s/20rd(s +2) +5/2+2<
J<A(s+2)+s/2+3},

PRy ={{j,—j} :5(s+2)+5/2—1<j <5(s+2)+s/20r5(s+2)+5/2+2<
J<5(s+2)+s/2+3}.

PAy = {{3(s+2)+s/2—1,3(s+2)+s/24+2},{3(s+2) +5/2,9(s +2) — s/2 — 3}},
PA; = {{4(s+2)+5/2—1,8(s+2)—s/2—2},{4(s+2) +5/2+2,8(s+2) —s/2—3}},
PAy = {{5(s+2)+5/2,7(s+2) —s/2+1},{5(s+2)+s/2+2,5(s+2)+s/2+3}}.
s=2and n =2, let
D={4i+j:0<i<20r9<i<11,0<j<3}uU{24}\ {36},

PRo = {{12,34}, {13,36}, {14, 35}, {15, 33} },

PRy = {{16,30},{17,32},{18,31},{19,29} },

PR, = {{20,26}, {21, 28}, {22, 27}, {23,25}}.

PAy = {{13,36}, {14, 35}},

PA; = {{17,32},{18,31}},

PAy = {{21,28},{22,27}}.

(4) For s odd and n odd,

(4.1) s >

3 odd and n > 5 odd, let

D={n+9)j,(n+s)j+(n+s)/2:0<;5;<11}U{(n+s)i+j:0<i<11,1<
j<(s—3)/2orn+s—(s—3)/2<j<n+s—1}U{(n+s)i+(s—3)/2+1,(n+
$)i' —(s—3)/2—1:i=0,1,2,6,7,8,i =4,5,6,10,11, 12},

PRy = ({3}t (s —9)/2+2<j < (nts)/2—Lor(nts)241<j<
n+s—(s—3)/2—1lor3(n+s)+(s—3)/2+1<j<3(n+s)+(n+s)/2—1or 3(n+
s)+(n+s)/24+1<j<4(n+s)—(s—3)/2—2},
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(4.2) s

(4.3) s

PRy ={{j,—j} :n+s+(s—3)/24+2<j<n+s+(n+s)/2—1lorn+s+
(n+s)/2+41<j<2n+s)—(s—3)/2—1orb(n+s)+(s—3)/2+1<5<
5(n+s)+(n+s)/2—1orbn+s)+(n+s)/24+41<j<6(n+s)—(s—3)/2—2},
PRy ={{j,—j}:2(n+s)+(s—3)/2+2<j<2(n+s)+(n+s)/2—1or2(n+
)+ (n+s8)/2+1<j<3(n+s)—(s—3)/2—1ord(n+s)+(s—3)/2+1<j<
dn+s)+(n+s)/2—1ord(n+s)+(n+s)/24+1<j<5n+s)—(s—3)/2—2}.
PAyo={{(s=3)/2+1+412(n+s)—(s—3)/2—-2—34}:1<j<(n—3)/2}U
{{8n+s)+(s=3)/2+5,9(n+s)—(s=3)/2-1—-j}: 1 <j< (n-1)/2tUu{{(n+
$)/2—1,12(n+s)— (n+s)/2—2},{3(n+s)+(n+s)/2—1,9(n+s)— (n+s)/2—2}},
PAy ={{(n+s)+(s—3)/24+1+j,11(n+s)—(s=3)/2—2—35}:1 < j < (n—3)/2}U
{{6(n+s)+(s—3)/2+j,7(n+s)—(s—3)/2—1—j} : 1 < j < (n—1)/2}U{{(n+s)+
(n+s)/2—1,11(n+s)—(n+s)/2—2}, {5(n+s)+(n+s)/2—1, 7(n+s)—(n+s) /2—2} },
PAy = {{2(n+ )+ (s —3)/2+1+5,10(n+s) — (s—3)/2—2—j}: 1 < j <
(n—=3)/2tu{{d(n+s)+(s—3)/2+48n+s)—(s—3)/2-1—-4}:1<j<
(n—=1)/23u{{2(n+s)+ (n+s)/2—1,10(n+s) — (n+s)/2—2},{d(n+s)+ (n+
s)/2—-1,8(n+s) — (n+s)/2—2}}.

land n =1 (mod 4) and n > 5, let

D={(n+1)i:0<i<11},
PRo={{j,—j—-1}:1<j<(n+1)/2—-1or(n+1)+1<ji<(n+1)+(n+
/2~ 13U}t D/2 41 <5 <mor(nt )t (nt1)/241< ;<
2(n+1)-1}u{{(n+1)/2,12(n+1) - 1},{(n+ 1)+ (n+1)/2,11(n + 1) — 1}},
PRi={{j,—j—-1}:2n+1)+1<j<2(n+1)+(n+1)/2—1ord(n+1)+1<
<A+ D)+ (12— 1FU L~} 20+ D+ (- 1)/241< 5 <3(n+1) -
lord(n+1)+(n+1)/2+1<j<5(n+1)—1}U{{2n+1)+ (n+1)/2,10(n +
1)—1}hL{4n+1)+ (n+1)/2,8(n+ 1) — 1}},
PRy={{j,—j—1}:3(n+1)+1<j<3(n+1)+(m+1)/2—Lor5n+1)+1<
J<5(n+1)+n+1)/2-1}U{{j,—5}:3n+ 1)+ (n+1)/2+1<j<4(n+1)-
lorb(n+1)+(n+1)/24+41<5<6(n+1)—-1}U{{8(rn+1)+(n+1)/2,9(n+
1) =1} {n+1)+ (n+1)/2,7(n+ 1) — 1}}.

PAy ={{j,—j—-1}:1<j<(n+1/2—1or(n+1)+1<jij<(n+1)+(n+
/213U~ L)),

PA ={{j,—j—1}: 2+ 1) +1<j<2n+1)+(n+1)/2—1ord(n+1)+1<
j<4n+1)+n+1)/2-11U{{2(n+ 1)+ (n+1/2+1,4(n+ 1)+ (n+1)/2}},
PAy={{j,—j—1}:3(n+1)+1<j<3(n+1)+(n+1)/2—1or5n+1)+1<
<+ +(n+1)/2—13U{{3(n+1)+ (n+1)/2,5(n+1) + (n+1)/2 + 1}}.
1 and n =3 (mod 4) and n > 5, let

D={(n+1)i:0<i<11},

PRy ={{j,—j—1}:2<j < (n+1)/2—1or3(n+1)+2 < j < 3(n+1)+(n+1)/2—
1TU{{j, =4} : (n+1)/241 < j <nor3(n+1)+(n+1)/2+1 <j<4(n+l)—lorj=
1,3(n+1)+1}u{{(n+1)/2,12(n+1) — 2}, {3(n+ 1)+ (n+1)/2,9(n + 1) — 2}},
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(4.4) For

(4.5) For

PR ={{j,—j—1}:(n+1)+2<j<(n+1)+(n+1)/2—Llorbn+1)+2<
J<i(n+1)+(n+1)2-1}U{{j,—j}: (n+1)+(n+1)/24+1<j<2(n+1)—
lorb(n+1)+(n+1)/241<5<6(n+1)-1}U{{(n+1)+(n+1)/2,11(n+
1) -2} {6(n+1)+ (n+1)/2,7(n+ 1) — 2}},

PRy ={{j,—j—1}:2n+1)+2<j<2n+1)+(n+1)/2—1ord(n+1)+2<
j<An+ D)+ m+1)/2-13u{{j,—j}:2(n+ 1)+ (n+1)/24+1<5<3n+1)—
lordn+1)+(n+1)/2+1<5<5n+1)-1}U{{2(n+1)+ (n+1)/2,10(n +
1) -2} {4n+1)+ (n+1)/2,8(n+ 1) — 2}}.
PAo={{j,—j—1}:2<j<(n+1)/2—1or3n+1)+2<j<3(n+1)+(n+
1)/2-1}U{{n—-6+J,n—35}:0<j<1}U{{1,4(n+1)—2}},
PA={{j,—i—-1}:(n+1)+2<j<(n+1)+(n+1)/2—1orbn+1)+2<5<
5(n+1)+(n+1)/2—1}0{{(n+1)+(n+1) /247, 5(n+1)+(n+1)/24+3—5} : 0 < j < 2},
PAy ={{j,—j—1}:2(n+1)+2 < j < 2(n+ 1)+ (n+1)/2—Lor d(n+1)+2 < j <
Adn+1)+(n+1)/2-1}u{{2(n+1)+(n+1)/2+4,4(n+ 1)+ (n+1)/2+3—j}:
0<j<2}h

s >1odd and n = 3, let
D={(n+s)j:0<j<11}U{(n+s)i+j:0<i<11,3<j<stU{(n+s)i+j:
(4,7) € {(0,1),(0,2),(1,1),(1,2),(2,1),(2,2),(9,s+1),(9,s+2), (10,s+ 1), (10, s +
2),(11,s + 1), (11,5 + 2)}},

PRy ={{j,—j}:s+1<j<s+20r3(3+s)+1 < j<3(n+s)+2o0r3(3+s)+s+1 <
J<3(n+s)+s+2},

PR ={{j,—j}  B4+s)+s+1<j<B4+s)+s+2o0rb5B83+s)+1<j5<
5n+s)+2o0rb5B8+s)+s+1<j<5n+s)+s+2}

PRy ={{j,—73} :2B+s)+s+1<j7<2B+s)+s+20r4(3+s)+1<j5<
dn+s)+2o0rd(3+s)+s+1<j<4(n+s)+s+2}.

PAo = {{s+1,3(s+3)+s+2},{s+2,3(s+3)+s+1},{3(s+3)+1,3(s+3) + 2} },
PA  ={{(s+3)+s+1,5(s+3)+s+2}{(s+3)+s+2,5(s+3)+s+1},{5(s+
3)+1,10(s + 3) + 2}},

PA; ={{2(s+3)+s+1,4(s+3)+s+2},{2(s+3)+s+2,4(s+3)+s+ 1}, {4(s+
3)+2,9(s +3) + 1}}.

s=1and n =3, let
D={4i+j:0<i<20r9<:<11,5=0,2} U{24}\ {36},

PRy = {{1,47},{3,45}, {12, 34}, {13, 36}, {14, 35}, {15, 33} },

PRy ={{9,39},{11,37},{16,30}, {17, 32}, {18, 31},{19,29} },

PRy = {{5,43},{7,41},{20, 26}, {21, 28}, {22, 27}, {23, 25} }.

PAo = {{13,36},{14,35}, {3, 12}},

PA, = {{17,32},{18,31}, {11,30}},

PA, = {{21,28},{22,27},{20,23}}.
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rem.

(4.6) For s > 3 odd and n =1, let

D = Zias+y \{£((n+s)i+7): 0<i<2,1 <5 <2},

PRy ={{1,11(s + 1) + s},{2,11(s + 1) + s — 1}},

PRy ={{(s+1)+1,10(s +1) + s},{(s +1) +2,10(s + 1) + s — 1}},
PRy ={{2(s+1)+1,9(s + 1)+ s},{2(s + 1) +2,9(s + 1) + s — 1}}.
PAy = {{1,2}},

PA ={{(s+1)+1,10(s + 1) + s — 1}},

PAy = {{2(s+ 1)+ 1,9(s+ 1) +s—1}}.

(4.7) For s =3 and n =1, let

D = Z4s\{1,2,5,6,9,10, 38,39,42,43, 46,47},
PRy = {{5,6},{10,39}},

PRy = {{42,43},{9,46}},

PRy = {{2,47},{1,38}},

PSy ={{9,46},{2,47}},

PS; = {{5,38},{1,10}},

PSy; = {{6,39},{42,43}},

Ro = {9, 46},
Ry = {38,43},
Rs = {6,47}.

(4.8) For s =1 and n =1, let

D =1{0,1,2,3,4,5,12,19, 20, 21, 22, 23},
PRy = {{6,7},{8,11}},

PRy = {{9,10}, {13,18}},

PRy = {{14,17},{15,16}},

PSo = {{9,16}, {10,15}},

PSy = {{8,15}, {11, 14}},

PS> = {{6,13},{9,18}},

EO = {77 8}7
Ry = {13,14},
R>=1{6,7}. ]

Combining Theorem 2.2.8 and Lemma 2.5.1, we obtain the following theo-

Theorem 2.5.2. Suppose thatn > 0 and s > 1. There exists an RHF5((n+s)? :

s).

When (n,s) € {(1,1),(2,2),(3,1)}, the RHF5((n+s)* : s) exists with a sub-

design RH(12%).
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As a consequence of Theorem 2.5.2, we have our second tripling construction

for resolvable H-designs with group size 12 as follows.

Corollary 2.5.3. (Tripling construction II) Let n > 0 and s > 1. If there
exists an IRH(12" : 12%), then there exist both an IRH(123"7%% : 12") and an
IRH(123"2s . 12%). Furthermore, if there exists an RH(12") or an RH(12?%),
then there exists an RH(123"7%%)  as well as an IRH(123"72% : 12%) when (n,s) &

{(3,1),(5,1),(6,2)}.

Lemma 2.5.4. There exists an RH(12") forn =0,1,2,4,5 (mod 6) and n > 4.

Proof. For eachn =1or 2 (mod 3),n >4 and n ¢ {73,149}, an RH(12") can be
obtained by applying the Weighting Construction with an RH(4™) in Theorem
2.3.12 and m = 3. For each n = 0 (mod 6) and n > 4, an RH(12") can be
obtained by applying the Weighting Construction with an RH(6™) in Theorem
2.4.7 and m = 2.

For the design RH(127), it can be constructed by applying Tripling Con-
struction IT with (n,s) = (25,1). For the design RH(12!4), it can be obtained by
applying Tripling Construction IT with (n, s) = (51,2). Here, the IRH(12°! : 12?)
exists by Tripling Construction IT with (n,s) = (23,9) and the IRH(12%3 : 129)
exists by Tripling Construction IT with (n, s) = (9,2), where an RH(12?) is con-
structed in the Appendix. O

Lemma 2.5.5. There exists an RHF5(3° : 2) and an IRH(12" : 12%) for each
(n,s) € {(13,5),(17,7)}.

Proof. For the existence of an RHF15(3 : 2), start from an RHF4(3? : 2) on X
with group set G, hole set F and block set B. Such a design exists by Lemma 2.3.8.
Let X' =XxZ5, G ={GxZ3:GeGland F ={{GxZ3:Ge F}: F e F}
For each block B € B, construct an RH(3%) on B x Z3 with block set Ap. Then
Upes Ap is the block set of an RHF5(3° : 2) on X’ with group set G’ and hole
set F.

An TRH(12!3 : 12%) and an IRH(12!7 : 127) can be obtained by applying the
Tripling Construction II with (n,s) = (5,1) and (7,2), respectively. O
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Lemma 2.5.6. There exists an IRH(12" : 12°) for all n = 35 (mod 36) and
s€{1,2,4,5,6,7,11,17}.

Proof. For each n = 36m — 1, m > 1, start from an RG(6*™) in Theorem 2.4.12.
Considering each group as a block of size 6 and taking any fixed point as a
stem, we get a URCS(3,{4,6},12m) of type (1'*™~! : 1). Applying Theorem
2.2.2 with an RHF»(3*"! : 2) and an RH(36%) with k¥ € {4,6}, we get an
RHF5(31?™71 : 2). Applying Theorem 2.2.3 with an RH(12%), we get an RH(12")
and an IRH(12" : 125). Here, the input designs RHF5(3*"! : 2) with k € {4,6}
are from Theorem 2.5.2 and Lemma 2.5.5, respectively. The designs with a hole
of sizes 1 or 2 are actually an RH(12"). The designs with a hole of sizes 11 or
17 exist since we input an RHF5(3*7! : 2) with k& € {4,6} respectively when
applying Theorem 2.2.2. The design with a hole size 7 exists since there exists
an IRH(12'7" : 127) by Lemma 2.5.5. The designs with a hole of sizes k = 4 or 6
exist since the input designs RH(36%) exist with a subdesign RH(12F). O

As a corollary of the Tripling Construction II, we obtain

Theorem 2.5.7. If there exists a constant M > 7, such that for any odd integer
n in the range M < n < 3M, there exists an IRH(12" : 125), then for all odd
integer n > M, there exists an IRH(12™ : 129).

Proof. Tt is clear that the existence of an IRH(12" : 12°) implies the existence of
an IRH(12" : 12¢) for all s € {1,2,6}, since there exists an RH(12°) obtained by
the Weighting Construction with an RH(6°). The proof proceeds by induction.
Let n be an odd integer and n > 3M. Assume that for all odd n’ in the range
M < n/ < n, there exists an IRH(12" : 12°). Write n = 3m — 2 - s, where
s = 1,6,2 when n = 1,3,5 (mod 6), respectively. It is simple to check that
m is odd and M < m < n. Then applying Tripling Construction II gives the

conclusion. O

Lemma 2.5.8. For each odd integer n > 5 and n ¢ {15,21,27,33, 39,69, 75, 87,
105,111,129, 147,189, 213,231,243, 321,681}, there exists an RH(12").

Proof. As in Lemma 2.3.10, let L be the poset of pairs (n,s) such that an
IRH(12™ : 12%) is known. We will compute the output of the Tripling Construc-
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tion II, the Doubling Construction and the Product Construction by a computer

programme, which involves the following steps:

Step 1: Initialize L. Let L = {(5,1),(5,2),(7,1),(7,2),(9,1),(9,2), (13,1),
(13,2),(13,5)} U {(n,s) : RH(12" : 12°) in Lemma 2.5.6}. Sort L in ascending

order. Let (n,s) be the smallest pair in L.

Step 2: Check whether (n, s) satisfies the Tripling Construction II’s condi-
tion, i.e., (n,s) € {(3,1),(5,1),(6,2)}. If not, go to Step 3. If yes, update L
by adding pairs (3n — 2s,n), (3n — 2s,4) and (3n — 2s,k) for all k such that
(n,k) € L. Sort the updated L in ascending order, then go to Step 3.

Step 3: Apply the Doubling Construction and the Product Construction.
Update L by adding the pair (2n, k) for all k such that (n,k) € L. For each m
such that (m,1) € L, update L by adding pairs (mn,n), (mn,m) and (mn, k)
for all k£ such that (n,k) or (m,k) € L. Sort the updated L in ascending order.
Let (n, s) be the next smallest pair in the updated L, then go to Step 2.

The programme was run with n < 2000 and s < 64, and produced two

results as follows:

Result 1: For all odd n and 4 < n < 1102, there exists an RH(12") with eigh-
teen possible exceptions n € {15,21,27,33,39,69,75,87,105,111, 129, 147, 189,
213,231,243, 321, 681}.

Result 2: There exists an IRH(12" : 12°) for all odd n in the range 1102 <
n < 3306.

By Theorem 2.5.7, there exists an IRH(12" : 125) for all odd n > 1102.
Hence there exists an RH(12") by Theorem 2.2.3. This completes the proof. [

Lemma 2.5.9. There exists an RH(12") for each n € {189,681}.

Proof. For n = 189, start from an RCQS(3® : 1). Applying Theorem 2.2.2
with an RHF (123 : 9) and an RH(144%), we get an RHF5(36° : 9). Applying
Theorem 2.2.3 with an IRH(12% : 129), we get the desired RH(12'%). Here, the
RHF5(123 : 9) exists by Theorem 2.5.2. The IRH(12% : 12%) can be obtained by
applying the Product Construction with an RH(12°) and an RH(12?).
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For n = 681, start from an RCQS(17 : 1). Applying Theorem 2.2.2 with an
RHF5(97% : 2) from Theorem 2.5.2 and an RH((12x97)*), we get an RHF 5(977 :
2). Applying Theorem 2.2.3 with an RH(12%), we get an RH(12%1). O

Combining Lemmas 2.5.4, 2.5.8 and 2.5.9, we obtain the main result in this

section.

Theorem 2.5.10. The necessary conditions for the ezistence of RH(12™) are suf-
ficient except possibly with n € {15,21,27,33,39,69,75,87,105,111, 129, 147, 213,
231,243, 321}.

Combining Theorems 1.1.2, 2.3.12, 2.4.4, 2.4.7, 2.4.8 and 2.5.10, we have
the general existence result of resolvable H-designs as follows, which is the main

result of this chapter.

Theorem 2.5.11. The necessary conditions gn =0 (mod 4), g(n—1)(n—2) =
0 (mod 3) and n > 4 for the existence of a resolvable H-design of type g™ are
sufficient for each g = 1,2,3,5,6,7,9,10,11 (mod 12), are sufficient for each
g =4,8 (mod 12) with two possible exceptions n = 73,149, and are sufficient for
each g =0 ( mod 12) with sizteen possible exceptionsn € {15,21,27,33,39,69, 75,
87,105,111, 129, 147, 213, 231, 243, 321}.






Chapter 3

A New Existence Proof for Steiner Quadruple

Systems

The purpose of this chapter is to provide an alternative existence proof for Steiner
quadruple systems via H-designs of type 2". However, the existing proof for
the existence of H(2"), which is the main context of Mills’ paper in 1990, is
based on the existence result of Steiner quadruple systems. In this chapter, by
using the theory of candelabra systems and H-frames, we give a new existence
proof for H-designs of type 2" independent of the existence result of Steiner
quadruple systems. As an application of this approach, several new infinite classes

of nonuniform H-designs of types 2"u! with u = 4,6, 8 are also constructed.

3.1 Introduction

The necessary conditions for the existence of an SQS(v) are that v =
2,4 (mod 6) or v = 1. When v < 4, the systems have no blocks, and when
v =4, it has one block. The smallest interesting system, SQS(8), was known to
Kirkman [18] in 1847. The unique (up to isomorphism) SQS(10) was attributed
to Barrau [1] as early as 1908 and to Richard Wilson in [12]. Several infinite fam-
ilies of quadruple systems were constructed by Kirkman [18] and by Carmichael
[11]. The first complete proof for the existence of SQS(v) was given by Hanani
[23] in 1960.

Theorem 3.1.1. There ezists an SQS(v) for all v =2,4 (mod 6).

This result is proved by induction using six recursive constructions together
with explicit constructions of an SQS(14) and an SQS(38). Hanani also gave a

more sophisticated proof of the existence theorem for SQS(v) in [25], which relies
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on the construction of 3-wise balanced designs and 3-analogs of group divisible
designs. Apart from Hanani’s two proofs, Hartman [31, 32, 3] and Lenz [51] used
the existence of candelabra quadruple systems of type (¢° : s) with s € {1,2,4,8}
to give a purely tripling existence proof, which used only one type of construction
and a small number of initial designs: SQS(v) with v € {8, 10, 14} and HQS(v : 8)
with v € {26, 28, 32,34, 38,40}.

It is easy to see that the existence of an H(2") implies that of an SQS(2n)
by combining every two groups of the H(2") to form a quadruple as a new block.
However, the existing proof for the existence of H(2"), which is the main con-
text of Mills’ paper [77], is based on the existence result of Steiner quadruple
systems. The purpose of this chapter is to provide an alternative existence proof
for Steiner quadruple systems via H-designs of type 2". By using the theory of
candelabra systems and H-frames, we give a new existence proof for H-designs of
type 2" independent of the existence result of Steiner quadruple systems. As an
application of this approach, several new infinite classes of nonuniform H-designs

of types 2"u! with u = 4,6, 8 are also constructed.

3.2 Recursive Constructions

In this section, we shall describe several recursive constructions for H-designs
from candelabra systems and H-frames.
The following is a construction for 3-CSs which is a special case of the

fundamental construction of Hartman [34].

Theorem 3.2.1. Suppose that (X, .A) is an S(t, K',v) and oo € X. Let K; =
{|A] : 0 € A € A} and Ky = {|A] : 0o &€ A € A}. |If there exists a
CS(3, K, t(ky — 1) + a) of type (t*'=1 : a) for each k1 € K| and a GDD(3, K, tks)
of type t*2 for each ky € Ko, then there exists a CS(3, K,t(v — 1) + a) of type
(t*1:a).

Now we give two tripling constructions and a doubling construction for
H(2"). The two tripling constructions are variations of those for SQS(v) pro-
posed by Hartman in [31] and [32], which will play a similar role with that of the
tripling constructions of Hartman [31, 32, 31] and Lenz [51] to deal with SQS(v).
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First, recall that we have defined a B,-pairing with components D, R;, PR;
(1 € {0,1,2}) in Section 2.2, which is called a simple pairing in [31] when g = 1.
In the sequel of this chapter, we denote a By(n,s) by P(n,s) as in [31].

Theorem 3.2.2. For each pair of integers n > 0 and s > 1, there exists a
simple pairing P(n,2s) with the extra property that {0,3n + s} C D and G; =
G(6n+2s,{1,2,...,3n+ s} \ L;) has a one-factorization with {{k,k+ 3n+ s} :
0<k<3n+s—1} as one of the one-factors for each i € {0,1,2}.

Proof. For each pair of integers n > 0 and s > 1, a P(n,2s) was constructed in
[31, Theorem 3.3]. It is easy to check that {0,3n + s} C D. The lengths L; of
all P(n,2s)s for each 7 € {0, 1,2} are listed below:

Case (a) s =1 and n even, or s > 2.
Lo={2j:0<j<|n/2]orn<j<n+[n/2]},
Ly ={2j: [n/2] <j <n+[n/2]},
Ly=1{2j:0<j<n}

Case (b) n=2k+1, k>0and s = 1.
Lo={2j:0<j<k2k<j<3k+1},
Li=1{2j : k<j<3k}uU{ll,
Ly=1{2j:0<j<2ktuU{1}.

Let G, = G(6n+2s,{1,2,...,3n+s}\ (L; U{3n+s})), i € {0,1,2}. By Lemma
2.2.7, each of G} and G(6n+ 2s, {3n+ s}) has a one-factorization. Hence, G; has
a one-factorization with {{k,k +3n + s} : 0 < k < 3n + s — 1} as one of the
one-factors for each i € {0, 1, 2}. O

Example 3.2.3. [31] Letn =1 and s = 1. Construct a P(1,2) on Zs as follows:
D =1{0,4}, PRy = {{3,5}}, PRy = {{1,2}}, PRy = {{6,7}}.

Note that each of the graphs Go = G(8,{1,3,4}), G1 = G(8,{2,3,4}) and G5 =
G(8,{1,3,4}) has a one-factorization with {{k,k+4} : 0 < k < 3} as one of the

one-factors.
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Theorem 3.2.4. There exists an HFy((3n + s)® : s) with a subdesign H(2) for
each pair of integersn > 0 and s > 1.

Proof. By Theorem 3.2.2, for each pair of integers n > 0 and s > 1, there is
a simple pairing P(n,2s): D, R;, PR;, such that {0,3n + s} C D and G; has
a one-factorization FV|F| . |[F4 Y with FY = {{k,k +3n+ s} : 0 <
k < 3n+s— 1} for each i € {0,1,2}. Using this simple pairing, Hartman [31,
Theorem 3.4] constructed a CQS((6n + 2s)? : 2s) on the point set X = {a; : a €
Zons2s,t € {0,1,2}} U {001,009, ...,009} with three groups {{a; : a € Zg,10s} :
i €{0,1,2}} and a stem {007, 009, ..., 0095}, as well as the block set B consisting
of the following three parts:
§ = {{o0j,(a+d)o, (b—d)1,(c+d)2}: a+b+c=0 (mod 6n + 2s),
d is the jth member of D, 1 < j < 2s},
p={{la+q)i,(@a+1t);,biy1,¢is2} :a+b+c=0 (mod 6n+ 2s),
{¢,t} € PR;,i € {0,1,2}},and
¢ = {{ai.bi, cis1,dipa } : {a,b} € FY {c,d} € E(f)p 1<k<4dn+2s—1,
i €{0,1,2}}.
Let
61 = {{ai,biscisr, dina} - {a,b} € BV {e,d} € F{),i € {0,1,2}}.
The desired HF5((3n + s)3 : s) will be on X with the group set G = {{k;, (k +
3n+s)}:0<k<3n+s—1,i€{0,1,2}} U{{oo;, 0015} : 1 <i < s}, three
holes {{k;, (k+3n+s);} :0<k<3n+s—1}UF, i € {0,1,2} and a common
hole Fy = {{00;, 00,45} : 1 <@ < s}, as well as the block set B\ ¢;.
Since {0,3n + s} C D, without loss of generality we may assume 0, 3n + s
are respectively the first and (s + 1)th elements of D. Let
do = {{o0;, (a+d)o, (b —d)1,(c+d)2} :a+b+c=0 (mod 6n+ 2s),
a,b,c € {0,3n + s}, d is the jth member of D and j =1 or s + 1}.
Note that &y C ¢ and &y forms the block set of an H(2%) with the group set

{{0;, B3n+s);} 13 € {0,1,2}} U{{oo1,001,}}. Hence, the above HF,((3n + 5)3 :
s) contains a subdesign H(2*%). O
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Example 3.2.3 (continued): Using the foregoing P(1,2), we may construct a
CQS(8% : 2) on the point set X = {a; : a € Zg,i € {0,1,2}} U {001,002} with
three groups {{a; : a € Zg} : i € {0,1,2}} and a stem {oo1, 002}, as well as the
block set B consisting of the following three sets:

d = {{o01, a0, b1, 2}, {002, (a+4)o, (b —4)1,(c+4)2}: a+b+c=0 (mod 8)},

p={{(a+3),(a+5),b1,c2},{(a+ 1)1, (a+2),ba,c0},
{(a+6)2,(a+T7)2,bp,c1} :a+b+c=0 (mod 8)},and

¢ = {{ai, bi, cir1, dip1} - {a, b} € FP {e,dy € F),1 <k <5,i€{0,1,2}}.

Here, ﬂ(1)|Fi(2)| . |E-(5) is a one-factorization of G; with Fi(l) ={{k,k+4}:0<
k < 3} for each i € {0,1,2}. Let ¢ = {{ki, (kK +4)i, ki1, (K +4)ip1} : 0 <
k k' <3,i€{0,1,2}} C ¢. The block set (6 UpU @) \ ¢; forms an HFy(43 : 1)
on X with the group set {{k;, (k+4);}:0 <k <3,i€{0,1,2}} U {{o01,002}},
three holes {{k;,(k +4);} : 0 < k <3} U Fy, 7 € {0,1,2} and a common hole
Fo = {{o01,002}}. Furthermore, as a subset of 4, 6y = {{001, ag, b1, c2}, {009, (a+
4)o, (b —4)1,(c+4)2} 1 a,b,c € {0,4},a+ b+ c =0 (mod 8)} forms an H(2%)
with group set {{0;,4;} : 7 € {0,1,2}} U {{o01,002}}. O

As a consequence of Theorem 3.2.4, we have our first tripling construction

as follows.

Corollary 3.2.5. (Tripling Construction I) Let n = 2s (mod 3) and s > 1.
If there exists an [H(2" : 2%), then there exist both an [H(23"72% : 2") and an
TH(23725 ; 28),

Theorem 3.2.6. There exists an HF((3n)® : s) for each pair of integers n, s
such that 3n > s > 0.

Proof. For each pair of integers n, s such that 3n > s > 0 and (n,s) # (1,1),
the proof is similar to that of Theorem 3.2.4. We may start from a particular
CQS((6n)3 : 2s) and partition the points of each group into disjoint pairs. Then,
we can remove the blocks formed by all these pairs from different groups. Such
a CQS((6n)® : 2s) was constructed by Hartman in [32, Section 4] on X = {a; :
a € Zgn,i € {0,1,2}} U {o01,009,...,009} with three groups {{a; : a € Zs,} :
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i€ {0,1,2}} and stem {001, 009, . ..,009,}, as well as the block set B containing

the following blocks:

¢ = {{ai,bi,ciy1,dipa } : {a,0} € FP {e,d} € F{{},1 <k <6n—1-2r—2h,
i €{0,1,2}},

where FZ.(I), Fi(z), L FOTIEEh) e different disjoint partitions of pairs of Zg,

1

foreach i € {0,1,2} and r, h are non-negative integers such that 6n = 2s+2h+6r.
An HF5(3% : 1) can be constructed by applying Theorem 2.2.2 with a
CQS(3? : 1) in [23] and an H(2%). O
As a consequence of Theorem 3.2.6, we have our second tripling construction

as follows.

Corollary 3.2.7. (Tripling Construction II) Let n = s (mod 3) and s > 0. If
there exists an TH(2™ : 2°), then there exists an TH(2%"~2% : 2™) and an [H(23"% :
2%).

Theorem 3.2.8. (Doubling Construction) If there exists an H(2"), then there

exists an H(2%").

Proof. Let (X,G,B) be the given H(2"). Let F = {F,..., Fbn-1)} be a one-
factorization of the multi-partite complete graph on X with partite set G. The
desired H(2*") is based on X x {0, 1} with 2n groups Gx{i}, G € G and i € {0,1}.
The block set is A = (B x {0,1}) UC, where C = {{(a,0), (b,0), (¢, 1),(d, 1)} :
{a,b} € Fi,{c,d} € F;,1 <i<2(n—1)}. O

The following two constructions are modifications of the filling holes con-

struction.

Lemma 3.2.9. Suppose that there exists an HFy,(m™ : s),

1. if there exists an IH(g™ : ¢%), then there exists an TH(g™"** : ¢™**). Fur-

thermore, if there is an H(g™*®), then there is an H(gm"*®);

2. if there exists an H(g™(gs — ge)') with € = 0 or 1, then there exists an
H(g™"**(gs — ge)').
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The following recursive construction for nonuniform H-designs was first given

in [50].

Lemma 3.2.10. [50] Let mn be even. If there exists an H((mn)"(s +t)') and

an H(m"s't'), then there exists an H(m™s't!).

