
Des. Codes Cryptogr. (2010) 55:81–101
DOI 10.1007/s10623-009-9332-9

Existence of resolvable H-designs with group sizes
2, 3, 4 and 6

Xiande Zhang · Gennian Ge

Received: 27 May 2009 / Revised: 23 September 2009 / Accepted: 24 September 2009 /
Published online: 25 October 2009
© Springer Science+Business Media, LLC 2009

Abstract In 1987, Hartman showed that the necessary condition v ≡ 4 or 8 (mod 12)

for the existence of a resolvable SQS(v) is also sufficient for all values of v, with 23 pos-
sible exceptions. These last 23 undecided orders were removed by Ji and Zhu in 2005 by
introducing the concept of resolvable H-designs. In this paper, we first develop a simple but
powerful construction for resolvable H-designs, i.e., a construction of an RH(g2n) from an
RH((2g)n), which we call group halving construction. Based on this construction, we provide
an alternative existence proof for resolvable SQS(v)s by investigating the existence problem
of resolvable H-designs with group size 2. We show that the necessary conditions for the
existence of an RH(2n), namely, n ≡ 2 or 4 (mod 6) and n ≥ 4 are also sufficient. Mean-
while, we provide an alternative existence proof for resolvable H-designs with group size 6.
These results are obtained by first establishing an existence result for resolvable H-designs
with group size 4, that is, the necessary conditions n ≡ 1 or 2 (mod 3) and n ≥ 4 for the
existence of an RH(4n) are also sufficient for all values of n except possibly n ∈ {73, 149}.
As a consequence, the general existence problem of an RH(gn) is solved leaving mainly
the case of g ≡ 0 (mod 12) open. Finally, we show that the necessary conditions for the
existence of a resolvable G-design of type gn are also sufficient.
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82 X. Zhang, G. Ge

1 Introduction

A Steiner quadruple system of order v, denoted by SQS(v), is an ordered pair (X, B), where
X is a set of cardinality v, and B is a set of 4-subsets of X , called blocks, with the property
that every 3-subset of X is contained in a unique block. It is well known that an SQS(v)

exists if and only if v ≡ 2 or 4 (mod 6) [5].
If (X, B) is an SQS(v), then P ⊂ B is a parallel class if P is itself a partition of X .

(X, B) is said to be resolvable, denoted by RSQS(v), if B can be partitioned into r(v) =
(v−1)(v−2)

6 parts P1, P2, . . . , Pr(v), such that each part Pi is a parallel class. In this case, we
call P1|P2| . . . |Pr(v) a resolution of B.

The necessary conditions for the existence of an RSQS(v) are that v ≡ 4 or 8 (mod
12) or v = 1 or 2. In 1977, the only orders for which an RSQS(v) was known were v = 2n ,
and the only recursive construction known was the doubling construction (i.e., a construc-
tion of an RSQS(2v) from an RSQS(v)). In 1978, Booth [1] and Greenwell and Lindner
[4] provided the first examples with v not a power of two by constructing an RSQS(20)

and an RSQS(28). More examples were given by Hartman [6], where he constructed
RSQS(q + 1) for all prime powers q ≡ 7 (mod 12) with q ≤ 379, and RSQS(4p) for
p ∈ {19, 43, 127, 199, 223, 271, 1603} [7].

The main recursive theorems for RSQS(v), i.e., two tripling constructions were provided
by Hartman in [8,9], both of which assume some subsystem structures on the input systems.
Using the doubling and two tripling constructions together with a large number of initial
designs, Hartman [9] proved by induction that the necessary condition v ≡ 4 or 8 (mod 12)

for the existence of a resolvable SQS(v) is also sufficient for all values of v, with 23 possi-
ble exceptions. These last 23 undecided orders were removed by Ji and Zhu [12] by using
resolvable H-designs and resolvable candelabra systems (the concept is defined in Sect. 2).

Let v be a non-negative integer, t be a positive integer and K be a set of positive integers.
A group divisible t-design of order v with block sizes from K , denoted by GDD(t, K , v), is
a triple (X, G, B) such that

(1) X is a set of v elements (called points);
(2) G = {G1, G2, . . . } is a set of nonempty subsets (called groups) of X which partition X ;
(3) B is a family of transverses (called blocks) of G, each of cardinality from K , where a

transverse is a subset of X intersects any given group in at most one point;
(4) every t-element transverse T of G is contained in a unique block.

The type of the GDD(t, K , v) is defined as the list (|G||G ∈ G). If a GDD has ni groups of
size gi , 1 ≤ i ≤ r , then we use the notation gn1

1 gn2
2 · · · gnr

r to denote the group type. Mills
in [14] used H(n, g, k, t) design to denote the GDD(t, k, ng) of type gn . In this paper, we
use H(gn1

1 gn2
2 · · · gnr

r ) to denote the GDD(3, 4,
∑

ni gi ) of type gn1
1 gn2

2 · · · gnr
r for short. An

H(1n) is actually an SQS(n).
For the existence of H-designs, Mills [14] showed that for n > 3, n �= 5, an H(gn) exists

if and only if ng is even and g(n − 1)(n − 2) is divisible by 3, and that for n = 5, an H(g5)

exists if g is divisible by 4 or 6. Recently, Ji [11] improved these results by showing that an
H(g5) exists whenever g is even, g �= 2 and g �≡ 10, 26 (mod 48).

An H(gn) is said to be resolvable, denoted by RH(gn), if its block set can be parti-
tioned into parallel classes. When g = 1, an RH(1n) is an RSQS(n), which exists for all
n ≡ 4, 8 (mod 12). Recently, Zhang and Ge [16] established the existence of an RH(6n) for
all even integers n ≥ 4. We summarize the results as follows:

Theorem 1.1 The necessary conditions gn ≡ 0 (mod 4), g(n − 1)(n − 2) ≡ 0 (mod 3)

and n ≥ 4 for the existence of an RH(gn) are also sufficient for each g ∈ {1, 6}.
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Existence of resolvable H-designs 83

The remainder of this paper is organized as follows. In Sect. 2, we will describe several
recursive constructions for resolvable H-designs based on the theory of uniformly resolvable
candelabra systems and resolvable H-frames. In particular, we will introduce a simple but
powerful construction—group halving construction, as well as a product construction and
three tripling constructions. Combining several initial designs together with the recursive
methods established in Sect. 2, we give an almost complete solution to the existence prob-
lem of an RH(4n) in Sect. 3. In Sect. 4, by the group halving construction, we show that
the necessary conditions n ≡ 2 or 4 (mod 6) and n ≥ 4 for the existence of an RH(2n)

are also sufficient. Hence, we provide an alternative existence proof for resolvable SQS(v)s.
Meanwhile, we will also provide an alternative existence proof for resolvable H-designs with
group size 6. As a consequence, the general existence problem of an RH(gn) is solved leaving
mainly the case of g ≡ 0 (mod 12) open. Finally, we show that the necessary conditions for
the existence of a resolvable G-design of type gn are also sufficient.

2 Recursive constructions

In this section, we shall describe several recursive constructions for resolvable H-designs.
In particular, we will develop a group halving construction and three tripling constructions,
which play a key role in the sequel.

2.1 Standard recursive constructions

Lemma 2.1 [12] There exists an RH(g4) for any positive integer g.

Lemma 2.2 [12] (Weighting Construction) Suppose that there exists an RH(gn). Then there
is an RH((mg)n) for any positive integer m.

Let s be a non-negative integer. A candelabra t-system (or t-CS) of order v and block
sizes from K , denoted by CS(t, K , v), is a quadruple (X, S, G, A) that satisfies the following
properties:

(1) X is a set of v elements;
(2) S is an s-subset (called the stem of the candelabra) of X ;
(3) G = {G1, G2, . . .} is a set of non-empty subsets of X\S, which partition X\S;
(4) A is a collection of subsets of X , each of cardinality from K ;
(5) every t-subset T of X with |T ∩ (S ∪ Gi )| < t , for all i , is contained in a unique block

of A, and no t-subset of S ∪ Gi , for any i , is contained in any block of A.

The group type of a t-CS(X, S, G, A) is defined as the list (|G||G ∈ G : |S|). If a t-CS has ni

groups of size gi , 1 ≤ i ≤ r , and stem size s, then we use the notation (gn1
1 gn2

2 · · · gnr
r : s) to

denote the group type. A candelabra system with t = 3 and K = {4} is called a candelabra
quadruple system and denoted by CQS(gn1

1 gn2
2 · · · gnr

r : s).
A CS(t, K , v)(X, S, G, A) is said to be resolvable, denoted by RCS(t, K , v), if the block

set A can be partitioned into several parts, each being a partition on X or a partition on
X\(G ∪ S) for some G ∈ G (called a partial parallel class). An RCS(t, K , v) is called
uniform, denoted by URCS(t, K , v) if all the blocks in each resolution class have the same
size. If K = {4}, it is denoted by RCQS, for which the number of parallel classes on X is
((

∑
G∈G |G|)2 − ∑

G∈G |G|2)/6 and the number of partial parallel classes on X\(G ∪ S) is
|G|(|G| + 2|S| − 3)/6 for each G ∈ G.

Theorem 2.3 [13] For each integer n ≥ 2, there exists an RCQS(3(22n−1)/3 : 1).
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84 X. Zhang, G. Ge

For non-negative integers q, g, k, and t , an H(q, g, k, t) f rame (as in [10]), denoted by
HF(q, g, k, t), is an ordered four-tuple (X, G, B, F) with the following properties:

1. X is a set of qg points;
2. G = {G1, G2, . . . , Gq} is an equipartition of X into q groups;
3. F is a family {Fi } of subsets of G called holes, which is closed under intersections. Hence

each hole Fi ∈ F is of the form Fi = {Gi1 , Gi2 , . . . , Gis }, and if Fi and Fj are holes
then Fi ∩ Fj is also a hole. The number of groups in a hole is its size; and

4. B is a set of k-element transverses of G with the property that every t-element transverse
of G, which is not a t-element transverse of any hole Fi ∈ F is contained in precisely one
block of B, and no block contains a t-element transverse of any hole.