3.3 Alternative Existence Proof for H(2")

In this section, we give an alternative existence proof for H(2") with n =
1,2 (mod 3) and n # 5, which is mainly based on the recursive constructions
listed in Section 3.2. The proof is independent of the existence result of Steiner
quadruple systems. Hence, we also give a new proof for the existence of SQS(v)

in the meantime. First, we need the following initial ingredient designs.

Lemma 3.3.1. [25, 55, 57] There exists an H(2¥) for each k € {7,11,13}, an
H(6%) for each k € {4,6} and an [H(2" : 2°).

Proof. An H(2") can be found in [25]. An H(2), an H(2'%) and an TH(2!! : 25)
were constructed by Mills in [57]. An H(6*) for each k € {4,6} exists by [59,
Lemma 7] . O

Lemma 3.3.2. There exists an H(2%).

Proof. We construct an H(2?°) on X = Zy5 x Zy with the group set G = {G; =
{(4,0),(i,1)} : i € Zy5}. The block set consists of the following quadruples with
mGZgg,,aGZg andbEZg.

(m,a) (m+5,b) (m+7,0+1) (m+12,a+b+1)
(m,a) (m+2,b) (m+3,b+1) (m+5,a+0b)
(m,a) (m+3,b) (m+15,a) (m+18,b)

(m,a) (m+38,b) (m+15,a+b) (m+23,a+1)
(m,a) (m+7,b) (m+20,a+0b) (m+22,b+1)
(m,a) (m+10,a) (m 4+ 16,b) (m+23,a+b+1)
(m,a) (m+2,a) (m +10,b) (m+20,a+0)
(m,a) (m+6,b) (m 4+ 16,b) (m+18,a+10)
(m,a) (m+2,b) (m+3,b) (m+9,a+b+1)
(m,a) (m+10,a+1) (m+13,b) (m+19,a+b+1)
(m,a) (m+2,b) (m+15,a+1) (m+22,a+0)
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(m,a) (m+10,a+1) (m+16,b) (m+22,a+b+1)
(m,a) (m+38,b) (m +10,0) (m+15,a+b+1)
(mya) (m+1l,a+1) (m+7,0) (m+19,a+0)
(m,a) (m+16,b) (m+22,a+0) (m+23,a+0b)
(m,a) (m+14,a) (m +23,b) (m+24,a+0)
(m,a) (m+3,b) (m+11,b) (m+22,a+b+1)
(m,a) (m+8,a) (m+11,b) (m+14,a +b)
(m,a) (m+17,b) (m+19,a) (m +23,b)

(m,a) (m+6,b) (m+14,b+1) (m+17,a+1)
(mya) (m+1l,a+1) (m+90) (m+18,a+0)
(m,a) (m+9,b) (m +23,b) (m+24,a+b+1)
(m,a) (m+7,b) (m+8,b) (m+24,a)

(m,a) (m+14,a+1) (m+15,b) (m+24,a+b+1)
(m,a) (m+7,b) (m+16,a+b+1) (m+24,a+1)
(m,a) (m+2,b) (m+4,a+0b) (m+21,b+1)
(m,a) (m+1,b) (m+12,b) (m+14,a)

(m,a) (m+2,b) (m+11,a+1) (m+13,b+1)
(m,a) (m+1,b) (m+12,b+1) (m+13,a+b+1)
(m,a) (m+4,0b) (m+21,a+0) (m+23,b+1)
(m,a) (m+3,a) (m+4,b) (m+17,b)

(m,a) (m+3,a+1) (m+4,b) (m+70+1)
(m,a) (m+5,a) (m+11,b) (m+16,b)

(m,a) (m+5,a+1) (m+11,b) (m+16,b+1)
(m,a) (m+13,a) (m+17,b) (m+22,a+b+1)
(m,a) (m+4,0b) (m+12,a+1) (m+17,b+1)
(m,a) (m+6,b) (m+10,b+1) (m+21l,a+1)
(m,a) (m+13,a) (m + 16,b) (m+21,a+b+1)
(m,a) (m+5,b) (m+20,a+0b) (m+24,a+0)
(m,a) (m+4,0b) (m+13,a+1) (m+16,b+1)
(m,a) (m+4,a) (m+14,b) (m+ 18,b)

(m,a) (m+4,0b) (m+9,a+0) (m+13,a)

(m,a) (m+1,b) (m+5,b+1) (m+6,a+b+1)
(m,a) (m+7,0) (m+14,a+b+1) (m+21l,a+1)
(m,a) (m+15,b) (m+21,a+b+1) (m+21,a)

(m,a) (m+5,b) (m+17,b) (m+22,a+0)

]

The following lemma is useful for us to unify the proofs following-up, which
also provides another proof for the existence of S(3,{4,6},v) with some small

initial ingredients.

Lemma 3.3.3. For each integer n > 3, there exists a CS(3,{4,6},2n + 2) of
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type (2"2¢4¢ : 2) with € € {0,1}.

Proof. For each integer n > 3, it is sufficient to prove that there exists an
S(3,{4,6},2n+2) (X,.A) such that the design has two particular points {z,y} C

X with at most one block of size 6 containing both of them.

For n = 3,4, the conclusion is true since an SQS(2n + 2) exists. For n =5,
there exists an S(3,{4,6},12) with two disjoint blocks of size 6 partitioning the
point set, which can be obtained from a GDD(3, {4, 6}, 12) of type 2° [25, Lemma
1].

For n > 5, assume that the conclusion is true for each i, 3 < i < n. The

proof proceeds by induction.

Firstly, suppose that there exists an S(3,{4,6},n+ 1) (X,.A) with two par-
ticular points {x,y} C X, such that there is at most one block of size 6 containing
{z,y}. Let F ={F},..., F,} be a one-factorization of the complete graph on X.
Construct an S(3,{4,6},2n+2) on X x {0, 1} with block set B = (A x{0,1})UC,
where C = {{(a,0), (b,0),(c,1),(d, 1)} : {a,b} € F;,{c,d} € F;,)1 <i<n}. It
is not difficult to check that there is at most one block of size 6 in B containing
{(2,0), (y,0)}.

Secondly, suppose that there exists an S(3,{4,6},n + 2) (X,.A) with two
particular points {x,y} C X, such that there is at most one block of size 6
containing {x,y}. Take a point co € X \ {z,y} and let X' = (X \ {o0}) x {0, 1}.
For each block A € A containing oo, construct a CS(3,{4,6},2|A| — 2) of type
(24=1:0) on (A\ {c0}) x {0, 1}. For each block A not containing co, construct
a GDD(3,{4,6},2|A]|) of type 2l on A x {0,1}. When |A| = 6, let A x {0}
and A x {1} be the two special blocks of size 6 of the input GDD(3, {4, 6}, 12)
of type 2. By Theorem 3.2.1, we get a CS(3,{4,6},2n + 2) of type (2! : 0),
which is actually an S(3,{4,6},2n +2) on X'. Here, the input CS(3,{4,6},6) of
type (2% : 0) contains only one block of size 6. The input CS(3, {4,6},10) of type
(25 : 0) is actually an SQS(10) which contains only blocks of size 4. Take the two
points {(z,0), (y,1)} into consideration. If {oco,z,y} determine a block of size
6 in A, then there is no block of size 6 containing {(z,0), (y,1)}. If {co,z,y}

determine a block of size 4 in A, then there is only one block of size 6 containing
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{(z,0), (. 1)}. N

Lemma 3.3.4. There exists an H(2") for each n =5 (mod 6), n > 11 and an
TH(2" : 2%) for each n =5 (mod 6), n > 17.

Proof. For n = 11, an H(2") exists by Lemma 3.3.1. For n = 17, there exists
an HF,(5% : 2) with a subdesign H(2%) by Theorem 3.2.4. Applying Lemma 3.2.9
with an H(2") from Lemma 3.3.1, we obtain an H(2!") and an TH(2'7 : 24).

For each n = 6m + 5, m > 3, there exists a CS(3,{4,6},2m + 2) of type
(2m=2¢4¢ : 2) with ¢ € {0,1} by Lemma 3.3.3. Apply Theorem 2.2.2 with an
HF,(3*! : 2) and an H(6%) for k € {4,6} to obtain an HFy(6™~2¢12°¢ : 5).
Applying Lemma 3.2.9 with an TH(2! : 25), an H(2") or an H(2!7), we get an
H(26m+%). Here, the input HF5(3*~! : 2) comes from Theorem 3.2.6 or Lemma
2.3.8, and the other ingredients are from Lemma 3.3.1. Since there exists an
H(6) with a subdesign H(2?), the resulting H(2") has a subdesign H(2*). O

Lemma 3.3.5. There exists an H(2") for each n = 7,13 (mod 18) and n > 7.

Proof. For each n = 18k + 7 and k > 2, we obtain an IH(2" : 2*) by applying
Corollary 3.2.5 with an TH(26%+5 : 24) from Lemma 3.3.4. Applying Lemma 3.2.9
with an H(2?), we obtain an H(2"). For n = 7,25, the design exists by Lemmas
3.3.1 or 3.3.2.

For each n = 18k + 13 and k£ > 1, there is an H(2") by applying Corollary
3.2.5 with an TH(2%%+5 : 21) from Lemma 3.3.4. For n = 13, the design exists by
Lemma 3.3.1. O]

Lemma 3.3.6. There exists an H(2") for each n =1 (mod 18).

Proof. For each n = 18k + 1 and k£ > 1, the proof proceeds by induction. For
k = 1, an H(2") exists by applying Corollary 3.2.7 with an TH(2" : 2!). When
k > 1, suppose that there exists an H(2'%*1) for each i < k. By Lemma 3.3.5,
we have that an H(2%%1) exists for all j < 3k. Applying Corollary 3.2.7 with an
TH(26F1 : 21 we get an H(2!8k+1). O

Theorem 3.3.7. There exists an H(2") for each n = 1,2 (mod 3) and n # 5.
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Proof. Combining Lemmas 3.3.4-3.3.6, we obtain an H(2") for each n = 1,5 ( mod
6) and n # 5. By Theorem 3.2.8, we obtain an H(2™) for each m = 2,4 (mod 6)
and m # 10. An H(2') can be obtained by applying Corollary 3.2.7 with an
[H(2% : 21). O

As a consequence of Theorem 3.3.7, we have the following corollary.

Corollary 3.3.8. There exists an SQS(v) for each v = 2,4 (mod 6).

Proof. The existence of SQS(v) with small orders of v = 4, 8,10 was mentioned

in Section 3.1. Combining every two groups of an H(2") to form a quadruple as
a new block, we get an SQS(2n) for each n = 1,2 (mod 3) and n > 7. O

3.4 Existence of H(2"u!) with u =4,6,8

For the existence of nonuniform H-designs, Lauinger et al. [50] developed
a computational method and several recursive constructions for constructing H-
designs (called transverse Steiner quadruple systems as in [50]). They also pro-
vided an existence table for H-designs with the number of points v < 24, where

the following small designs are needed.

Lemma 3.4.1. [50] There exists an H(2"4') for each n € {4,7,10} and an
H(2"8') for each n € {6,T}.

Recently, Keranen et al. [17] settled the existence problem on H-designs of
type g*u! except when g = u = 2 (mod 4) and all except 40 parameter situations
when ¢ = v+ 2 = 0 (mod 4). In this section, we will establish several new
existence results for H(2"u') with u = 4, 6,8 by using the theory of candelabra
systems and H-frames. By [17, Theorem 3.1], we have the following the necessary

conditions.

Lemma 3.4.2. If there exists an H(2"4'), then n = 1 (mod 3) and n > 4;
if there exists an H(2"6'), then n = 1 (mod 3) and n > 7; if there exists an
H(2"8"Y), then n = 0,1 (mod 3) and n > 6.

Lemma 3.4.3. [55] There exists a CQS(6™ : 0) for each n > 0.
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Combining the existence results of SQS(v) and CQS(6™ : 0), we have a more

strong result than that in Lemma 3.3.3.

Lemma 3.4.4. For each integer n > 3, there exists a CS(3,{4,6},2n + 2) of
type (2" : 2).

Proof. For each n = 3m +0, 3m + 1, m > 1, there exists a CQS(2" : 2) obtained
from an SQS(2n+2). For each n = 3m+2, m > 1, there exists a CS(3, {4,6}, 2n+
2) of type (2" : 2) obtained from a CQS(6™+Y/3 : 0) by taking two points from
two distinct groups as stem points. O]

First, we give a complete solution to the existence of H(2"4!) as follows.

Theorem 3.4.5. There erists an H(2"4') if and only if n = 1 (mod 3) and
n > 4.

Proof. For each n = 3k + 1 and n > 10, there exists an H(6*"!) by Theorem
1.1.1. Applying Lemma 3.2.10 with m = 2, n = 3, s = 2, t = 4 and an H(2%4!),
we get an H(2"4'). For n = 4,7, the desired designs exist by Lemma 3.4.1. [

Lemma 3.4.6. There exists an HFy(3° : 1).

Proof. The desired design is obtained by applying Theorem 2.2.2 with a CQS(3° :
1) [3] and an H(2%). O

Lemma 3.4.7. There exists an H(276').

Proof. We construct an H(276') on Zyy with group set G = {{i,i +7}:0 < i <
6} U{{14,15,16,17,18,19}}. We list below the base blocks, which are developed
under the automorphism group G = ((0 1 2)(3 4 5)(6)(7 8 9)(10 11 12)(13)(14)

(15)(16)(17)(18)(19)).

{0,4,13,18}  {1,2,7,15} {2,3,4,15} {3,9,13,18}  {1,9,13,17}  {5,6,11,14}
{0,3,8,18} {4,7,10,15} {1,4,12,14}  {0,1,4,17} {0,2,5,14} {0,6,9,15}
{3,4,7,17} {3,11,12,18}  {1,7,9,18} {2,10,12,14}  {0,4,6,19} {7,10,13,17}
{0,5,6,18} {0,3,5,17} {1,4,5,7} {4,5,9,17} {4,6,7,18} {8,9,12,16}
{2,8,12,15}  {1,4,10,13} {7,11,13,16}  {4,6,8,12} {0,9,12,18}  {0,1,12,19}
{1,10,12,15}  {3,7,8,14} {1,2,11,19}  {3,5,13,16}  {0,1,5,11} {0,1,13,16}
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{0,3,6,14}  {8,10,11,14}  {2,4,7,14}  {7,8,12,18}  {3,7,12,19}  {3,7,9,15}
{3,8,12,17}  {0,6,8,11} {2,8,10,18}  {1,9,10,11}  {5,7,8,10}  {0,4,8,14}
{1,11,13,15}  {5,6,7,15} {3,5,11,15}  {5,7,13,14}  {1,3,11,17}  {6,7,8,17}
{1,12,13,18} {6,7,12,14}  {1,3,7,13}  {2,6,11,15}  {3,11,13,19} {7,12,13,15}
{7,10,11,18} {0,6,10,17}  {6,10,11,19} {1,5,10,16}  {0,1,2,6} {3,4,5,6}
{7,8,9,13}  {10,11,12,13} ~

Lemma 3.4.8. There exists an H(2'36).

Proof. We construct an H(2'36') on Zys U {00y, . .
{{i,i+13} : 0 < i < 12} U {{oo0y, ..

which are developed under the cyclic group Zog:

., 005} with group set G =
.,005}}. We list below the base blocks,

{0,15,19,000} {0,8,20,000}  {0,9,25,000}  {0,3,24,000}
{0,6,11,001}  {0,10,24,00:} {0,17,18,00:} {0,4,23,001}
{0,12,15,002} {0,1,18,002}  {0,6,22,002}  {0,19,24, 002}
{0,20,25,003} {0,4,14,003}  {0,2,9,003} {0,15,23, 003}
{0,20,22,004} {0,9,12,004}  {0,1,8, 004} {0,5,16, 004}
{0,1,15,005}  {0,17,21,005} {0,18,20,005} {0,3,19, 005}
{0,10,14,18}  {0,5,9,10} {0,2,7,14} {0,2,16,19}
{0,19,23,25}  {0,22,23,24}  {0,3,9,21} {0,6,15,20}
{0,11,22,25}  {0,9,11,19} {0,4,19,20} {0,3,5,23}
{0,4, 18,25} {0,8,17,23} {0,8,10,19} {0,1,6,16}

]

Theorem 3.4.9. There exists an H(2"6') for each n =1 (mod 6) and n > 7.

Proof. For n = 7,13, the desired designs are constructed in Lemmas 3.4.7 and
3.4.8, respectively. For each n = 6m+1 with m > 3, there exists a CS(3, {4, 6}, (n+
5)/3) of type (2("=1/6 : 2). Apply Theorem 2.2.2 with an HFy(3*~! : 1) and an
H(6%) for k € {4,6} to obtain an HF,(6("~Y/6 : 4). Applying Lemma 3.2.9 with
an H(276'), we get an H(2"6'). Here, all the small ingredient designs are from
Theorem 3.2.6, Lemmas 3.3.1 and 3.4.6. O

Lemma 3.4.10. There exists an H(2'38').

Proof. We construct the desired H(2'38') on Z3, with group set G = {{i,i+ 13} :
0 < < 12} U{{26,27,28,29,30,31,32,33}}. We list below the base blocks,

which are developed under the following automorphism group:
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G=(01234567891011121314 15 16 17 18 19 20 21 22 23 24 25)
(26 27)(28 29)(30 31)(32 33))

{1,4,7,26} {2,4,20,27} {8,11,16,23}  {0,6,11,21} {9,16,24,31}  {1,3,21,32}
{0,15,24,31}  {10,11,21,27} {15,18,25,31} {9,21,23,24}  {6,9,11,33}  {11,18,20,26}
{0,14,18,30}  {6,14,17,32}  {7,9,11,18} {0,7,11, 26} {6,9,17,23}  {3,6,22,24}
{8,20,24,32}  {9,10,12,30}  {10,21,25,29} {6,16,20,23}  {9,10,24,33} {5,7,13,29}
{2,9,10,14} {13,14,20,32}  {0,12,17,27}  {7,10,11,28}  {3,8,20,31}  {10,13,19,28}

{15,16,21,31}  {14,19,23,32}  {3,7,8,27} {13,19,23,30}  {3,12,13,21}  {0,8,20,26}
{0,10,19,33}  {16,17,20,24} {0,1,20,25} {1,2,19, 28} {2,7,12,28}  {1,2,11,17}
{1,13,20,29}  {0,14,24,29}  {0,2,6,12} {0,17,21, 23}

]

Lemma 3.4.11. There exists an H(2"8') for each n = 0,1 (mod 6), n > 6 and
n # 12.

Proof. For n = 6,7,13, the desired designs come from Lemmas 3.4.1 and 3.4.10,
respectively. For each n = 6m+ s, s € {0,1}, m > 3, there exists a CS(3, {4, 6},
(n—s5+6)/3) of type (2("==)/6 : 2). Apply Theorem 2.2.2 with an HF(3%~! : s+1)
and an H(6%) for k € {4,6} to obtain an HFy(6("~*)/¢ : s +4). Applying Lemma
3.2.9 with an H(267°8'), we get an H(2"8'). Here, the input designs are from
Theorem 3.2.6, Lemmas 3.3.1, 2.3.8, 3.4.1 and 3.4.6. O

Lemma 3.4.12. There exists an H(2"8") for each n = 3,16 (mod 18), n > 16
and n # 34.

Proof. For each n = 18k + 3 with k& > 1, there is an HF((3(2k — 1) +4)3 : 4)
by Theorem 3.2.4. By applying Lemma 3.2.9 with an H(25**!8!) from Lemma
3.4.11, we get an H(2"8').

For each n = 18k+16 with £ > 0 and k # 1, there is an HF5((6k+5)3 : 5) by
Theorem 3.2.4. Applying Lemma 3.2.9 with an H(26¥768!) from Lemma 3.4.11,
we get an H(2"8!). O

Combining Lemmas 3.4.11 and 3.4.12, we obtain

Theorem 3.4.13. There exists an H(2"8') for eachn = 0,1, 3,6,7,12,13,16 ( mod
18), n > 6 except possibly for n = 12,34.



Chapter 4

Block Sequences of Steiner Quadruple
Systems with Error Correcting Consecutive

Unions

Motivated by applications in combinatorial group testing for consecutive posi-
tives, we investigate a block sequence of a maximum packing MP(t, k, v) which
contains the blocks exactly once such that the collection of all blocks together
with all unions of two consecutive blocks of this sequence forms an error correct-
ing code with minimum distance d. Such a sequence is usually called a block
sequence with consecutive unions having minimum distance d, and denoted by
BSCU(t, k,v|d). In this chapter, we show that the necessary conditions for the
existence of BSCU(3,4,v|4)s of Steiner quadruple systems, namely, v = 2,4

(mod 6) and v > 4, are also sufficient except v = 8, 10.

4.1 Introduction

Let V' be a finite set of v element and let X be a collection of k-subsets of V'
with |X| = m. Let S = [z, x1,...,%m_1] be a sequence of the elements in X. The
indices of the elements x; of S are considered modulo m. Define y; = x; U z;11
for each 7, 0 < ¢ < m — 1. The sequence S is called a cyclic sequence of X
with consecutive unions having minimum distance d, denoted as CSCU(k,v|d),
it C = {x0,...,Tm-1,Y0,---,Ym_1} has minimum distance d. Note that the
distance between any two sets = and y is defined as d(z,y) = |(x Uy) \ (z Ny)|.
Furthermore, a CSCU(k, v|d) is said to be mazimal if the number of elements in
X is maximum for given k, v and d, denoted as MCSCU(k, v|d).

The concept of an MCSCU is motivated by the applications in combinatorial

group testing for consecutive positives. Group testing was proposed by Dorfman
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[16] in 1940s to do large scale blood testing economically, and new applications
of group testing have been found recently in the fields such as DNA library
screening, being error-prone, in which it is desired to determine the set of all
clones containing a specific sequence of nucleotides in an economical and correct
way. A clone is positive if it contains the specific sequence, and negative otherwise.
One chooses arbitrarily a subset of clones called a group or pool, and test all clones
in the pool in one stroke by some chemical analysis. The pool is positive when
it contains at least one positive clone, and negative otherwise. Colbourn [13]
developed some strategy for group testing when the clones are linearly ordered
and the positive clones form a consecutive subset of the set of all clones, the
typical example being the problem of locating a sequence-tagged site (or STS)
among ordered clones. Jimbo and his collaborators [60, 59, 61, 62] improved
Colbourn’s strategy by considering the error detecting and correcting capability
of group testing which is essential in view of applications such as DNA library
screening. Especially, Momihara and Jimbo [60, 59] suggested using MCSCUs
of a combinatorial structure called t-packings to correct false negative or false
positive clones in the pool outcomes. For more details of such applications we

refer to [13, 17, 60, 59, 61, 62, 64] and references there in.

A t-packing of order v, block size k, briefly P(t, k, v), is an ordered pair (V, B),
where V' is a finite set of v elements called points, and B is a set of k-subsets of
V' called blocks, such that each t-tuple of distinct points of V' is contained in at
most one block of B. In particular, a P(¢, k,v) is said to be mazimal, denoted
MP(t, k,v), if the number of blocks is maximum for given ¢,k and v. For ¢t = 3
and k = 4, an MP(¢, k,v) is denoted by MPQS(v) which has been described in
Section 2.4.

It is known (see [60]) that a CSCU(k,v|d) of B is maximal if B is the block
set of an MP(|k —d/2| +1,k,v). A CSCU(k,v|d) of B which is the block set of
an MP(¢, k,v) is also called a block sequence of B with consecutive unions having
minimum distance d, briefly BSCU(t, k, v|d).

In the case of d = 2, Miiller and Jimbo [62] showed that there exists a
BSCU(k, k,v|2) for every v > vy, for the following pairs of parameters k and
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vk (k) = (2,6),(3,8),(4,11),(5,12),(6,17) and (7,19), without introducing
the notion of block sequences of t-packings. In the case of d = 3, Momihara
and Jimbo [00] showed the existence of a BSCU(2,3,v|3) for every v > 10. For
the case of d = 4, it is clear that a BSCU(3,4,v|4) forms an MCSCU (4, v|4).
Momihara and Jimbo [59] recently showed the existence of a BSCU(3, 4, v|4) for

forty-seven small values v < 500 using the following two constructions.

Theorem 4.1.1. ([59]) Let v be an integer satisfying v = 2,4 (mod 6) and
v > 14.

(1) If there exists a BSCU(3,4, v|4), then there exists a BSCU(3, 4, 2v|4) which
contains a sub-BSCU(3, 4, v[4).

(2) If there exists a BSCU(3,4,v|4), then there exists a BSCU(3,4, 3v — 2|4)
which contains a sub-BSCU(3, 4, v[4).

It is not difficult to see ([59]) that if there exists a BSCU(3,4,v|4), then
every two consecutive blocks must be disjoint. Furthermore, there does not exist
a BSCU(3,4,v]4) for v < 11 except for v = 4, in which there is only one block.
We call such a BSCU(3,4,4/4) trivial.

In this chapter, we write BSCU(3, 4, v|4) of the block sets of Steiner quadru-
ple systems as BSCU(v) for brevity. The necessary conditions for the existence
of a BSCU(v) are v = 2,4 (mod 6) and v > 4. In the following sections, we will
prove that the above necessary conditions are also sufficient except v = 8, 10.
Our main tools are the recursive constructions used in the 3-design theory (see

[34, 37, 38] for the detailed information).

4.2 Recursive Constructions

A holey quadruple system of order v with a hole of order s, denoted by
HSQS(v : s), is a triple (X, S,.A) where X is a set of v elements (called points),
S is an s-subset of X, and A is a collection of 4-subsets (called blocks) of X such
that every 3-subset T of X with T'Z S is contained in a unique block of A and

no 3-subset of S is contained in any block of A.
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Let (X,S5,G,A) be a CS(3,K,v) of type (¢7'gy*...g" : s) with S =
{001,009, ...,005}, where s > 1. For 1 < i < s, let B; = {A\ {o0;} | o0; €
Ae Ay and T = {A € A|] AnS = 0}. Then the (s + 3)-tuple (X \
S,G, By, By, ..., Bs,T) is called an s-fan design. If block sizes of B;, 1 < i < s,
and 7 are from K; and K7, respectively, then the s-fan design is denoted by
s-FG(3,(Ky,..., Ky, K1), > . nig;) of type g1 g3 ... gl

A CSCU(4,v|4) of B which is the block set of an H(g*g5?...g") will be
denoted by CSCU-GDD(g{"¢5? ... ¢P") in this chapter. Similarly, we can define
CSCU-HSQS, CSCU-CQS, etc.

Now we apply the fundamental constructions in the 3-design theory, where
“filling in holes” and “weighting method” are always useful (see [31]). First, we
may think of one CSCU (the master design) as a cycle which can be cut off at any
place. Next, we view the sequence of the other cut-off CSCU (the sub-design)
as a segment, and insert it into some cut place of the master design to form a
bigger cycle. Then we calculate the number of the places in the master design
where the obtained bigger cycle is also a CSCU. If this number is positive, then

the construction succeeds. We explain it in detail as follows.

For any k-subset sequence S = [zg,x1,. .., Ty_1] with length m, define
O-J(S) - [xja Ljt1s--+ Tm—1,L0y - - - 7xj—1]7
g = {IL‘() U T1,Tq U T2y ooy Lypm—2 U l’m—l}a
and
§ = {ZL’O U T1,Tq U T2y, ...,Tm—2 U Tm—1, Tm—1 U .730}.

Let U,V be two finite sets with |U| = u and |V| = v, where U is not
necessarily disjoint with V. Let S = [bg,b1,...,b,—1] be a CSCU(4,ul4) of B
which is a collection of 4-subsets of U with p = |B|, and T = [ag, a1, . .., a,-1] be
a CSCU(4,v]4) of A which is a collection of 4-subsets of V' with ¢ = |A|. It is
clear that [bN | < 2 and |aNd’| < 2 for any distinct b,0' € B and a,d’ € A.
We may assume that for any b € B, we always have |bN V| < 2. Then for any
a € Aand b € B, we always have [bNa|] < 2. We view S as a cycle, cut T

between ag and a,—; and keep the order fixed. We insert 7' = [ag, aq, ..., Gg—1]
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into S between b;_; and b; for some i, 0 < ¢ < p — 1, and denote the bigger
cycle [ag, a1,...,aq-1,bi,bix1,...,bi—1] by S; = [T,0%(S)]. Let M = {i | S; is a
CSCU(4,w|4) of BUA, 0 <i<p—1}, where w = |UUV], and let |M|=m. If
m > 0, then we obtain a bigger CSCU(4,w|4) from the two small CSCUs. Next,

we estimate the value of m.

Let C = AUBUT U0 (S)UD, where D = {agUb;_1,a, 1 Ub;}. We check
the distance between any two elements of C'. First, we consider the case that
agNbi—1 =0 and a,—; Nb; = 0. In this case, we have the following conclusions:
Since T is a CSCU of A, we have

Case (1): d(a,a’) > 4 for any a,d’ € A;

Case (2): d(c,c’) > 4 for any ¢, € T;

Case (3): d(a,c) >4 foranya€ AandceT.

Since S is a CSCU of B, we have

Case (4): d(b,b') > 4 for any b,V € B;

Case (5): d(c, ) > 4 for any ¢, € 0°(95);

Case (6): d(b,c) > 4 for any b € B and ¢ € ¢i(5).

Since |agNb;| < 2, |ag—1Nbi—1| < 2 and b;_1Nb; = B, we know that d(b;_1,b;) = 8,
d(apUb;_1,b;) > 6, and also

Case (7): d(agUb;_1,a,-1 Ub;) > 4.

Since |a N b| < 2, we have

Case (8): d(a,b) > 4 for any a € A, b € B.

Since |a| = 4, |b| =4 and |¢| = 8 for any a € A, b€ Band ¢ € T U0 (S)U D, we
have

Case (9): d(a,c) > 4 for any a € A and ¢ € ¢7(S) U D;

Case (10): d(b,c) > 4 forany b€ Band c€ TU D.

Since |bNV| < 2 for any b € B, we have

Case (11): d(c,¢) >4 for c€ T and ¢ € ¢'(S) U D.
Under the assumption that ag Nb;—1 = 0 and a,—1 Nb; = (), we still need

to consider the values of d(c, ) for any ¢ € ¢/(S) and ¢ € D. Note that we
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should also check the distance between any two elements of C' in the case that
agNbi_1 # 0 or a1 Nb; # 0.

Let N(ag1) ={k |0 <k <p—1, ag1Nb # 0 or d(a, 1 Uby,c) <
4 for some ¢ € §} and n(a,—1) = |N(ag—1)|. Also let a(a,—1) = {k |0 <k <
p—1, ag_1Nby # 0}|. Then n(a,—1) = a(ag—1)+|{k|0<k<p—1, ag_1Nb, =
0 and d(a,—1 U bg,c) < 4 for some ¢ € §}] In order to estimate n(a,—1), we
consider the case that a,_1 Nby = 0. It is clear that for any index 0 <1 <p—1,
|(by Ubper) Nag—1| < 4.

If there exists an index [ such that |(b;Ubj1) Nag—1| =4, ie., [biNag_1]| =2
and |b;41 Nag—1| = 2, then if d(bUb11, a,—1 Uby) < 4, we should have |(b;Ub;41)N
bx| > 3. In the case that B is the block set of some 3-packing of order u, there is
at most one such k that |(b; U by41) Nbg| = 4, that is, by = (b U bi11) \ ag—1, or
there are at most 4 such k that |(b; U b;1) Nbg| = 3, that is, by are obtained by
choosing any three points from the four points in (b; Ubj41) \ a,—1 and the other
one from the other points of U, which implies that [{k |0 < k <p—1, a,_1Nb, =
0 and d(a,—1 Ubg, b Uby1) < 4} < 4.

If there exists an index [ such that |(b;Ubj1) Nag,—1| = 3, i.e., [biNag_1]| =2
and b1 Nag—1| =1, or |bNa,—1| =1 and |b1 Nag—1| = 2, then we should have
|(byUbp1) Nbg| = 4 if d(byUbpy1, aq—1Ubg) < 4. In the case that B is the block set
of some 3-packing of order u, there is at most one such k that |(b; Ub1) Nby| =
4, that is, by is obtained by choosing four points from (b U bj1q) \ ag—1. If
there is another &’ such that [(b; U b)) Nby| = 4, then |by N by| > 3 because
|(by U biy1) \ ag—1| = 5, which leads to a contradiction. In this case, we have
HE10<k<p—1, ag-1Nb, =0 and d(a,—1 Ubg, by Ub1) <4} < 1.

If [(b; U bi1) Nag—1] < 2, then we can easily check that there is no such
k that d(b; U biy1,a,-1 Ubg) < 4, thatis, {k |0 < k <p—1, a1 Nb =
(0 and d(aq,1 U bk, b U bl+1) < 4}‘ =0.

Therefore, if we define y(a,—1) = |{{ |0 <1 <p—1, [(bjUb11)Nag1]| = 4}]
and 0(ag—1) = {1 | 0 <1 < p—1, [(by Ub1) Nags1| = 3}, then under the
condition that a,—1 Nby = 0, there are at most 4vy(a,—1) + 6(a,—1) such k that
d(by U b1, aq-1 Ubg) < 4. So we have n(a,—1) < a(ag—1) + 4y(as—1) + 6(ag-1).
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From the definition of y(a,—1), we know that the existence of one such index [
in y(ag—1) would imply both [b; N ay—1| = 2 and |bj41 Na,—1| = 2. Also, from
the definition of d(a,—;), the existence of one such index [ in §(a,—1) would imply
lbiNag—1| = 2 or |biy1Nay—1]| = 2, but not both. Keeping in mind the possibilities
of occurrences of consecutive blocks in Z={k |0 <k <p—1, |bpy Na,—1| =2}
and one block in = followed by one block in {k | 0 <k <p—1, |byNa,—1| =1},
we can know that these would imply 2v(ag—1) + 0(ag—1) < 26(aq4-1), since v and

d are mutually exclusive, where 5(a,-1) = |Z|.

Similarly, we can analyze the set N(ag) ={k |0 <k <p—1, agNby_1 #
0 or d(ag Uby_1,c) < 4 for some ¢ € S}, where n(ag) = |N(ao)]-

Then from the definitions of M, N(ag) and N(a,—1), we immediately have
that M D Z,\(N(ap)UN(a,—1)) and m > p—n(ag)—n(as—1)+|N(ag)\N(as-1)| >
p —n(ag) — n(a,—1) + |E|, where E C N(ag) N N(az—1).

Theorem 4.2.1. Suppose that there are both a CSCU-HSQS(u : v) and a BSCU(v).
Then there is a BSCU(u) when u > 44 and u > v.

Proof. Let S = [by, by, ..., by,—1] be a CSCU-HSQS(u : v) on U and T = [ag, ay, . . .,
a,—1] be a BSCU(v) on V with V' C U. By the definition of an HSQS(u : v),
we know that for any of its blocks, say b, we always have |[bN V| < 2. We view
S as a cycle, cut T" between ay and a,—; and keep the order fixed. Next, insert
T = [ag, a1, - ..,a,-1] into S between b;_; and b; for some ¢, 0 < i < p—1, and
denote the resultant cycle [ag, a1, ..., a4-1,bi,bi41,...,bi_1] by S; = [T,0%(9)].

Using the same notation as above, we prove the theorem as follows.

Since T is a BSCU(v), we have a,—; Nag = () since they are consecutive.
From the balanced property of t-designs, we also have n(ag) = n(a,—1). Thenm >
p—n(ag) —n(ag—1) = p—2(a(ag—1)+4v(ag-1)+06(ag-1)) > p—2a(ag—1)—83(ag-1).
Here p =u(u—1)(u—2)/24 —v(v—1)(v—2)/24, a(ag—1) =2(u—1)(u—2)/3 —
3(u—2)—2wv—-1)(v—2)/3+3(v—2) and (a,—1) = 3(u — v). Then we have
m > p—2a(a,—1) —8B(a,—1) > 0 when u > 44 and v > v. This means that there
is a BSCU(u) when u > 44 and u > v. O
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Theorem 4.2.2. Suppose that there are both a CSCU-CQS(m™ : s) and a CSCU-
HSQS(m + s : s). Then there are both a CSCU-HSQS(mn + s : m + s) and a
CSCU-HSQS(mn + s : s) when mn > 44, m+2s > 5 and m > 2.

Proof. Let (X, S,{G1,...,Gn},B) be the CQS(m™ : s). Then we construct an
HSQS(m + s : s) on SUGE, 1 < k < n, with S as the hole to obtain the
desired HSQS(mn + s : m + s) (or HSQS(mn + s : s), respectively). Let Sy =
Do, b1, . .., bp—1] be a CSCU-CQS(m™ : s) and Ty, = [af, af, ..., ak_,] be a CSCU-

HSQS(m+s : s) on SUG). Note that for each block b € B, we have [bN(SUGY)| <

k

g—1- Then we insert

2. View Sy as a cycle, and cut each T} between af and a
each T}, into Sy between b;,_; and b;, one by one. Here, we require that i # i
if k£ k.

Using the same notation, we have that p = m?n(n—1)(m+mn+3s—3)/24.
By counting the number r, of blocks in B containing a point x € X, and the
assumption that m+2s > 5, we know that r, < m(n—1)(mn+m+2s—3)/6. By
counting the number r, ,, of blocks in B containing a pair of distinct points {z, y}
of X, and the assumption that m > 2, we also know that r,, > m(n — 1)/2.
Then we have max{a(af), a(al_,)} < o =4xm(n—1)(mn+m+2s—3)/6—6x
m(n —1)/2 and max{((ag), 3(al_,)} < B =06xm(n—1)/2 for any 1 <k < n.

First, since my > p—afag) —46(ag) —alag 1) —46(ay_1) > p—2a—83 > 1,
there exists one i, 0 < iy < p — 1, such that Sy = [...,b;;_1,T1,b;y,...] is a
CSCU. Here, S is obtained by inserting 73 into Sy between b;, 1 and b;,.

Next, we want to insert 75 into S between b;, 1 and b;,, where 0 < s < p—1
and ig # i1, so that So = [... b;; 1, T1,biy, .., biy_1,T5, by, .. .] is @ CSCU. Since
|bN(SUG,)| < 2 for each block b € T1UB, in order to estimate msq, the number of
the suitable places that we can properly inset 75 into S, we only need to compute
the numbers of the consecutive unions ¢ € Sy = mu{a;lubh ,agUb;, 1 YUT,
such that |c N a§| = 3 and 4, j = 0,q — 1, respectively, for the reason that
ma = pf = w(ad) = w(a2_,) = p— 1 — (o/(ad) + 47'(ad) + 9'(ad)) — (a'(a2_,) +
49'(a?_y) 4 0'(az_)), where o/(a) = [{k | 0 <k <p—1, by Na? # 0} = a(a)),
V(@) = 1] @ Ve el = 41, 8(@) = {L | (e Uan) nadl = 3} for

j=0and ¢ —1, and ¢; Uy, € S;. It is easy to know that there are no such



CHAPTER 4 BLOCK SEQUENCES OF STEINER QUADRUPLE SYSTEMS WITH
ERROR CORRECTING CONSECUTIVE UNIONS 81

unions in 7y. We then consider the unions in {a)_; U b;,,af U b;—1} U 0% (Sp).
For the unions in ¢ (Sp), we know that 4y(a?) + d(a7) < 46(a3) holds for j =
0,¢ — 1. For the unions in {a; ; U b, a5 U b;,_1}, since [(ag Ua ;) Naj| < 2
for j = 0,¢ — 1, and aj N a<11—1 = (), we know that the only possible cases are
the following: (1) both a; , Ub;, and aj U b;,_; intersect a7 at 3 elements; (2)
2
J
other at less than 3 points; (3) exactly one of a; ; Ub;, and ay U by, intersects
2
J
me > p—1—2a—8F —2 x4 > 1. This means that there exists at least one
such index 19 7£ 11 SO that SQ = [ .. 7bi1—17 Tl, bi17 ce ,bi2_17T2, biQ, .. ] is a CSCIJ7

where S; is obtained by inserting 75 into S; between b;,_1 and b;,.

exactly one of a, ; Ub;, and ag U b;,_; intersects a7 at 4 elements, and the

a; at 3 elements, and the other at less than 3 points. In any case, we have

Suppose we have inserted T}, into Sp_1 for k =1,...,n—1, and let Sy denote
the obtained CSCU. We want to insert Ty, into S, between b; 1 and b;,
where 0 < i1 < p—1and iy # 4 for any 1 <[ < k. Similarly, we only need to
care about the unions in Sy U {ag_1Ubi, ... a8 Ubs,afUb;_1,... a5 Uby 1}
Then we have my 1 > p—k—2a—83—8k. It is easy to check that my > 1 for any
1 < k < n. So there exist n distinct indices 0 < i1,42,...,%4, < p — 1 such that

when we insert each T}, into S,_; between b;,_; and b;, , the obtained sequence is

(]

a CSCU-HSQS(mn + s : s) when 1 < k < n, or a CSCU-HSQS(mn + s: m+ s)
when 1 < k <n-—1. ]

For a CQS (X,S,G,B), we may view S as a special group, that is, let
S € G, and we will write CQS (X, G, B) for convenience. If a block of size k
intersects each group in at most one point, we say it is k-partite (see [31]). For
any design (X, G, B), H-design or CQS, let P be a permutation on X. For each
G € G, if P(G) = G, then the design (X, G, P(B)) is isomorphic to (X, G, B).
For a point # € X, denote by G, the group containing z. For a block B € B,
let Pg = {[L,ep(® y) | vy € G, and (x y) is a transposition}. Note that each
permutation in Pg permutes each point of B to a point in the same group and

leaves any other point invariant.

Theorem 4.2.3. Let (X,G,By,...,B.,7) be an e-FG(3, (K, ..., K., K1),v) of

ny n2

type g\t g2 ... g". Suppose that there exist a CQS(m* : s1) for any ky € Ky, an
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H(mP"is}) for any k; € K; with 2 < i < e, and an H(m") for any k € K. Then
there exists a CQS ((mg1)™ (mga)™ ... (mg,)" : > ic. i) Furthermore, if

(1) the block set of each ingredient design can be arranged into a CSCU, and
for any A € By, the ingredient CQS(m!4 : s,) contains a 4-partite block,

(2) the master e-fan design has two disjoint blocks b, € T ife =0, orbe T
and b/ € By if e # 0,

then there exists a CSCU-CQS ((mgy)™ (mg2)™ ... (mgr)" Y 1cic. 8i) when
m >max{b,s; | 1 <i<e} ands; #1 for each 1 < i <e.

Proof. Let I, = {0,1,...,1 — 1} for any positive integer [ and I, = (). Denote
G, ={x} x I, for x € X, and S; = {o0;} x I, for 1 < j <e, where {oo; | 1 <
Jj <e}nX = 0. We construct the desired design on X' = (X x I,,,) US with the
group set G’ = {G x I, | G € G} and the stem S = S;US, U...US,. Clearly,
(X x I,)NS =0.

For each block A € By, construct a CSCU-CQS(m!4l : s1) on X, = (A x
I,,)US; having {G, | x € A} as its group set, S; as its stem, and A4 as its block
set. Denote G4 = {G, | v € A} U{S:}.

For each block A € B;, 2 < j < e, construct a CSCU—GDD(mWS;) on
Xa=(Ax1I,)US; having G4 = {G, | v € A} U{S;} as its group set and A4
as its block set.

For each block A € T, construct a CSCU-GDD(mMl) on X, = A x I,
having G4 = {G, | x € A} as its group set and A4 as its block set.

Let B = (Ui<i<eBBi) UT. Then UaepAy is the block set of a CQS ((mgy)™
(mga)™ ... (mgr)™ 1 31 cice 8i). We try to find a CSCU of UaepAa.

First, by our assumption, when e # 0, we can arrange B into a sequence
S’ = [by, b1, ..., by_1] where the blocks of B; are consecutive with b,_» € B; being
the tail-end, b,_; € 7, and b,_»Nb,_1 = 0; when e = 0, we simply let b,_oNb,_; =
0. Next, we replace each block b; by a cut CSCU T; = [af, ai, ..., a} _,] of Ay,
where af and a _, are the two ends, and ¢; = |A4,,|, 0 < i < p— 1. By the

hypothesis and the definition of an H-design, without loss of generality, we may
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assume that af intersects each group in G4 in at most one point. Now we have

the following Claim.

Claim: There exists a set of permutations {0} € P | 0 <k < p — 1} such that

in the cyclic sequence S = [00(Ty), 01(T1), - . ., 0p-1(T}-1)], we have oy, (al ! ;)N
or(af) = 0 and d(oi_1(al " _)) U ou(ah), on-1(at " ) U oy(al)) > 4 for any

0<kil<p-—1land|k—1I>2.

p—1

We use a recursive method to prove this claim. Denote I'y = {o € Py | Qg 11

No(ag) = 0} C Py From the assumptions on ay and b, 1, we know that |ag N
f;;_lrl| < 2. We consider all possible intersections of aJ and ag:lfl. Let a) =

{(mh l1)7 <x27 l2)7 (I’g, 13)7 (x47 l4>} and a’}q,;_llfl = {(yh lll)a (y27 lé); (y37 lé)7 (3/4, l:;)}
We first consider the case that z; # oo; for any 1 < ¢ < 4and 1 < j < e.

a

If [{x1, 22, 23,24} N {y1,92,y3,92}] = 0, then |Tg| = m?*; if [{x1, 29, 23,24} N
{y1,y2,y3, ya}| = 1, then |To| = (m—1)m?; if {1, 29, w3, 24} {y1, Y2, y3, Ya}| = 2,
then |Ig| = (m — 1)>m?.  Next we consider the case that x; = oo; for a
unique 1 < ¢ < 4 and a unique 1 < j < e, which implies that s; > 2. If
{x1, 22, 23,24} N {y1,v2,y3,y4}| = 0, then |To| = s;m?; if [{x1, w9, 23,24} N
{y1, 92,93, ya}| = 1, then |To| = s;(m—1)m?; if [{z1, 22, 23, 24} {y1, 2, Y3, ya }| =
2, then |To| = s;(m — 1)*m. So we know that |[o| > min{m?*, (m — 1)m?, (m —
1)2m?2, s;m3, sj(m — 1)m?,s;(m — 1)*m | s; > 2} > 1. Choose oq € Ty and let
So = (00(Tp)) be a non-cyclic sequence of o¢(Tp), that is, (0¢(Tp)) is exactly the

same as [09(7,)] except that o(ag) is not considered as a successor of o(ay ;).

Similarly, we denote T'y = {0 € Py | oolag,_) No(ay) = 0} € Pa.
Again, we consider all possible intersections of aj and o(a) _;). Let aj =
{(@1, 1), (@2, 12), (23, 13), (24, la) } and oo (ag, 1) = {(y1, 1), (2, 15), (y3. 15), (ya, 14) }-
Ify; # oojforany 1 <i<4and1 < j <e, and all y; are distinct, then |T';| = m?*
or (m—1)m? or (m—1)?>m? or s;m® or s;(m—1)m? or s;(m—1)?m, with s; > 2
and 1 < j < e, depending on whether |{x1, 22, x3, 24} 0O {y1, Y2, Y3, ya}| is equal
to 0 or 1 or 2, and whether |{z1, 22, x5, 24} N {00, | 1 < j < e}|is equal to 0 or 1.
If y; # oo; for any 1 < ¢ <4 and 1 < j < e, and exactly two of y; are equal, then
IT1| = m* or (m — 1)m3 or (m — 2)m? or (m — 1)?m? or (m — 2)(m — 1)m? or

s;m? or s;j(m—1)m? or s;(m—2)m? or s;(m—1)?m or s;(m—2)(m — 1)m, with
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s; > 2 and 1 < j < e, depending on whether {1, z2, z3, 4} N {y1, Y2, Y3, ya}| is
equal to 0 or 1 or 2, and whether [{z}, xs, x5, 24} N {oo0; | 1 < j < e}l is equal to
Oor 1. If y; #00j forany 1 <i <4 and1<j <e, and y;, = ¥ip, Yis = iy, but

4

these two values are not the same, then |I';| = m?* or (m — 2)m3 or (m — 2)*m?

or s;m* or s;(m — 2)m? or s;(m — 2)*m, with s; > 2 and 1 < j < e, depending
on whether |{x1, z2, 3, 24} N {y1, Y2, Y3, ys}| is equal to 0 or 1 or 2, and whether
{1, 22, x3, 24} N{o0; | 1 < j < e}|is equal to 0 or 1. If y; = co; for a unique
1 <i <4 and aunique 1 < j < e, then all y; should be distinct, and |I';| = m*

3 3or si(m—1)m? or (s; —1)m? or s;(m—1)’m

or (m—1)2m? or s;m
or (s; — 1)(m — 1)m? with s; > 2, s; > 2 and 1 < i # j < e, depending on

whether |{x1, z2, z3, 24} N {y1,v2,y3,y4}| is equal to 0 or 1 or 2, and whether

or (m—1)m

{1, 22, 23,24} N{oo; | 1 < j <e}|isequal to0or 1. In any case, we know that
|F1| Z 1. Let 31 = <O'0(T0>,0'1(T1>>, where o1 € Fl.

Suppose that there exists a set of permutations {o; € Pa’g |0 < k <
i —1 < p— 2} such that op_1(al’ 1) Now(af) = 0 and d(oy-1(al’ ) U
oi(ah),on-1(ap ) Uok(al)) > 4 for any 0 < kI <i—1and |k -1 > 2

Let Sl'fl = <O'0(T0), O'1<T1), Ce ,O'ifl(ﬂfl».

For k = i, we try to find a permutation o; € P, such that oi_1(at )N

a gi—1—1

oi(ah) =0 and d(o;_1(a, ' 1) Uoi(a}), o1 (al " _)) Uoy(ah)) > 4 for any 0 <1 <
17— 1.

Let aé = {(z1,1), (72, 12), (23,13), (24, 14) } and Ui—1(aé:_11_1) = {(y1, 1), (42, 15),
(y3,15), (ya; 13) }. Denote I'; = {0 € P,y oi(at Y No(ay) =0} C Pi. We

qz—l_l
first divide the problem into two possible cases.

(a): Suppose that {z1, 2, x3, 24} N {Y1,Y2, Y3, ya} = {00;} for some j, 1 <
J < e. Then s; > 2. For convenience, let x4 = y4 = o00;. Then b;,b;_1 € B;
and |b; Nb;_1| < 1. In a similar way to the above analysis, we can prove that
IT;| > (s; — 1)(m — 1)m? > 1. Now we choose ;¢ € I';, which satisfies that
oi—1(al ! _1) Noio(ah) = 0. If there exists an index I, 0 < I < i — 1, such that
d(oi-1(al ' 1) Uoiplap), or-1(ah _)) Uai(ah)) < 4, then exactly one of the two
blocks {b;_1,b;} belongs to B;. The reason is explained below. If b,_1,b € B;,
then since b;_1, b; € B;, we know that |(b; Ub;—1) N (b—1 Uby)| < [b; Nby—y1| + [bi—1 N
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bi—1]|+|b:Nby|+|b;i—1Nby| < 4, and hence |(Ui—l(az;_11_1)UU@O(GE))ﬂ(Ul—l(afH_}l_l)U

01(a}))| < 6, which is impossible, for in this case we would have d(ai_l(a;__ll_l) U

giolap),o1-1(a le_ll 1) Uoy(ah)) > 4. On the other hand, if b_1,b; & B;, then
(00, l1) & 01— (b~ Qg — ' ) Uo(d)) for any I} € I,;, so |(Ji_1(aé:_11_1) U aio(ag)) N
(al_l(af]lill_l) Uo(a)))] < 6, which is again impossible. Then there are two cases

to be considered: b,y € Bj, by & B;; and b, € B;, b_1 ¢ B;. We first assume that
bi_1 € B; and bl ¢ B;. Then clearly oy(a}) N S; = 0. Since we have supposed

that d(oi-1(ay, ') Uoio(ah), o0 l(alql_l1 ) Uai(ap)) < 4, e, |(0i 1(“Z 11 1)U
gio(ad))N(o_1(a fn 11 DUoi(a))))| > 7, we should have that one of |o;_(a in 1171)ﬂ

(0i-1(al _)) Uoio(ah))] and |oy(ah) N (o1 (al " _1) Uoio(al))] equals 4 and the
other at least 3. Since b_; € Bj, then |b_; Nb;| < 1 and |b—; Nbi—q| < 1,
i.e., [(bi—1 U {oo;}) N (b; Ub;_1 U{oo;})| < 3, which implies that |oy_(al " _;) N
(o5-1(al " _1) Uoio(al))] < 3. Therefore it is necessary that |oy_;(al, = 171) N
(a0 2) U ualap)] = 3 and (0 0 (010, 2) Uia(a)] = 4. Then
we can let oa(al! ) = {(@1,030(h): (v, 1), (505, 0), (5, )} and or(a) =
{(x2,0i0(12)), (x3,0:0(3)), (Y2, 15), (y3, 1) }, where & € {o,0(ly), I} IO = 0i0(ly),
no permutation o € I'; satisfies that |(o;_1(a} " _;) U a(a))) N (or-1(al ' 1) U
oy(ah))| > 7 except o = 0;9. If & = 1), then all the permutations o;; € I'; which
change (00;,0;0(l4)) to every element in {oo;} x (Z, \ {/}}) and fix the other
three points in 0;(a}) satisfy that [(o;_1(al, ' _1)Uoi1(0i0(ah))) N (o1 (al ! 1)U
o1(a})))| > 7. So for such a pair (b;_y,b;), there are at most (s; — 1) o € I; such
that d(o;_1(a, ' 1) Uo(a)),oi-1(al ' 1) Uoi(ah)) < 4. Now we compute the
number of such pairs (b;_1, b;), or equivalently, the number of such ;. There are
(g) — 2 =18 triples in {x1, z9, 3, Y1, Y2, Y3} excluding the two triples {z1, s, x3}
and {y1,v2,y3}. Since each triple occurs in exactly one block of B, each block
of B contains exactly 4 triples, |b; N {1, 22, x5} = 2, and |b; N {y1,v2, y3}| = 2,
we know that there are at most |18/4] = 4 such b,. From the assumption,
we have |I;| > (m — 1)m*(s; — 1) > 4(s; — 1), which implies that there ex-
ists at least one permutation o; € I'; such that o;_1(aj, ' _;) Noy(af) = O and
d(oi-1(al ' 1) Uoia)),o-1(al ! _)) Uoi(ah)) > 4 for any 0 <1 < i — 1. For the

case that b, € B; and b1 ¢ B;, we can also prove, in the same fashion as above,

that the same assertion holds.
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(b) Suppose that {m171'27$3714}m{y17y27y37y4} 7é {OOJ} for any jv 1 S] <

e. We further divide this case into two possible sub-cases.

(b.1): g1 = yo = xyand ys = a9, ie., 051(al ' _y) = {(x1, 1), (21, 1), (2, 13),
(ys, 1)} If yg = xo, then |I;] > min{(m — 2)*m?, (m — 2)*ms; | s; > 2} > 1. If
Y4 # To, then |T;| > min{(m — 2)(m — 1)m?, (m — 2)(m — 1)ms; | s; > 2} > 1.
In any case, we know that |I;| > 1. Assume that o;_1(a} ' _;) Noyo(ah) = 0.
We now prove that d(o;_1(a; ' _1) Uoio(ad),oi-1(a, ' 1) Uoi(ah)) > 4 for 0 <
I <i—1. If {&y, 29} C by, then |by N (b_y Ub;)| = 2. Since a)) is 4-partite, we
know that |(o;-1(a;, ' ;) Uoio(ah)) Noi(af)| < 2, which makes d(o;_1(a} ' _;) U
oi0(ah),or1(al 1) Uai(a)) > 4. If {1, 22} C b1, then since y; = y» = 21, we
know that b;_; € B; and thus b;_; ¢€ By, implying that al _1 _; is a block in some
ingredient H-design and therefore is 4-partite. So |(o;_1(aj ' ;) U oyp(a)) N

o 1) < 2, which ensures that d(o;_1(al ' _1) U oio(ad),or1(al 1) U

oy(al)) > 4. We still need to consider the case when {x;, 22} ¢ b_; and
{z1,20} & b If yy = @, then |(oi-1(a} " _1) U oig(ah)) Noy(ah)| < 2, which

makes again d(o;_ 1(@’ 11 D Uaio(ad), o 1(@21 11_1) Uoyal)) > 4. If yy # o,

then |(o;— 1((1Z 11 ) U aio(ad)) N o(a@h)] < 3 and |(o;_ 1(a1 11 D) U aio(ad)) N

or_1(ast )| < 3, which also ensures that d(o;_1(a’ ' _)Uoyo(ah), o0 1(abt U

Jl,l(a

q-1—1 qi—1—1 q-1—1
oi(ap)) = 4.
(b.2): All cases except (b.1), that is, o1 (al " 1) € {{(z1, 1), (z1, 1), (y3, 1}),

(y47 lﬁl>}7 {(xlv lll)’ (x% 1/2)7 (y37 lé)’ (y47 lﬁl)}v {<x17 lll)? <y2, lé)? (yg, lg)? (y47 lﬁl>}7 {(yh

1), (Y2, 1), (ys, 1), (ya, 1)) } }, where y; # x; for any 7 and j. A tedious calculation
shows that |T;] > min{(m — 2)m?, (m — 2)m?s;, (m — 1)*m?, (m — 1)?ms;, (m —
Dm?, (m — 1)m?s;,m*, m®s; | s; > 2} > 2(m — 2)m? > 1. Choose 0,9 € T.
Then o;_1(a’"" ) Naio(al) = 0. If there exists an index [, 0 <[ < i — 1, such

gi—1—1
that d(o;_1(ai " 1) Uoio(ad),or1(al 1) Uai(al)) < 4, then |(0;_4 (aq’l1 DU
gio(ag)) N (al_l(afnfﬁl) Uoi(ah))| > 7 Let R={r Cc X' |r C o;1(a g, 11 1)U

oiolay),r ¢ oii(al ! ), r ¢ 0i0(ah) and |r| = 3}, then |R| < (3) x (}) x 2 = 48.

Suppose that there are ; I’s such that |(o;-1(a,, Sl ) Uoio(ah))n (01—1(%?}1,1) U

oi(ah))] = 8 and ¢y U's such that |(o;_y(al 11 ) Uaiolad)) N (01—1(%7}1,1) U
-1

o _1),01(ah)} contains 4

o(ak))| = 7. For the former case, each block in {o;_;(a

triples from R. Even if there is one point in one of these two blocks with its second
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component being changed, we still have |(o;_ 1(a ' )Uoio(a 0))ﬂ(al_1(af]:_1)u
oi(ah))| > 7, that is, d(o;_1(al ' 1) Ucio(ap)
-+

qi_ ) (Ul 1( Qg 11—1) U O-I(a%))) < 4. So
there are at most max{4(m — 1) + 1,3(m +(s;—1)+1|s;>2}=4m—3
o € T'; such that d(o;_1(a), ' _,) Uo(ah), oi_1(al ! _1) Uay(al)) < 4. For the lat-

ter case, one block in {oy_1(al " _1),0,(a})} contains 4 triples and the other one
contains only one triple from R. Even if the second component of the uncommon
point is changed in the block which contains only one triple from R, we still have

[(i-1(ag, 1) Uoio(ag)) N (or-a(ag”, 1) Uai(ap))| > 7, that is, d(oi-1(ag ", 1)U
-1

io(ay)), (oi-1(ag 1) Uaoi(af)) < 4. So there are at most max{m,s; | s; > 2} =

m o € I; such that d(o;_1(a) ' _)) Uo(ah),o-1(al 1) Uai(ah)) < 4. Here,

8ty + 5ty < |R| < 48. Since t; < |R|/8 < 6, we have t1(4m — 3) +tam < t1(4dm —
3)+ (48 —8t1)m/b = t1(2.4m—3)+9.6m < 6(2.4m—3)+9.6m = 24m—18. From
the assumption that m > 5, we have 2(m — 2)m? > 24m — 18, which implies that
there exists at least one permutation o; € I'; such that o;_1(a. " _;) Noi(ad) =0

and d(o;_1(al " 1) Uoi(ah), o1-1(al " 1) Uoy(ah)) >4 for any 0 <1 <i—1.

Then we set S; = (S;_1,0:(T;)) for 1 <i <p-—2.

When £ = p — 1, we want to find a permutation o,_; € Pag—l such that

-2 1 -1 -1 2
0p72(a§p—2_1) Nop-i(ag ) =0, Upfl(agp—l—l) - aZp—l_l and d(o-p72(a'§p—2—1) N
op1(al™), o 1(ab ! ) Uoy(ah)) > 4 for any 1 < I < p— 2. By assumption,
bp—2 N by—1 = 0. This implies that o, »(ay 2 )Na, 1(a§_1) = () for any 0,1 €

1
Fp-1. Denote I'yy = {o € Pag‘l | o(ag, 1) = aqp _1}. Since b,_; € T is

replaced by the cut CSCU T, = [a8 ™", a2 ..., Ty 11 1], then, as we said in

Section 4.1, we have that a} ' N ap ' | = 0. This, together with olay 11 ) =
a‘s:l_l, shows that |[[',_41] > (m — 1) > 1. Similar to the proof in (b.2), we

can prove that there are at most (24m — 18) ¢ € I'; such that d(o,— 2(a§_22 N
o(ah™), al,l(czfll ! _)Uoy(ah)) < 4 for somel, 1 < < p—2. From the assumption,

we have (m — 1)* > 24m — 18. Thus we have proved the existence of o,_;.

Now we have finished the proof for the claim. For convenience, we use T},
to denote oy (T}) for 0<k<p-—1 Then S = [1},T},...,T,-1] satisfies the
conditions that ab ' _; Naf = 0 and d(al ' _; Uaf,al™ _; Uaf) > 4 for any
0<k,/l<p-—1and|k—I>2. Next, wewill prove § is actually a CSCU.
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To do this, we should check the distance between any two elements of C' =

(U An) U (UL, T U (U {a ~ _1Ua}). Elements of C are classified into
three types.

Type I: a € A, for some ¢, 0 < i <p—1. If b; € By, we say that a belongs
to Type Icqs, otherwise, a belongs to Type Iy.

Type II: ¢ € T; for some i, 0 < i < p — 1. If b; € By, we say that ¢ belongs
to Type Ilcqs, otherwise, ¢ belongs to Type IIy.

Type IIL: c € /) {al !y Uab}.
Since the resultant design is a CQS, we easily know the following

Case (1): d(a,a’) > 4 for any two distinct a,a’ from Type I;

Case (2): d(a,c) > 4 for any a from Type I and ¢ from Type II, 111, respec-
tively.
Since each T;, 0 <7 < p—1, is a CSCU, we have

Case (3): d(c,c) >4 for any ¢,d € T;, 0 <i < p— 1, from Type II.
For each a € Ay, from Type Iy, |[a N X;,| <2 when a € A, so

Case (4): d(c,c) > 4 for any ¢ € T; from Type Il and ¢ € T} from Type
I1.
For each a € A, from Type Icqs, we know that b; € By and |a N Xj,| < 2 when
bj € Biand a € Ay, so

Case (5): d(c,c’) > 4 for any ¢, from Type Iloqs.
If b; ¢ By, then by the definition of an H-design and our special arrangement
of B into 8" = [bo, b1, ..., b,—1], we know that |a Na'| < 1 for any a € A, and
aeA, . so

Case (6): d(c,al ' _; Ua}) >4 for any ¢ € T; from Type I1y.
If b; € By, then |a N Xp,| <2 for any a € Ay,, so

Case (7): d(c,al ' _; Ua}) > 4 for any ¢ € T; from Type Ilcqs.
Since a}) is 4-partite, we know that |a} N Xp,| <2 forany 1 <i# j <p—1, and
then

Case (8): d(c, aq L ' JUa))>4foranyceT,and 1 <i#j<p—1.

Since aj Na} _; =0 and |a, " _; Nal ;| <2, we have
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Case (9): d(ag ', Udap,al, 1 Uagt') >4,0<i<p-1.

From the property of §, we know that

Case (10): d(ai ' _y Uad,al! _ Ual) >4 for |i — 1] > 2.

Then we have proved that S is in fact a CSCU. O]

Theorem 4.2.4. In Theorem 4.2.3, if we change the condition (1) to be

(1') the block set of each ingredient design can be arranged into a CSCU with

two consecutive 4-partite blocks,

then there exists a CSCU-CQS ((mg1)™ (mga)™ ... (mgr)" : > 1<, i) when
m > max{4,s; | 1 <i<e} ands; #1 for each 1 < i <e.

Proof. Since the proof is similar to that of Theorem 4.2.3, we will look at only

those places which are different from Theorem 4.2.3.

First, without loss of generality, we may assume that both a}, and afh_l of

0,1 are 4-partite for any i, 0 <i <p — 1.

T, = |a},al,....a
Remember that in the proof of Theorem 4.2.3, we need m = 5 only in Case
(b.2). So we can omit the proof for all cases except for (b.2). We divide Case
(b.2) into two sub-cases.
(b.2.1): If ; = oo, for some ¢ and j, 1 < i < 4,1 < j < e, then
IT;| > min{(m—1)?ms;, (m—1)m?s;,m?s; | s; > 2} = (m—1)*ms; > 1. Assume

that o;_1(ai " _1)Noyo(ah) = 0. If there exists an index [, 0 < I < i—1, such that

d(oi-1(al ' 1) Uoio(ad), oi-1(al ' 1) Uai(al)) < 4, then, as we knew already in

Case (b.2) of Theorem 4.2.3, |(o;_1(a’ | )Uo;0(ad))N(o_1(alt  Uay(ah))] > 7.

gi—1—1 q-1—-1
Again, let R = {r C X' | r C oy_1(al ' _) Uoio(ah),r & os1(al ' _)),r &

i—1—1 i—1—1

o;0(ay) and |r| = 3}, and then we know that |R| < () x ({) x 2 = 48. Suppose

again that there are ¢; U's such that |(o;_1(al ' _1) U oio(al)) N (O’l_l(af];llfﬁ U
oi(ah))] = 8 and ty Us such that |(o;-1(al ' ;) U oio(al)) N (al_l(aé:,l) U
oi(ah))| = 7. For the former case, just as in Case (b.2) of Theorem 4.2.3, we

can prove that there are at most 3(m—1)4(s;—1)4+1=3m+s;—3 o € I; such

that d(o;_1(al ' ) Uo(ah),oi1(al 1) Uoi(ah)) < 4. Similarly, for the latter

case, we can prove that there are at most max{m,s;} = m o € I'; such that
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d(oi-1(a, ! _)) Uo(ah), Jl_l(aél_fl_l) Uo(al)) < 4. Since 8t; + 5ty < |R| < 48, we
have t; < |R|/8 < 6, and t;(3m~+s;—3)+tam < t1(3m+s;—3)+(48—8t;)m/5 =
ti(1dm + s; — 3) + 9.6m < 6(1.4m + s; — 3) + 9.6m = 18m + 6s; — 18. From
the assumptions that m > 4 and s; > 2, we have (m — 2)m?s; > 18m + 6s; — 18,
which implies that there exists at least one permutation o; € I'; such that

cri_l(a;__ll_l) Noi(al) =0 and d(ai_l(a;:_ll_l) Uaoi(al), Jl_l(aél_fl_l) Uay(al)) > 4

forany 0 <1 <i—1.
(b.2.2): If z; # oo; for any i and j, 1 <i <4, 1 < j <e, then the proof is
exactly the same as that for (b.2.1) except that s; is replaced by m. ]

Corollary 4.2.5. Let m > 4 and gn > 16. Assume that there exists an H(g").
If there exists a CSCU-GDD(m?*), then there exists a CSCU-GDD((mg)™).