If an HF(q, g, 4, 3) has n holes of size m + s, which intersect on a common hole of size
s, then we denote such a design by HF(mn : s) with group size g, or shortly by HFg(mn : s).
If an HF(q, g, 4, 3) has only one hole of size s, then we call it an incomplete H-design of
type (gq : gs), denoted by IH(gq : gs).

An HFg(mn : s)(X, G, B, F) with F = {Fi : 0 ≤ i ≤ n} and F0 the common hole of size
s is said to be resolvable, denoted by RHFg(mn : s), if its block set can be partitioned into
(nmg2(m + 2s − 3) + n(n − 1)(mg)2)/6 parts with the following properties:

(1) For each hole Fi , 1 ≤ i ≤ n, there are exactly mg2(m + 2s − 3)/6 parts, each being a
partition of X\(⋃G∈Fi

G);
(2) There are n(n − 1)(mg)2/6 parts, each being a parallel class on X .

An IH(gm+s : gs)(X, G, B, F) with the only hole F of size s is said to be resolvable,
denoted by IRH(gm+s : gs), if its block set can be partitioned into (m+s−1)(m+s−2)g2/6
parts, (s − 1)(s − 2)g2/6 of which are partitions of X\(⋃G∈F G), and m(m + 2s − 3)g2/6
of which are parallel classes on X .

The construction given below is a generalization of the fundamental construction for
3-wise balanced designs.

Theorem 2.4 Suppose that (X, S, �, A) is a 3-CS(mn : s) and ∞ ∈ S. Let K1 = {|A| :
∞ ∈ A ∈ A} and K2 = {|A| : ∞ �∈ A ∈ A}. If there exists an HFg(tk1−1 : a) for each
k1 ∈ K1 and an H((gt)k2) for each k2 ∈ K2, then there exists an HFg((tm)n : t (s − 1)+ a).
Furthermore, if the 3-CS(mn : s) is uniformly resolvable, and each of HFg(tk1−1 : a) and
H((gt)k2) for k1 ∈ K1 and k2 ∈ K2 is resolvable, then the resultant HFg((tm)n : t (s−1)+a)

is also resolvable.

Proof Suppose (X, S, �, A) is the given URCS(mn : s), where � = {G1, . . . , Gn} and
A has a resolution A = (

⋃
1≤i≤n Qi )

⋃ Q with each member of Qi being a partition of
X\(Gi ∪ S) and each member of Q being a partition of X . Define G ′

x, j = {x} × { j} × Zg .
Let X ′ = ((X\{∞}) × Zt × Zg) ∪ ({∞} × Za × Zg), G′ = {G ′

x, j : x ∈ X\{∞}, j ∈
Zt } ∪ {G ′∞, j : j ∈ Za}, F = {Fi : 0 ≤ i ≤ n}, where F0 = {G ′

x, j : x ∈ S\{∞}, j ∈
Zt } ∪ {G ′∞, j : j ∈ Za} and Fi = {G ′

x, j : x ∈ Gi , j ∈ Zt } ∪ F0 for 1 ≤ i ≤ n. We will
construct an RHFg((tm)n : t (s − 1) + a) on X ′ with group set G′ and hole set F .

For each B ∈ A and ∞ ∈ B, construct an RHFg(t |B|−1 : a) on X ′
B = ((B\{∞}) × Zt ×

Zg) ∪ ({∞} × Za × Zg) with group set G′
B = {G ′

x, j : x ∈ B\{∞}, j ∈ Zt } ∪ {G ′∞, j :
j ∈ Za} and hole set FB = {Fx : x ∈ B}, where Fx = {G ′

x, j : j ∈ Zt } ∪ F∞ with
F∞ = {G ′∞, j : j ∈ Za} being the common hole of size a. Denote its block set by CB , which

has a resolution {CB(x, j) : x ∈ B\{∞}, 1 ≤ j ≤ tg2(t + 2a − 3)/6} ∪ {CB(l) : 1 ≤ l ≤
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Existence of resolvable H-designs 85

(|B|−1)(|B|−2)(tg)2/6} with each CB(x, j) being a partition of X ′
B\(⋃G∈Fx

G) and each
CB(l) being a parallel class on X ′

B .
For each B ∈ A and ∞ �∈ B, construct an RH((gt)|B|) on X ′

B = B × Zt × Zg with group
set G′

B = {{x} × Zt × Zg : x ∈ B} and block set CB , which can be partitioned into parallel
classes CB(l), 1 ≤ l ≤ (|B| − 1)(|B| − 2)(tg)2/6.

Then A′ = ⋃
B∈A CB is the block set of the required design. We need to partition the

blocks into resolution classes.
For each member Q ∈ Qi , 1 ≤ i ≤ n, suppose its block size is kQ . Then PQ(l) =⋃

B∈Q CB(l) is a partition of X ′\(⋃G∈Fi
G) for 1 ≤ l ≤ (kQ − 1)(kQ − 2)(tg)2/6.

For each x ∈ ⋃
G∈Fi

G, 1 ≤ i ≤ n, Px, j = ⋃
B∈A,∞�∈B CB(x, j) is a partition of

X ′\(⋃G∈Fi
G) for 1 ≤ j ≤ tg2(t + 2a − 3)/6.

For each member Q ∈ Q, suppose its block size is kQ . Then P ′
Q(l) = ⋃

B∈Q CB(l) is a

partition of X ′ for 1 ≤ l ≤ (kQ − 1)(kQ − 2)(tg)2/6.
Thus we obtain an RHFg((tm)n : t (s − 1) + a). ��
The following theorem is stated in [16].

Theorem 2.5 [16, Lemmas 3.3 and 3.4] Suppose that there exists an RHFg(mn : s). If there
exists an IRH(gm+s : gs), then there exists an IRH(gmn+s : gm+s). Furthermore, if there is
an RH(gm+s), then there is an RH(gmn+s).

2.2 Product construction and group halving construction

A regular graph (V, E) of degree k is said to have a one-factorization if the edge set E can
be partitioned into k parts E = F1|F2| . . . |Fk so that each Fi is a partition of the vertex set
V into pairs. The parts Fi are called one-factors.

Theorem 2.6 (Product Construction) If there exist both an RH(gm) and an RH(gn), then
there exists an RH(gmn) and an IRH(gmn : gn).

Proof Let (X, G, B) be the given RH(gm), where G = {G0, . . . , Gm−1}. Applying
Lemma 2.2, we construct an RH(( ng)m) on X ′ = X × Zn with the group set G′ = {Gi × Zn :
0 ≤ i ≤ m − 1} and block set A.

For each i, 0 ≤ i ≤ m − 1, construct an RH(gn) on Gi × Zn with group set {Gi × {l} :
l ∈ Zn} and block set Ci , which has a resolution Pi (k), 1 ≤ k ≤ (n − 1)(n − 2)g2/6.

Since an RH(gn) exists, gn is double even. For each i, 0 ≤ i ≤ m − 1, let F i =
{Fi

1, . . . , Fi
g(n−1)} be a one-factorization of the complete multiple-graph on Gi × Zn with n

parts {Gi × {l} : l ∈ Zn}. Let

D = {{a, b, c, d} : {a, b} ∈ Fi
j , {c, d} ∈ Fi ′

j , 0 ≤ i �= i ′ ≤ m − 1, 1 ≤ j ≤ g(n − 1)},
then B′ = A∪ (∪m−1

i=0 Ci )∪D is the block set of an H(gmn) on the group set G′′ = {Gi ×{l} :
l ∈ Zn, 0 ≤ i ≤ m − 1}. It is clear that ∪m−1

i=0 Ci has a resolution Q(k) = ∪m−1
i=0 Pi (k), 1 ≤

k ≤ (n − 1)(n − 2)g2/6. It remains to show that D can be partitioned into parallel classes.
For each j, 1 ≤ j ≤ g(n − 1), let

D j = {{a, b, c, d} : {a, b} ∈ Fi
j , {c, d} ∈ Fi ′

j , 0 ≤ i �= i ′ ≤ m − 1}, and

D j = {{{a, b}, {c, d}} : {a, b} ∈ Fi
j , {c, d} ∈ Fi ′

j , 0 ≤ i �= i ′ ≤ m − 1}.
If we regard each pair in Fi

j , 0 ≤ i ≤ m − 1 as a vertex, we may construct a multi-partite

complete graph � j on the vertex set X ′
j = ∪m−1

i=0 Fi
j with partite set {Fi

j : 0 ≤ i ≤ m − 1},
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where two different vertices connect if and only if they are from different factors Fi
j . Hence,

D j is the edge set of � j . That is to say we obtain a GDD(2, 2, gnm/2) of type (gn/2)m on
X ′

j with group set {Fi
j : 0 ≤ i ≤ m − 1} and block set D j .

It is well-known that there always exists a resolvable GDD(2, 2, gnm/2) of type (gn/2)m

when gnm/2 is even (see [3]). Hence, we can partition the block set D j of our resulting
GDD(2, 2, gnm/2) of type (gn/2)m into parallel classes on X ′

j . Therefore, D j can also be
partitioned in parallel classes of X ′. So does D = ∪1≤ j≤g(n−1)D j . Thus, the desired H(gmn)

is resolvable.
For each i, 0 ≤ i ≤ m − 1, B′\Ci is the block set of an incomplete design IRH(gmn : gn)

on X ′ with group set G′′ and hole set {Gi × {l} : l ∈ Zn}. ��
With a similar proof to that of Theorem 2.6, we have the following doubling construction.