Proof. In an H(g"), the number of blocks is Ay = gn-D(=2) " the number of

24
g*(n=1)(n—2)
6

blocks containing one point is A\; = , and the number of blocks con-

taining two distinct points is Ay = #

only if Ay > (111) (M —1) — (;1)()\2 — 1) + 1. This inequality is satisfied provided

that gn > 16. Then apply Theorem 4.2.4 with e = 0. O

. There exist two disjoint blocks if and

Theorem 4.2.6. There exists a CSCU-GDD(g*) for any g > 5.

Proof. Let X = Z; x Z,. We build an H(g*) on X with the group set G = {{i} x
Z, | i € Z,} and the block set B = {a(i,7,k) = {(0,7), (1, + 7),(2,k), (3, k +
NYlij. ke Z,}. Let T(j5,k) = (a(0,4, k), (1, j,k+1),...,a(g—1,j,k+g—1)),
T; =(T(,5),T(,j+1),....,7(j,5— 1)) and S = [Ty, T1,...,T,1]. It is clear
that S = B if we view S as a block set. We will check that S is in fact a CSCU.

It is easy to check that any two consecutive blocks in S are disjoint and
d(a(i, 7, k), (i, j', k")) > 4 for any distinct (4,7, k) and (7', j',k"). Let ¢; be the
union of two consecutive blocks. Then d(a(i, j, k), c;) > 4 for any ¢, € S. Thus
we only need to consider the distance between any two unions. We part the

unions into the following three types.
Type I Cl<i7j7 k) = Oé(i,j, k)UOé(Z+1,],k—|—1)7O <1< 9_270 < .]7k < g_]-
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Type I ¢3(j) =g — 1,7 — 1,7 =3)Ua(0,5,7),0 < j < g— 1.

We should check that any two unions from these three types have distance
more than or equal to 4. Let n, be the number of points in ¢ (7, 7, k) Ney (77, 5, k')
with the first coordinate being ¢, where ¢ € Z,. Then n, < 2 for any ¢ € Z,. If
there are at least two n,’s of the ¢, (4, j, k) Ney (7, j', k') having value no more than
1, then |c¢1(7, 7, k) Nei (7,5, k)| < 6, which means that d(c (7, j, k), c1(@, 5/, k') >
4.

Case (a): Two unions from Type I, say ¢i(4, 7, k) = {(0,7), (0,7 + 1), (1,7 +
3,(Li+J+1),(2,k), 2,k + 1), 3k + 7), 3,k + j + 1} and ai(¢, 5, F) =
(0,4, (0,4 +1), (1,4 + ), (1, + 5 +1), (2,K), (2, K +1), (3, k' +5), (3, K + ' +
1)}. We will show that |c1(, 7, k) N e (7, 7', k)| < 6 for any distinct (i, 7, k) and
(7', 7', k"). Note the fact that if [ # I’ and g > 5, then [{l,I + 1} N{l',)l' + 1}| <
1. Since each of the three parameters {i,7j,k} is related to two different first
coordinates, it is easy to check that at least two of the n,’s having value no more

than 1. The details are listed below.
1). When i #4', j # 5 and k # k', we have ng < 1 and ny < 1.
2). Wheni #4,j#j and k=Fk then k+j#k +j',s0ny <1and ng <1.
3). When i #7¢, j = j and k # k', we have ny < 1 and ny < 1.
4). When i #4', j =7 and k =k, then i+ j #i 4+ j',song <1 and n; < 1.
5). When i =14, j#j and k # k', then i+ j # i + 5/, son; <1 and ny < 1.

6). When it =14, j#j and k =k theni+j#d+j and k+j# K + 7, so
np <1 and ns <1.

7). Wheni=14,j=j and k £k then k+j#k +j',sony <1and ng <1.

Case (b): Two unions from Type I and Type II respectively, say ¢(i, j, k) =
{(0,4),(0,i+1),(1,i+4),(1,i+5+1),(2,k),(2,k+1),(3,k+7), (3, k+7+1)}
and (5", k') = {(0,9 — 1),(0,0), (1, 5" = 1), (1, ), (2, K" = 2), (2, k'), B, K" + j' —
2), (3,k'+4")}. Since 0 < i < g—21in ¢ (i, J, k), we know that ng < 1. Since g > 5,
we have [{k, k+1}N{k'—2,k'}| <1,ie., ny <1. Thend(ci(i,7, k), c2(j', k') > 4.
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Case (c): Two unions from Type I and Type III respectively, say ¢ (i, j, k) =
{(0,2), (0,i+1),(1,i4+7), (L i+5+1),(2,k), (2,k+1),(3,k+7),(3,k+7+1)} and
es(7) = {(0,9— 1), (0,0), (1,7 = 2), (1, 7), (2, 7' = 3), (2,4"), (3. 27" — 4), (3,27")}.
Since 0 <1 < g—2 and g > 5, in a similar way, we can know that ny < 1 and
ny <1.

Case (d): Two unions from Type II, say (7, k) = {(0,9 — 1), (0,0), (1,5 —
1),(1,7),(2,k=2),(2,k), (3, k+j=2), (3, k+j) } and c2 (5, k') = {(0,9—1), (0,0), (1,
G =1),(1,5), 2,k =2), (2,K), (3, k' +j —2), (3, k' +4')}, where (j, k) and (j', ¥)
are distinct. Similar to Case (a), we can show that there are at least two n,’s
having value no more than 1.

Case (e): Two unions from Type II and Type III respectively, say cs(j, k) =
{(0,9 =1),(0,0), (1,5 = 1), (1,5), (2, k = 2),(2,k), 3,k +j — 2),(3,k + j)} and
c3(5") = {(0,9=1),(0,0), (1, 5" = 2), (1,5, (2,5" = 3),(2,5), (3,25' = 4), (3,25") }.
It is readily checked that at least one of the following assertions holds:

(e.1): ny <1 and ny < 1;
(e.2): ng <1 and ng <1.

Case (f): Two unions from Type III, say c3(j) = {(0,9 — 1),(0,0), (1,5 —
2)7 (]-7.])7 (27j_3)7 (27])7 (37 2] _4)7 (37 2.])} and C3(j/> = {(079_ 1)7 (O’ 0)7 (le_
2), (L7 (2.7 —3), (2.77), (3.2 —4), (3,2)')}, where j # j'. Similar to Case ()

we can prove that there are at least two n,’s having value no more than 1.  [J

4.3 Direct Constructions

In this section, we directly construct some small CSCUs which will be used
in the recursive constructions. In order to save space, we list only a few examples.
The interested reader is referred to the authors or to the Web site [70] for a copy

of the detailed cyclic sequences of blocks.

Lemma 4.3.1. There ezists a CSCU-CQS(g" : s) for each (g,n,s) € {(4,4,2),
(4,4,4), (6,3,2), (6,3,4), (6,5,2), (6,5,4), (8,3,2), (12,3,2), (12, 3,4), (12,4, 2),
(12,4,4)}.
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Proof. We only list the sequence of a CSCU-CQS(4* : 2) on the point set X =
Z1g, with the group set G = {{i,4+¢,8 + 4,12 + i} | i € Z;} and the stem
S ={16,17}.

S=

[{6,7,12,17}, {4,10,11,16},{12,14,15,17},{2,5,7,16},{1,6,8,10} ,{2,7,9,17}, {5,10,15,16},
{0,1,2,14},{4,5,6,10},{1,3,14,16},{0,6,9,10}, {1,2,15,17},{3,6,9,16},{1,7,10,17},
{9,11,14,16},{3,5,6,17}, {2,4,13,14},{1,6,11,16},{3,13,14,17} {1,7,11,12},{2,8,9,14},
{0,7,11,13} {2,5,12,14},{4,6,7,8},{0,3,5,15},{6,10,12,13}, {1,3,4,15},{5,7,8,11},
{0,2,3,12},{4,7,9,11},{3,8,13,15}, {0,10,11,12},{2,5,9,15},{3,4,8,10},{0,6,12,15},
{2,4,8,11}, {3,9,12,15},{1,2,7,13},{4,8,14,15},{1,3,6,13},{2,4,9,10}, {0,7,12,14},
{5,6,9,11},{1,10,13,15} {3,5,9,14},{0,2,10,13}, {5,6,8,14},{0,1,3,7},{2,6,8,13},
{5,7,9,10},{1,11,13,14}, {2,5,8,10},{3,11,12,13},{0,2,5,6},{3,7,8,9},{1,4,10,14},
{2,6,9,12},{3,4,5,11},{1,2,10,12},{0,3,9,11},{1,2,4,6}, {8,10,13,14},{3,5,7,12},
{0,6,13,14} {1,3,8,11},{0,5,10,14}, {3,4,7,13},{9,10,12,14},{4,5,7,15} {1,6,12,14},
{8,9,11,15}, {0,3,4,6},{7,12,13,15},{4,6,9,14},{5,11,12,15},{0,3,8,14}, {4,11,13,15},
{0,7,8,10},{1,9,14,15},{0,2,4,7},{3,6,8,12}, {0,1,11,15},{2,7,8,12},{0,4,11,14},
{1,7,8,15},{3,4,12,14}, {0,7,9,15},{4,6,11,12},{1,3,9,10},{8,11,12,14} {1,2,3,5},
{0,4,10,15},{1,6,7,9},{0,2,8,15},{4,7,10,12},{1,2,9,11}, {8,10,12,15},{2,3,9,13},
{0,6,8,11},{5,13,14,15}, {2,3,6,7},{1,5,10,11},{0,4,9,13} {10,11,14,15} ,{5,6,7,13},
{2,4,12,15},{9,10,11,13},{1,5,8,12},{7,9,13,14},{0,1,4,5}, {2,6,11,15},{3,7,10,14},
{2,5,11,13} {1,4,9,12} {2,3,14,15}, {0,5,8,13},{2,7,10,15},{0,1,12,13} {6,7,14,15},
{4,5,8,9}, {2,7,11,14} {1,5,6,15},{8,9,12,13},{3,6,11,14} {4,5,12,13}, {6,7,10,11},
{0,1,8,9},{3,6,10,15},{1,5,7,14},{6,9,13,15}, {2,3,10,11},{4,5,14,16} {2,12,13,17},
{0,1,10,16},{2,4,5,17}, {8,9,10,16},{0,1,6,17},{3,5,10,13},{6,8,9,17},{12,13,14,16},
{5,8,15,17},{1,4,7,16},{0,5,9,12},{1,4,8,13},{5,10,12,17}, {0,2,9,16},{4,10,13,17},
{1,2,8,16},{0,9,14,17} {4,6,13,16}, {1,8,14,17},{5,6,12,16},{0,13,15,17},{7,9,12,16},
{1,4,11,17}, {0,3,13,16},{9,11,12,17},{3,5,8,16},{0,2,11,17} ,{1,12,15,16}, {3,4,9,17},
{0,6,7,16},{1,3,12,17},{0,5,11,16},{7,8,13,17}, {4,9,15,16},{0,5,7,17},{6,8,15,16},
{0,3,10,17},{8,11,13,16}, {4,6,15,17},{7,8,14,16},{6,11,13,17},{3,10,12,16},{4,7,14,17},
{2,11,12,16},{9,10,15,17},{2,3,4,16},{8,10,11,17},{0,14,15,16}, {2,3,8,17},{7,10,13,16},
{5,11,14,17},{2,13,15,16}].

Lemma 4.3.2. There exists a CSCU-GDD(g") for each (g,u) € {(3,4),(4,4),
(4,5), (6,5), (6,6)}.

Proof. We only list two examples here. First, we list the sequence of a CSCU-
GDD(3%) on the point set X = Z;, with the group set G = {{i,4+i,8+i} | i €

Z4}.

S= [{0,1,2,3},4,5,6,7},{8,9,10,11},{0,1,6,7},{4,5,10,11},{8,9,2,3}, {0,1,10,11},
{4,5,2,3},{8,9,6,7},{0,5,10,3},{4,9,2,7},{8,1,6,11}, {0,5,2,7},{4,9,6,11},
{8,1,10,3},{0,5,6,11},{4,9,10,3},{8,1,2,7}, {0,9,6,3},{4,1,10,7},{8,5,2,11},
{0,9,10,7},{4,1,2,11},{8,5,6,3}, {0,9,2,11},{4,1,6,3},{8,5,10,7}].
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Next, we list the sequence of a CSCU-GDD(4%) on the point set X = Z¢
with the group set G = {{i,4+i,8 + 14,12+ i} | i € Z,}.

S=  [{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15},{0,1,6,7}, {4,5,10,11},{8,9,14,15},
{2,3,12,13},{0,1,10,11},{4,5,14,15}, {2,3,8,9},{6,7,12,13},{2,3,4,5},{0,1,14,15},
{6,7,8,9}, {10,11,12,13},{0,2,5,7},{4,6,9,11},{8,10,13,15},{1,3,12,14},{0,5,6,11},
{4,9,10,15} {3,8,13,14} {1,2,7,12},{0,5,10,15}, {3,4,9,14},{2,7,8,13} {1,6,11,12},
{2,4,7,9},{6,8,11,13}, {1,10,12,15},{0,3,5,14},{4,6,13,15},{0,2,9,11},{1,3,8,10},
{5,7,12,14} {0,6,9,15},{3,4,10,13},{1,7,8,14},{2,5,11,12}, {0,3,9,10},{4,7,13,14},
{1,2,8,11},{5,6,12,15} {2,4,11,13}, {1,6,8,15},{3,5,10,12},{0,7,9,14},{1,3,4,6},
{0,2,13,15}, {5,7,8,10},{9,11,12,14} {0,3,6,13},{1,4,7,10},{5,8,11,14} {0,7,10,13},
{5,9,12,15},{1,4,11,14},{2,5,8,15} {3,6,9,12}, {1,2,4,15},{0,11,13,14},{3,5,6,8},
{7,9,10,12}]. u

Lemma 4.3.3. There exists a CSCU-HSQS(v : s) for each (v, s) € {(16,4), (20, 8),
(22,10), (26,10)}.

Proof. Here we only list the sequence of a CSCU-HSQS(16 : 4) on the point set
X = Zy¢ with the hole set {0,1,2,3}.

S= [{34,11,12},{0,1,6,7},{8,9,10,11},{0,1,4,5},{2,3,6,7}, {8,9,12,13},{0,2,4,6},
{8,9,14,15},{0,2,5,7},{8,10,12,14}, {0,3,4,7},{8,10,13,15},{0,3,5,6},{8,11,12,15},
{4,5,6,7}, {8,11,13,14},{2,3,4,5},{12,13,14,15},{1,3,5,7},{10,11,14,15}, {1,3,4,6},
{10,11,12,13},{1,2,5,6},{9,11,13,15},{1,2,4,7}, {9,11,12,14},{0,1,10,15},{2,7,8,9},
{0,1,11,14},{2,7,10,15}, {0,1,12,13},{2,7,11,14},{9,10,12,15},{3,6,11,14},{0,1,8,9},
{3,6,10,15},{2,7,12,13},{4,5,10,15},{3,6,8,9},{0,2,12,15}, {4,5,8,9},{3,6,12,13},
{4,5,11,14},{1,3,12,15},{9,10,13,14}, {5,6,12,15},{0,2,8,10},{4,5,12,13},{0,2,9,11},
{1,3,8,10}, {0,2,13,14},{1,3,9,11},{4,7,8,10},{1,3,13,14},{4,7,9,11}, {5,6,8,10},
{2,4,9,13},{0,3,8,11},{4,7,13,14},{1,5,10,12}, {0,3,9,13},{4,7,12,15},{5,6,13,14},
{0,3,10,12},{2,4,8,11}, {0,3,14,15},{5,6,9,11},{2,4,10,12},{1,5,9,13},{0,4,8,12},
{1,5,14,15},{6,7,10,12},{2,4,14,15} ,{1,5,8,11},{6,7,9,13}, {0,4,10,14},{6,7,8,11},
{0,4,9,15},{2,6,11,13},{3,5,8,12}, {0,4,11,13},{6,7,14,15},{3,5,11,13},{2,6,10,14},
{3,5,9,15}, {1,7,8,12},{3,5,10,14},{2,6,8,12},{1,7,10,14},{2,6,9,15}, {0,5,8,13},
{1,7,9,15},{0,5,12,14},{4,6,11,15},{0,5,9,10}, {1,7,11,13},{4,6,12,14},{3,7,8,13},
{0,5,11,15},{4,6,8,13}, {3,7,11,15},{4,6,9,10},{3,7,12,14},{1,2,8,13},{3,7,9,10},
{1,2,12,14},{0,6,13,15},{1,2,9,10},{0,6,8,14},{1,2,11,15}, {0,6,9,12},{5,7,8,14},
{1,4,13,15},{0,6,10,11},{5,7,13,15}, {1,4,9,12},{5,7,10,11},{1,4,8,14},{5,7,9,12},
{2,3,8,14}, {1,4,10,11},{2,3,13,15},{0,7,9,14},{2,3,10,11},{0,7,8,15}, {1,6,9,14},
{0,7,11,12},{1,6,8,15},{2,5,10,13},{3,4,8,15}, {1,6,10,13},{2,3,9,12},{0,7,10,13},
{2,5,9,14},{3,4,10,13}, {2,5,11,12},{3,4,9,14},{1,6,11,12},{2,5,8,15}]. []

Lemma 4.3.4. There ezists a BSCU(v) for each v € {20, 22,26, 34, 38}.
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Proof. Here we only show the existence of a BSCU(20). Take X = ZjgU {0} as
the point set. Let

A= [{04,5,6},{2,7,12,14},{1,3,4,9},{0,8,14,17},{00,1,7,9}, {5,11,18,2},
{07173a7}7{2>6»11717}7 {00,1,10713},{14716,18,2},{7,157076},{1,8,9,12}7
{576713715}7 {1,2,12,17},{%,879,13}]7

and S = [A,A+1,A+2,..., A+18], where additions are taken modulo 19. Then
S is the required BSCU(20). O

4.4 Existence of BSCUs

First, we denote the set of all positive integers v such that an S(¢, K, v) exists
is denoted by By (K).

Theorem 4.4.1. ([33]) B3({4,5,6}) = {v >0 | v =0,1,2 (mod 4) and v #
9,13}.

Lemma 4.4.2. ([59]) There exists a BSCU(v) for v € {14, 16,32, 46, 56}

Lemma 4.4.3. If there exists a CSCU-GDD(g"), then there exists a CSCU-
GDD((mg)™) for any integer m > 3.

Proof. Combining Lemma 4.3.2 with Theorem 4.2.6, we know that there exists a
CSCU-GDD(m?) for any m > 3.

Let S = [by,...,b,—1] be the CSCU-GDD(g"). For any b, € 5, there is a
CSCU-GDD(m?), denoted S;, on the point set b; x I,,, for any integer m > 3. Let
S" = [S0,...,54-1]. Then it is easy to check that S’ is a CSCU-GDD((mg)").

0

Lemma 4.4.4. There ezists a CSCU-CQS(12" : s) for each s € {8,10} and
n > 4.

Proof. For each n = 0,1 (mod 3) and n > 4, there exists an S(3,4,2n + 2).
Deleting two points from this design yields a 2-FG(3, ({3}, {3}, {4}),2n) of type
2". By counting the numbers of blocks in the S(3,4,2n + 2) containing ¢, where
t = 0,1,2, common points, we can know that in the 2-FG(3, ({3}, {3}, {4}), 2n)
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of type 2", when n > 4, there exist two disjoint blocks with one of size 4 and
the other of size 3. For each s € {8,10}, applying Theorem 4.2.3 with a CSCU-
CQS(6° : s — 6) and a CSCU-GDD(6*), we obtain a CSCU-CQS(12" : s). Here,
the ingredient designs come from Theorem 4.2.6 and Lemma 4.3.1.

For any n = 2 (mod 3) and n > 5, there is a CQS(6"3 : 0) by Lemma 3.4.3.
For n = 5,8, 11, it can be checked from the detailed construction in [55] for each
of these CQS(6™5" : 0) that there exist two disjoint blocks a and b intersecting
two groups, say ¢g; and ¢o, in two points, respectively. So there are two points
y € g1 and z € g not covered by a and b. Choose x € a N g, and delete z,y.
Then we obtain a 2-FG(3, ({3,5},{3,5},{4,6}), 10) of type 2" with two disjoint
blocks a \ {x} € By and b € 7. For n > 14, let z,y be two points from different
groups ¢, gy, respectively, and g be a group disjoint from a block containing z, y.
By deleting = and y, we obtain a 2-FG(3, ({3,5},{3,5},{4,6}),2n) of type 2"
with two disjoint blocks ¢, \ {x} € By and g € 7. Then for each s € {8,10}, by
applying Theorem 4.2.3 with a CSCU-CQS(6® : s—6), a CSCU-CQS(6° : s—6), a
CSCU-GDD(6%) and a CSCU-GDD(6%), we obtain a CSCU-CQS(12" : s), where
the ingredient designs come from Theorem 4.2.6, Lemmas 4.3.1 and 4.3.2. O]

Lemma 4.4.5. There exists a BSCU(v) for each v = 8,10 (mod 12) and v > 12.

Proof. For each v € {20,22,32,34,46}, there is a BSCU(v) by Lemmas 4.3.4 and
4.4.2. For v = 44, there is a BSCU(v) by applying Theorem 4.1.1.(1) with a
BSCU(22).

For each v = 8,10 (mod 12) and v > 56, there is a CSCU-CQS(12" : s)
where v = 12n 4+ s, n > 4 and s € {8,10} by Lemma 4.4.4. Then by applying
Theorem 4.2.2 with a CSCU-HSQS(12+s : s), we obtain a CSCU-HSQS(12n+s :
12 + s), and furthermore, by applying Theorem 4.2.1 with a BSCU(12 + s), we
obtain a BSCU(12n + s), where the ingredient CSCU-HSQSs come from Lemma
4.3.3. O

Lemma 4.4.6. There exists a CSCU-GDD(12%) for each u € {5,6}.

Proof. From Lemma 4.3.2, we know that there exists a CSCU-GDD(4°). Apply-
ing Lemma 4.4.3 with m = 3, we obtain a CSCU-GDD(12%).
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From Theorem 1.1.1, we know that there exists an H(3%). Applying Corollary
4.2.5 with a CSCU-GDD(4%) from Lemma 4.3.2, we obtain a CSCU-GDD(12°).
O

Lemma 4.4.7. There exists a CSCU-CQS(12™ : s) for each n € {5,8} and
s €{2,4}.

Proof. For each n € {5,8}, there is an S(3,5,3n + 2) in [28]. Deleting two points
gives a 2-FG(3, ({4}, {4}, {5}), 3n) of type 3", which is also a 1-FG(3, ({4}, {4,5}),
3n) of type 3". By counting the numbers of blocks in the S(3, 5, 3n+42) containing
t, where t = 0, 1, 2, common points, we can know that in the 2-FG(3, ({4}, {4}, {5}).
3n) of type 3", when n = 5,8, there exist two disjoint blocks with one of size 5
and the other of size 4. For each s € {2,4}, by applying Theorem 4.2.4 with a
CSCU-CQS(4 : 5), a CSCU-GDD(4%) and a CSCU-GDD(4°), which come from
Lemmas 4.3.1 and 4.3.2, we obtain a CSCU-CQS(12" : s). O

Lemma 4.4.8. There exists a CSCU-CQS(12" : s) for s € {2,4} andn =0,1,3
(mod 4), n > 7, n # 8,12.

Proof. For each n = 0,1,3 (mod 4), n > 7 and n # 8,12, there exists an
S(3,{4,5,6},n+ 1) (X,B) by Theorem 4.4.1. Let z,y be two points of X, and
by, ba, ..., b, be the blocks in B containing both x and y. Then {b; \ {z,y}, b2\
{z,y},..., by \ {z,y}} is a partition of X \ {z,y}, and 2 < |b; \ {z,y}| < 4 for
i=1,2,...,w. Let u € by \ {z,y}, v € by \ {x,y}, and b be a block containing
both u and v. If w > 7, which would happen if n > 27, then there must exist one
b; \ {z,y}, say i = iy, which is disjoint with b. Deleting u from this 3-BD yields a
1-FG(3, ({3,4,5},{4,5,6}),n) of type 1" with two disjoint blocks b\{u} € B; and
bi, € T. For each n = 1,3 (mod 6), there exists an S(3,4,n + 1). By counting
the numbers of blocks in the S(3,4,n + 1) containing ¢, where t = 0, 1,2, com-
mon points, we can know that there exist two disjoint blocks b, when n > 7.
Deleting one point x € b from this 3-BD yields a 1-FG(3, ({3}, {4}),n) of type
1™ with two disjoint blocks b\ {z} € By and ¥/ € 7. For n = 16, there exists an
S(3,5,17) from [28]. By the same method as above, we know that there exists a
1-FG(3, ({4}, {5}),n) of type 1" with two disjoint blocks, one in 13; and the other
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in 7. For n = 20,24, there exist an S(3,6,22) and an S(3,6,26) from [25]. In a
similar fashion, we can prove the existence of two disjoint blocks in each of these
two Steiner systems. Deleting two points from one of these two disjoint blocks
yields a 1-FG(3, ({4,5},{5,6}),n) of type 1™ with two disjoint blocks, one in B;
and the other in 7. For n = 11,17,23, just as in the proof of Lemma 4.4.4, we
can know that there exist two disjoint blocks in the CQS(6nTJrl : 0). Deleting one
point from one of these two disjoint blocks yields a 1-FG(3, ({3,5},{4,6}),n) of
type 1™ with two disjoint blocks, one in B; and the other in 7. Now for each
s € {2,4}, by applying Theorem 4.2.3 with a CSCU-CQS(12" : s) and a CSCU-
GDD(12"1) for each h € {3,4,5}, we obtain a CSCU-CQS(12" : s). Here, the
ingredient designs come from Theorem 4.2.6, Lemmas 4.3.1,4.4.6 and 4.4.7. [

Lemma 4.4.9. There exists a BSCU(12n+s) for s € {2,4}, n=0,1,3 (mod 4),
n >4 andn # 12.

Proof. For each n = 0,1,3 (mod 4), n > 4 and n # 12, there exists a CSCU-
CQS(12™ : s) for s € {2,4} by Lemmas 4.3.1, 4.4.7 and 4.4.8. Then by apply-
ing Theorem 4.2.2 with a CSCU-HSQS(12 + s : s) and Theorem 4.2.1 with a
BSCU(12 + s), we obtain a BSCU(12n + s). Here, the ingredient designs come
from Theorem 4.1.1, Lemmas 4.3.3 and 4.4.2, where the BSCU(14) in Theorem
4.1.1 is actually a CSCU-HSQS(12 + 2 : 2). O

Lemma 4.4.10. There exists a BSCU(48n + 26) for any n > 0.

Proof. A BSCU(26) was shown in Lemma 4.3.4. For each integer n > 1, as was
shown in the proof of Lemma 4.4.4, there exists a 2-FG(3, ({3}, {3}, {4}),2(3n +
1)) of type 23"+ with two disjoint blocks, one being of size 4 and the other
of size 3. Applying Theorem 4.2.3 with a CSCU-CQS(8% : 2) and a CSCU-
GDD(8%), we obtain a CSCU-CQS(163"™ : 10). Then by applying Theorem
4.2.2 with a CSCU-HSQS(26 : 10) and Theorem 4.2.1 with a BSCU(26), we
obtain a BSCU(48n + 26). Here, the ingredient designs come from Theorem
4.2.6, Lemmas 4.3.1, 4.3.3 and 4.3.4. [

Lemma 4.4.11. There exists a BSCU(12n+s) forn € {1,3,12} and s € {2,4}.
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Proof. For each v € {14, 16,38}, there is a BSCU(v) by Lemmas 4.3.4 and 4.4.2.
For each v € {40, 148}, there is a BSCU(v) by applying Theorem 4.1.1.(1) with
a BSCU(u) for u € {20,74} in Lemmas 4.3.4 and 4.4.10, respectively.

For v = 146, there exists an S(3,6,26) in [28]. Deleting two points gives
a 2-FG(3, ({5}, {5},{6}),24) of type 4%, which is also a 1-FG(3, ({5}, {5,6}),24)
of type 45. Tt can be easily shown that this 2-FG(3, ({5}, {5}, {6}),24) has two
disjoint blocks with one of size 6 and the other of size 5. Applying Theorem
4.2.3 with a CSCU-CQS(6° : 2), a CSCU-GDD(6°) and a CSCU-GDD(6%), we
obtain a CSCU-CQS(24° : 2). Then applying Theorem 4.2.2 with a CSCU-
HSQS(26 : 2) and Theorem 4.2.1 with a BSCU(26), we obtain a BSCU(146).
Here, the ingredient designs come from Theorem 4.1.1, Lemmas 4.3.1 and 4.3.2,
where the BSCU(26) in Theorem 4.1.1 is actually a CSCU-HSQS(26 : 2). O

Lemma 4.4.12. There exists a BSCU(v) for v =28 (mod 48).

Proof. Combining Lemmas 4.4.9 and 4.4.11, we have the fact that there exists a
BSCU(12n + 2) for each n =1 (mod 2). Then apply Theorem 4.1.1.(1). O

Combining Lemmas 4.4.5 and 4.4.9-4.4.12, we have the following conclusion.

Theorem 4.4.13. The necessary conditions for the ezistence of a BSCU(v),
namely, v = 2,4 (mod 6) and v > 4, are also sufficient with two exceptions

v =8, 10.






Chapter 5

Fault-Tolerant Routings with Levelled

Minimum Optical Indices

The design of fault-tolerant routings with levelled minimum optical indices plays
an important role in the context of optical networks. However, not much is known
for the existence of optimal routings with levelled minimum optical indices be-
sides the results established by Dinitz, Ling and Stinson via the partitionable
Steiner quadruple systems approach. In this chapter, we introduce a new con-
cept of a large set of even levelled Fg—design of order v and index 2, denoted by
(v, 153) ,2)-LELD, which is equivalent to an optimal, levelled (v — 2)-fault tolerant
routing with levelled minimum optical indices of the complete network with v
nodes. Based on the theory of 3-wise balanced designs and partitionable cande-
labra systems, several infinite classes of (v, f_’;, 2)-LELDs are constructed. As a
consequence, the existence problem for optimal routings with levelled minimum

optical indices is solved nearly one-third.

5.1 Introduction

The design of routings in optical networks has been a topic of considerable
recent interest (see, for examples, [2, 5, 6, 7, 53]). In the model of WDM opti-
cal networks, namely, wavelength division multiplexing optical networks, routing
nodes are joined by fiber-optic links, and each link can support some fixed num-
ber of wavelengths. Each routing path uses a particular wavelength, and two
paths must use different wavelengths if they have common links. Most research
concentrates on determining the minimum total number of wavelengths used in
the network, which is related to two basic invariants — the arc-forwarding and

optical indices. The f-tolerant arc-forwarding and f-tolerant optical indices were
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introduced by Manuch and Stacho when they considered the fault-tolerant issues
in [53]. The parameter f represents the number of faults that can be tolerated
in the optical network. That is, we can provide a routing between any two nodes
even if some number (up to f) of nodes and/or links fail. In this chapter, we

focus on the fault-tolerant routings in the complete optical network.

We first review definitions of several desirable properties that we are going to
investigate in the setting of fault-tolerant routings. These terms have previously
been defined in papers such as [0, 21, 22].

Let G = (V(G), A(Q)) be a symmetric directed graph, i.e., (u,v) € A(G)
implies (v,u) € A(G). An f-fault tolerant routing is a set of directed paths in G,
say Ry = {P;(u,v) : u # v,0 < i < f}, where the following two properties are
satisfied:

1. every P;(u,v) is a directed path in G from vertex u to vertex v, and

2. for all vertices v and v where u # v, the f + 1 paths P;(u,v) (0 <1i < f)
are internally vertex disjoint.

For 0 <i < f, define £; = {Pi(u,v) : u # v}, which is called the ith level
of the routing. For convenience, we write R in the form Ry = (Lo, L1,...,Ly).
It is clear that R; = (Lo, L4, ..., L;) is a j-fault tolerant routing, for 0 < j < f.
Therefore an f-fault tolerant routing can be regarded as a sequence of j-fault
tolerant routings for 0 < j < f, namely, (Ro,...,Ry).

The load 7 (e) on an arc e € A(G) is defined to be the number of paths in
the routing that contain the arc e. Define 7 (R;) = max{7 (e) : e € A(G)}.
Further, define 7 ;(G) = ming, {7 (Ry)} and call 7 ;(G) the f-fault tolerant
arc-forwarding index of G. The routing R; is said to be optimal if 7 ((G) =
T (Ry), and to be optimal, levelled if 7 ;(G) = 7 (R;), for all 0 < j < f.

Let n > 2 be a positive integer and let I—(_)n denote the complete symmetric

directed graph on a set of n vertices, say X. By [15, 21, 22], we have

Theorem 5.1.1. Suppose there is an f-fault tolerant routing of I_(Zn, say Ry =
(Lo, Lq,...,Lf). Then0 < f <n—2 and ?f(f(_)n) >2f+1foral f,0< f <
n — 2. Furthermore, equality is attained (i.e., the routing is an optimal, levelled

routing) if and only if the following properties are satisfied:
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1. Ly consists of all the arcs in I—(Zn (that is, Ly comprises n(n — 1) directed

paths, each having length one), and

2. for1 < j<mn—2,L; consists of n(n—1) directed paths, each having length

H
two, such that every arc in K, is in exactly two directed paths in L;.

The following theorem was proved in [15, 21, 22].

Theorem 5.1.2. [15, 21, 22| For each integer n > 2, there exists an optimal,
levelled (n — 2)-fault tolerant routing of I_(>n

Let W be a set of wavelengths. A wavelength assignment to the directed
paths in Ry is defined to be amap a : Ry — W such that a(P) # «(@)) whenever
P,Q € R; are two directed paths that share a common arc. Let w(R;) denote
the minimum cardinality of a set VW such that an assignment of wavelengths for
Ry exists that satisfies the previous property. Denote w ;(G) = ming, {w (Ry)}
and call W ;(G) the f-fault tolerant optical index of G. It is obvious that w ;(G) >
7 ;(G). An optimal, levelled f-fault tolerant routing R; is said to have minimum
optical indices if W (R;) = w;(G) for all i such that 0 <i < f.

For 0 <1 < f, construct a graph whose vertices are the directed paths in £;.
Two vertices are defined to be adjacent if they have a common arc. This graph
is called the path graph of L;. In many applications, it could be desirable that
wavelength assignments for R;_; do not change when we determine wavelength
assignments for R;. Under this assumption, it is easy to see that we require
at most §; “extra” wavelengths when we proceed the assignment from R; ; to
R;, where ¢; is the chromatic number of the path graph of £;, for 0 < ¢ < f.
Define wr(R;) = Zé‘:o §;, 0 < i < f. Tt is clear that w(R;) < wWr(Ry).
An optimal, levelled f-fault tolerant routing R is said to have levelled minimum
optical indices if W (R;) = w,;(G) for all i such that 0 < i < f. A routing having
levelled minimum optical indices has minimum optical indices. The converse is

not true. Here is a counterexample given in [15].

Example 5.1.3. [15] The unique 1-fault tolerant routing of I—(_; has minimum

optical indices, but it does not have levelled minimum optical indices.
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Proof. The unique 1-fault tolerant routing R, of }?3 on X ={0,1,2} is as

follows:
Lo :(0,1)%,(0,2)% (1,0)",(1,2)%(2,0)*, (2,1)*
Ly:(0,2,1)",(0,1,2)",(1,2,0)% (1,0,2)*(2,1,0)% (2,0,1)?

Here, the superscripts denote wavelengths. The wavelength assignment shows
that W (Re) = 1 and W (R;) = 3, which is minimal.

It is clear that w;(Ry) = w(Re) = 1. However, when we proceed the
assignment from Ry to Ri, three “extra” wavelengths should be used. That is
w L(R1) = 4. Therefore, the routing R; does not have levelled minimum optical

indices. O

The path graph of Ly contains no edges, so g = 1. For each i, 1 < i < f,
the path graph of £; is a union of disjoint cycles. It is straightforward that
é

Wr(Rs) > 7i(K,) > 2i+ 1, equality holds when &; = 2 for all 1 <14 < f, which

happens if and only if all the cycles have even length. So we have

Theorem 5.1.4. An optimal, levelled (n — 2)-fault tolerant routing of I—(>n, say
Riu—2 = (Lo, L1,...,Ln_2) has levelled minimum optical indices if and only if the
following property is satisfied:

3. The path graph of each L; (1 <i <n —2) has only even cycles.

Based on the theory of 3-wise balanced designs and partitionable cande-
labra systems, Ji [39] gave a simple new proof for the existence of large sets of
Steiner triple systems. In this chapter, via a similar approach we will concentrate
on constructing optimal, levelled (n — 2)-fault tolerant routings R,_» with lev-
elled minimum optical indices of the complete directed graph ?n The following

results are known.

Theorem 5.1.5. [15] For eachn, 5 < n < 8, n = 4% orn = 2(p* + 1) with
p € {7,31}, there exists an optimal, levelled (n — 2)-fault tolerant routing of l?n

that has levelled minimum optical indices.

The chapter is organized as follows. In Section 5.2, we first define a new class

of combinatorial objects, large sets of even levelled (n,ﬁg,Q)—design (LELDs),
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which are equivalent to the optimal, levelled (n — 2)-fault tolerant routings with
levelled minimum optical indices. Then, we present a recursive construction
for LELDs by using the theory of 3-wise balanced designs and partitionable
candelabra systems. In Section 5.3, some small ingredient designs are constructed
directly. Combining these ingredient designs together with the recursive methods
established in Section 5.2, we are able to give several infinite classes of LELDs
in Section 5.4, which imply the existence of the corresponding routings having

levelled minimum optical indices.

5.2 Definitions and Recursive Constructions

Let ]3; = (a, b, ¢) be a directed path which contains two arcs (a, b) and (b, c).
Let )\I—(Z be the directed multigraph on n vertices in which each ordered pair of
vertices is joined by A arcs. A Fg-decomposz'tion of /\}?n is a partition of the arcs
of /\l?n into paths isomorphic to F;, which is also called a F)g—design of order n and
index A and denoted by (n, 13)3, A)-design. A similar concept of Ps-decomposition
of the undirected graph was given in [10]. If a set B of F; paths contains exactly
one path from u to v for every two vertices u,v of }?n, then we call the set B
a level. A level is said to be even if its path graph has only even cycles. An
(n, F;, 2)-design is said to be levelled (even levelled) if it is a level (an even level),
which is denoted by (n, ]?3, 2)-LD ((n, F;, 2)-ELD).
A large set of (n, 163), 2)-LD, denoted by (n, Fg), 2)-LLD, is a partition By, B,
.., B,_o of all 1;3) paths in l—(z such that each B; forms an (n, ?3, 2)-LD. If each
B; is even levelled, then we call the partition a large set of (n, f_’;, 2)-ELD, which
is denoted by (n, ]33), 2)-LELD.

As a consequence of Theorems 5.1.1 and 5.1.4, we have the following theorem.

Theorem 5.2.1. Suppose that By, B, ..., B,_s form an (n,F;, 2)-LLD. Let Ly
consist of all arcs in l_()n, L; consist of all paths in B;, 1 < 1 < n — 2, then
Ru—2 = (Lo, L1,...,Lu_2) is an optimal, levelled (n — 2)-fault tolerant routing of
[_(:1. The reverse is also true. Furthermore, R,_o has levelled minimum optical
indices if and only if By, Bs, ..., B,_o form an (n, E, 2)-LELD.

By Theorems 5.1.2 and 5.1.5, we have the following corollaries.
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Corollary 5.2.2. There exists an (n, F—’;, 2)-LLD for any integer n > 2.

Corollary 5.2.3. For each n, 5 < n < 8, n = 4% orn = 2(p* + 1) with
p € {7,31}, there exists an (n, F;,Q)—LELD.

In the remainder of this section, we will present a recursive construction for
LELDs via partitionable candelabra systems having even levelled property. First,
we give some notations and terminology. The interested reader may refer to [14]

for the undefined terms as well as a general overview of design theory.

A candelabra F;;-system of order n, denoted by (n, E;)-CS, is a quadruple
(X, S,G, A) that satisfies the following properties:

H
1. X is the vertex set of K,;;
2. S is a subset of X of size s;

3. G = {G1,Gy, ...} is a set of non-empty subsets of X \ S, which partition
X\ S,

4. A consists of all ]?3 paths of I?n not contained in any subgraph spanned by
S UG for each G € G.

A group divisible Fg—design of order n and index A, denoted by (n, F;,/\)-
GDD is a triple (X, G, B) such that

__)
1. X is the vertex set of K,,;
2. G ={G1,Gq,---} is a set of nonempty subsets of X which partition X;

3. B is a family of ]?3 paths of l?n) such that each path intersects any given

group in at most one point;

4. each arc from two different groups is contained in exactly A paths of B.

By the group type of an (n, IB;)—CS and an (n, 133), A)-GDD, we use the same
notations as t-CS and GDD(¢, K, v) respectively. An (n, ]3;, 2)-GDD (X, G, B) is
called a level, denoted by (n, ]3;, 2)-LGDD, if B contains exactly one path from
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u to v, for every two vertices u, v from two different groups. An (n, f’;, 2)-GDD
is called even levelled, denoted by (n, f’;, 2)-ELGDD, if it is an even level, that is
its path graph has only even cycles.

An (n,ﬁg)—CS of type (g‘l“gém. Lg% o s) (X, S,G,A) with s > 2 is called
partitionable, denoted by (n, Pg)—PCS, if the path set A can be partitioned into
components A, (r € G,G € G) and Ay, As, ..., A, o with the following two
properties: (i) for any z € G and G € G, A, is the path set of an (n, F;, 2)-GDD
of type 1"*~I¢(|G| + s)! with G U S as the long group; (i) for 1 < i < s — 2,
(X\S,G,A)isan (n— s, ]3;;, 2)-GDD of type g{*g52 ... g% . If each component
of an (n, .F;,)—PCS is levelled (even levelled), then we denote it as (n, F;)—LPCS
((n, P5)-ELPCS).

In order to use an (n, ]%)—ELPCS to construct an (n, ]3;, 2)-LELD, we need a
holey large set. Let X be an n-element set and Y be an s-subset of X with s > 2.
Let X® and Y ® denote all Pd paths in the complete symmetric directed graph
on X and Y, respectively. A holey large set of (n, P3,2) LD on X with a hole
Y, denoted by (n, s; f_)g), 2)-HLLD, is a partition of X6 )\ Y® into components
Ai, As, ..., A,_o with the properties that (1) for 1 < i < n — s, each (X, .4;)
is an (n, f_’3),2)—LD; (2) forn —s+1<i<n-—2 each A; is the path set of an
(n, f_’;, 2)-LGDD of type 1" *s! with the long group Y. If each component of an
(n,s; f_’;, 2)-HLLD is even, then we denote it by (n, s; [_)3), 2)-HLELD.

A generalized F;—fmme, denoted by F(Fg,v{m}), is a collection of triples
{(X,G,B,) : r € X}, where X is the vertex set of [_(:,:n), G is a partition of X
into v sets of m points each, such that (X \ G,G\ {G},B,) is a ((v—1)m, Fg), 2)-
GDD of type m?~! for each r € G and G € G, U,exB, consists of all the 53)
paths intersecting every given group in at most one point, and all B,.,r € X are
pairwise disjoint. If each component of an F(Fg, v{m}) is levelled (even levelled),
then we denote it by LF(F;, v{m}) (ELF(F;, v{m})).

Now, we give several recursive constructions for LELDs.

Theorem 5.2.4. Suppose there ezists an H(g") and an ELF(P3,4{m}) then
there exists an ELF(Pg,n{gm}).

Proof. Let (X,G,B) be an H(g"). Let X' = X x Z,, and ' = {G' = G x Z,
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G € G}. We will construct an ELF(E;, n{gm}) on X’ with group set G'.

For each B € B, construct an ELF(Fg,ZL{m}) on B x Z,, with group set
{x x Z,, : © € B}. Denote the path set by Ap which can be partitioned into 4m
subsets Ag(z,1), (z,i) € BX Z,,, such that each Ag(x,1) is a (3m, F;, 2)-ELGDD
of type m?® on (B \ {z}) x Z,, with group set {y x Z,, : y € B\ {x}}.

For each x € X and ¢ € Z,,,, let C(z,i) = U,cpegAn(w,1). It is easy to
check that C(x,7) is a (gm(n — 1),1?3,2)—ELGDD of type (gm)"~! with group
set '\ {G" : x € G}. In fact, since every two distinct blocks B and B’ from
the set {B : x € B € B} have at most one common point besides z, every two
paths from Ag(z,7) and Ap/(z,7) respectively have no common arc. Then by
the definition of path graph, C(x,1) is even.

Since all C(x,7) with z € X and ¢ € Z, are disjoint, they form an ELF(F;,
n{gm}). O

Theorem 5.2.5. Suppose there exists an (n, J?;)-ELPCS of type (gagigs? ... g% :
s) withn =3, ;. aigi+go+s. If thereis a (g;+s, s; ]3)3, 2)-HLELD for1 <i<r,
then there is an (n, go + s; 13;, 2)-HLELD. Furthermore, if a (go+ s, F’;, 2)-LELD
exists, then there is an (n, ]3;, 2)-LELD.

Proof. Let (X,S,G, A) be the given (n, f_’;)—ELPCS of type (ghgigs? ... g% : s).
By the definition, A can be partitioned into subsets A, (y € G and G € G)
and A; (1 <i < s — 2) with the properties that each 4, is the path set of an
(n, [_’3), 2)-ELGDD of type 1"71¢1=5(|G| + s)! with the long group G'U S and that
each (X \ S,G, A;) is an (n — s, ?3, 2)-ELGDD of type gigitgs® - - g .

Let Gy be the special group with |Gg| = go. For each G € G with G # G,
suppose the given (|G| + s, s; 133), 2)-HLELD consists of |G| (|G| + s, Fg, 2)-ELDs
with path sets B, (y € G) and s — 2 (|G| + s, ]3;, 2)-ELGDDs of type 1/¢s! with
the long group S and path sets BY (1 <i<s—2).

For cach y € G, G € G with G # Gy, let C, = A,|JB,. Since the path
graph of C, is the disjoint union of path graphs of A, and By, each (X,C,) is
an (n,]3>3,2)—ELD. For 1 <i<s—2 let C; = AiU(Ugeg.ara, BY)- Tt is easy
to check that the path graph of C; is also the disjoint union of path graphs of
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all its components. Then each C; is the path set of an (n, ﬁ;, 2)-ELGDD of type
1"79075(go +s)' with the long group GoUS. So {C,:y € G € G,G # Go} U{ A, :
y € Go} J{Ci: 1 <i<s—2} forms an (n, gy + s; ]3)3, 2)-HLELD.

Finally, suppose the given (go + s, f_)g), 2)-LELD on Go|JS has gy + s — 2
disjoint (go + s, ]?3, 2)-ELDs with path sets B, (y € Gy) and B; (1 <1i <s—2),
respectively. Then the (X, A4, UB,) and the (X,C; | B;) are all (n, F;, 2)-ELDs,
and these n — 2 ELDs form an (n, ]?3, 2)-LELD. O

Theorem 5.2.6. Suppose that there exists an e-FG(3, (K, Ko, ..., K¢, Kr),> i,
a;g;) of type gi*gs? ... g% . If there is an (mky +t, J?;)-ELPCS of type (m* : t)
for each ky € Ky, an ELF(F;, (ki + 1){m}) for each k; € K;, 2 <i <e, and an
ELF(F;, k{m}) for each k € Kr, then there is an (m>_;_, a;g;+t+(e—1)m, ]33))—
ELPCS of type ((mg1)*(mg2)®...(mg,)* :t+ (e — 1)m).

Proof. Let (X,G, Ay, Ao, ..., Ae, Ar) be an e-FG(3, (K1, Ko, ..., K¢, K7),> i,
a;g;) of type ¢7'¢gs*...g%. Let S = {oo} x Z,, where s =t + (e — 1)m. We
shall construct the desired design on X' = (X x Z,,) U S with the group set
G ={G"' =G x Z,, : G € G} and the stem S, where (X x Z,,) NS = (.

Denote G, = {z} x Z,, for x € X and G4 = {G, : x € A} for any subset
A of X. Denote S; = {oo} x Z; and S; = {oo} x {t + (i — 2)m,t + (1 — 2)m +
L..t+(t—=1m—-1}for2<i<e.

For each block A € A;, construct an (m|A|+t, E))—ELPCS of type (mHl : ¢)
on (A x Z,,)US] having group set G4 and stem S;. Denote its path set by Da.
By the definition, D4 can be partitioned into subsets Dy(z,i) ((z,i) € A X Z,)
and Da(j) (2 < j <t — 1) with the properties that each Dy(z,i) is the path
set of an (m|A| + ¢, P, 2)-ELGDD of type 1™04=Y(m + ¢)! with the long group
G, U S; and that each (A X Z,,,, Ga,D4(j)) is an (m]A|,153),2)—ELGDD of type
mlAl

For each block A € A;, 2 < i < e, construct an ELF(F;;, (JA| + 1){m}) on
(A X Z,,) U S; having group set G4 U {S;}. Denote its path set by C4. By the
definition, C4 can be partitioned into subsets Ca(z,7) ((z,7) € (A x Z,,) U S;)
with the property that each C4(z,%) is the path set of an (m|A]|, ]33), 2)-ELGDD



110 ZHEJIANG UNIV, PH.D. DISSERTATION

of type ml4l with the group set G4 when x = oo or (G4 U {S;}) \ {G.} when
x €A

For each block A € Ar, construct an ELF(F;, |A[{m}) on A x Z,, having
group set G 4. Denote its path set by B4. By the definition, B4 can be partitioned
into subsets Ba(z,i) ((x,i) € A x Z,,) with the property that each Bs(z,17) is
the path set of an (m(|A| — 1), 13;, 2)-ELGDD of type m/!4=! with the group set
Ga\{G.}.

For any x € X and i € Z,,, let

Flai)=( J Pa@d))JO U Ca@d)|J( |J Bal.i).

r€AEA, r€AEA;2<i<e z€EAEAD

For any 2 <i <t —1, let

F(oo,1) = U Da(00,1).
AeA

Foranyt+ (j—2m<i<t+(j—1)m—1,2<j<e,let

F(oo,i) = | J Caloo,).

AcA;

Let

F=( U FanlUl( U Fleei).

xEX,iEZm 2S’L§871

For each z € G and i € Z,,, F(xz,i) is the path set of an (m>_,_, a;g; + ¢ +
(e — 1)m, F;, 2)-ELGDD of type 1m(P::1“i9F|G|)(m|G| +t+ (e — 1)m)! with the
long group G’ U S. Each (X',G', F(00,7)) is an (my_,_, aigi,E;,Q)—ELGDD of
type (mg1)™ (mgs)® ... (mg,)*. So they form an (m ) _, a;g;+t+(e—1)m, ]?3)—

ELPCS of type ((mg1)® (mgs)® ... (mg,)* :t+ (e — 1)m). O

5.3 Direct Constructions

Lemma 5.3.1. There does not exist a (3h, IB;, 2)-ELGDD of type h* for any odd
integer h > 0.



CHAPTER 5 FAULT-TOLERANT ROUTINGS WITH LEVELLED MINIMUM
OPTICAL INDICES 111

Proof. Suppose that there exists a (3h,1’:—’;,2)—ELGDD of type h3, then we can
construct such a design (X, B) on Zs, with group set {{i,i +3,...,7i + 3(h —
D} : 0 < i < 2}, where |B| = 6h*. From the definition, we know that the
three vertices in each path are from distinct groups, i.e., distinct modulo 3. For
each B = (2,y,2) € B, let B = (x,y,2) (mod 3) be the path restricted to
Zs. Let A ={B e B|B € {(0,1,2),(1,2,0),(2,0,1)}} and A’ = {B € B|B e
{(0,2,1),(2,1,0),(1,0,2)}}. Then it is easy to check that B is the disjoint union
of A and A’. Since any two paths coming from A and A’ respectively have no
common arc, they can not be in the same cycle in the path graph of B. But
|A| = |A'| = 3h? is odd, neither A nor A’ can be partitioned into even cycles

only, which leads to a contradiction. O]

By Lemma 5.3.1, we have the following corollaries.

Corollary 5.3.2. Let h > 0 be an odd integer and s > 3. There does not exist
an ELF(F;,,ZL{h}) and a (3h + s, E;)—ELPCS of type (b : s).

By an exhaustive computer search, we have
Lemma 5.3.3. There does not ezist an (8, f_’;)—ELPC'S of type (23 : 2).

Lemma 5.3.4. There ezist both a (9,]?3, 2)-LELD and a (10,33,2)—LELD.

Proof. We construct the design on Z,, for each n € {9,10}. We list the paths
of the initial (n, ]3;, 2)-ELD, which will be developed under the automorphism
grop G=(012 ... n—=3)(n—2)(n—1)).

n=9: (0,2,1) (1,2,0) (2,3,0) (3,8,0) (4,8,0) (54,00 (6,5,0) (7,6,0) (8,7,0)
(0,1,2) (1,4,2) (2,6,1) (3,7,1) (4,5,1) (5,7,1) (6,8,1) (7,5,1) (8,6,1)
(0,1,3) (1,4,3) (2,8,3) (3,8,2) (4,6,2) (57,2) (6,5,2) (7,3,2) (8,4,2)
0,2,4) (1,3,4) (2,7,4) (3,7,4) (4,6,3) (52,3) (6,4,3) (7,8,3) (8,6,3)
(0,3,5) (1,0,5) (2,0,5) (3,1,5) (4,1,5) (5,3,4) (6,8,4) (7,6,4) (8,5,4)
(0,3,6) (1,0,6) (2,5,6) (3,0,6) (4,1,6) (5,3,6) (6,7,5) (7,3,5) (8,2,5)
0,4,7) (1,6,7) (2,4,7) (3,2,7) (4,0,7) (58,7 (6,0,7) (7,2,6) (8,5,6)
0,4,8) (1,7,8) (2,1,8) (3,1,8) (4,5,8) (5,0,8) (6,2,8) (7,0,8) (8,1,7)
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n=10:

0,2,1) (1,2,0) (2,3,0) (3,7,0) (4,7,0) (5,4,0) (6,4,0) (7,5,0) (8,6,0) (9,8,0)
(0,1,2) (1,4,2) (2,4,1) (3,9,1) (4,6,1) (5,6,1) (6,9,1) (7,8,1) (8,5,1) (9,7,1)
(0,1,3) (1,4,3) (2,7,3) (3,9,2) (4,6,2) (5,3,2) (6,8,2) (7,5,2) (8,9,2) (9,6,2)
(0,2,4) (1,3,4) (2,6,4) (3,8,4) (4,2,3) (5,8,3) (6,7,3) (7,9,3) (8,6,3) (9,5,3)
(0,3,5) (1,0,5) (2,8,5) (3,2,5) (4,9,5) (5,8,4) (6,5,4) (7,9,4) (8,3,4) (9,7,4)
(0,3,6) (1,0,6) (2,0,6) (3,7,6) (4,9,6) (5,1,6) (6,3,5) (7,4,5) (8,2,5) (9,4,5)
(0,4,7) (1,5,7) (2,87 (3,0,7) (4,1,7) (52,7) (6,5,7) (7,2,6) (8,7,6) (9,3,6)
(0,4,8) (1,6,8) (2,9,8) (3,1,8) (4,3,8) (5,0,8) (6,7,8) (7,1,8) (8,1,7) (9,0,7)
(0,5,9) (1,5,9) (2,1,9) (3,1,9) (48,9 (56,9) (6,0,9) (7,2,9) (8,0,9) (9,0,8)

It is readily checked that the path graph consists of a 28-cycle and a 62-cycle. [

Lemma 5.3.5. There exists an ELF(]3>3,4{2}).

Proof. We construct the design on Zg with group set {{i,i +4} : 0 < i < 3}.
We first construct below an initial (6, f—);, 2)-ELGDD of type 2 on the group set
{{i,i+4} : 1 < i < 3} with the path graph consisting of four 6-cycles.

(2,1,7) (2,3,1) (2,53) (27,5 (3,1,6) (3,2,1) (3,5,2) (3 6,5)

(6,3,5) (6,5,7) (1,2,3) (6,7,1) (7,2,5) (7,5,6) (7,6,1) (1,6,7)

6,2,7 (7,1,2) (5,6,3) (1,7,2) (5,3,2) (5,7,6) (6,1,3) (17376)
Developing the above paths under the automorphism group G = (7 : i — i + 1),
we get eight (6, ]3)3, 2)-ELGDDs all together, which form an ELF(§,4{2}). O

Lemma 5.3.6. There exists an ELF(?3,5{4}).

Proof. We construct the design on Zyy with group set {{i,7 + 5,7 + 10,7 4+ 15} :
0 <i < 4}. We list the path set of an initial (16, 13;, 2)-ELGDD of type 4* on the
group set {{i,i+5,i4+10,i+15} : 1 < i < 4} with a multiplicative automorphism
group G’ = ((0)(1 3 9 7)(2 6 18 14)(4 12 16 8)(5 15)(10)(11 13 19 17)).

(19,12,8) (13,2,6)  (9,16,17) (9,8,7) (6,19,8)  (6,13,7)  (1,14,2)
(13,7,14) (16,18,4) (16,7,9)  (1,19,17) (4,12,11) (16,3,7)  (14,17,1)
(13,6,4)  (6,4,17)  (19,8,1)  (13,6,17) (17,6,9)  (6,3,12)  (11,19,13)
(6,8,2) (6,19,13) (8,17,11) (1,17,8)  (18,2,9)  (17,16,8) (9,17,8)
(8,6,14)  (7,1,13)  (4,18,7)  (14,8,16) (18,1,14) (8,2,19)  (1,8,14)
(4,11,18)  (1,7,4) (19,3,6)  (8,16,4) (11 3,17)  (7,3,9)  (14,8,11)
(12,3,4)  (7,19,6)  (2,14,18) (1,18,9)  (4,7,6) (19,11,7)

The path graph of this ELGDD consists of one 188—cycle and one 4-cycle. Devel-
oping the initial ELGDD under the automorphism group G = (7w : i — i+ 1), we
get twenty (16, 133), 2)-ELGDDs all together, which form an ELF(F;;, 5{4}). O
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Lemma 5.3.7. There ezists an ELF(]?;;,6{4}).

Proof. We construct the design on Zy4 with group set {{i,7 + 6,7 + 12,7 + 18} :
0 <i < 5}. We list the path set of an initial (20, ]3;, 2)-ELGDD of type 4° on the
group set {{7,7+6,i+12,i+18} : 1 < i < 5} with a multiplicative automorphism
group G' = (n : i — 17i).

(15,5,20)  (19,3,22)  (11,13,21) (11,7,20)  (14,3,7)  (9,14,22)  (10,17,19)
(9,14,7) (5,19,14)  (15,4,19)  (8,16,21)  (15,11,16) (9,23,19)  (7,21,22)
(11,19,22)  (2,3,16) (3,16,23)  (9,4,13) (21,5,22)  (21,2,13)  (21,19,20)
(14,17,22)  (19,17,15) (13,15,16) (3,19,14)  (20,3,22)  (20,10,15) (15,20,22)
(16,15,23) (11,20,1)  (11,21,10) (20,23,16) (14,5,16)  (10,14,21) (15,14,17)
(8,19,23)  (7,3,17) (10,13,23) (13,21,20) (7,16,8)  (23,22,20) (3,19,16)
(8,1,4) (9,11,8) (1,16,20)  (9,13,17)  (16,14,19) (7,23,21)  (10,19,9)
(1,5,8) (14,9,10)  (17,20,7)  (17,2,13)  (20,19,11) (20,9,7) (15,16,2)
(11,13,4)  (21,8,23)  (3,13,20)  (20,11,3)  (10,23,7)  (16,17,13) (22,17,3)
(21,7,10)  (14,16,1)  (1,20,15)  (8,19,15)  (8,22,19)  (21,1,16)  (19,4,11)
(21,23,1)  (4,1,21) (13,22,2)  (13,14,23) (23,15,19) (16,2,3) (11,9, 16)
(11,16,13)  (15,5,13)  (14,3,23)  (16,19,2)  (7,22,20)  (17,21,22) (10,23,13)
(2,21,4) (23,2,10)  (9,1,10) (11,21,8)  (4,7,11)  (1,9,16) (16,3,17)
(13,11,14)  (17,14,19) (1,8,4) (10,9,5) (1,23,22)  (3,2,11) (8,9,17)
(13,10,8)  (7,22,15)  (15,17,7)  (3,10,1) (16,7,9)  (11,4,3) (21,17,19)
(3,4,5) (22,23,20) (10,7,17)  (7,5,14) (1,8,21)  (4,1,2) (4,14,13)
(14,16,5)  (22,7,9) (1,17,3) (22,2,21)  (14,9,11)  (13,20,21) (22,14,5)
(19,10,9)  (4,20,1) (19,2,23)  (1,20,9) (19,15,10)  (3,4,2) (1,15,2)
(2,4,15) (22,21,11)  (10,11,2)  (4,8,17) (8,13,16)  (23,10,8)  (13,3,5)
(10,13,3)  (22,15,1)  (8,15,22)  (10,14,11) (9,20,4)  (14,13,15) (5, 10,20)
(7,16,9) (8,5,13) (20,21,13)  (5,7,3) (23,10,2)  (13,2,15)  (7,20,5)
(17,14,1)  (10,11,1)  (5,16,19)  (2,17,22) (5 2,1) (7,8,3) (4,23, 20)
(23,15,7)  (4,5,9) (1,17,10)  (5,1,9) (5,9,2) (20,16, 23)

The path graph of this ELGDD consists of two 152-cycles, two 6-cycles and one
4-cycle. Developing the initial ELGDD under the automorphism group G = (7

i — i+ 1), we get twenty four (20, ]33), 2)-ELGDDs all together, which form an
ELF (P}, 6{4}). 0

Lemma 5.3.8. There exists an (11, .F;)-ELPCS of type (3% : 2).

Proof. We construct the design on Z;; with the group set {{i,i+3,i+6} : 0 <
i < 2} and the stem {9,10}. We first construct an initial (11, 13;, 2)-ELGDD of
type 195! with the long group {0,3,6,9,10} and the following path set.
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(9,2,4) (4,3,2) (0,2,8) (5,9,4) (0,5,2) (0,8,5) (1,2,0) (1,4,3) (3,1,4)
(7,9,2) (2,8,3) (10,7,2) (7,8,10) (7,0,1) (7,0,4) (2,1,6) (5,6,7) (7,4,6)
(2,6,5) (10,2,7) (4,9,5) (1,3,5) (8,4,6) (1,0,7) (8,4,9) (6,7,4) (5,1,10)
(0,5,4) (7,10,5) (5,7,9) (6,4,1) (6,2,5) (4,1,6) (10,4,5) (6,8,2) (4,0, 7)
(2,5,0) (9,8,7) (2,9,7) (2,3,8) (8,7,10) (8,10,7) (6,5,8) (7,3,8) (4,7,3)
(5,8,0) (3,7,5) (5,3,2) (8,5,3) (0,2,7) (4,0,1) (9,5,1) (2,4,10) (3,4 8)
(3,1,2) (1,0,4) (1,8,9) (1,5,10) (3,7,1) (8 2,0) (5,10,1) (10,1,8) (7,5,0)
(1,9,8) (1,10,2) (7,1,3) (4,10,8) (8,9,1) (3,4,7) (8,3,5) (2,1,9) (10,8,1)
(8,6,4) (6,1,7) (2,6,1) (0,8,1) (4,5,9) (2 10,4) (5,2,3) (5,7,6) (8,6,2)
(7,2,9) (9,7,8) (1,7,6) (4,8,0) (5,6,8) (9,1,5) (9,4,2) (10,5,4) (4,2,10)

It is readily checked that the path graph consists of four 6-cycles and one 66-cycle.
Developing the paths under the automorphism group G = ((0123456 7 8)(9)(10)),
we get nine (11, f—’;, 2)-ELGDDs all together, which form an (11, F;)-ELPCS of
type (3% : 2). O

Lemma 5.3.9. There ezists a (14, E;)-ELPCS of type (43 : 2).

Proof. We construct the design on Z;4 with the group set {{i,i+3,i+6,i+9} : 0 <
i < 2} and the stem {12, 13}. We list below the path sets of two initial (14, f’;, 2)-
ELGDDs of type 186! with the long group {0, 3,6,9, 12,13}, both of which have
an automorphism group G’ = ((0)(1 5)(2 10)(3)(4 8)(6)(7 11)(9)(12)(13)).

The first initial ELGDD with the path graph consisting of two 74-cycles and one
4-cycle:

(1,13,8) (0,2,10) (8,0,4) (8,11,9)  (5,12,7)  (6,1,7)  (10,9,8)
(2,4,10) (7,1,0)  (11,10,13) (13,5,1)  (9,2,1)  (3,11,8)  (12,2,7)
(3,4,10) (9,4,11) (11,13,7)  (7,12,2)  (1,11,13) (2,0,5)  (4,2,3)
(0,4,1)  (5,3,8)  (7,1,9) (1,6,7)  (11,12,4) (13,10,2) (5,7,6)
(11,1,8) (7,5,3)  (1,10,3)  (12,4,8)  (8,11,0)  (4,13,2)  (2,13,1)
(7,3,10)  (5,10,0) (4,8,6) (5,4,12)  (8,1,13)  (13,4,11) (8,0,11)
(0,5,11)  (5,8,1)  (5,2,9) (2,7,11)  (2,8,6)  (5,0,2)  (3,10,1)
(9,11,2)  (7,8,12) (2,6,8) (11,10,6) (4,9,11)  (10,8,13) (2,12,7)
(6,10,4) (1,6,2)  (11,9,1)  (2,5,9)  (3,11,7) (12,1,5)  (8,3,1)
(8,9,2)  (6,7,10) (2,11,0)  (4,2,12)  (8,3,5)  (13,11,4) (12,1,2)
(0,11,8)  (7,6,1)  (6,8,5) (10,5,12) (9,5,8)  (2,11,3)

The second initial ELGDD with the path graph consisting of two 76-cycles:

(7,11,13)  (9,4,1) (10,2,12) (4,8,1) (10,12,8)  (1,8,9) (8,12,7)
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Let G =

(8,3,2)
(11,7,12)
(8,4,13)
(3,10,4)
(7,3,4)
(1,4,6)
(3,4,7)
(4,12,8)
(7,4,2)
(10,0,7)

(
(
(
(
(
(
(
(
(
(

11,5,3)
0,5,2)
1,6,10)
8,1,12)
11,0,1)
12,10,5)
13,7,5)
13,4,2)
1,9,8)
2,4,6)

(
(
(
(
(
(
(
(
(
(

1,9,7)
7,13,8)
5,0,10)
12,11, 10)
2,10,1)
4,10, 3)
5,10,13)
12,5,7)
0,2,5)
2,7,3)

((0246810)(13579 11)(12)(13)).