Here, we just need to fill with the trivial design RH(g2) having no blocks.

Theorem 2.7 (Doubling Construction) If there exists an RH(gu), then there exists an
RH(g2u) and an IRH(g2u : gu).

The following construction for resolvable H-designs is simple but powerful.

Theorem 2.8 (Group Halving Construction) If there exists an RH((2g)n), then there exists
an RH(g2n).

Proof Let (X, G, B) be the given RH((2g)n) with G = {G0, . . . , Gn−1}. Therefore, gn is
even. Halve each group Gi into Gi0 and Gi1, 0 ≤ i ≤ n − 1. We will construct an RH(g2n)

on the group set G′ = {Gi j | 0 ≤ i ≤ n − 1, j = 0, 1} as follows.
For each i, 0 ≤ i ≤ n − 1, let F i = {Fi

1, . . . , Fi
g} be a one-factorization of the bipartite

graph on Gi0 ∪ Gi1. Let

D = {{a, b, c, d} : {a, b} ∈ Fi
j , {c, d} ∈ Fi ′

j , 0 ≤ i �= i ′ ≤ n − 1, 1 ≤ j ≤ g},
then B′ = B ∪ D is the block set of an H(g2n) on the group set G′. With a similar proof to
that of Theorem 2.6, it is clear that D can be partitioned into parallel classes. This completes
the proof. ��
2.3 Three tripling constructions

Our first tripling construction is on resolvable H-frames, which is a generalization of the
tripling construction for resolvable CQSs developed in [12].

Theorem 2.9 (Tripling Construction I) Suppose there exists an RHFg(n3 : s), then there
exists an RHFg((3n)3 : s).

Proof Start with a CQS(33 : 1) (as in [12]) on Z9∪{∞} with groups Gi = {i, i+3, i+6}, 0 ≤
i ≤ 2 and stem {∞}, whose block set B is generated by the following 9 base blocks under
the automorphism group 〈(0 3 6)(1 4 7)(2 5 8)(∞)〉.

A∞ : {0, 1, 2,∞}, {0, 4, 8,∞}, {0, 5, 7,∞},
A1 : {1, 3, 2, 6}, {1, 3, 5, 7}, {2, 6, 5, 7},
A2 : {4, 7, 5, 8}, {3, 6, 5, 8}, {3, 6, 4, 7}.

View each base block as an ordered quadruple given above so that each block B ∈ B is
ordered.
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Existence of resolvable H-designs 87

Since an RHFg(n3 : s) exists, both gn and gs are even. We separate the proof into the
following two cases:

Case (1): When g is even, we will construct an RHFg((3n)3 : s) on X = (Z9 × Z2 ×
Zgn/2)∪({∞}× Z2 × Zgs/2) with groups G(x, j) = {x}× Z2 ×{ j, j +n, . . . , j +(

g
2 −1)n},

x ∈ Z9, 0 ≤ j ≤ n − 1, and G(∞, j) = {∞}× Z2 ×{ j, j + s, . . . , j + (
g
2 − 1)s}, 0 ≤ j ≤

s−1, and three holes Fi = {G(i, j), G(i +3, j), G(i +6, j) : 0 ≤ j ≤ n−1}∪S, 0 ≤ i ≤ 2,
which intersect on a common hole S = {G(∞, j) : 0 ≤ j ≤ s − 1}.

For each block B ∈ B containing ∞, construct an RHFg(n3 : s) on X B = ((B\{∞}) ×
Z2 × Zgn/2)∪({∞}× Z2 × Zgs/2) with group set {G(x, j) : x ∈ B\{∞}, 0 ≤ j ≤ n−1}∪S,
three holes {G(x, j) : 0 ≤ j ≤ n − 1} ∪ S, x ∈ B\{∞} and a common hole S. Denote its
block set by AB , which has a resolution {PB(x, l) : x ∈ B\{∞}, 1 ≤ l ≤ n(n + 2s −
3)g2/6} ∪ {PB(r ′, r, h) : r ′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4} such that each PB(x, l) is a partition
of (B\{∞, x}) × Z2 × Zgn/2 and each PB(r ′, r, h) is a parallel class on X B .

For each block B = {a, b, c, d} ∈ B and ∞ �∈ B, we shall construct a special H((gn)4)

on B × Z2 × Zgn/2 with groups {x} × Z2 × Zgn/2, x ∈ B. Denote

C ′
B(k, i, j) = {(a, i), (b, i + k), (c, j), (d, j + k)} and C′

B(k) = {C ′
B(k, i, j) : i, j ∈ Z2},

then C′
B = C′

B(0)∪C′
B(1) is the block set of an H(24) on B × Z2. For each A ∈ C′

B , construct
an RH((gn/2)4) on A × Zgn/2 with groups {a}× Zgn/2, a ∈ A. Denote its block set by B(A)

and the (gn)2/4 parallel classes by P(A, h), 1 ≤ h ≤ (gn)2/4. Then, CB = ∪A∈C′
B
B(A) is

the block set of the desired H((gn)4).
Let D = (∪B∈B,∞�∈BCB) ∪ (∪B∈B,∞∈BAB). By Theorem 2.4, D is the block set of an

HFg(((3n)3 : s)). It remains to show the resolvability. This HFg(((3n)3 : s)) should be
partitioned into 9g2n2 parallel classes on X and g2n(3n + 2s − 3)/2 partial parallel classes
on (Z9\Gi ) × Z2 × Zgn/2 for each i, 0 ≤ i ≤ 2.

For each i, 0 ≤ i ≤ 2, let P(i, x, l) = ∪B∈B,{x,∞}⊂B PB(x, l), 1 ≤ l ≤ n(n + 2s −
3)g2/6, x ∈ Gi . Then each P(i, x, l) is a partition of (Z9\Gi )× Z2 × Zgn/2. The other g2n2

partial parallel classes on (Z9\Gi )× Z2 × Zgn/2 can be obtained as follows. Denote the three
base blocks of A2 by B0, B1, B2 in order. For 0 ≤ i ≤ 2, let Bi = {3 j + Bi : 0 ≤ j ≤ 2},
and for r ′, r ∈ Z2, let P(i, r ′, r) = {C ′

B(1, r ′, r) : B ∈ Bi }. Then P(i, r ′, r) is a partial
class on (Z9\Gi ) × Z2. Note that for 0 ≤ i ≤ 2,∪r ′,r∈Z2 P(i, r ′, r) = ∪B∈Bi C′

B(1). Let
P(i, r ′, r, h) = ∪A∈P(i,r ′,r) P(A, h). Then, these P(i, r ′, r, h)s with r ′, r ∈ Z2 and 1 ≤ h ≤
(gn)2/4 are g2n2 partial parallel classes on (Z9\Gi ) × Z2 × Zgn/2.

Now we give the required 9g2n2 parallel classes on X . Denote the three base blocks of
A1 by A0, A1, A2 in order. Let D0 = A0, D1 = A1 + 3 = {4, 6, 8, 1}, D2 = A2 + 6 =
{8, 3, 2, 4}. Let A(i, 0) be as follows and A(i, j) = {3 j + B : B ∈ A(i, 0)} for 0 ≤ j ≤ 2.

A(1, 0) = {{0, 4, 8,∞}, A0, A1, A2},
A(2, 0) = {{0, 1, 2,∞}, B0, B1, B2},
A(0, 0) = {{0, 5, 7,∞}, D0, D1, D2}.

Let

P ′(1, j, r ′, r) = {C ′
A0+3 j (0, r ′, r ′+r), C ′

A1+3 j (0, r ′+1, r), C ′
A2+3 j (0, r ′+r +1, r +1)},

P ′(2, j, r ′, r) = {C ′
B0+3 j (0, r ′ +r, r ′), C ′

B1+3 j (0, r, r ′ +1), C ′
B2+3 j (0, r +1, r ′ +r +1)},

P ′(0, j, r ′, r) = {C ′
D0+3 j (1, r ′, r ′ + r), C ′

D1+3 j (1, r ′ + r + 1, r ′), C ′
D2+3 j (1, r ′ + 1, r ′ +

r + 1)}.
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Let P ′(i, j, r ′, r, h) = ∪A∈P ′(i, j,r ′,r) P(A, h) and P ′′(i, j, r ′, r, h) = PB(r ′, r, h) ∪
P ′(i, j, r ′, r, h), where B ∈ A(i, j) and ∞ ∈ B. Then P ′′(i, j, r ′, r, h) for 0 ≤ i, j ≤
2, r ′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4 are the desired 9g2n2 parallel classes on X .

So D has the resolution {P(i, x, l) : 0 ≤ i ≤ 2, x ∈ Gi , 1 ≤ l ≤ n(n + 2s − 3)g2/6} ∪
{P(i, r ′, r, h) : 0 ≤ i ≤ 2, r ′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4} ∪ {P ′′(i, j, r ′, r, h) : 0 ≤ i, j ≤
2, r ′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4}, and the HFg(((3n)3 : s)) is resolvable.