10,13,2)
5,12,1)
7,4,0)
10,4,0)
:2)
4,11)
0,5,13)
3,11,5)
5,6,8)

(
(
(
(
(3,
(6
(1
(
(
(13,2,7)

—_

1 2 6)
9,2,11)
2,3,5)
0,4,11)
10,6,11)
5,7,12)
13,5,4)
10,0,4)

o~~~ o~~~ o~ o~ —~

Developing the above

two initial designs under the automorphism group G, we get twelve (14, F;, 2)-
ELGDDs all together, which form a (14, P;)-ELPCS of type (4% : 2). O

Lemma 5.3.10. There exists an (18, E;)-ELPC’S of type (4*: 2).

Proof. We construct the design on Z3 with the group set {{i,i+4,i+8,i+12} :
0 < i < 3} and the stem {16, 17}. Let

G=(012345678910 111213 14 15)(16)(17)), and G’ = (n

i — Ti).

We list below the path set of an initial (18, Fg), 2)-ELGDD of type 126 on Zs
with the long group {0,4,8,12,16,17} and the automorphism group G’, where
the path graph consists of one 264-cycle and three 4-cycles.

(6,12,1)
(6,15,2)
(15,10,1)
(8,15,3)

(5,17,6)

(17,2,3)

(7,13,12)
(2,8,9)

(13,8, 1
(13,0,2
(11,3,0
(6,3,17
(4,6,5)
(5,6,10)
(9,4,3)

)
)
)
)

:3)
8,5, 13)

(1,

(
(2,11,6)
(0,1,3)
(3,0,14)
(0,3,13)
(10,3,9)
(1,14, 16)
(9,2,16)
(16,6,11)
(9,11,15)
(16,7,6)
(17,13,6)
(14, 10,0)
(14,3,12)

(6,4,14)
(15,6,3)
(13,4,9)
(11,17,1)
(16,2,15)
(13,7,16)
(14,0,3)
(3,16,13)
(4,3,6)

(5,8,3)

(9,5,12)
(9,0,6)

(6,16,5)
(6,11, 16)
(7,11,0)

(1,13,14)
(3,2,8)
(15,0,13)
(4,2,9)
(2,17,13)
(5,13,14)
(8,6,1)
(17,3,13)
(3,1,16)
(4,13,1)
(5,1,0)
(13,2,6)
(14,2,13)
(14,1,17)
(15,6,17)

(8,14,6)
(13,11,12)
(15,9,8)
(13,3, 10)
(4,11,13)
(6,13,7)
(12,9,13)
(10,1,8)
(1,17,15)
(16,1,2)
(6,2,0)
(0,15,1)
(11,10,8)
(13,2,5)
(6,2,12)

(0,10,6)
(9, 16, 10)
(4,2,15)
(4,9,3)
(17,5,7)
(10,17, 15)
(3,5,1)
(11,4,5)
(9,16, 14)
(1,12,6)
(0,15, 14)
(14,11,7)
(1,8,11)
(2,4,14)
(17,6,9)
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(14,5,16) (11 9,12)  (13,15,17) (2,10,12) (14,13,5) (7,1,6) (16,9,3)
(15,10,11)  (5,2,4) (1,11,17)  (2,14,7)  (9,1,0) (3,15,4) (5,8,1)
(12,11,6) (1 12,7) (10,16,5)  (13,8,14) (6,15,11) (17,1,14)  (8,13,9)
(0,7,15) (1,7,9) (4,7,14) (1,4,5) (9,1,4) (3,6,9) (9,4,1)
(14,1,9) (11,16,13)  (11,5,9) (16,9,7)  (1,15,13)

Developing the above initial design under the automorphism group G, we get
sixteen (18, ]?3, 2)-ELGDDs all together, which form an (18, _F;)-ELPCS of type
(4% :2). O

Lemma 5.3.11. There exists a (22, E,))—ELPCS of type (4° : 2).

Proof. We construct the design on Zsy with the group set {{i,7+5,i+10,i+15} :
0 <i <4} and the stem {20,21}. Let

G=(01234567891011 1213 14 15 16 17 18 19)(20)(21)), and
G' = ((0)(1397)(26 18 14)(4 12 16 8)(5 15)(10)(11 13 19 17)(20)(21)).

We list below the path set of an initial (22, 13;, 2)-ELGDD of type 16 on Zy,
with the long group {0, 5,10, 15, 20,21} and the automorphism group G’, where
the path graph consists of one 180-cycle, one 88-cycle, two 60-cycles, one 40-cycle

and one 4-cycle.

(5,11,12)  (6,10,13) (1,14,16)  (0,3,13)  (1,16,12)  (7,0,19)  (7,8,17)
(3,18,17)  (18,8,0)  (6,0,4) (18,17,4) (19,12,5)  (0,16,7)  (19,20,12)
(7,21,14)  (10,9,4)  (2,1,5) (8,7,17)  (5,1,3) (12,7,14)  (7,10,2)
(7,6,0) (15,11,6)  (7,3,6) (19,21,1)  (18,5,16)  (21,2,3)  (10,12,9)
(21,13,17)  (9,3,1)  (6,7,2) (4,10,16) (10,3,19)  (12,8,18)  (1,19,20)
(11,0,13)  (8,20,14) (14,17,19) (4,21,12) (5,6,11) (0,6,4) (16,6,5)
(6,9,17) (9,6,21)  (13,9,21)  (3,5,4) (18,21,9)  (12,7,4)  (17,2,4)
(17,9,2) (16,14,9) (20,8,11)  (11,8,4)  (19,16,2)  (1,8,4) (5,3,4)
(11,16,0)  (4,10,19) (15,4,2) (16,18,3) (19,11,10) (20,13,7)  (8,6,3)
(17,7,5) (4,8,13)  (4,15,14)  (17,12,1) (11,15,19) (7,8,15)  (9,13,15)
(8,13,19)  (16,3,0)  (1,5,14) (8,7,10)  (10,2,6) (7,3,9) (8,12,20)
(21,13,12)  (17,0,9)  (15,6,11)  (2,20,9)  (18,1,20)  (18,8,15)  (11,13,14)
(19,15,4)  (7,20,11) (11,17,1)  (18,11,2) (14,18,10) (4,13,15)  (7,19,10)
(6,17,18)  (2,14,12) (20,1,12)  (12,11,9) (14,15,1)  (0,14,2)  (15,13,3)
(7,13,1) (11,18,2) (18,15,3)  (20,6,14) (21,4,6) (17,14,20)  (18,16,21)
(2,16,13)  (4,11,21) (17,18,19)
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Developing the above initial design under the automorphism group G, we get
twenty (22,?3,2)—ELGDDS all together, which form a (22,]?3)-ELPCS of type
(4° - 2). O

Lemma 5.3.12. There exists a (20,?;)—ELPCS of type (6% : 2).

Proof. We construct the design on Zsy with the group set {{i,i +3,...,i+ 15} :
0 <i <2} and the stem {18,19}. Let

G=(0246810121416)(13579 11 13 15 17)(18)(19),
(0)(157 17 13 11)(2 10 14 16 8 4)(3 15)(6 12)(9)(18)(19)), and
G’ = ((0)(1 7 13)(2 14 8)(3)(4 10 16)(5 17 11)(6)(9)(12)(15)(18)(19)).

We list below the path set of a (20, F;, 2)-ELGDD of type 128" on Zy, with the
long group {0,3,6,9,12,15,18,19} and the automorphism group G’. The path

graph consists of one 54-cycle, one 264-cycle and one 6-cycle.

(7,2,19) (10,3,16)  (2,6,14) (4,16,15)  (3,13,1) (17,13,19) (7 17, 11)
(8,0,5) (5,0,17)  (15,11,16) (11,12,14) (3,4,8) (8,4,17) (3,
(4,0,16) (0,8,10)  (17,18,4)  (4,12,17)  (4,10,0) (0,2,5) (4 19, 11)
(1,7,0) (1,5,2) (15,16,13)  (5,14,10)  (13,5,18)  (16,10,12) (7,15,13)
(4,1,3) (6,17, 7) (6,8,2) (13,7,3) (4,18,8) (5,16,18)  (2,6,4)
(8,11,0) (12,4,7)  (14,12,7)  (7,12,8) (11,9,17)  (9,14,2) (0,1,14)
(1,16,11) (17 56)  (13,4,9) (8,1,19) (13,18,11)  (11,19,7)  (2,7,18)
(17,6,7) (1,2,8) (3,7,10) (19,17,16)  (17,11,3)  (9,7,5) (2,11,15)
(12,13,4)  (16,19,2) (7,6,10) (2,11,12)  (14,1,13)  (18,1,2) (17,2,0)
(14,15,16)  (16,8,19) (2,10,16)  (0,16,7) (10,5,9) (17,19,10)  (14,11,3)
(5,1,12) (18,17,1)  (7,9,16) (15,13,5)  (9,2,13) (13,14,12)  (6,1,16)
(2,3,8) (13,0,7)  (12,17,14) (10,2,18)  (19,1,11)  (10,3,17)  (1,14,15)
(9,11,16)  (5,13,15) (4,9,13) (10,8,13)  (10,15,14) (6,11,17)  (16,17,13)
(2,18,13)  (19,4,14) (5,15,2) (11,14,9)  (11,10,1)  (13,16,6)  (14,3,17)
(18,14,4)  (11,4,2)  (4,7,6) (14,8,9) (8,16,6) (18,4,17)  (1,9,16)
(12,4,5) (19,2,1)  (15,5,14)

Developing the above initial design under the automorphism group G, we get
eighteen (20, ]3;, 2)-ELGDDs all together, which form a (20, ]%)—ELPCS of type
(63 :2). O

Lemma 5.3.13. There exists a (32,13;)—ELPCS of type (6° : 2).
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Proof. We construct the design on Z3, with the group set {{i,i +5,...,i+ 25} :
0 < i <4} and the stem {30,31}. Let

G:<(01234567891011 1213 14 1516 17 18 19 20 21 22 23 24 25 26
27 28 29)(30)(31)), and
G' = ((0)(1 719 13)(2 14 8 26)(3 21 27 9)(4 28 16 22)(5)(6 12 24 18)(10)(11
17 29 23)(15)(20)(25)(30)(31)).
We list below the path set of a (32, Fg), 2)-ELGDD of type 128" on Z3, with the

long group {0, 5, 10, 15, 20, 25, 30,31} and the automorphism group G’. The path
graph consists of one 752-cycle, four 36-cycles, two 18-cycles and one 4-cycle.

(24,30,28)  (28,17,14) (19,24,25) (12,7,13)  (24,8,10)  (15,13,23) (29,17,12)
(26,31,29) (27,8,2)  (2,13,27)  (6,13,25)  (16,5,7) (19,4,6) (11,23,26)
(28,30,11)  (16,9,27)  (22,17,13) (8,22,20)  (31,21,13) (17,29,11) (21,23,30)
(9,29,10)  (12,2,18) (18 7,23)  (16,26,12) (10,22,26) (27,18,4)  (23,28,16)
(28,30,16)  (5,13,23)  (25,3,7) (23,22,25)  (0,22,12)  (28,29,4)  (23,13,7)
(2,24,15)  (18,11,28) (18 14,9)  (5,28,18)  (17,12,19) (7,10,19)  (15,17,8)
(6,4,27) (16,24,21)  (6,25,29)  (21,30,8)  (20,7,2) (16,15,24)  (2,4,1)
(5,8,9) (12,22,1)  (3,16,30)  (21,16,25) (15,16,9)  (24,17,2)  (26,9,19)
(12,21,15)  (26,25,11) (18,1,24)  (19,8,26)  (24,5,21)  (8,3,26) (22,19,2)
(20,8,11)  (17,20,16) (14,26,5)  (10,13,19) (15,23,13) (0,14,7) (9,13,24)
(19,23,1)  (3,19,4)  (21,14,24) (20,2,12)  (13,30,22) (28,26,20) (31,22,9)
(14,29,0)  (3,16,19)  (12,20,27) (31,17,18) (15,24,16) (22,28,11) (22,9,10)
(29,7,31)  (20,12,1)  (0,6,11) (1,25,8) (4,8,11) (3,5,29) (19,0, 28)
(16,7,1) (30,6,23)  (17,30,1)  (7,14,22)  (29,22,16) (25,28,14) (15,21,6)
(2,20,18)  (17,3,15)  (2,5,28) (7,5,17) (11,15,2)  (26,31,12)  (4,30,27)
(3,11,26)  (13,31,27) (11,12,6)  (28,13,22) (23,24,14) (11,21,10) (29,23,9)
(18,27,2)  (12,22,16) (17,19,20) (11,3,30)  (13,2,17)  (5,12,14)  (28,15,2)
(1,22,0) (2,19,22)  (21,4,20)  (8,15,1) (4,7,15) (11,22,0)  (5,8,28)
(3,17,13)  (2,14,25)  (17,3,8) (0,2,21) (8,0,27) (30,18,12)  (27,25,3)
(22,24,3)  (18,10,8)  (24,28,23) (10,18,23) (29,26,19) (19,31,8)  (21,6,0)
(5,6,1) (7,10,29)  (19,18,30) (4,26,30)  (4,9,8) (1,23,15)  (25,12,23)
(16,23,0)  (0,21,16)  (17,23,24) (12,24,30) (27,23,19) (8,1,14) (4,27,31)
(19,0,7) (23,25,12) (23 5,21)  (26,29,10) (20,21,28) (3,29,5) (27,26, 23)
(31,1,17)  (23,22,27) (12,4,5) (1,26,18)  (29,3,27)  (8,15,16)  (3,27,24)
(3,12,15)  (8,17,31) (9 12, 27) (30,7,4) (11,8,16)  (30,12,8)  (27,13,22)
(31,13,1)  (24,3,13)  (11,24,5)  (19,3,22)  (14,2,26)  (18,9,13)  (19,27,9)
(31,11,8)  (1,21,12)  (26,9,3) (25,16,4)  (0,6,14) (4,19,5) (21,25, 14)
(24,2,0) (25,1,12)  (14,3,24)  (9,29,18)  (7,18,10)  (1,9,5) (13,1,18)
(23,3,11)  (30,8,21)  (1,8,31) (3,20,22)  (25,13,3)  (10,4,18)  (7,12,20)
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(18,24,6)  (10,21,3)  (2,10,9)  (24,23,16) (30,26,28) (8,12,13)  (14,19,17)
(13,15,21)  (24,22,8)  (10,2,28)  (2,22,6)  (7,20,11)  (27,16,17) (19,11,27)
(27,30,9)  (3,0,11)  (8,24,11)  (4,10,29)  (18,0,29)  (12,24,31) (22,2,1)
(20,1,3)  (22,23,25) (8,29,30)  (7,9,2) (9,0,1) (11,20,29) (26, 1,28)
(16,10,18) (4,28,24)  (18,3,20)

Developing the above initial design under the automorphism group G, we get
thirty (32,5;,2)—ELGDDS all together, which form a (32,1?’;)—ELPCS of type
(6° : 2). O

Lemma 5.3.14. There exists a (23,]33))—ELPCS of type (63 :5).

Proof. We construct the design on Zss with group set {{i,i+3,...,i+15}:0 <
i < 2} and stem {18, 19, 20,21, 22}. Let

Gy=(0246810121416)(13579 11 13 15 17)
Go,=1{((0246810121416)(1357911 1315 17)
0)(15717 13 11)(2 10 14 16 8 4)(3 15)(6 12
G =
G// —

(
( 18
(0)

((0)(1 713)(2148)(3)(4 10 16)(5 17 11)(6)(9)
(
(
(

(9

e T e N

22)), and
((0)(1 5717 13 11)(2 10 14 16 8 4)(3 15)(6 12)(9)(18)(19)(20)(21)(22),
06 12)(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(18)(19)(20)(21)(22)).

We list below the path set of an (18, E; 2)-ELGDD of type 6% on Z;3 with group
set {{i,i+3,...,i+ 15} : 0 < i < 2} and the automorphism group G”. The path
graph consists of six 36-cycles.

(4,9,5)  (17,16,3) (10,8,6)  (9,10,17) (9,8,16) (0,5,16) (11,3,13)

(6,1,17) (13,17,0) (14,0,16) (5,6,10)  (14,7,3)
Then, we list below the path set of a (23, 13;, 2)-ELGDD of type 1'211! on Zy3 with
the long group {0, 3,6,9,12,15,18,19,20, 21,22} and the automorphism group
G’'. The path graph consists of one 138-cycle, three 84-cycles and one 6-cycle.
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(21,7,8)  (6,7,1) (16,22,11)  (19,8,10)  (1,7,12) (10,16,6)  (13,5,22)
(16,3,7)  (7,4,9) (19,1,11)  (11,10,22) (20,16,17) (19,7,2) (2,6,11)
(7,12,17) (18,4,2)  (14,7,22)  (6,17,8) (10,21,5)  (18,10,17) (14,22,10)
(2,0,5) (14,9,2)  (4,14,22)  (15,11,17)  (20,5,4) (4,12,16)  (5,16,12)
(8,15,10) (1,10,0)  (16,21,2)  (10,20,2)  (17,20,1)  (22,2,1) (8,1,18)
(16,19,5) (16,17,20) (2,12,13)  (4,16,3) (4,17,12)  (17,10,18) (22,2,4)
(5,14,15) (0,1,7) (6,1,4) (14,2,12)  (2,4,20) (17,0,11)  (11,18,1)
(22,1,17)  (20,5,13)  (16,15,13) (1,0,4) (21,16,5)  (14,1,21)  (0,2,14)
(5,11,6)  (14,8,9)  (2,10,15)  (2,7,19) (18,17,16)  (2,6,14) (2,18,1)
(9,5,2) (16,9,4)  (14,5,0) (11,3,8) (1,15,8) (1,19,17)  (9,4,1)

5 715 8)  (13,7,3)  (21,11,7)  (15,10,4)  (2,19,10)  (19,8,7) (5,2,3)
(7,14,20)  (2,20,7)  (1,6,10) (5,1,20) (4,0,7) (5,9,14) (17,13,21)
(15,13,2) (21,14,16) (1,18,14)  (11,5,9) (6,8,5) (12,10,1)  (2,17,6)
(11,14,0) (12,2,8)  (9,1,10) (9,5, 17) (11,19,16)  (3,17,2) (5,10, 19)
(12,8,11) (3,16,4)  (5,22,10)  (13,3,1) (4,1,0) (3,4,7) (7,17,18)
(14,17,3)  (7,20,14)  (8,3,5) (0,14, 4) (4,18,2) (22,1,8) (13,6,10)
(17,21,7)  (7,9,1) (1,22,11)  (15,17,13)  (10,1,9) (16,8,18)  (12,7,4)
(16,1,15)  (7,14,21)  (0,4,5) (3,14,5) (16,2,21)  (5,21,16)  (1,5,19)
(1,11,15)  (11,12,17) (4,8,19) (1,4,6) (20,4,8) (18,17,7)

Develop the initial (18, ]?3, 2)-ELGDD of type 6 under the automorphism group
G to get three (18, ]3;, 2)-ELGDDs of type 62, and develop the initial (23, ]3)3,

2)-ELGDD of type 1'211! under the automorphism group Gy to get eighteen
(23,]?3, 2)-ELGDDs of type 1'211'; all of which form a (23, ]@,)—ELPCS of type
(63 :5). O

5.4 Infinite Families of LELDs

Now, we are in a position to establish several infinite classes for the existence

of LELDs by recursion.

Lemma 5.4.1. There ezists an (n, ?3, 2)-LELD for any integer n > 6 with n =
2,6,14 (mod 16) or n =8 (mod 12) and n # 34, 50.

Proof. For n = 6,8, there is an (n, ]33), 2)-LELD by Corollary 5.2.3.

For each n = 16m + 2, n = 16m + 6 or n = 16m + 14, n > 14 and
n # 34,50, there is a 1-FG(3,({3,4,5},{4,5,6}), (n — 2)/4) of type 1("=2/4,
which is obtained by deleting one point from an S(3,{4,5,6}, (n + 2)/4) (see
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[38]). Applying Theorem 5.2.6 with a (4k—2, F_’;)—ELPCS of type (4*~1 : 2) and an
ELF(Py, k{4}) with k € {4,5,6}, we get an (n, P;)-ELPCS of type (40=2/4 ; 2).
Then, applying Theorem 5.2.5 with a (6,]33),, 2)-LELD, we obtain an (n, f’;,Q)—
LELD. Here, the input (4k —2, f—);)—ELPCSS of types (4*~1: 2) with k € {4,5,6}
exist by Lemmas 5.3.9-5.3.11. The input ELF(F’;, 5{4}) and ELF(E:, 6{4}) exist
by Lemmas 5.3.6 and 5.3.7. The input ELF(?’;;,ZL{ZL}) is obtained by applying
Theorem 5.2.4 with an H(2%) and an ELF(F;,ZL{Q}), which exist by Theorem
1.1.1 and Lemma 5.3.5, respectively.

For each n = 12m — 4 and m > 1, there is a 1-FG(3, ({3,5},{4,6}),2m — 1)
of type 12~1 which is obtained by deleting one point from an S(3,{4,6},2m)
(see [25]). Applying Theorem 5.2.6 with a (6k — 4, F;)—ELPCS of type (6871 :2)
and an ELF(P;, k{6}) with k € {4,6}, we get a (12m — 4, P;)-ELPCS of type
(621 : 2). Then, applying Theorem 5.2.5 with an (8,}73>,2)—LELD, we obtain
an (n, Py, 2)-LELD. Here, the input (6k — 4, P;)-ELPCSs of types (6" : 2) with
k € {4,6) exist by Lemmas 5.3.12 and 5.3.13. The ELF(Py, k{6}) with k € {4, 6}
is obtained by applying Theorem 5.2.4 with an H(3*) and an ELF(_F;, 4{2}). O

Lemma 5.4.2. There exists an (n,]33>,2)—LELD for each positive integer n =
11,23 (mod 36).

Proof. For n = 11, we obtain the design by applying Theorem 5.2.5 with a
(5, [—);, 2)-LELD and an (11, ﬁg)-ELPCS of type (3% : 2). Simultaneously, we get
an (11,5; P, 2)-HLELD.

For each n = 36m + 11 or n = 36m + 23 and n > 23, there is a 1-
FG(3,(3,4), (n — 5)/6) of type 1"=5)/6 which is obtained by deleting one point
from an SQS((n+1)/6) (see [23]). Applying Theorem 5.2.6 with a (23, E,))—ELPCS
of type (6% : 5) from Lemma 5.3.14 and an ELF(F;,4{6}), we get an (H,Fg)-
ELPCS of type (6("=5/6 : 5). Since there exists an (11, 5; 53), 2)-HLELD and an
(11, ]3;, 2)-LELD, we obtain the desired (n, ]33), 2)-LELD by Theorem 5.2.5. [

Combining Corollary 5.2.3, Lemmas 5.3.4, 5.4.1 and 5.4.2, we have the fol-

lowing theorem.

Theorem 5.4.3. For each positive integern, 4 <n < 11 orn > 14, n = k (mod
144) with k € {2,6,8,11, 14, 18, 20, 22, 23, 30, 32, 34, 38, 44, 46, 47, 50, 54, 56, 59, 62,
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66, 68,70, 78, 80,82, 83, 86,92, 94,95, 98,102,104, 110, 114, 116, 118, 119, 126, 128,
130,131,134, 140,142} and n # 34,50, there exists an (n,ﬁg,Q)—LELD and an

optimal, levelled (n — 2)-fault tolerant routing of }n that has levelled minimum

optical indices.
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Small Resolvable H-designs

Lemma .0.4. There exists an RH(4').

Proof. In [10, Lemma 5.4], Cao, Ji and Zhu constructed an H(2'%) on Zsg with
group set {{j,7 +19},7 =0,1,--- 18} and the following shortened list of base
blocks.

{0,2,16,25}  {0,2,15,24} {0,4,10,11}  {0,4,31,32}  {0,8,20,22}  {0,8,24,26}
{1,3,17,26} {1,3,16,25} {1,5,11,12} {1,5,32,33 }  {1,9,21,23}  {1,9,25.27}
{0,1,2,3} {1,2,4,6} {0,1,4,5} {1,2,5,9} {0,1,6,12}  {1,2,7,23}
{0,1,8,16}  {0,1,9,30}  {1,2,10,13} {0,1,10,22}  {1,2,11,31} {0,1,13,23}
{0,1,14,15}  {1,2,15,18}  {1,2,16,37} {1,2,17,27}  {0,1,17,21}  {1,2,19,25}
{1,2,22,35}  {1,2,24,34} {1,2,26,30} {0,1,26,29}  {1,3,7,31}  {0,2,8,23}
{0,2,10,12}  {1,3,21,24} {0,3,6,15}  {0,3,8,18}  {0,3,9,21}  {1,4,14,22}

Here, the blocks of the last five rows are developed by a multiplier 7 of order 3.
These 90 blocks and the blocks in the first two rows form the set B’ of all base
blocks, which are developed under the automorphism group ((02...3436)(13 ...
35 37)).

For each block B = {a,b,c,d} € B, construct an H(2') with group set
{{z,z + 38} : x € B} and block set Ag = {{a + 38i,b+ 38(i + k), c + 38j,d +
38(j + k)} : 4,5,k € Zy}. Let B = Upgep Ap. It is clear that B is the set
of base blocks of an H(4') on I = {0,1,2,...,75} with group set {{j,j +
19,7 + 38,5 +57},7 = 0,1,--- 18} and an automorphism group («), where
a=(02...3436)(13...35 37)(38 40...72 74)(39 41...73 75). Now, we need

to show the resolution.

Note that there are several blocks in B, each of which contains exactly one
element from each cycle of a. We first list below some of these blocks and denote
them by A, each block of which gives a parallel class when developed under the
automorphism group (a).

{1,2,54,75)  {1,2,60,73}  {0,1,64,67}  {0,3,44,53}  {0,7,52,59}
{0,7,63,58}  {0,7,60,67}  {7,14,74,69}  {7,14,40,55}  {0,11,44,55}
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{0,11,61,64}  {11,22,51,46} {11,22,62,65} {0,33,66,51}  {38,39,2,3}
{38,39,9,30}  {39,40,15,18} {39,40,16,37} {38,39,26,29} {38,45,14,21}
{38,45,25,20}  {45,52,32,15} {38,45,22,29} {45,52,29,12} {45,52,36,31}
{45,52,2,17}  {38,45,30,13} {38,49,22,33} {38,49,6,17}  {38,49,23,26}
{49,60,34,29}  {49,60,14,5}  {38,49,20,15} {38,71,28,13} {38,1,2,41}
{38,1,4,43}  {38,1,14,53}  {38,1,26,67}  {38,3,6,53}  {38,7,14,59}
{38,7,28,73}  {38,7,22,67}  {45,14,29,50} {38,7,30,51}  {38,21,4,67}
{38,11,6,55}  {38,11,2,51}  {38,33,28,51} {0,39,40,3}  {0,39,42,5}
{0,39,52,15}  {1,40,53,18}  {0,39,64,29}  {0,45,66,35}  {0,45,68,13}
{0,59,42,29}  {0,49,60,33}  {0,71,66,13}  {38,1,47,30}  {38,7,63,20}
{45,14,70,15}  {45,14,74,31} {38,11,61,26} {49,22,72,29} {49,22,62,27}
{0,39,9,68}  {1,40,16,75}  {1,40,22,73}  {0,45,25,58}  {7,52,32,53}
{7,52,36,69}  {0,49,23,64}  {11,60,34,67} {11,60,24,65} {11,60,14,43}

Then we shift each of the remaining base blocks in B by a suitable automorphism
o' for some integer i. The result is listed below, where the blocks in each of the
four consecutive rows, namely the ith, (i + 1)th, (¢ 4+ 2)th and (¢ 4+ 3)th rows for
ie{dk+1:k=0,1,...,38}, form a parallel class.