Case (2): When g is odd, both n and s must be even, we will construct an RHFg((3n)3 : s)
on X with groups G ′(x, k, j) = {x} × {k} × { j, j + n

2 , . . . , j + (g − 1) n
2 }, x ∈ Z9, k ∈

Z2, 0 ≤ j ≤ n
2 − 1, and G ′(∞, k, j) = {∞} × {k} × { j, j + s

2 , . . . , j + (g − 1) s
2 }, k ∈

Z2, 0 ≤ j ≤ s
2 − 1, and three holes F ′

i = {G ′(i, k, j), G ′(i + 3, k, j), G ′(i + 6, k, j) : k
∈ Z2, 0 ≤ j ≤ n

2 −1}∪S′, 0 ≤ i ≤ 2, which intersect on a common hole S′ = {G ′(∞, k, j) :
k ∈ Z2, 0 ≤ j ≤ s

2 − 1}.
For each block B ∈ B containing ∞, construct an RHFg(n3 : s) on X B = ((B\{∞}) ×

Z2 × Zgn/2) ∪ ({∞} × Z2 × Zgs/2) with group set {G ′(x, k, j) : x ∈ B\{∞}, k ∈ Z2, 0 ≤
j ≤ n

2 − 1} ∪ S′, three holes {G ′(x, k, j) : k ∈ Z2, 0 ≤ j ≤ n
2 − 1} ∪ S′, x ∈ B\{∞}

and a common hole S′. Denote its block set by AB , which has a resolution {PB(x, l) : x ∈
B\{∞}, 1 ≤ l ≤ n(n + 2s − 3)g2/6} ∪ {PB(r ′, r, h) : r ′, r ∈ Z2, 1 ≤ h ≤ (gn)2/4} such
that each PB(x, l) is a partition of (B\{∞, x})× Z2 × Zgn/2 and each PB(r ′, r, h) is a parallel
class on X B .

The remaining proof of this case is the same as that of Case (1). ��
Next, we give two tripling constructions for resolvable H-designs. They are generalizations

of those for resolvable Steiner quadruple systems proposed by Hartman in [8,9], which have
played an important role in the construction of RSQS(v). We need the following notations.

For x ∈ Zn , we define |x | by

|x | =
{

x, if 0 ≤ x ≤ n/2,

−x, if n/2 < x < n.

For n ≥ 2 and L ⊆ {1, 2, . . . , �n/2�}, define G(n, L) to be the regular graph with vertex set
Zn and edge set E given by {x, y} ∈ E if and only if |x − y| ∈ L .

The following lemma is proved by Stern and Lenz in [15].

Lemma 2.10 Let L ⊆ {1, 2, . . . , n}. Then G(2n, L) has a one-factorization if and only if
2n/gcd( j, 2n) is even for some j ∈ L.

The construction given below is a variation of the construction for resolvable candelabra
quadruple systems in [9].

Theorem 2.11 Suppose that n ≥ 1, s ≡ 1, 2 (mod 3) and 3s ≥ 5n. There exists an
RHF4((3n)3 : s).

Proof Let n ≥ 1, s ≡ 1, 2 (mod 3) and 3s ≥ 5n. Take Y = {∞0,∞1, . . . ,∞4s−1} and
let X = (Z12n × Z3) ∪ Y . We will construct an RHF4((3n)3 : s)(X, G, B, F) with groups
G(i, j) = {(i +3kn, j) : k ∈ Z4}, i ∈ Z3n, j ∈ Z3, and G(∞, j) = {∞sk+ j : k ∈ Z4}, 0 ≤
j ≤ s − 1, and three holes Fj = {G(i, j) : i ∈ Z3n} ∪ S, 0 ≤ j ≤ 2, which intersect on
a common hole S = {G(∞, j) : 0 ≤ j ≤ s − 1}. In the sequel we shall write xi for the
ordered pair (x, i) ∈ Z12n × Z3.

Let h = (12n − 4s)/2. Since 3s ≥ 5n, h is even and h ≤ 8n/3. As in [9, Theorem 2.1],
let

H∗
1 = {{9n − i, 9n − 3 + i} : 2 ≤ i ≤ 3n + 1, i �≡ 0 (mod 3)}, and

H∗
2 = {{3n − i, 3n + i} : 1 ≤ i ≤ 3n − 2, i �≡ 0 (mod 3)}.

123



Existence of resolvable H-designs 89

It is easy to check that |H∗
1 | = 2n and |H∗

2 | = 2n − 1. Let Hi be any subset of H∗
i of

cardinality h/2, i = 1, 2 and H = H1 ∪ H2, which satisfies the following properties:

(1) |H | = h = (12n − 4s)/2 ≤ 8n/3.
(2) The pairs in H are disjoint, i.e., | ⋃{x,y}∈H {x, y}| = 2h.
(3) Let L H = {|y − x | : {x, y} ∈ H}, then |L H | = h and L H ∩ {3, 6, . . . , 6n} = ∅.
(4) The distances between members of H1 are odd.
(5) {x, y} ≡ {1, 2} (mod 3) for each {x, y} ∈ H .

Since H1 � H∗
1 and all distances between members of H∗

1 are odd, the graph G(12n, {1, 2,

. . . , 6n}\(L H
⋃{3n, 6n})) has a one-factorization F1|F2| . . . |F12n−2h−4 by Lemma 2.10.

Let F12n−2h−3|F12n−2h−2|F12n−2h−1 be a one-factorization of the graph G(12n, {3n, 6n}).
Then it is not difficult to see that F1|F2| . . . |F12n−2h−1 is a one-factorization of the graph
G(12n, {1, 2, . . . , 6n}\L H). Using the above set of pairs H and the one-factorization of
the graph G(12n, {1, 2, . . . , 6n}\L H), Hartman [9, Theorem 2.1] constructed a resolvable
RCQS((12n)3 : 4s) on X with group set {Z12n × {i} : i ∈ Z3} and stem Y , as well as the
block set B′ and its resolution P containing the following 6n(12n − 2h − 1) partitions of
Z12n × {i + 1, i + 2} for each i ∈ Z3:

Pi,u,k = {{xi+1, yi+1, zi+2, ti+2} : {x, y} is the mth member of Fu,

{z, t} is the (m + k)th member of Fu, m = 1, 2, . . . , 6n},
where u = 1, 2, . . . , 12n − 2h − 1, and k = 0, 1, . . . , 6n − 1.

For each i ∈ Z3, letβi be the union of partitions Pi,u,k with 12n−2h−3 ≤ u ≤ 12n−2h−1
and 0 ≤ k ≤ 6n − 1. Then we have that B = B′\(⋃i∈Z3

βi ) is the block set of the
desired RHF4((3n)3 : s) on X with group set G and hole set F , where B has a resolution
P\{Pi,u,k : 12n − 2h − 3 ≤ u ≤ 12n − 2h − 1, 0 ≤ k ≤ 6n − 1, i ∈ Z3}. ��

As a consequence of Theorem 2.11, we have our second tripling construction as follows.

Corollary 2.12 (Tripling Construction II) Let n ≡ s (mod 3), s ≡ 1 or 2 (mod 3) and
14s ≥ 5n. If there exists an IRH(4n : 4s), then there exists an IRH(43n−2s : 4n) and an
IRH(43n−2s : 4s).

To construct resolvable H-frames with group size 6, the concept of resolvable B-pairing
was introduced in [16]. To show our third tripling construction, we adapt the concept to the
case of group size 4 and call it B4-pairing as follows.

For non-negative integers n and s, a B4-pairing, B4(n, s) consists of four subsets
D, R0, R1, R2 of Z4(3n+s) and three subsets P R0, P R1, P R2 of Z4(3n+s) × Z4(3n+s) with
the following properties for each i ∈ {0, 1, 2}:
(1) Cardinality and symmetry conditions

(a) |D| = 4s, |Ri | = 4n,
(b) D = −D.

(2) Partitioning conditions

(a) P Ri is a partition of Ri into pairs, thus |P Ri | = 2n,
(b) Z4(3n+s) = D ∪ R0 ∪ R1 ∪ R2.

(3) Pairing conditions
Let Li = {|x − y| : {x, y} ∈ P Ri } and N = {3n + s, 2(3n + s)},
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(a) N ∩ Li = ∅,
(b) |Li | = 2n,
(c) the complement Gi of the graph G(4(3n + s), Li ∪ N ) has a one-factorization.

Let S0, S1, S2, R0, R1, R2 be subsets of Z4(3n+s) and P S0, P S1, P S2 be subsets of
Z4(3n+s)×Z4(3n+s). A B4-pairing B4(n, s) with D, Ri , P Ri , i ∈ {0, 1, 2}, is said to be resolv-
able, denoted by R B4(n, s), if the following properties are satisfied for each i ∈ {0, 1, 2}:
(1) Cardinality and symmetry conditions

(c) |Si | = 4n, |Ri | = 2n.

(2) Partitioning conditions

(c) P Si is a partition of Si into pairs, thus |P Si | = 2n,
(d) Z6(n+s) = D ∪ Ri ∪ Si ∪ Ri+1 ∪ −Ri−1.

(3) Pairing conditions
Let Oi = {|x − y| : {x, y} ∈ P Si },
(d) N ∩ Oi = ∅,
(e) |Oi | = 2n, Li ∩ Oi = ∅, and all members of Oi are odd,
(f) the complement G ′

i of the graph G(4(3n + s), Li ∪ Oi ∪ N ) has a one-factorization.

The following theorem gives the relation between B4-pairings and H-frames with group
size 4. A similar one for the case of group size 6 was proved in [16]. Hence, we omit the
proof here.

Theorem 2.13 If there exists a B4(n, s), then there exists an HF4((3n + s)3 : s). Further-
more, if the B4(n, s) is resolvable, then the HF4((3n + s)3 : s) is resolvable.

Lemma 2.14 If D, Ri , P Ri , Si , P Si , Ri , i ∈ {0, 1, 2} form an RB4(n, s) with the property
{0, 3n + s, 2(3n + s), 3(3n + s)} ⊂ D, then there exists an RHF4((3n + s)3 : s) with a
sub-design RH(44).

Proof Using the given RB4(n, s), we construct an RHF4((3n + s)3 : s) on X = {ai : a ∈
Z4(3n+s), i ∈ {0, 1, 2}) ∪ {∞0,∞1, . . . ,∞4s−1} with groups G(i, j) = {(k(3n + s) + j)i :
0 ≤ k ≤ 3}, i ∈ {0, 1, 2}, 0 ≤ j ≤ 3n + s − 1, G(∞, j) = {∞ks+ j : 0 ≤ k ≤ 3}, 0 ≤ j ≤
s − 1, three holes F1+i = F0 ∪ {G(i, j) : 0 ≤ j ≤ 3n + s − 1}, i ∈ {0, 1, 2} and a common
hole F0 = {G(∞, j) : 0 ≤ j ≤ s − 1}, as well as the block set B containing the following
blocks (see the details in [16]):

δ = {{∞ j , (a + d)0, (b − d)1, (c + d)2} : a + b + c ≡ 0 (mod 4(3n + s)),

d is the j th member of D, 0 ≤ j ≤ 4s − 1} .

Since k(3n + s) ∈ D for each k, 0 ≤ k ≤ 3, without loss of generality we may assume
k(3n + s) is the (ks)th element of D. Let

δ0 = {{∞ks, (a + d)0, (b − d)1, (c + d)2} : a + b + c ≡ 0 (mod 4(3n + s)), a, b, c ∈
{i(3n + s) : 0 ≤ i ≤ 3}, d is the (ks)th member of D and 0 ≤ k ≤ 3}.

Note that δ0 ⊂ δ and δ0 forms the block set of an RH(44) with the group set {{(k(3n + s))i :
0 ≤ k ≤ 3} : i ∈ {0, 1, 2}} ∪ {{∞ks : 0 ≤ k ≤ 3}} and parallel classes {{∞(i+ j+k+g)s, ((i +
g)(3n + s))0, (( j + g)(3n + s))1, ((k + g)(3n + s))2} : g ∈ Z4}, i + j + k ≡ 0 (mod 4).
Hence, the RHF4((3n + s)3 : s) contains a subdesign RH(44). ��

Combining Theorem 2.13, Lemma 2.14 and the existence results of resolvable B4-pairings
established in the next subsection, we obtain the following theorem.
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Theorem 2.15 Suppose that n ≥ 0 and s ≥ 1. There exists an RHF4((3n + s)3 : s). When
(n, s) �= (1, 1), there exists an RHF4((3n + s)3 : s) with a sub-design RH(44).

As a consequence of Theorem 2.15, we have our third tripling construction as follows.

Corollary 2.16 (Tripling Construction III) Let n ≡ 2s (mod 3) and s ≥ 1. If there exists an
IRH(4n : 4s), then there exist both an IRH(43n−2s : 4n) and an IRH(43n−2s : 4s). Further-
more, if there exists an RH(4n) or an RH(4s), then there exists an RH(43n−2s), as well as an
IRH(43n−2s : 44) when (n, s) �= (5, 1).

2.4 Construction of resolvable B4-pairings

In order to construct resolvable B4-pairings, we describe a special class of B4-pairings with
extra properties. Suppose that D, Ri , P Ri , i ∈ {0, 1, 2} form a B4(n, s) on Z4(3n+s). If there
exist three subsets A0, A1, A2 of Z4(3n+s) and three subsets P A0, P A1, P A2 of Z4(3n+s) ×
Z4(3n+s) satisfying the following conditions for each i ∈ {0, 1, 2}:
(1) Ri = −Ri , Ai ⊂ Ri , |Ai | = 2n,
(2) P Ai is a partition of Ai into pairs. Let O ′

i = {|x − y| : {x, y} ∈ P Ai },
(a) |O ′

i | = n, all O ′
0, O ′

1, O ′
2 are disjoint and of odd members,

(b) (∪2
i=0 O ′

i )
⋂

(N
⋃

(∪2
i=0 Li )) = ∅,

then let

S0 = A1 ∪ A2, S1 = A0 ∪ (−A2), S2 = (−A0) ∪ (−A1),

P S0 = P A1 ∪ P A2, P S1 = P A0 ∪ (−P A2), P S2 = (−P A0) ∪ (−P A1),

R0 = −(R0\A0), R1 = R1\A1 and R2 = −(R2\A2).

It is readily checked that D, Ri , P Ri , Si , P Si , Ri , i ∈ {0, 1, 2} form an RB4(n, s).
Now, we are in a position to construct RB4(n, s) for any n ≥ 0 and s ≥ 1. We list the

components D, P Ri , P Ai , i ∈ {0, 1, 2} for short or D, P Ri , P Si , Ri , i ∈ {0, 1, 2} fully.

Lemma 2.17 For each pair of integers n ≥ 0 and s ≥ 1, there exists an RB4(n, s).

Proof When n = 0, we take D = Z4(3n+s) and Ri = Si = Ri = ∅ for each i ∈ {0, 1, 2}.
When n > 0, s > 0, the desired RB4(n, s) is constructed directly as follows:

(1) For s odd and n even, let

D = {(3n + s) j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤ (s − 1)/2
or 3n + (s − 1)/2 + 1 ≤ j ≤ 3n + s − 1},
P R0 = {{ j,− j} : (s−1)/2+1 ≤ j ≤ (s−1)/2+n or (3n+s)+(s−1)/2+n+1 ≤
j ≤ (3n + s) + (s − 1)/2 + 2n},
P R1 = {{ j,− j} : (s−1)/2+2n+1 ≤ j ≤ (s−1)/2+3n or (3n+s)+(s−1)/2+1 ≤
j ≤ (3n + s) + (s − 1)/2 + n},
P R2 = {{ j,− j} : (s − 1)/2 + n + 1 ≤ j ≤ (s − 1)/2 + 2n or (3n + s) + (s − 1)/2
+ 2n + 1 ≤ j ≤ (3n + s) + (s − 1)/2 + 3n},
P A0 = {{(s − 1)/2 + j, 8n + 3s − (s − 1)/2 − j} : 1 ≤ j ≤ n},
P A1 = {{(s − 1)/2 + 2n + j, 4n + s + (s − 1)/2 − j} : 1 ≤ j ≤ n − 1} ∪ {{10n −
(s − 1)/2 − 1, 10n − (s − 1)/2 − 2}},
P A2 = {{(s − 1)/2 + n + j, 6n + s + (s − 1)/2 + 2 − j} : 2 ≤ j ≤ n} ∪ {{(s − 1)/2
+ n + 1, 11n + 4s − (s − 1)/2 − 2}}.
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(2) For s even and n even, let

D = {(3n + s) j, (3n + s)/2 + (3n + s) j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤
3, 1 ≤ j ≤ (s − 2)/2 or 3n + s/2 + 1 ≤ j ≤ 3n + s − 1},
P R0 = {{ j,− j} : (s − 2)/2 + 1 ≤ j ≤ (s − 2)/2 + n or (s − 2)/2 + n + 1 ≤ j ≤
2n + (s − 2)/2 + 1 and j �= (3n + s)/2},
P R1 = {{ j,− j} : 2n+(s −2)/2+2 ≤ j ≤ 3n+s/2 or 3n+s +(s −2)/2+n+1 ≤
j ≤ 3n + s + (s − 2)/2 + 2n + 1 and j �= 3n + s + (3n + s)/2},
P R2 = {{ j,− j} : 3n + s + (s − 2)/2 + 1 ≤ j ≤ 3n + s + (s − 2)/2 + n or 5n +
s + (s − 2)/2 + 2 ≤ j ≤ 6n + s + (s − 2)/2},
P A0 = {{(s − 2)/2 + j, (s − 2)/2 + 2n + 1 − j} : 1 ≤ j ≤ n and j �= n/2} ∪
{{11n + 3s + (s + 2)/2, 10n + (s + 2)/2 + 3s − 1}},
P A1 = {{(s − 2)/2 + 2n + 1 + j, 8n + 2s + (s + 2)/2 − j} : 1 ≤ j ≤ n and j �=
n/2} ∪ {{10n + 3s + (s + 2)/2 − 2, 3n + s + (s − 2)/2 + 2n + 1}},
P A2 = {{3n + s + (s − 2)/2 + j, 7n + 2s + (s + 2)/2 − 1 − j} : 1 ≤ j ≤ n}.

(3) For s even and n odd,

(3.1) n ≥ 3 odd, let
D = {(3n + s) j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤
(s − 2)/2 or 3n + (s − 2)/2 + 2 ≤ j ≤ 3n + s − 1} ∪ {±((s − 2)/2 + 1),

±(6n + s + (s − 2)/2 + 1)},
P R0 = {{ j,− j} : (s−2)/2+2 ≤ j ≤ (s−2)/2+n+1 or (s−2)/2+2n+2 ≤
j ≤ (s − 2)/2 + 3n + 1},
P R1 = {{ j,− j} : (s − 2)/2 + n + 2 ≤ j ≤ (s − 2)/2 + 2n + 1 or (5n + s)
+ (s − 2)/2 + 1 ≤ j ≤ (5n + s) + (s − 2)/2 + n},
P R2 = {{ j,− j} : 3n + s + (s − 2)/2 + 1 ≤ j ≤ 3n + s + (s − 2)/2 +
n or 3n + s + (s − 2)/2 + n + 1 ≤ j ≤ 3n + s + (s − 2)/2 + 2n},
P A0 = {{(s − 2)/2 + 2n + j, 10n + 4s − (s − 2)/2 − 1 − j} : 2 ≤ j ≤ n}
∪ {(s − 2)/2 + 3, (s − 2)/2 + 3n + 1},
P A1 = {{(s − 2)/2 + n + j, 6n + s + (s − 2)/2 + 2 − j} : 2 ≤ j ≤ n}
∪ {{5n + s + (s − 2)/2 + 1, 11n + 4s − (s − 1)/2 − 2}},
P A2 = {{(s − 2)/2 + 3n + s + j, 5n + s + (s − 2)/2 + 1 − j} : 1 ≤ j ≤ n}.