{0,1,2,3}
{31,32,37,15}
{43, 44, 46,48}
{66, 73,42, 49}
{0,1,8,16}
{20,21,34, 35}
{42, 43,50, 58}
{53,54,67,70}
{1,2,15,18}
{37,0,22,32}
{49,50, 64,47}
{55,62,67,71}
{1,2,19,25}
{14,17,22, 32}
{46,47,72,75}
{58,62, 68,69}
{0,3,6,15}
{26, 33,20, 28}
{39,41,59, 62}
{74,47,42,53}
{0,7,25,20}
{23,30,21,15}

{5,6,8,10}
{33,34,4,7}
{50,51,54,55}
{56,67,52,70}
{2,3,11,32}
{22,23,10, 13}
{46,47, 55,38}
{64,71,69,59}
{5,6,20, 3}
{25,26,12,16}
{44, 45,61,65}
{70,43,29, 35}
{3,5,9,33}
{16,23,30,37}
{51,53,57,43}
{29,36,65,59}
{1,4,14,22}
{36,5,13,7}
{46, 49,52,61}
{70,43, 55,58}
{9,16,34,17}
{32,1,37,27}

{12,13,16,17}
{26,29,35,9}
{57,58,61,65}
{45,53,69,71}
{4,5,14, 26}
{12,33,30,24}
{51,52, 60, 63}
{41,62, 56,74}
{7,8,23,33}
{17,24,21,19}
{51,52,69, 75}
{46,54,28,30}
{4,6,12,27}
{0,7,28,35}
{48,50,56, 71}
{52,54,24,26}
{11,18, 32,8}
{34,17,21,29}
{64,67,72,44}
{45,56,69, 65}
{11,18,5,31}
{33,2,4, 36}

{19,20, 23,27}
{14,21,18,22}
{62,63,68,74}
{64,28,72,11}
{17,18,27,9}

{25,36,31,37}
{65,66,75,57}
{28,68,44, 15}
{10,11,27,31}
{38,309, 48,60}
{73,74,58,68}
{72,36,4,57}

{8,10,18,20}

{39, 40, 60, 73}
{61,64,74,44}
{15,55,21,45}
{9,16,37,27}

{31,35,24,25}
{54,57,63,75}
{71,2,23,51}

{6,13,28, 35}

(38,45, 66,73}

{24, 25,30, 36}
{38,39,40,41}
{59, 60, 75,47}

{6,7,19,29}
{39,40,45,61}
{72,73,48,49}

{13,14,34,9}
{40,41, 53,63}
{59, 66,42, 56}

{11,13,31, 34}
{41,42, 66,70}
{38,49, 67,63}

{12,19,30, 10}
{38, 40, 48,50}
{66,73, 60, 68}

{19,26,3, 24}
{47,54,75,65}
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{42, 49, 46,50}
{59,67,41, 43}
{7,14, 36,31}
{15,29,19, 35}
{49, 56, 43,69}
{67,40,70,61}
{0,14,18,9}

{24, 35, 30,3}

{47,54,42,57}
{71,75,43, 44}
{11,22,6,28}
(18,29, 14, 32}
{40,47,70,53}
{57,41,49, 44}
{11,22,7,37}
{24,35,21,27}
{44, 55,66, 39}
{70,72,47,56}
{11,22,14,5}
{31,15,23,18}
{62,73,74, 48}
{38,21,25,71}
{0, 33,28,13}
{5,7,21,30}

{42,75,70,55}
{12,15,59,71}
{0,4,10,11}

{38,42,69,70}
{21,22,65,43}
{51,58,36,26}
{0, 1,44, 50}

{17,18,73,41}
{24, 27,70, 42}
{6,51,59,15}

{0,2,48,50}

{4,11,60,40}

{21, 28,44, 72}
{27,41,53, 36}
{7,21,49, 65}
{17,28,50,72}
{8,19,75,71}
{68,33,1,51}

{51,58,55,53}
{57,52, 10,22}
{9,16,21,25}
{17,0,32,12}
{44,51,59,53}
{27,68,2, 48}
{2,16,34,10}
{31,4,21,7}
{55,62,64,58}
{8,15,51,41}
{2,13,30,20}
{10,21,1,35}
{51,65,55,71}
{74,69,59,39}
{2,13,4,15}
{33,6,3,31}
{51,62,46,68}
{9, 20,43, 73}
{13,24,0,34}
{17,12,8,20}
{52,63,54,65}
{27,66, 69,35}
{2,35,14, 10}
{19,27,1,3}
{40,73,52,48}
{61,34,9,43}
{6,14, 30, 32}
{46, 54,66, 68}
{34,35,47,57}
{39,23,31,64}
{2,3,48,56}
{13, 14,74, 46}
{9,12,60, 68}
{62,26,72,36}
{1,3,59, 62}
{6,13, 38,46}
{18,32,74,65}
{71,35,39,25}
{0, 14,70, 46}
{13,24,57,63}
{18,29,53,59}
{69, 35, 3,42}

{64,71,44,62}
{56,29, 14,70}
{13,20,8,23}
{33,6,4,10}
{57,64,41,62}
{26,75,28,39}
{11,25,37,20}
{12,23,32,27}
{39,53,65,48}
{19,68,52,36}
{12,23,24,36}
{4,37,27,7}
{42,63,67,75}
{48,50,64,73}
{17,28,19, 14}
{10, 18,30, 32}
{53,64,49,41}
{45,8,48,12}
{19,3,9,7}
{49, 60, 55,61}
{59,70,72,75}
(37,44, 46,2}
{4,6,20,29}
{49,60, 51,46}
{50,58,74,38}
{23,72,57,11}
{1,3,16,25}
{41,45,72,73}
{5,12,71,61}
{67,2,75,27}
{4,5,52,64}
{29, 30, 54, 58}
{25,32,57,45}
{47,31,75,35}
{7,14,66,42}
{8,15,61,55}
{12,33,75,45}
{22,63,31,43}
{9,23,73,56}
{20, 31, 48, 38}
{30,34,61,62}
(39,12, 41,36}

{60, 74,40, 69}
{12,72,8,68}
{11,18, 34,24}
{38,45,63,58}
{73,42,71,65}
{1,50,3,74}

{22,5,26,13}
{38,45,60, 67}
{61,72,69,59}
{66,29,70,33}
{8,19,31,34}
{17,25,3,5}

{43,54,66,61}
{46,9,16,62}
{23,34,36,1}
{38,59,42, 67}
{60,71,57,63}
{26,75,0,50}
{4,26,16,29}
{40,51,68,58}
{57,41,47,45}
{1,50,42,33}
{22,24,37,8}
{53,64,62,68}
{39,41, 54,63}
{67,31,45,16}
{9,13,19,20}
{7,8,48,50}

{33, 28,62, 74}
{15, 60, 24, 56}
{7,8,61,71}

{19,21,63,49}
{53,16, 33,39}
{28, 67, 34,40}
{10,17, 52,56}
{19,26,69, 73}
{57,58,37,5}
{34,67,24,47}
{4,25,60,54}
{15,26,43,67}
{45,52, 5,37}
{6,55,2,58}

{61,63,39,48}

{30,37,22,5}
{47,54,72, 55}
{52, 66, 46,60}

{6,17,28,1}
{49, 56,40, 73}
{63, 74, 50,46}

{15,26,0,33}
{45,52, 68,58}
{38,60,72,56}

{5,16,29,25}
{40, 61, 58, 52}
{54, 65, 74,69}

{10,32,6,28}
{53,64,43,67}
{56, 39, 36,30}

{32,36,25,26}
{44, 66, 56,69}
{17,18,65,47}

{49, 44, 40,52}
{17,18,59, 63}
{29,37,53,55}

{10,11,65,69}
{20, 22, 66,43}
{37,38,55,23}

{9,16,51,49}
{23, 30, 70,64}
{29, 68, 54,20}

{11,32, 64,44}
{16,27,66, 40}
{74,47,10, 22}
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{0,11, 72,52}
{19, 3,47, 45}
{2,35,63,43}
{58,31,5,46}
{0,2,53,62}
{3,5,56,65}
{48,49, 18,26}
{40, 35,25,43}
{38,39,6,12}
{53,54,0,10}
{49,52, 24,32}
{69,26,22, 72}
{38,41,8,18}
{60,67,16,24}
{66,42,22,36}
(32,65, 44,2}
{38,52,18,9}
{42, 53,32, 22}
{43,54,14, 20}
{17,57,70,3}
{38,49,29,25}
{57,41,11,6}
{72, 42,20, 22}
{24, 63,70, 2}
{38,42,10,11}
{61,24,27,69}
{50,13,22,72}
{6,55, 56,30}
{38,1,13,61}
{46, 10, 18,58}
{54,23,34,52}
{21,60,37,47}
{45,14,32,53}
{49,18,6,59}
{63,1,13,72}
{28,74,48,12}
{38,21,18,50}
{46, 19,20, 70}
{52,25,11,55}
{54,27,74,31}
{49,22,14,43}
{38,33,12, 46}

{13,24,75,71}
{14,36,64,39}
{16,18,70,41}
{57,30,27,55}
{6,10, 54,55}
{11,15,59,60}
{46,47,21,31}
{34,75,42, 14}
{41,42,9,25}
{55,56,4,8}
{63,70,15,5}
{17,57,75,2}
{45,52, 28,4}
{51,58,7,33}
{70,53,19,27}
{74,5,68,0}
{45,59,33,16}
{55,66,7,31}
{56,58,34,5}
{44,27,48,35}
{51,62,0, 34}
{40, 73,14, 10}
{45,47,23,32}
{74,12,54,7}
{39,43,32,33}
{40,3,8,52}
{75,0,14,73}
{67,36,57,9}
{39,2,17,65}
{43,7, 25,66}
{63,32,16,49}
{9, 48,27, 71}
{40,9, 34,42}
{51,20,22, 54}
{65,0, 33,39}
{35,75,17,58}
{45, 28,22, 40}
{57,30,4,75}
{43,16,14, 58}
{9, 48, 23,64}
{51,24,0,72}
{40, 4, 18,65}

{15,26,61,51}
{22,6,56,40}
{59,60, 25,29}
{20, 66,44, 8}
{8,16, 66, 68}
(13,17, 44,45}
{51,52,29,1}
{28,73,71,23}
{44, 45,16, 28}
{59,61,27,13}
{64,71,31,21}
{18,67,46, 36}
{40,47,6,10}
{57,64,31,35}
{39,50,9, 37}
{17,69,21, 75}
{47,68,24, 4}
{50,61,8,26}
{65,69,37,0}
{46,12, 39,2}
{53,75,5,3}

{48,43,33,13}
{69,71,8,17}
{55,21,65,28}
{41,49,23,25)
{63,26,31,47}
{48,17, 35,68}
{70,5, 60,12}
{41,4,24,75}
{50, 15,20, 68}
{57,26,31,73}
{11,56,5,69}
{47,16,3,67}
{57,26,4,70}
{29, 68,50, 25}
{31,52,8,64}
{51,24,8,68}
{71,6,29,59}
{13,73,41,1}
{7,56,2,62}

{53,37,5,41}
{68,32,7,54}

{17, 28,42, 38}
{23,7,53,48}
{65,67,9,12}
{34,73,10, 49}
{12, 20,74, 38}
{19,27,39,41}
{67,32,4,50}
{63,36,69,37}
{47,48,19,1}
{60,62,30,7}
{73,37,3,65}
{35,74,20, 68}
{49,56,15,13}
{55,62,26,20}
{29,43,71,11}
{23,63,1,48}

{49, 60, 6,28}
{63,74,21,13}
{41,10,1,71}
{23,72,29,73}
{44,66,18,31}
{50,52,27,36}
{67,30,1,59}
{9,58,37,61}

{51,59,37,1}
{44,7,15, 74}

{20, 65,62, 28}
{19, 64,2, 54}

{45,8, 30,40}
{67,36,12,64}
{3,74,70,6}

{33,44,29,59}
{46,15,23,55}
{61,37,27,43}
{11,56,44,21}
{24,73,30,41}
{42,15,32,60}
{44,17,35,69}
{49,12, 65,37}
{3,63,33,66}
{42,26,16,67}
{64, 30,19, 58}

{21,32,68,74}
{4,37,54,50}
{62,69,1,33}

{7,9,61,70}
{57,58,22,24}
{64, 33, 30,72}

{50, 51,29, 33}
{40,43,11,23}
{58,34,14, 66}

{54,61,34, 14}
{59,73,25,3}
{12,72, 46, 30}

{51,62,19,25}
{67,40,15,11}
{64, 30,36, 75}

{46, 68, 4,26}
{60, 64,15, 16}
{56, 19, 35, 39}

{53,16, 18,58}
{71,34,4,45}
{21,66,46, 29}

{51,14,0,42}
{53,22,19,55}
{62,28,72, 35}

{38,7,5,71}
{60, 36, 2,69}
{10,62,66,19}

{53,26,5,67}
{61,34, 36,39}
{47,10, 72,0}

{44,28,2, 62}
{66, 36, 10,50}
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{45,9, 23,70}
{1,47,63,27}
{38,8,24,64}
{1,40,42,6}

{18,57,66,2}
{30,70,0,53}
{0, 39,51, 23}
{8, 48,56, 20}
{32,43,61,19}
{17,62,21,57}
{7,52,73,25}
{13,58,49,5}
{53,16,57, 23}
{51,21,75,1}
{0,59, 63, 33}
{2,51,74,16}
{34,38,44,7}
{8,48, 18,58}
{11,60,57,9}
{14,56,45,8}
{71,34,51,19}
{37,44,35,67}
{1,43,70, 33}
{46,9,59, 31}

{38,11,44,17}
{69,35,62,25}
{38,1,55,21}
{44,13, 58,27}
{71,2,69,25}
{31,4,72,63}

{38,7,53,9}

{52, 28, 46,22}
{54,27,50, 30}
{59,60,4,17}

{38,11, 60, 33}
{64,21,54,1}

{12,57,26,71}
{7,14,70,53}

{38,8,58,22}
{15,54,25,45}
{0,52, 32,46}
{18,63,70,1}

{21,60,69, 13}
{73,11,39, 17}
{39,3,16, 63}
{10, 49, 54,22}
{21,60,74,19}
{9,61, 35,56}
{1,40,55,27}
{12,53,59,33}
{66,31,75,11}
(34,41, 14, 70}
{0,45, 63,20}
{15,60, 65,31}
{74,37,62,27}
(28,67, 36,44}
{11,60,55,23}
{21,70, 72,37}
{46,9,52,20}
{28,73,5,75}
{2,62,52,27}
{1,41,55,26}
{42, 15,54, 28}
{36,69,21,39}
{39,2,45,23}
{50, 13, 64,27}
{55,28,41,37}
{15,60,0,66}
{39,3,59,24}
{64, 33, 54,23}
{57,30,52,36}
{66, 49, 32,19}
{42,11,64,33}
{49, 25, 75,20}
{2,41,15,63}
{61, 24, 37,40}
{49,22, 45,37}
(62,19, 74, 32}
{10,55,2,61}
{6,27, 48,73}
{40, 10, 64, 28}
{2,41,19,61}
{26,27,68,69}
{6,51,66,35}

{20,59,75,3}
{35,57,25,61}
{41,7,34,73}
{11,50, 55,33}
{37,48,46,14}
{36,47,20,69}
{3,42,64, 36}
{9,50, 60, 30}
{68,37,73,25}
{24,38,4,71}
{2,47,72,4}

{19, 64,42, 32}
{39,8,43,3}

{30,609, 18,59}
{13,62,41,27}
{19,68,43,1}
{67,36,50,26}
{24,69,29,57}
{13,73,43,0}
{5,47,53,16}
{74,20, 48,23}
(12,58, 32, 72}
{40,3, 48,18}

{71,34,47,12}
{75,21,67,24}
{32,54,6,57}

{40,5, 46,17}

{68,37, 48,28}
{62,35,53,11}
{74,9,18,51}

{45,14,57,23}
{48,31,73,5}

{32,39,26,72}
{71,6, 35,68}

{40,13,42, 15}
{66,23,51,31}
{4,63,29,75}

{58,59,24, 25}
{39,9,59,23}

{14, 55,20, 67}
{33,34,47,50}
{4,53,48,21}

{29,74,71,31}
{15,48,6,56}
{43,13,25,65}
{12,51,59,4}
{58,27,62,28}
{26,75,23,67}
{5,45,49, 35}
{13,58,72,10}
{26,65,28,67}
{7,47,22,69}
{9,54, 41, 29}
{14, 66, 46,22}
{50,33,68,24}
{26,71,10,55}
{4,53,65,30}
{12,61,47,15}
{39,3,54,25}
{22,64,32,71}
{4,75,65,7}
{3,49,61,25}
{18,63,22,64}
{24,70,10,50}
{42,5,52,26}
{51,14,74,8}
{65,22, 56,30}
{19,61,29, 68}
{42,7,50, 22}
{47,16,41,29}
{61,34,70,0}
{15,60, 75,20}
{47,16, 56,12}
{51,34,66,8}
{10,21, 70,43}
{67,36,62,1}
{44,17,41,9}
{56,20,72,5}
{16, 65, 36,69}
{3,52,43,0}
{3,42,7,49}
{16,57,24,72}
{30,37,60, 43}
{73,36,56,31}

{34,55,52,8}

{45,15,31,71}
{5,44,52,17}
{29, 68,32, 72}

{6, 46, 52, 29}
{18,63,74,16}
{15,54,2, 44}

{11,56,40,35}
{17, 38,70, 12}
{61,34,48,6}

{17,66, 40, 35}
(31,42, 56,14}
{6, 45,10, 49}

{6, 46, 59, 30}
{66, 29, 68,31}
{33, 40,17, 38}

{53,16,63,7}
{73,4,58,10}
{72,36,49,20}

{43, 8,56, 26}
{45,14,67,12}
{6,65,10,73}

{44,13,74,19}
{65,0,55,3}
{18,29, 58,69}

{50, 34, 46,30}
{8,47,18,68}
{35,39,28,67}

{5,44,11,65}
{17,62,29,71}
{74,75,12,13}



134

ZHEJIANG UNIV, PH.D. DISSERTATION

{0,45,28,73}  {7,52,35,63}  {6,65,24,56}  {2,51,30,58}  {4,53,33,67}
{13,62,37,71}  {11,60,19,47} {21,70,8,42}  {23,72,32,38} {26,27,40,41}
{5,16,66,61}  {43,44,14,17} {54,57,22,31} {39,50,3,36}  {75,48,12,15}
{74,9,20,69}  {10,59,68,25} {55,18,64,29} {1,46,34, 49}

{0,71,12,46}  {2,42,18,65}  {4,44,19,66}  {6,48,37,38}  {1,47,21,61}
{3,49,27,67}  {10,11,50,51} {22,23,69,52} {7,8,54,57}  {28,35,56,63}
{17,24,39,60}  {20,31,40,73} {74,43,26,33} {72,45,36,9}  {14,55,58,29}
{30,41,70,5}  {53,16,68,13}  {59,32,62,15} {25,64,34,75} u

Lemma .0.5. There exists an RH(4'").

Proof. In [10, Lemma 5.2], Cao, Ji and Zhu constructed an H(2%!) on Zg, with
group set {{j,j + 41}, =0,1,---,40} and the following shortened list of base

blocks, which are developed by the automorphism group (¢, '), where o/ =
(01...80 81) and ' is a multiplier 37 of order 5 in Zg,.

B: {0124 {0156} {0178}  {0,1,9,10}  {0,1,11,12} {0,1,13,14}
{0,1,15,16}  {0,1,17,18}  {0,1,19,20} {0,1,21,22}  {0,1,23,24}  {0,1,27,28}
{0,1,29.30}  {0,1,31,32}  {0,1,33,34} {0,1,35,36} {0,1,39,43}  {0,1,40,80}
{0,1,44,79} {0,257} {0268} {02912}  {0,2,10,13} {0,2,11,15}
{0,2,14,16}  {0,2,17,19}  {0,2,18,24}  {0,2,20,48} {0,2,21,26}  {0,2,28,46}
{0,2,20,50}  {0,2,30,72}  {0,2,32,58} {0,2,35,49} {0,2,55,66} {0,2,56,69}
{0,2,63,75} {0,3,7,22}  {0,3,9,56}  {0,3,12,64} {0,3,15,70} {0,3,17,61}
{0,3,19,29}  {0,3,24,52} {0,3,27,76} {0,3,33,55} {0,3,43,58} {0,4,9,72}
{0,4,10,58}  {0,4,14,38}  {0,4,39,77}  {0,4,48,65}

For each block B = {a,b,c,d} € B, construct an H(2') with group set
{{z,z + 82} : € B} and block set Ag = {{a + 82i,b+ 82(i + k), c + 82j,d +
82(j+k)}:i,j,k € Zy}. Let B=Upep Ap. It is clear that B is the set of base
blocks of an H(4") on 14 = {0,1,2,...,163} with group set G = {{j,j+41,j+

82,j+123},7=0,1,--- ,40} and an automorphism group («, 3), where

a=(01...8081)(8283...162 163) and

3 (),
B'(x — 82) + 82,

if v < 82,

it x > 82.

Now, we need to show the resolution.

Note that there are several blocks in B, each of which contains exactly one
even and one odd elements from each cycle of a. We first list below some of these
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blocks and denote them by A, each block of which gives a parallel class when
developed under the automorphism group (a?, 3).

{0,1,87,88}

{0,1,109, 110}
{0,1,126, 161}
{82,83,7,8}

{82,83,17,18}
{82,83,29,30}
{82,85,15,70}
{82,2,35,131}
{0,84, 145,75}
{82,1,89,8}

{82,1,105, 24}
{82,1,117, 36}
{82,2,145,75}
{82,4,121,77}
{0,83,13,96}
{0,83,27,110}
{0,84,5,89}

{0, 1, 89,90}

{0,1,93,94}
{0,1,111,112}
{0,3,91,138}
{82,83,9,10}
{82,83,19,20}
{82,83,31,32}
{82,85,43,58}
{82,4,39,159}
{0,85,9,138}
{82,1,91,10}
{82,1,109, 28}
{82,2,87,7}
{82,3,89,22}
{0,83, 5,88}
{0,83,15,98}
{0,83,29, 112}
{0,84,11,97}
{0,1,95,96}

{0,1,101, 102}
{0,1,113, 114}
{0,3,97,152}
{82,83,11,12}
{82,83,21,22}
{82,83,33,34}
{82,1,44,161}
{0,83,126,79}
{0,85,27,158}
{82,1,93,12}
{82,1,111, 30}
{82,2,93,15}
{82,3,91,56}
{0,83,7,90}

{0,83,17,100}
{0,83,31,114}
{0,84,17,101}
{0,1,97,98}

{0,1,103, 104}
{0,1,115,116}
{0,3,125, 140}
{82,83,13, 14}
{82,83,23,24}
{82,83,35,36}
{82,2, 5,89}

{0,84,99,19}
{0, 85, 43,140}
{82,1,97,16}
{82,1,113,32}
{82,2,99,19}
{82,3,97,70}
{0,83,9,92}

{0,83,19,102}
{0,83, 33,116}
{0,84, 63,157}

{0,1,105, 106}
{0,1,117,118}
{82,83,5,6}

{82,83,15,16}
{82,83,27, 28}
{82,85,9,56}
{82,2,17,101}
{0,84,117, 49}
{82,1,87,6}

{82,1,101, 20}
{82,1,115, 34}
{82,2,117, 49}
{82,3,125,58}
{0,83,11,94}
{0,83,23,106}
{0, 83, 35,118}
{0,85,7,104}

Then we shift each of the remaining base blocks in B by a suitable automorphism
a'# for some integers i and j. The result is listed below, where the blocks in
each of the eleven consecutive rows, namely the ith, (i 4+ 1)th, ..., and (¢ 4 10)th
rows for i € {11k +1:k=0,1,...,7}, form a parallel class.

{0,1,2,4}

{16,17,27,28}
{29,30, 48,49}
{44,45,73,74}
{20,57, 69,53}
{87,88,92,93}

{100,101, 113,114}
{115,116, 136, 137}
{128,129, 159, 160}
{158,161,119, 134}
{80,154,102,9}

{0, 1,40, 80}
{8,10,18,21}
{29,31,49, 77}
{48,50, 78, 38}

{5,6,10,11}

{18,19,31,32}
{33,34,54,55}
{46,47,77,78}
{64,66,70,72}
{89,90,96,97}

{2,3,46,81}

{13,15, 24, 28}
{30,32,51,56}
{43,45,75,19}

{105,106, 120, 121}
{117,118, 140, 141}
{162,139, 85,157}

{142,146, 151, 132}

{7,8,14,15}

{23,24, 38,39}
{35,36,58,59}
{81,56,76,51}
{61,63,79, 3}

{94,95,103, 104}
{107,108, 124, 125}
{122,123, 149, 150}
{153,145, 138,135}
{65,148, 152,71}

{4,6,9,11}

{20,22, 34, 36}
{33,35,61,79}
{26,62,41,47}

{12,13,21,22}
{25,26,42, 43}
{40, 41, 67, 68}
{60,37,75,52}
{82,83,84, 86}
{98,99,109, 110}
{111,112, 130, 131}
{126,127, 155, 156}
{144, 147,163,91}
{50,133, 143,62}

{5,7,14,17}

{25,27,42, 44}
{69,71,16,37}
{72,64,57,54}
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{65,67,39,52}
{88,89,128,86}
{101,103, 110, 113}
{124,126, 141, 143}
{162, 154, 132, 142}
{73,23,100, 160}
{163,58, 135,68}
{0,2,63,75}
{11,14, 26,81}
{17,20, 50, 72}
{38,42,52,76}
{83,85,113,155}
{92,95,104, 156}
{107,110, 134, 101}
{141, 145,98, 136}
{57,49,160, 152}
{153,9,5,147}
{51,137,61,109}
{0,1,122,162}
{7,9,100,104}
{15,17,118, 123}
{24,26,138,82}
{39,42,133,103}
{54,57,87,109}
{75,79,114, 152}
{126,163,48, 52}
{149,153, 77,43}
{115,22,60, 159}
{40,158, 64,93}
{82,84,14,16}
{90,92,29,34}
{98,100, 48, 74}
{106,108, 5,17}
{118,121,60,6}
{127,131,2,40}
{138,57,63,146}
{107, 26, 42, 125}
{154,47,81,145}
{72,143,137,12}
{44,158,64, 152}
{82,1,27,110}
{86, 5, 39,122}

{53,60, 70,66}
{90,91, 134,87}
{112,114, 122,125}
{127,129, 145,151}
{147,139, 130, 156}
{153,63,76,105}

{1,4,8,23}
{13,16, 30,74}
{21,24,64,79}
{69, 53,36, 48}
{86,88,118, 144}
{91,94,106, 161}
{130, 133,163, 103}
{124,108,96, 151}
{44,80,122, 148}
{29,112, 128,47}

{2,4,90,92}
{10,12,106, 108}
{18,20,128, 146}
{30,32,85,96}
{44,47,143,105}
{41,45,132, 113}
{69,73,117,134}
{148,150, 72, 74}
{147,66,78,161}
{154,61,51, 160}

{83,85,18,20}

{91,93,37,55}

{99,101, 52, 66}

{109,112, 39,9}
{119,122, 70, 10}
{129,133,13,30}
{140,59,67, 150}
{134,27,69, 126}
{155, 65,33, 144}
{50,139, 123,76}

{83,2,30,113}
{89,8,47,87}

{82,83,115,116}
{92,94,97,99}
{106,108, 117,121}
{146,138, 148, 118}
{161,111, 155, 158}
{136,74,59, 150}

{3,6,12,59}

{15, 18,39, 67}
{37,41, 46,27}
{43,25,73,58}
{87,89,150, 162}
{97,100, 114, 158}
{139,143, 149, 115}
{33,34,117,119}
{131,123, 70, 62}
{40,142, 127, 54}

{3,5,94,97}
{11,13,110, 112}
{19,21,130, 151}
{33,35,89,102}
{28,31,129, 139}
{49,53,141,107}
{136,137,56, 58}
{121,157, 55, 68}
{91,29,63,155}
{27,145,156,67}

{86,88,22,28}
{94,96,41, 62}
{102,104, 75,4}
{110,113,45,7}
{111,115,38, 19}
{116,35,36,120}
{149,68,78,161}
{148,21,23, 142}
{159,15,31, 147}
{160,79,162,0}

{84,3,33,116}
{90, 10, 14, 98}

{84,85,119, 120}
{96,98,102, 104}
{93,95,107,109}
{131,133,152, 157}
{137,140, 144, 159}
{12,123,149, 55}

{7,10,19,71}
{28,31,55, 22}
{56, 60, 66, 32}
{82,84,111, 132}
{90,93,99, 146}
{102,105, 126, 154}
{121,125, 135,159}
{77,78,116, 120}
{138,140, 65, 68}
{45,129, 157,35}

{6,8,98,101}
{14,16,116, 144}
{23,25,135,95}
{36,38,99, 111}
{34,37,140, 86}
{46, 50,142, 84}
{119,120,76,80}
{88,124,81,71}
{127,65,62,131}
{70,83,125,59}

{87,89,25,53}
{95,97,43, 3}
{103,105, 77,8}
{114,117,51,61}
{124,128, 56,80}
{135,54,58, 141}
{153,46,24, 163}
{156,49,73,130}
{132,32,71,136}
{1,157,11,151}

{85,4,36,119}
{91,11,23,107}
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{92,12, 38,138} {93,13,40, 143} {95,15,45,153} {101,21,75,88}
{99,20, 24,121} {104,25,31,160} {114, 35,44, 96} {97,18,32,158}
{105,26,42,134}  {130,51,72,100}  {108,29,53,102}  {147,68,16,120}
{127,49,55,103}  {124,46,56,162}  {135,57,19,118}  {48,131,132,52}
{50,133,139,58}  {54,137,145,64}  {59,142,154,73}  {66,149,163,0}
{43,126,144,63}  {17,156,148,41}  {60,117,141,34}  {9,128,106,61}
{74,157,109,28} {7,140, 161,69} {150,70,159,80}  {151,76,125,81}
{115,37,129,71}  {79,136,6, 152} {111,65,22,94} {62,146, 155, 77}
{123,78,112,67}

{0,83,111, 30} {1,84,114, 33} {2,85,117,36} {3,86,124, 46}
{4,88,92,12} {5,89,96,17} {6,90,98,19} {7,91,103,23}
{10,94,110, 34} {11,95,113,59} {9,93,119, 55} {15,99,126, 65}
{13,97,127,71} {16,101,105,38}  {21,106,112,77}  {40,125,134,22}
{43,128,140,31}  {24,109,130,76}  {35,120,150,8} {47,133,138,37}
{49,135,141,25}  {58,144,154,14}  {56,142,104,39} {107, 26, 146, 68}
{129, 48,87, 45} {131,51,137,57}  {122,42,132,53}  {147,67,161,81}
{121,41,139,63}  {160,70,162,50}  {158,78,108,52}  {82,74,149,64}
{153,60,118,66}  {73,157,20,123}  {32,143,18,152} {80,609, 145,102}
{155,75,54,148}  {72,156,159,79}  {28,100,115,61}  {151,44,136,29}
{27,116,62, 163}

{1,87,49,148} {82,2,103,26} {83,3,111,47} {84,4,113,52}
{85,5,115,75} {89,9, 145,76} {90,11,102, 72} {91,12,110, 38}
{92,13,125,65} {88,10,97,78} {94,16,104, 70} {96, 18,144, 79}
{15,98,17,101} {29,112,69,109}  {44,127,6,123} {24,108, 30,114}
{22,106,31,116}  {23,107,33,118}  {21,105,35,119}  {51,135,71,99}
{42,126,63,150}  {7,163,59,151} {50,134,80,122}  {55,139,28,121}
{8,93,20,154} {39,124,56,100}  {45,130,64,156}  {74,159,25,129}
{77,149,34,143}  {0,86,14, 120} {81,147,48,142}  {66,67, 157,158}
{53,54,152,153}  {57,60,146,161}  {162,137,46,73} {131,160, 62,43}
{133,140,32,37}  {132,27,141,36}  {136,61,117,40}  {19,138,58,95}
{41,155,68, 128} u

Lemma .0.6. There exists an RH(12°).

Proof. In [57], Mills constructed an H(6%) on Zy; x Z, with group set {{(m,0), (m+
9,0), (m+18,0),(m,1),(m+9,1),(m+18,1)} : m € Zy}} and the following 42

forms of blocks, where m € Zy7, a,b € Z,.

,a),(m+2,a),(m+5,b),
m+5,b),
m+7,b),
m+ 8,b),

m+7,b)},{(m,a),(m+5,b),(m+12,a+b),(m+20,a+ b+ 1)}
m+6,0)},{(m,a),(m+5,b),(m+10,a+1),(m+21,a+b+1)}
m+8,b)},{(m,a),(m+5,b),(m+12,a+b+1),(m+17,a+ 1)}

1)

) (

sa), (m+1,a),
) (
), ( m+10,b)},{(m,a), (m+6,b),(m+13,a+b+1),(m+19,a +

)
)
m+1,a),
)

7a7m+27a?

—~ o~~~
—~ o~~~

}
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,a), (m+2,b),(m+12,b),(m+17,a)},{(m,a), (m + 1,b),(m+15,a + b+ 1),(m + 17,a + 1)}
,a),(m+1,b),(m+2,a+0b),(m+4,b)},{(m,a),(m+1,b),(m+12,a+b+1),(m+ 14,b+ 1)}
,(m+2,a+1),(m+5,b),(m+38,0)},{(m,a),(m+2,a+1),(m+7,b),(m+23,a+b+1)}
,(m+3,a),(m+7,b),(m+20,a+0b)},{(m,a),(m+2,a+1),(m+6,b),(m+2l,a+b+1)}
a),(m+4,b),(m+8,a),(m+15,a+b)},{(m,a),(m+4,b),(m+8,a+1),(m+16,a+ b+ 1)}
,(m+1,a+1),(m=+5,b),(m+6,b+1)}{(m,a),(m+3,a),(m+16,b),(m+23,a+b+1)}

ISTERS]

S

(

(

(

(

(

(

,(m+3,a),(m+11,b),(m + 14,b+ 1) },{(m,a), (m + 4,b), (m + 14,b+ 1), (m + 21,a + b)}

,(m+1,a+1),(m+7,b),(m+8b+1)},{(m,a),(m+5,b),(m+10,a),(m + 16,a + b+ 1)}
(m+6,b),(m+12,a+b),(m+19,a)},{(m,a), (m + 2,a + 1), (m + 10,b), (m + 24, a + b)
(
(
(
(
(
(
(
(

s

S

,(m+2,a+1),(m+19,b), (m+22,b)},{(m,a),(m+4,b),(m + 10,a + b), (m + 20,a + b)
a),(m+1,b),(m+11,0),(m+ 12,a + b) },{(m ),(m+3 a),(m+15,b),(m+19,a+b+1)
,(m+1,b),(m+11,b+1),(m + 13,a)},{(m, a), (m + 1,b), (m + 14,b), (m + 16,a + b+ 1)}
a),(m+1,b),(m+3,a+1),( }{(m a),(m+3,a+1),(m+11,b),(m +15,a + b)}

,(m+3,a+1),(m+8,b),(m+22,a+b

S

}
}
}

S

m+4,b+1)

N N e N N e T e N e T i e T e T e T e N e NP SN
~_ AN A AN A AN AN RN ==

3 3333333333338 838 °38°38
]

,a ) }{(m,a), (m+1,b),(m+13,a+1),(m+15,a+b)}
,a),(m+3,b),(m+6,b+1),(m+17,a+ 1)},{(m,a),(m+5,b),(m+11,a +b),(m + 19,a + b)}
,a),(m+3,a+1),(m+7,b),(m+ 10,0+ 1) },{(m,a),(m +3,b),(m+13,a+b+1),(m+17,a)}
,a),(m+2,a),(m+6,b),(m+23,a+b+1)},{(m,a),(m+1,b),(m+2,a+b+1),(m+25,b)}

For each form of blocks, taking m = 0 and a,b € Z,, we get four blocks.
Thus we get 168 base blocks of the H(6) all together, denote the set by B”,
which are developed by (+1 mod 27,—). Define a map ¢ : (z,y) — 27y + =z,
for each element (x,y) € Zoy X Zy. Then B’ = ¢(B") is the base block set of an
H(6%) on I54 = {0,1,...,53} with group set {{m,m+9,...,m+45} : m € Zy}
and an automorphism group ((0 1...26)(27 28...53)).

For each block B = {a,b,c,d} € B, construct an H(2*) with group set
{{z,z+54} : x € B} and block set Ap = {{a+54i,b+54(i+k), c+545, d+54(j +
k)} 1i,j,k € Zy}. Let B =Upgep Ag. It is clear that B is the set of base blocks of
an H(12%) on I1ps = {0,1,...,107} with group set {{m,m+9,...,m+99} : m €
Zy} and an automorphism group (a) with @ = (0 1...26)(27 28...53)(54 55...
80)(81 82...107). Now we need to show the resolution.

Note that there are several blocks in B, each of which contains exactly one
element in each cycle of a. We first list below some of these blocks and denote
them by A, each block of which gives a parallel class when developed under the
automorphism group («).