(3.2) n = 1, let
D = {(3 + s) j : 0 ≤ j ≤ 3} ∪ {(3 + s)i + j : 0 ≤ i ≤ 3, 1 ≤ j ≤ (s − 2)/2
or 3+ (s −2)/2+2 ≤ j ≤ 3+ s −1}∪{±((s −2)/2+1),±((s −2)/2+2)},
P R0 = {{ j,− j} : (s − 2)/2 + 3 ≤ j ≤ (s − 2)/2 + 4},
P R1 = {{ j,− j} : 3 + s + (s − 2)/2 + 1 ≤ j ≤ 3 + s + (s − 2)/2 + 2},
P R2 = {{ j,− j} : 3 + s + (s − 2)/2 + 3 ≤ j ≤ 3 + s + (s − 2)/2 + 4},
P A0 = {{(s − 2)/2 + 3, (s − 2)/2 + 4}},
P A1 = {{3 + s + (s − 2)/2 + 2, 8 + 2s + (s + 2)/2}},
P A2 = {{3 + s + (s − 2)/2 + 3, 5 + 2s + (s + 2)/2}}.

(4) For s odd and n odd,

(4.1) s ≥ 3 odd and n ≥ 3 odd, let
D = {(3n + s) j, (3n + s)/2 + (3n + s) j : 0 ≤ j ≤ 3} ∪ {(3n + s)i + j : 0 ≤
i ≤ 3, 1 ≤ j ≤ (s − 3)/2 or 3n + (s − 3)/2 + 3 ≤ j ≤ 3n + s − 1} ∪ {±((s −
3)/2 + 1),±(3n + s + 3n + (s − 3)/2 + 2)},
P R0 = {{ j,− j} : (s −3)/2+2 ≤ j ≤ (s −3)/2+n +1 or (s −3)/2+n +2 ≤
j ≤ 2n + (s − 3)/2 + 2 and j �= (3n + s)/2},
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P R1 = {{ j,− j} : 2n + (s −3)/2+3 ≤ j ≤ 3n + (s −3)/2+2 or 3n + s + (s −
3)/2 + n + 1 ≤ j ≤ 3n + s + (s − 3)/2 + 2n + 1 and j �= 3n + s + (3n + s)/2},
P R2 = {{ j,− j} : 3n + s + (s − 3)/2 + 1 ≤ j ≤ 3n + s + (s − 3)/2 + n or 5n +
s + (s − 3)/2 + 2 ≤ j ≤ 6n + s + (s − 3)/2 + 1},
P A0 = {{(s − 3)/2 + j, (s − 3)/2 + 2n + 3 − j} : 2 ≤ j ≤ n + 1 and j �=
n + 3 − (n + 3)/2} ∪ {{11n + 3s + (s + 3)/2 − 2, 10n + (s + 3)/2 + 3s − 2}},
P A1 = {{(s − 3)/2 + 2n + 2 + j, 8n + 2s + (s + 3)/2 − j} : 1 ≤ j ≤ n and j �=
(n − 1)/2 + 2} ∪ {{10n + 3s + (s + 3)/2 − 4, 3n + s + (s − 3)/2 + 2n + 1}},
P A2 = {{3n + s + (s − 3)/2 + j, 7n + 2s + (s + 3)/2 − 1 − j} : 1 ≤ j ≤ n}.

(4.2) s ≥ 3 odd and n = 1 odd, let
D = {(3 + s) j, (3 + s)/2 + (3 + s) j : 0 ≤ j ≤ 3} ∪ {(3 + s)i + j : 0 ≤ i ≤
3, 1 ≤ j ≤ (s − 3)/2 or 3 + (s + 3)/2 ≤ j ≤ 3 + s − 1} ∪ {±((s − 3)/2 +
1),±((s − 3)/2 + 2)},
P R0 = {{ j,− j} : (s + 3)/2 + 1 ≤ j ≤ (s + 3)/2 + 2},
P R1 = {{ j,− j} : 3 + s + (s − 3)/2 + 1 ≤ j ≤ 3 + s + (s − 3)/2 + 2},
P R2 = {{ j,− j} : 3 + s + (s + 3)/2 + 1 ≤ j ≤ 3 + s + (s + 3)/2 + 1},
P A0 = {{(s + 3)/2 + 1, (s + 3)/2 + 2}},
P A1 = {{3 + s + (s − 3)/2 + 1, 7 + 2s + (s + 3)/2}},
P A2 = {{3 + s + (s + 3)/2 + 1, 7 + 2s + (s − 3)/2}}.

(4.3) For s = 1 and n ≥ 3 odd, let
D = {(3n + 1)i : 0 ≤ i ≤ 3},
P R0 = {{ j,− j} : 1 ≤ j ≤ (n + 1)/2 or (3n + 1)/2 + n + 1 ≤ j ≤ 3n} ∪
{{ j,− j − 1} : 3n + 1 + (n + 1)/2 + 1 ≤ j ≤ 3n + 1 + (3n + 1)/2 − 1} ∪ {{3n +
1 + (3n + 1)/2, 3(3n + 1) − (n + 1)/2 − 1}},
P R1 = {{ j,− j} : 3n + 1 + 1 ≤ j ≤ 3n + 1 + (n + 1)/2 or 3n + 1 + (3n +
1)/2 + n + 1 ≤ j ≤ 2(3n + 1) − 1} ∪ {{ j,− j − 1} : (n + 1)/2 + 1 ≤ j ≤
(3n + 1)/2 − 1} ∪ {{(3n + 1)/2, 4(3n + 1) − (n + 1)/2 − 1}},
P R2 = {{ j,− j} : (3n+1)/2+1 ≤ j ≤ (3n+1)/2+n or 3n+1+(3n+1)/2+1 ≤
j ≤ 3n + 1 + (3n + 1)/2 + n},
P A0 = {{ j,− j − 1} : 3n + 1 + (n + 1)/2 + 1 ≤ j ≤ 3n + 1 + (3n + 1)/2 −
1} ∪ {{(n + 1)/2 − 1, 4(3n + 1) − (n + 1)/2}},
P A1 = {{ j,− j −1} : (n +1)/2+1 ≤ j ≤ (3n +1)/2−1}∪{{3n +2, 3n +3}},
P A2 = {{(3n+1)/2+1+ j, 3(3n+1)−(3n+1)/2− j} : 1 ≤ j ≤ (n+1)/2}∪
{{3n+1+(3n+1)/2+ j, 3n+1+(3n+1)/2+n− j} : 1 ≤ j ≤ (n−3)/2}∪V ,
where V = {{3n + 1 + (3n + 1)/2 + n, 3(3n + 1) − (3n + 1)/2 − n + 1}} for
n ≥ 5 and V = {{17, 22}} when n = 3.

(4.4) For s = 1 and n = 1, let
D = {0, 1, 8, 15},
P R0 = {{2, 3}, {4, 6}}, P R1 = {{5, 11}, {9, 14}}, P R2 = {{7, 13}, {10, 12}},
P S0 = {{7, 10}, {9, 14}}, P S1 = {{6, 7}, {10, 13}}, P S2 = {{2, 3}, {6, 9}},
R0 = {4, 14}, R1 = {5, 11}, R2 = {3, 4}. ��

3 Existence of RH(4n)

In this section, we shall establish the existence of resolvable H-designs with group size 4 by
using the recursive constructions developed in Sect. 2. First, we need the following initial
designs.
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Lemma 3.1 There exists an RH(45).

Proof Let the point set be Z20, and the group set be {{ j, j + 5, j + 10, j + 15} : j =
0, 1, . . . , 4}. We list the base blocks as follows, which are developed by adding 2 modulo 20:

{3, 4, 7, 11} {6, 10, 17, 18} {0, 2, 9, 13} {5, 8, 19, 1} {12, 14, 15, 16}
{8, 9, 16, 17} {11, 19, 0, 2} {18, 4, 12, 15} {3, 6, 10, 14} {1, 5, 7, 13}
{1, 7, 9, 18} {11, 13, 14, 15} {19, 5, 6, 12} {8, 10, 2, 4} {16, 17, 0, 3}
{1, 12, 18, 19}

Each of the first three rows forms a parallel class. The last block covers the four residues
modulo 4, hence gives a parallel class by adding 4 modulo 20. ��
Lemma 3.2 There exists an RH(47).

Proof Let the point set be Z28, and the group set be {{ j, j + 7, j + 14, j + 21} : j =
0, 1, · · · , 6}. We list the base blocks as follows, each of which is developed by adding 2
modulo 28:

{3, 7, 11, 23} {27, 9, 15, 17} {13, 14, 19, 1} {2, 4, 10, 20} {18, 22, 26, 6}
{24, 0, 5, 16} {8, 12, 21, 25}
{0, 1, 9, 12} {21, 25, 2, 10} {18, 20, 5, 14} {22, 24, 27, 4} {13, 15, 17, 23}
{16, 19, 7, 8} {26, 3, 6, 11}
{3, 6, 18, 21} {8, 9, 19, 24} {20, 5, 7, 11} {10, 15, 16, 0} {4, 14, 17, 1}
{25, 2, 12, 13} {22, 23, 26, 27}
{2, 4, 6, 24} {1, 5, 7, 23} {9, 12, 20, 21} {16, 18, 22, 0} {3, 8, 11, 13}
{10, 15, 19, 27} {14, 17, 25, 26}
{3, 4, 7, 8} {21, 26, 2, 13} {22, 23, 24, 25} {14, 17, 20, 11} {18, 19, 0, 9}
{27, 1, 10, 12} {16, 5, 6, 15}
{2, 7, 13, 24} {5, 7, 22, 24} {7, 12, 13, 18} {12, 18, 21, 27} {13, 15, 16, 18}

The seven blocks in the i th and (i + 1)th rows form a parallel class for each i = 1, 3, 5, 7, 9.
Each block of the last row covers the four residues modulo 4, hence gives a parallel class by
adding 4 modulo 28. ��
Lemma 3.3 There exists an RHF4(35 : 2).