{0,28,59,87}  {0,28,61,89}  {0,29,60,102} {0,30,61,91}  {0,28,86,60}
{0,28,88,62}  {0,28,56,106} {0,28,84,58}  {0,28,95,70}  {0,29,93,71}
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{0, 32, 66, 98}
{0,31,89,70}
{27,1,57,85}
{27,3,67,98}
{27,2,91,78}
{54,83,7,50}
{54,82,41,16}
{54,85,8,42}
{81,55,5, 33}
{81,55,13,42}
{81,59,37,16}
{81,56,37,24}
{0, 59, 39,98}
{0,82,41,70}
{0, 56, 35,91}
{0,62,41,101}
{27,55,3,85}
{27,83,8,64}
{0,67, 34,98}
{54,1,84,31}
{54,28, 86,6}
{54,29,93,17}
{54,32,91,21}
{81,1,59, 33}
{81,1,67,42}
{81,3,65,42}
{81,28,57,4}
{0,82,59, 33}
{0,57,87, 44}
{0,82, 56,52}
{0, 84, 60,44}
{27,55,83,4}
{27,59,91,16}
{27,57,89,22}
{54,28,7,89}
{54,29,6,102}
{54,1,32,87}
{54,31,8,96}
{81,28,7,62}
{81,29,8,64}
{54,13,33,100}
{81,2,37,78}

{0,32,93, 74}
{0, 30, 88, 64}
{27,1,65,93}
{27,3,87,71}
{27,3,89,76}
{54,82,32,6}
(54,82, 15,44}
{54,83,34,23}
{81,55,7, 35}
(81,56, 12,44}
{81,57,11,42}
{81,57,35,22}
{0,57,33,98}
{0, 86,39, 74}
{0, 86, 37,75}
{27,82,5,60}
{27,55,11,93}
{27,57,8,103}
{27,82,13,69}
{54,1,93,41}
{54,1,88,35}
{54,32,93,20}
{54, 30, 88,10}
{81,28,61,8}
{81,2,66,44}
{81,30,69,19}
{81,28,67,15}
{0,82, 61,35}
{0,59,91, 48}
{0,82, 69,44}
{0,60,94, 46}
{27,83,59,7}
{27,84,69, 19}
{27,86,65,19}
{54,1, 30,85}
{54,3,33,98}
{54,1,34,89}
{54,2,32,88}
{81,1,29,58}
{81,3,33,71}
{54,13,34,98}
{81,3, 35,76}

{0,29, 88,77}
{27,1,59,87}
{27,1,66,95}
{27,3,65,96}
{27,3,88, 64}
(54,82, 34,8}
{54,83,39,17}
{54,83,33,21}
{81,55,29,4}
{81,59, 39,20}
{81,57,7,37}
{81,57,38,15}
{0, 59, 37,102}
{0,83,34,77}
{0,84,34,64}
{27,55,5,87}
{27,55,12,95}
{27,57,13,98}
{27,84,6,71}
{54,3,87,44}
{54,28, 88,8}
{54,2,86,34}
{54,3,88,47}
{81,1,61,35}
{81,29,62,10}
{81,30, 70,23}
{81,30, 60,17}
{0,55,93,41}
{0,84,61, 37}
{0, 85,62, 42}
{0,61,94, 44}
{27,83, 60,23}
{27,84,70,23}
{27,57,92, 15}
{54,1,42,98}
{54,5,37,102}
{54,28,2,106}
{54,2,35,91}
{81,5, 39,74}
{81,30, 15,73}
{81,1,34,62}
{81,30,6,71}

{0, 30, 60, 98}
{27,1,61,89}
{27,1,67,96}
{27,3,61,91}
{54,82, 5,33}
{54,82,2, 52}
{54,86,12,44}
{54,84,6,44}
{81,55,11,39}
{81,56,10,51}
{81,55,32,6}
{81,57,34,10}
{0, 58, 35,97}
{0, 56, 32, 88}
{0,57, 34,101}
{27,82,7,62}
{27,56, 12,98}
{27,57,11,96}
{27,85,10, 74}
{54,5,91,48}
{54, 28,84, 4}
{54,29,87,21}
{54,6,94, 46}
{81,1,65,39}
{81,2,64,51}
{81,3,61,37}
{81,31,64,20}
{0, 55,96, 44}
{0, 55, 86, 33}
{0, 56, 86, 34}
{0, 62, 95,47}
{27,83,62,10}
{27,55, 86,6}
{27,57,88,10}
{54,5, 39,98}
{54,4, 35,97}
{54,28,15,98}
{54, 30, 6,98}
{81,29,5,61}
{81,30, 16,77}
{81,28,3,58}
{81,31,10, 74}

{0,32,91,75}
{27,1,83,58}
{27,5,93,74}
{27,1, 88,62}
{54,82,7,35}
{54,82,30,4}
{54,86,39,20}
{54,86,37,21}
{81,55,12,41}
{81,57,33,17}
{81,55,34,8}
{0,55,30,85}
{0,55,32,87}
{0,83,33,75}
{0,61,40,98}
{27,55,7,89}
{27,83,6,77}
{27,84,15, 73}
{27,86,11,73}
{54,4,89,43}
{54,28,95,16}
{54,2,89,37}
{54,7,94, 44}
{81,1,66,41}
{81,3,67,44}
{54,13,87,46}
{81,32,65,19}
{0,59, 93, 44}
{0,55,88,35}
{0,56,89,37}
{27,82,61,8}
{27,57,87,17}
{0,67,87,46}
{54,28,5,87}
{54,29,7,104}
{54,30,7,91}
{54,32,12,98}
{54,3,34,101}
{81,29,6,77}
{81,1,32,60}
{81,28,13,69}
{81,3, 38,69}



140 ZHEJIANG UNIV, PH.D. DISSERTATION

{81,3,34,64}  {27,84,16,77} {0,67,33,100} {27,2,64,105} {27,3,62,103}
{54,85,35,16}  {54,84,34,10} {0,82,34,62}  {0,82,30,58}  {54,8,95,47}
{81,28,59,6}  {0,83,61,50}  {0,83,60,48}  {0,67,88,44}  {27,82,57,4}
{54,8,41,101}  {81,28,5,60}

Then we shift each of the remaining base blocks in B by a suitable automorphism
o' for some integer i. The result is listed below, where the blocks in each of
the six consecutive rows, namely the ith, (¢ + 1)th, ..., and (¢ + 5)th rows for
ie{6k+1:k=0,1,...,40}, form a parallel class.

{0,1,5,6}
{19,20,48,17}
{27,28,32, 33}
{62,90, 69, 97}
{80,81,91,92}
{53,82, 31,87}
{0,1,11,12}
{14,19,53,31}
{24,27, 35,39}
{60,61,74,103}
{72,101,77,80}
{34,91,49,107}
{0,5,12,47}
{25,27,8,22}
{30,31,44, 46}
{72,74,78,95}
{69,98,88,91}
{34,90, 40, 84}
{0,2,8,10}
{13,18,24,5}
{46, 49, 32, 36}
{58,61,91,102}
{77,107,85,99}
{48,104, 33,92}
{0,30,11, 15}
{17, 20,24, 10}
{25,27, 35,49}
{69,72, 58,92}

{93,67, 104, 106}
{101, 48,103, 45}

{0,28, 30,4}

{2,30,7,35}
{21,22,51,52}
{40,41, 42, 38}
{66,67,68,70}
{72,107,86,93}
{50,79,29,98}
{2,3,42,17}
{9, 38,16, 32}
{43,45,28, 33}

{62, 63,104, 106}

{83,88,93,99}
{81, 30, 96,46}
{2,6,10,17}
{4,33,23,26}
{43, 45,49, 39}
{58,87,64,106}

{102, 103,104, 100}

{37,94,50,81}
{1,31,9,23}
{22, 26,30, 38}
(37,40, 52,29}
{66,70,76,59}
{95, 98,75, 88}
{67,41, 53,82}
{1,4,16,47}
{8,9,40,41}
{54,59,65,73}
{62,63,94,95}
{82,57,89,105}
{39,98,78, 32}
{1,29,12,14}

{3,4,10,11}
{23,24,34,9}
{54,55,59,60}
{73,74,102, 71}
{83,85,95,100}

{4,5,18,47}

{15,44,21,36}
{54,55,65,66}
{70,75,82,87}
{86, 90,67, 102}

{9,11,14, 16}
{15, 20,52, 36}
{54,56,66, 71}
{57,86,76,79}
{92,97,77,85}

{3,6,43,20}

{19,47,51,25}
{54, 56,62, 64}
{63,68,73,106}
{86,87,93,94}

{2,5,13,43}

{21, 22, 28,29}
{56,60,91,99}
{68,96,100, 74}
{31,33,97,102}

{3,31,15,17}

{8,36,15,43}
{25,26,37,39}
{56,84,61,89}

{75,76,105,106}

{94,96,99,101}

{6,7,48,50}

{23,26,29,40}
{56,57,95,97}
{64, 69, 76,84}
{89,92,105,85}

{13,42,18,21}
{24,53,29, 32}
{55,59,63,70}
{80,83,61,75}

{99,101,107, 82}

{11,15,21,4}
{14,42, 16,39}
{55,84,65,79}
{69,72,80,83}

{89,90, 103,105}

{3,6,19,53}

{18, 46,52,26}
{55,85,66,70}
{79,80,86,87}
(75,81, 34,42}

{5,33,46,21}

{12,13,14, 16}
{18,46,47,49}
{57,58,64,65}
{77,78,88,63}
{44,45,103, 104}

{8,10,20, 25}
{13,41,51, 52}
{58,59,98, 73}
{71,100, 78,94}
{22,79, 37,68}

{1,3,7,51}
{19,48,38,41}
{60, 62,65, 67}
{68,73,105,89}
{93,96,28, 35}

{7,12,17,50}

{27,28,34,35}
{57,60,97,74}
{71,101, 78,81}
{44, 45,100, 96}

{7,37,14, 44}

{23,51,36,38}
{61,64,76,107}
{71,77,84,90}
{83,88,12,50}

{7,35,22,51}
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{8,37,47, 25}
{24,26,32,34}
{65,93,67,90}
{71,100, 81,95}
{43, 45,102, 104}
{0,2,32,34}
{9,39, 15,53}
{46, 20, 22, 50}
{57,89,69,101}
{65,73,106, 85}
{47,105, 28, 62}
{0,31,37,47}
{9,12,43,29}
{39,13,50,52}
{59,61,94,96}
{100,74,75,71}
{11,95,22,80}
{0,6,12,19}
{34,35,14, 15}
(51,27, 4,44}
{57,60,95,71}
{92,66,76,104}
{79,53,81,29}
{27,1,12,41}
{33,11,45,26}
{49,25,6,37}
{87,88,67, 68}
{101, 78, 84,94}
{100, 50, 81,7}
{27,29,5,7}
{43,18,8,11}
{41, 42, 52,26}
{84,61,92,99}
{80,90, 97,103}
{1,87,65,17}
{27,3,13,44}
{47,50,9, 16}
{81,83,60,77}
{94, 70, 75,89}
{10, 14,99, 107}
{49,78,59, 46}
{27,1,32,6}

{6,38,18,50}
{39,40, 23,52}
{58, 86,88, 62}
{59,91,97,105}
{44,76,82, 36}
{3,5, 36,26}
{12, 44, 49,6}
{54,82,94,96}
{68,100, 107,61}
{103,77,64,66}
{19,81,87,40}
{1,32,36,17}
{16, 20, 10,30}
{34, 35,49, 24}
{60,90,73,77}
{92,68,76,107}
{65,40, 84, 33}
{1,7,21,42}
{37,11,17,45}
{33,36,40, 26}
{62,65,105,58}
{96,99, 80, 83}
{90, 39,106, 32}
{28,2,14,43}
{31,8,39, 46}
{54,60, 66,73}
{96,70,76,104}
{97,75,107,59}
{103,51,34,93}
{28,3,6,9}
{39, 15,20, 34}
{81,55,66,95}
{98,73,78,67}
{104, 105, 88, 62}
{49,77,79,53}
{28,4,34,18}
{35,11,15,45}
{82,57,61,76}
{105, 54, 64,95}
{2,5,72,106}
{56,37,43,104}
{0,13, 34,44}

{9,41, 48,2}

{54,57,61,74}
{64,92,75,77}
{69,99,103,79}

{4,33,37,25}
{24,29,7,13}
{56,84,97, 72}
{71,102,79, 86}
{42,17,75,63}

{2,5,44,21}
{8,14, 48,27}
{54,83,86,89}
{62,93,99, 82}
{105, 81,66, 70}

{3,10,43,47}
{48, 22, 50,25}
{54, 86,64, 70}
{69,72,103,89}
{100,101, 88, 63}

{29,3,16,18}

{44,19, 24,13}
{55,62,95,99}
{98,72,74,102}
{35, 38,69, 82}

{31,33,10,0}
{47, 24,30, 40}
{82,56,69, 71}
{94,96,72, 74}
{50,51,89, 64}

{29,7,40,48}
{6,19,39, 52}
{84,86,65,67}
{90, 66,96, 80}
{68,73,24,30}

{2,35,42,50}

{11,42,19,53}
{55,83,89,63}
{66,94,78,80}
{96, 70,98, 73}

{8,38,43,30}

{16, 48,27,35}
{55,83,70,99}
{58, 60, 90,92}
{67,95,51,52}

{4,7,42,18}
{45,19,23,51}
{55,57,88,78}
{69,101, 106, 63}
{64,97,104, 85}

{5,13, 46,52}

{49,23,24,20}
{55,85,93,97}
{73,77,67,87}
{91,94,102, 78}

{30,5,15,47}
{40, 42, 21,23}
{85, 86, 63,64}
{91,65,77,106}
{52, 80, 36,92}

{37,12,16,4}

{36,14,46,25}
{83,58,68,100}
{106, 54,57,60}
{102,76,23,19}

{31,8,12,20}

{17,51,32,38}
{88,63,71,85}
{91,69,74,58}
{102,103, 26,0}

{4,39, 45,52}

{20,49,27,16}
{56,84, 85,87}
{72,101, 106, 68}
{10, 13,107, 60}

{1,31,14,18}

{11,41,45,21}
{59, 88,98, 76}
{74,104,80,91}
{23,78,10,93}

{3,6,46,26}

{41,15,25,53}
{58,87,91,79}
{67,98,102, 56}
{72,103, 28,38}

{30,31,8,9}
{28,2,16,18}
{56,59,98,75}
{68,74, 61,82}
(38,41, 107, 84}

{32,10,17,22}
{53,4,9,20}
{83,57,61,89}
{105, 56,90, 71}
{79,0,58,48}

{38,13,21,35}
{45,48,2,32}
{85,63,70,75}
{59,93,101,107}
(86,91, 44,22}

{33,36,21,25}
{41,42,53,1}
{87,62,79,55}
{92,93,97,98}
{100,101,22, 23}

{3,40,47,53}
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{31,5,38,12}
{81,59,92,100}
{55,68,88,101}
{8,9,102,77}
{18,75,87,10}
{60,9, 76, 29}
{1,61,67,20}
{21,77,2,58}
{95,98,81,85}
{89, 40, 18,83}
{75,49,51,79}
{77,106,28,31}
{13,72,24,59}
{17,23,56,63}
{55,57,7,51}
{68,96, 26,1}
{66, 49, 29, 89}
{99,100, 58,60}
{87,91,70,80}
{46,51,2,40}
{86,61,11,26}
{48,105,1,95}
{50,107,88,10}
{32,61,24, 54}
{100, 21,80, 15}
{70,107, 33,39}
{14,98,22,63}
{72,73,52,53}
{84,31,45,74}
{69, 21, 62,29}
{65,14, 80, 30}
{83,87,12,22}
{1,2,60,61}
{79,0, 64,15}
{71,19,104, 13}
{77,2,8,69}
{89, 10, 95,29}
{19,102, 11,68}
{98,73,51,40}
{35,90,94,41}
{75,24,37,71}
{9,37,74,76}

{48, 49, 24,25}
{83,60,64, 72}
{61,74,95,105}
{54,57,7,20}
{98, 19,22, 79}
{96,43,84,5}
{103,107,30, 10}
{70,44, 50,78}
{47,105, 55,36}
{102, 53,87, 11}
{16,71,99, 14}
{19, 20, 85,87}
{33,61, 35,64}
{9,65, 69, 32}
{62, 36, 74,22}
{84,5,103, 52}
{71,101,25, 12}
{98,75,25,6}
{93, 14, 22,90}
{30, 35, 42,20}
{9,92,15,84}
{21,104, 94,43}
{57,4,8,63}
{5,34,91,94}
{79,28,11,69}
{30,85,35,90}
{57,65,44,50}
{76,78,27,29}
{75,51,56,16}
{76,26,16,90}
{33,34,8,37}
{106, 82, 40, 44}
{48,78,59, 36}
{101,77,81,57}
{49,54,5,70}
{26, 82,92, 16}
{80,57,7,14}
{38,39,99,100}
{101, 48,22, 105}
{76,79,6,36}
{81,32,91,43}
{18,101, 25,95}

{28,29,14, 16}
{82,85,71,78}
{99,73,106,80}
{69,103, 30, 36}

{27,86,37,97}
{3,59,8,64}

{6,88,101,22}
{52,57,62,19}
{17,46,54, 68}

{48,76,86,34}
{70,73,27,3}
{6,43,104, 83}
{98, 99, 46, 42}

{38,40,100, 102}

{103, 106,83, 69}

{72,19,56,3}

(39,67, 71,45}
{89,37,101,52}
{23,79,29,73}

{86,6,10,92}
{102, 49, 87,8}
{55,7,67,20}
{13,97,101,23}
{96, 17,106, 12}

(41,42, 73,74}
{32,9,67,75}
{94, 43,28, 86}
{35,92,51,85}
{25,3,89,100}

{67,18,23,83}
{78,27,62,12}
{50, 53,84, 70}
{3,9,97,103}
(31,34, 74,54}

{26,2,60,73}

{33,37,41,21}
{86, 62, 66,96}
{90,91,65,94}
{15,70,76,23}

{32,7,91,94}
{31,63,41, 74}
{25,33,93,100}
{92,15,73,0}
{48, 23,80, 56}

{94,97,53,30}
{80,2,95,18}
{107,0,67,15}
{75,79,4, 14}
{8,90,37,93}

{81,5,66,17}
{97,102, 54, 62}
(38,13, 44, 32}
{31,36,41,47}
{12,96,74,7}

{88,37,47,105}
{26,81,93,41}
{59,62,48,1}
{25,3,64,99}
{2,58,68,19}

{27,31,10,20}
{97, 45,102, 50}
{11,95,103, 53}
{91,66,17,6}
{105,56,7,18}

{21,107, 4,64}
{59,60,47,49}
{96,20, 25,63}
{45,104, 1,93}
{17,72,58,33}

{19,79,66,33}

{51,26,43,46}
{84,58,89,63}
{104,107, 56,67}
{11,93,97,17}

{65,12,13,69}
{106,26,90, 38}
{66,72,24, 4}
{39,42,28,35}
{45,104, 82, 34}

{16,44, 81,82}
{50,105,91,39}
{92,41, 45,58}
{21,78,88,11}
{60, 10, 54,47}

(59,64, 16,24}
{76,78,28,18}
{49,77,27, 55}
{65,68,0,34}

{53,82,85,33}

{60,9, 46,77}
{82,83,43,18}
{104,0,4,66}
{42,71,103, 38}
{89,36,40,95}

(38,39, 107,55}
{72,47,52,68}
{46, 24, 58,63}
{96,99, 84,88}
{93, 98,23, 4}

{52,55,65,42}
{5,88,15,56}

(87,61, 44,46}
{66,13,106,0}
{30, 85, 86, 28}

{100, 50, 54, 35}
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{63,64,11,13}
{7,92,15,103}
{56,5,44, 75}
{84,4,59,1}
{83,32,45,106}
{90, 92, 14, 16}
(82,2, 4,86}
{61,37,15,56}
{1,84,65,25}
{12,67,19, 74}
{105, 29, 63,44}
{24,55,18,92}
{81,29,87,50}
{71,46,9, 66}
{37,42,101, 107}
{61, 96,48, 28}
{54,3,16,104}
{41,43,76,78}
{80,0,82,24}
{7,10, 72,102}
{29,4,89,104}
{32,62, 39,69}
{36, 65, 46,60}
(57,58, 14, 15}
{3,60, 64, 23}
{50,106, 83,46}
{20, 49, 66, 69}
{29,33,10,45}
{53,81, 55,30}
{67,96, 50,37}
{45,49, 55,65}
{75,27,88,42}
{79, 28,32, 62}
{77,78,3,4}
{102, 52,29, 63}
{0,2,87,77}
{63,10, 65,13}
{98,99, 83,58}
{50,26,31,18}
{22,106, 62, 12}
{66, 42,104, 27}
{29,3,71,73}

{27,55,69,17}
{94, 41, 78,53}
{62,12,70,23}
{29,58,48,105}
{43,71,72, 14}
{69,71,0,5}
{102, 76,8, 10}
{3,89,96,23}
{83,88,95,73}
{18,46,57,59}
{79,28,36,94}
{20,75,85,6}
{7,89, 45,100}
{94, 15, 47,90}
{49, 78,95, 44}
{30, 60,41, 72}
{8,65,51,58}
{48,77,53,83}
{100,51,31,63}
{8,92,97, 30}
{17,74,6,94}
{15, 16, 56,85}
{35,90,49,105}
{1,59,9,70}
{96, 43, 26, 82}
{101, 48, 88,36}
{17,19,77,94}
{98,99,74,75}
{102,22,63,11}
{94,17,104, 33}
{44,72,58,6}
{87,90,21,25}
{26,2, 68,99}
{106,53,36,64}
{41,69, 48,76}
{7,64,14, 54}
{16,74,78,4}
{9,95,47,82}
{72,75,52, 38}
{105,25,8,90}
{46, 49, 84,60}
{26, 56, 68,45}

{40, 68, 80, 28}
{46,51,57,65}
{30, 85,99, 20}
{67,42,77,10}

{22,104, 106, 26}
{66,42,101, 34}
{33,35,41,43}
{62,40, 72,24}
{32,7,78,54}

{5,62,43,73}
{1,56, 39, 68}
(59,34, 64,13}
{76, 27,32, 70}
{38,40,98, 88}

{12,13,95,64}
(88,93, 44,50}
{67,14,20,75}
{25,28,87,101}
{18, 22, 66,86}

{24,56,62,16}
{90, 65,41, 44}
{28,85,97,47}
{61,37,67,51}
{79, 80,38, 13}

{81,5,92, 46}
{59,39,47,107}
{14,105,31,91}
{54,82,11,13}
{8,38,70,57}

{81,3,92,15}
{1,57,88,24}
(39,41, 71,73}
{59,33,97,44}
{36,67,17,79}

{105,106, 36,11}

{61,89,36,38}
{52,0, 86,102}
{3,6,91,104}

{16,107,87,39}

{20,103,30,98}
{75,50,85,45}
{52, 80, 64,39}
{91,93,97,87}
{58,60,9,11}

{52,0,35,22}

{102,53,31,91}
{21,106,83, 10}
{63,12,103,26}
{105, 80, 84,99}

{27,55,2,79}
{26,57,9,73}
{23,106, 84, 19}
{58,5,42,71}
{37,40, 70,54}

{72,76,12, 32}
{34,89,95,42}
{40, 68,78, 52}
{73,21,54,2}

{6,92,18,104}

{89,10,40,97}
{95,15,100,20}
{43,101, 24, 86}
{51,0,35,12}

{22,23,83,84}

{6,34,89,91}
{100, 20, 30,86}
{101, 48,85, 5}
{11,94,70,19}
{21,23,80,55}

{5,6,89,90}

{47,22,93,96}
{21,49,88,90}
{24, 82, 34,98}
{81,31,8,97}

{31,6,38,27}

{99, 21,107, 13}
{100, 47, 53,81}
{48,77,55,17}
{68,70,49,51}

{82,2,14,97}
{4,86,11,93}
{69, 17,23, 79}
{74,25,57,36}
{19,77,67,33}

{59, 33,99,47}
{34,11,98,81}
{91,68,45, 52}
{1,61,21,96}
{103,107, 3,38}

{27,86,39, 71}
{31,8,93,100}
{105,107,5,7}
{4,87,91,25}
{0,84, 35,103}

{16,71,18, 74}
{98,19,9,66}
{85,61,93,80}
{1,56,60,7}
{73,103,30, 34}

{61,35,76,51}
{32,37,69,107}
{96, 45, 53,56}
{93, 40, 68,43}
{102,103, 28,29}

{102, 23,80, 2}
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{25,107, 64,12}
{40,99,77, 34}
{101, 49,82, 30}
{97,17,104, 24}
{66,15,0,85}
{39,13,80,55}
{47,104, 31,61}
{10,69, 22, 84}
{97,18,49,91}
{85,7,11,95}
{21,76,59, 6}
{32, 36, 67,102}
{54,28,59, 33}
{62,91,13,16}
{8,64, 20,79}
{99,74,82,69}
{106, 53,27, 104}
{66,73,52,29}
{13,95,15,92}
{30, 33,68, 98}
{107,55,32,47}
{90, 39,97, 2}
{105,0,8,93}
(81,82, 41,43}
{16, 75, 26,86}
{90,13,44, 105}
{14,69,19, 74}
{61,8, 36,59}
{107,1,87,49}
{74,80,13, 34}
{20, 21, 54,55}
{46,101, 31,60}
{56,7,14,103}
{26, 28, 58,61}
{79,29, 35,99}
{73,50,83,39}
{15,16,107,55}
{9,91,21,77}
{40,95,106, 0}
{5,7,67,69}
{104, 24, 3,85}
{103,54,7,12}

{93, 41, 44,100}
{67,46,53,88}
{14,69,70, 18}
{63,37,20,76}
{4,86,87, 35}

{99,101, 50, 52}
{0,82, 88,8}

{57,32,36,78}
{72,19,83,4}

{34,66,45,107}
{93,42,77,53}
{72,19,2,57}

{47,76,107,41}
{35,90, 42,97}
{60,7, 65,12}

{25,0, 84,86}

{9,11, 75,80}

{69, 44, 34,91}
{62,14,1,103}
{57,7,11,72}

{78,64,31,41}
{23,79,58,6}

{43,74,51,85}
{76,53,57,37}
{67,45,23,56}
{88,809, 18,47}
{80, 28, 38,70}
(39,42, 54,58}
{73,22, 30,60}
{43,100, 83,33}
{84,87,10,50}
{88,91,23,3}

{71, 49,82, 36}
{75,104, 4,18}
{0, 59, 66,47}

{99, 74,10, 13}
{62,94, 46,27}
{75,80, 31,42}
{54, 29, 32,89}
{30,61,65,19}
{4,8,68,78}

{24, 25,83, 84}

{103,27,7,96}
{8,38,75,79}
{58,32, 65,39}
{16,98,81,28}

{74, 23,90, 16}
{81,5,38,100}
{106, 2, 87,40}
{20, 75,33, 62}
{79,3,63,17}

{38,39,103, 77}
{68,70,22,24}
{56,31, 63,52}
{40,95,15,98}
{1,14,88,101}

{86,35,12,106}
{42,71,101,50}
{75,61,27,40}
{17,102, 81,37}
{10, 65,104, 25}

{50,51,63,65}
{4,7,91,102}
{85,9,95,20}
{64,93,2,5}
{29,32,99,106}

{5,62, 45,76}
{9,68,73,52}
{90,11, 15,57}
{42,97, 44,94}
{70,17,77,24}

{49, 79, 57,44}
{58,59, 34,35}
{101,76,25,1}
(33,90, 71,47}
{87,92,70,81}

{62,67,20,28}

{54,57,42,19}
{51,52,92,94}
{21,22,59,60}
(33,62, 72,50}

{70, 48, 27,89}
(35,64, 14,56}
{9,96,103,30}
{44,73,24, 67}
{102, 26,58, 15}

{85,61,96,73}
{46, 49, 30,6}
{29,4,34,37}
{21,78,5,89}
{92, 93,43, 44}

{24,54,94,20}
{80,3,63,19}
{28,60,67,18}
{16,100, 22,87}
{48,49, 59,88}

{83,84,15,17}
{55,3,34,78}
(12,94, 77,25}
{104, 24, 10,66}
{72,100, 31,33}

{102,107,6,41}
{86,37,69,53}
{51,81,8,92}
{40,96,106,30}
{67,16,78,27}

{26,6,93,97}
{72,48,2,60}
(37,96, 22,84}
{20,103, 52,82}
{88, 66,45, 53}

{102,104, 33,38}

{1,61,13,74}
{83,84,9,10}
{95,43,47,91}
{48,78,55,31}

{25,86,94, 46}
{37,12,71,60}
{43,98, 54,29}
{65,68,51,1}
{92,41, 105,28}

{83,58,48,51}
{26,81,10, 66}
{94,17,50, 87}
{18,100, 23,105}
{71,45,55,3}

(82,84, 36,38}
{56,5,9,76}
{99,21,4,89}
{96, 45, 26,83}
{70,46,77,53}

{6,92,97,0}
{62, 68,48,27}
{71,46,103, 52}
{35, 40,101, 79}
{96, 98,21, 11}

{98,19,63, 12}
{2,85,48,105}
{64, 38,39,95}
{72,22,1,65}

{32,89,93,25}

{17,100, 63,12}
{36,38,41,43}
{102,105, 28, 14}
{18,23,56,64}
{11,98,51,86}

{75,23,0,98}
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{26,4, 63,96}
{69,18,107,2}
{55,58, 34,45}
{47,79, 5,64}
{89,9, 10,60}
{27,32,12,47}
{83,87,91,71}
{6, 10, 68,75}
{61,62, 36,5}
{67,45,79,30}
{41,99,103,2}
{0,31,91,101}
{5,11,79,100}
{37,15,74,58}
{29, 30,59, 60}
{53,54,12,95}
{51,80,88,21}
{0, 34,96, 102}
{58,62, 39,47}
{69,99,1,5}
{107,81,37,11}
{65,95,18, 48}
{52, 80, 86,6}
{81,58,37,47}
{4,88,11,95}
{28,56,16, 72}
{45,75,53,67}
{10, 65, 44,99}
{30,87,63,20}
{0,89,41,102}
{56, 31, 62,50}
{81,2,60,21}
{97,19, 104, 26}
{18, 47,105, 66}
{22,77,106,53}
{81,30,92, 14}
{4,87,95, 28}
{40,71, 104, 33}
{72,47,23,80}
{9, 69, 49, 82}
{45,77,84,11}
{27,84,97,50}

{50,78,57,31}
{73,74,51,52}
{106,1,6,101}
{11,41, 76,80}
{35,91,43,99}
{28,31,7,18}
{84,59,89,92}
{11,14, 105,55}
{63, 64,23,52}
{100, 49, 80,39}
{69,17,20,76}
{1,33,65,71}
{8,16,103,82}
{40, 18,105, 86}
{38,43,77,85}
{41,70, 24,92}
{93,17,49, 55}
{27,30,94,98}
{60,90,17,21}
{73,105,2,8}
(89,92, 46,22}
{103,77,25,53}
{84,35,14, 76}
{82,84,34,51}
{1,83,41,97}
{27,59,39,74}
{66,14,71,19}
{13,96,52,57}
{77,24,35,91}
{27,82,11,94}
{58,7,65,24}
{95,17,101,4}
{5,61,64,12}
{40, 14,99, 73}
{63,16,49,107}
{0, 58, 64,20}
{5,91,97,51}
{36,93,70,29}
{62,13,19, 54}
{74,21,106, 53}
{41,99,78,7}
{54,1,40,69}

{19,48,92,95}
{105,81,3, 14}
{8,65,100, 22}
{37,66,15,72}

{29,34,13,21}

{85, 60,104, 107}

{24,726, 86,88}
{25,54,4,102}
{90,37,95, 42}

{2,32,94,98}
{27,28,61,62}
{9,22,97,107}
{48,52,83,63}
(25,84, 64,42}

{54,55,38,13}
{63, 66,24, 28}
{100,74,7,9}
{12, 67,23, 78}
{16,71,31,87}

{0,55,29,79}

{8,90, 23,106}
(32,62, 38,76}
{17,46,78,94}
{50,105, 26, 54}

{28,85,35, 75}
{57,33,70,20}
{91, 38,98, 45}
{78,29,36,71}
{103,79, 3,44}

{1,85,66,16}
{31,60,63,12}
{50, 105,88, 8}
{6,37,68,102}
{75,52,83,10}

{55,2,15,98}

{21,53,86,94}
{16,17,85,87}
{42,97, 30,59}
{46,77,29,93}

{33,9,40,16}
{0, 1,56, 58}
{15, 44, 106,93}
{78,53,70,19}
{57,38,98,51}

{3,6,99, 76}

{39,13,104, 106}

{14,47,81,89}
{68,69,19,20}
{26,56,87,46}

{56,57,41,43}
{68,97,33,36}
{85,88, 15,45}
{75,50,4, 72}

{19,101,51, 79}

{2,85,7,64}
{9,93,22,80}
{25, 86,40, 100}
{31,6,70,102}
{73,48,107, 15}

{54,1,68,43}
{90, 10,92, 13}
{72,52,87,39}
{76,51,32,100}
{83,59, 15,46}

{2,59,67,43}
{32,61,65,26}
(35,94, 101,25}
{39,17,103,55}
{98, 46, 76,24}

{56,4,14,73}

{68, 44, 49,90}
{13,70, 56, 36}
{71,27,88,40}
{32,61, 39,82}

{81,82, 65,94}
{3,8,96,101}
{48,22,77,73}
{72, 46,74, 43}
{35,66,97,50}

{4,7,96,72}
{34,36,67,57}
{44,45,73,102}
{50, 78,10, 66}
{35,90, 75,23}

{59,64,44, 49}
{61,91,42,29}
{82,83,3,32}
{106, 26, 10,93}
{40, 70, 20,104}

{3,60,18,103}
{5,89,43,101}
{49,104, 33,61}
{69, 98,21, 36}
{92,12, 68,42}

{55,6, 67,48}
{84,8,96,23}
{88,9,93,42}
{80, 30, 34,69}
{74, 25,86, 37}

{3,86,89,38}
(27,56, 73,22}
{34,90, 96, 44}
{42,18,107,57}
{100, 48,79, 15}

{59,8,16,100}
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{57,31, 35,63}
{86,7,17,103}
{94, 42, 48,104}
{33,89, 11,67}
{47,102, 79, 26}

{60, 34, 44,99}
{82,6,13,72}
{88,9, 53,83}
{78,25,93,41}
{71,23,30,90}

{62, 36, 20,76}
{101,22,0,70}
{24,52, 66,95}
{96,18,77,37}

{58,32,45, 74}
{81,28,39,68}
{10, 65,49, 105}
{80,12,87,43}

{85,5,19,75}
{91,38,51,107}
{21,106,29, 64}
{3,61,92, 46}

]
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