Proof We first construct an HF2(35 : 2) on Z30 ∪{∞0, . . . ,∞3}, with groups G ′
j = { j, j +

15}, j = 0, 1, . . . , 14, G ′∞i
= {∞i ,∞i+2}, i = 0, 1, five holes F ′

i = {G ′
i , G ′

i+5, G ′
i+10} ∪

S′, i = 0, 1, . . . , 4 and a common hole S′ = {G ′∞0
, G ′∞1

}. We list below the set of base
blocks B′ = � ∪ �, which will be developed under the automorphism group 〈α′〉, where
α′ = (0 1 2 3 . . . 28 29).

� : {0, 1, 13, 22} {0, 3, 4, 7} {0, 14, 16, 27} {0, 6, 18, 19}
{0, 3, 6, 24} {0, 19, 21, 22} {0, 1, 2, 8} {0, 11, 19, 27}

{0, 2, 29,∞0} {0, 4, 22,∞0} {0, 7, 16,∞0} {0, 6, 17,∞0}
{0, 3, 12,∞1} {0, 2, 24,∞1} {0, 16, 29,∞1} {0, 4, 11,∞1}
{0, 19, 28,∞2} {0, 13, 27,∞2} {0, 8, 26,∞2} {0, 6, 7,∞2}
{0, 3, 9,∞3} {0, 22, 29,∞3} {0, 14, 26,∞3} {0, 11, 13,∞3}

� : {0, 2, 18, 28} {0, 5, 14, 18} {0, 1, 14, 19} {0, 2, 25, 27}
{0, 3, 8, 25} {0, 7, 12, 28} {0, 7, 14, 25} {0, 1, 6, 25}
{0, 10, 19, 26} {0, 9, 10, 29} {0, 12, 20, 22} {0, 6, 16, 22}
{0, 3, 20, 23} {0, 21, 25, 26} {0, 7, 17, 24} {0, 10, 21, 28}
{0, 20, 24, 26} {0, 13, 17, 21}
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For each block B = {a, b, c, d} ∈ B′, construct an RH(24) with group set {{x, x ′} : x ∈
B}, where x ′ = x +30 when x ∈ Z30 or x ′ = ∞i+4 when x = ∞i , and block set AB having
a resolution PB(1) = {{a, b, c, d}, {a′, b′, c′, d ′}}, PB(2) = {{a, b, c′, d ′}, {a′, b′, c, d}},
PB(3) = {{a, b′, c, d ′}, {a′, b, c′, d}}, PB(4) = {{a, b′, c′, d}, {a′, b, c, d ′}}. Let B =
∪B∈B′AB . It is clear that B is the set of base blocks of an HF4(35 : 2) on X =
Z60 ∪ {∞0, . . . ,∞7} with the group set G j = { j + 15k : 0 ≤ k ≤ 3}, j = 0, 1,

· · · , 14, G∞i = {∞i+2k : 0 ≤ k ≤ 3}, i = 0, 1, five holes Fi = {Gi , Gi+5, Gi+10} ∪
S, i ∈ Z5, a common hole S = {G∞0 , G∞1} and an automorphism group 〈α〉, where
α = (0 1 2 3 . . . 28 29 )(30 31 32 33 . . . 58 59). Now, we need to give the resolution. The
design should contain 16 × 30 parallel classes on X and 8 × 4 partial parallel classes on
X\(∪G∈Fi G) for each i ∈ Z5.

Note that each block B ∈ � covers all but one, say j , distinct residues modulo 5. Then for
each i ∈ {1, 2, 3, 4} and a fixed s ∈ Z5, PB(i) gives a partial parallel class on X\(∪G∈Fj+s G)

when developed by the automorphisms {α5k+s : k ∈ Z6}. That is, ∪B∈�AB gives 32 partial
parallel classes on X\(∪G∈Fi G) for each i ∈ Z5 when developed under 〈α〉.

Then we shift each block B ∈ ∪B∈�AB by a suitable automorphism αB ∈ 〈α〉. The
result is listed below, where the blocks in each of the four consecutive rows, namely the i th,
(i + 1)th, (i + 2)th and (i + 3)th rows for i ∈ {4k + 1 : k = 0, 1, . . . , 15}, form a parallel
class.

{1, 37, 38,∞2} {3, 44, 46,∞3} {6, 40, 28,∞4} {34, 7, 16,∞5} {32, 8, 9,∞6}
{30, 11, 13,∞7} {31, 36, 45, 49} {35, 10, 19, 53} {15, 20, 59, 33} {57, 29, 52, 24}
{18, 51, 26, 43} {47, 50, 25, 12} {55, 27, 54,∞0} {17, 48, 23, 42} {4, 41, 21, 58}
{39, 22, 56, 0} {2, 5, 14,∞1}
{32, 6, 24,∞4} {2, 5, 44,∞5} {3, 9, 40,∞6} {8, 19, 51,∞7} {35, 10, 49, 23}
{11, 46, 55, 29} {33, 38, 17, 21} {57, 28, 41, 16} {12, 13, 48, 37} {59, 39, 18, 25}
{36, 43, 20, 1} {0, 4, 22,∞0} {56, 30, 7,∞1} {26, 45, 54,∞2} {50, 27, 34, 15}
{52, 53, 58, 47} {31, 42, 14,∞3}
{55, 26, 9, 44} {10, 12, 5, 7} {54, 57, 14, 17} {13, 49, 30,∞0} {4, 46, 24, 56}
{37, 43, 23, 29} {52, 25, 31,∞3} {45, 48, 27,∞1} {33, 39, 50,∞4} {8, 20, 28, 0}
{19, 35, 18,∞5} {51, 59, 47,∞6} {2, 40, 58,∞2} {42, 15, 21,∞7} {36, 38, 1, 3}
{34, 11, 16, 32} {22, 53, 6, 41}
{1, 15, 27,∞3} {32, 39, 48,∞4} {34, 36, 58,∞5} {40, 59, 38,∞6} {51, 35, 47,∞7}
{2, 3, 16, 21} {10, 41, 54, 29} {17, 49, 12, 44} {53, 25, 18, 50} {56, 5, 6, 55}
{7, 20, 24, 28} {9, 52, 26, 30} {14, 46, 43,∞0} {0, 4, 11,∞1} {45, 22, 57, 13}
{23, 33, 42, 19} {31, 37, 8,∞2}
{45, 28, 12,∞6} {52, 58, 38, 44} {39, 25, 8,∞5} {43, 19, 29, 35} {4, 41, 16, 32}
{21, 27, 7, 13} {53, 0, 10, 47} {33, 9, 50,∞0} {15, 22, 59, 40} {55, 17, 54,∞3}
{1, 34, 51, 24} {23, 56, 31, 18} {49, 5, 48,∞1} {3, 46, 30,∞2} {42, 14, 11,∞4}
{57, 6, 37, 26} {36, 20, 2,∞7}
{51, 58, 33, 49} {50, 42, 19,∞3} {8, 40, 2,∞5} {20, 57, 36,∞0} {48, 24, 34, 10}
{31, 11, 22, 59} {3, 6, 53, 56} {43, 46, 52,∞7} {4, 44, 23, 30} {0, 37, 14, 55}
{17, 25, 13,∞2} {27, 29, 21,∞1} {32, 9, 18,∞4} {16, 54, 12,∞6} {1, 38, 45, 26}
{7, 47, 28, 35} {15, 5, 39, 41}
{17, 20, 25, 12} {2, 53, 27, 58} {30, 34, 22,∞0} {44, 47, 23,∞3} {37, 9, 1,∞5}
{18, 21, 56, 43} {3, 46, 50, 24} {26, 59, 16, 49} {5, 36, 41, 0} {38, 45, 55, 32}
{48, 39, 13, 14} {6, 19, 33,∞6} {28, 31, 40,∞1} {10, 29, 8,∞2} {52, 54, 51,∞4}
{15, 57, 35, 7} {42, 4, 11,∞7}
{24, 1, 40,∞4} {10, 30, 4, 36} {33, 6, 53, 26} {11, 0, 39,∞6} {59, 32, 49, 52}
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{54, 8, 50,∞3} {16, 18, 41, 43} {56, 42, 55,∞5} {46, 48, 15,∞0} {47, 21, 58,∞1}
{5, 38, 14,∞7} {19, 22, 9, 12} {7, 28, 2, 3} {20, 27, 37, 44} {57, 17, 51, 23}
{35, 25, 29, 31} {45, 34, 13,∞2}
{0, 7, 12, 28} {23, 55, 47,∞1} {18, 58, 39, 16} {34, 44, 53, 30} {20, 33, 17,∞6}
{41, 21, 32, 9} {31, 11, 50, 27} {24, 4, 45, 52} {19, 29, 8, 15} {22, 36, 48,∞3}
{40, 42, 35, 37} {13, 26, 10,∞2} {57, 3, 14,∞4} {25, 59, 6,∞5} {2, 54, 1,∞7}
{43, 46, 51, 38} {49, 56, 5,∞0}
{16, 18, 40,∞5} {23, 9, 22,∞1} {49, 56, 1, 17} {41, 54, 8,∞2} {31, 5, 53,∞0}
{10, 2, 39,∞7} {55, 3, 21,∞6} {52, 4, 12, 44} {45, 57, 35, 37} {15, 28, 32, 36}
{51, 42, 46, 47} {14, 6, 13,∞3} {27, 59, 26,∞4} {48, 19, 24, 43} {38, 20, 58, 0}
{34, 25, 29, 30} {50, 33, 7, 11}
{36, 25, 4,∞6} {8, 11, 17,∞3} {30, 50, 54, 56} {21, 58, 38, 15} {27, 29, 26,∞0}
{47, 19, 41,∞1} {28, 34, 44, 20} {32, 45, 49, 53} {43, 35, 42,∞7} {40, 23, 37,∞2}
{24, 31, 10,∞4} {51, 22, 57, 16} {0, 6, 46, 52} {48, 1, 5, 39} {33, 7, 14,∞5}
{59, 9, 18, 55} {3, 12, 13, 2}
{27, 36, 37, 26} {23, 30, 35, 21} {39, 47, 5,∞2} {46, 32, 15,∞1} {53, 54, 29, 18}
{57, 34, 41, 52} {59, 43, 25,∞3} {16, 2, 45,∞5} {40, 50, 1, 8} {19, 55, 6,∞4}
{7, 17, 56, 33} {3, 9, 20,∞0} {31, 44, 58,∞6} {10, 13, 49,∞7} {4, 24, 28, 0}
{48, 38, 12, 14} {42, 51, 22, 11}
{0, 34, 52,∞0} {30, 3, 42,∞1} {1, 7, 8,∞2} {2, 13, 15,∞3} {31, 35, 53,∞4}
{33, 36, 45,∞5} {32, 38, 39,∞6} {44, 55, 57,∞7} {24, 26, 12, 22} {18, 50, 6, 46}
{56, 28, 14, 54} {41, 43, 29, 9} {19, 21, 37, 47} {49, 58, 59, 48} {11, 20, 51, 40}
{25, 5, 16, 23} {10, 17, 27, 4}
{0, 7, 16,∞0} {30, 32, 24,∞1} {33, 9, 40,∞2} {31, 12, 44,∞3} {1, 5, 53,∞4}
{2, 35, 14,∞5} {3, 39, 10,∞6} {15, 56, 28,∞7} {50, 52, 38, 48} {55, 27, 43, 23}
{19, 51, 37, 17} {8, 13, 22, 26} {6, 41, 20, 54} {58, 59, 42, 47} {4, 11, 18, 29}
{36, 46, 57, 34} {25, 45, 49, 21}
{30, 7, 46,∞0} {0, 34, 41,∞1} {31, 20, 59,∞2} {3, 36, 42,∞3} {2, 8, 49,∞4}
{43, 47, 54,∞5} {1, 9, 57,∞6} {29, 13, 55,∞7} {38, 39, 22, 27} {50, 23, 28, 45}
{37, 14, 21, 32} {24, 33, 4, 53} {10, 11, 16, 5} {6, 18, 56, 58} {19, 40, 44, 15}
{26, 17, 51, 52} {48, 25, 35, 12}
{30, 36, 17,∞0} {0, 46, 59,∞1} {51, 29, 47,∞2} {5, 57, 34,∞3} {11, 13, 40,∞4}
{3, 7, 44,∞5} {16, 35, 14,∞6} {23, 37, 19,∞7} {24, 25, 38, 43} {1, 33, 56, 28}
{53, 26, 31, 18} {27, 4, 39, 55} {48, 21, 8, 41} {50, 32, 10, 12} {6, 42, 22, 58}
{54, 15, 49, 20} {45, 52, 2, 9}

��
As a corollary of the Tripling Construction III, we obtain

Theorem 3.4 If there exists a constant M ≥ 6, such that for every n ≡ 1, 2 (mod 3) in the
range M ≤ n < 3M, there exists an IRH(4n : 417), then for every n ≡ 1, 2 (mod 3) and
n ≥ M, there exists an IRH(4n : 417).

Proof First, we claim that there exists an IRH(417 : 4s) for each s ∈ {1, 2, 4, 5, 7}. Applying
the Tripling Construction III with (n, s) = (7, 2) and an RH(47) in Lemma 3.2, we obtain
an RH(417), an IRH(417 : 44) and an IRH(417 : 47). An IRH(417 : 45) can be constructed
by applying Theorem 2.5 with an RHF4(35 : 2) in Lemma 3.3 and an RH(45) in Lemma 3.1.
The designs with a hole of sizes 1 or 2 are actually an RH(417).

The above statement yields that the existence of an IRH(4n : 417) implies the existence
of an IRH(4n : 4s) for all s ∈ {1, 2, 4, 5, 7, 17}. We proceed the proof by induction.
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Let n ≥ 3M and n ≡ 1, 2 (mod 3). Assume that for each n′, M ≤ n′ < n, n′ ≡
1, 2 (mod 3), there exists an IRH(4n′ : 417). Write n = 3m − 2s, where s = 7, 5, 1, 17, 4, 2
when n ≡ 1, 2, 4, 5, 7, 8 (mod 9), respectively. It is easy to check that M ≤ m < n,
m ≡ 1, 2 (mod 3). Applying the Tripling Construction III, the conclusion then follows. ��
Lemma 3.5 For each integer n ≡ 1, 2 (mod 3), n ≥ 4 and n /∈ {73, 149, 181, 599}, there
exists an RH(4n).

Proof Let L be the list of pairs (n, s) such that an IRH(4n : 4s) is known. For every two
pairs (n, s) and (n′, s′), define (n, s) ≺ (n′, s′) if n < n′or, n = n′ and s < s′. We will
compute the output of the Tripling Constructions I, II and III, the Doubling Construction and
the Product Construction by a computer programme, which involves the following steps:

Step 1: Initialize L . Let L = {(4, 1), (4, 2), (5, 1), (5, 2), (7, 1), (7, 2), (13, 1), (13, 2),

(13, 5), (19, 1), (19, 2), (41, 1), (41, 2)}. The designs with 13 groups can be con-
structed by applying Tripling Construction III with (n, s) = (5, 1). The designs
with 19 or 41 groups are constructed directly based on the corresponding block
sets appeared in [2, Lemmas 5.4 and 5.2]. In order to save space, we post these
two designs on the new results website for Handbook of Combinatorial Designs
[18] maintained by Professor Jeff Dinitz of the University of Vermont. Sort L in
ascending order. Let (n, s) be the smallest pair in L .

Step 2: Check whether (n, s) satisfies Tripling Construction III’s condition, i.e., n ≡
2s (mod 3) and (n, s) �= (5, 1). If not, go to Step 3. If yes, update L by add-
ing pairs (3n − 2s, n), (3n − 2s, 4) and (3n − 2s, k) for all k such that (n, k) ∈ L .
Sort the updated L in ascending order, then go to Step 4.

Step 3: Check whether n − s ≡ 0 (mod 3). If not, go to Step 4. If yes, write n − s = 3x · t ,
such that t > s and 3 � t , or s < t < 3s and 3|t . Check whether (t+s, s) satisfies Tri-
pling Construction III’s condition, i.e., t +s ≡ 2s ( mod 3) and (t +s, s) �= (5, 1),
or Tripling Construction II’s condition, i.e., t ≡ 0 (mod 3) and 9s ≥ 5t . If yes,
update L by adding pairs (3n−2s, n) and (3n−2s, k) for all k such that (n, k) ∈ L .
Furthermore, add (3n − 2s, 4) into L if (t + s, s) satisfies Tripling Construction
III’s condition. Sort the updated L in ascending order, then go to Step 4.

Step 4: Apply the Doubling Construction and the Product Construction. Update L by add-
ing the pair (2n, k) for all k such that (n, k) ∈ L . For each m such that (m, 1) ∈ L ,
update L by adding pairs (mn, n), (mn, m) and (mn, k) for all k such that (n, k) ∈ L
or (m, k) ∈ L . Sort the updated L in ascending order. Let (n, s) be the next smallest
pair in the updated L , then go to Step 2.

The programme was run with n < 2000 and s ≤ 64, and produced two results as follows:

Result 1: For each n ≡ 1, 2 (mod 3) and 4 ≤ n < 1285, there exists an RH(4n) with four
possible exceptions {73, 149, 181, 599}.

Result 2: There exists an IRH(4n : 417) for all n ≡ 1, 2 (mod 3) and 1285 ≤ n < 3855.

By Theorem 3.4, there exists an IRH(4n : 417) for all n ≡ 1, 2 (mod 3) and n ≥ 1285.
Hence there exists an RH(4n) by Theorem 2.5. This completes the proof. ��
Lemma 3.6 There exists an RH(4n) for each n ∈ {181, 599}.
Proof For n = 181, there exists an RCQS(115 : 1) obtained from an RSQS(16). By
Theorem 2.15, there exists an RHF4(43 : 1), thus an RHF4(123 : 1) exists by Tripling
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Construction I. Applying Theorem 2.4 with an RH(484) and an RCQS(115 : 1), we get an
RHF4(1215 : 1). Then applying Theorem 2.5 with an RH(413), we obtain an RH(4181).

For n = 599, there exists an RCQS(17 : 1) obtained from an RSQS(8). By Theo-
rem 2.15, there exists an RHF4(853 : 4). Applying Theorem 2.4 with the RCQS(17 : 1), the
RHF4(853 : 4) and an RH(3404), we get an RHF4(857 : 4). Applying Theorem 2.5 with an
IRH(489 : 44) gives the desired RH(4599). Here, the input IRH(489 : 44) can be constructed
by applying Tripling Construction III with (n, s) = (31, 2) and an RH(431). ��

Combining Lemmas 3.5 and 3.6, we obtain the main result in this section.

Theorem 3.7 The necessary conditions n ≡ 1 or 2 (mod 3) and n ≥ 4 for the existence
of an RH(4n) are sufficient except possibly for n ∈ {73, 149}.

4 Conclusions

The existence problem for resolvable Steiner quadruple systems is a challenging one in com-
binatorial designs theory. A complete solution was obtained by a joint effort of Hartman [8,9]
and Ji and Zhu [12] over twenty years long. In this section, we will provide an alternative
existence proof for resolvable SQS(v)s. This new proof is beneficial not only from the tripling
constructions, but also from the Group Halving Construction developed in this paper.

First, we establish the existence result of resolvable H-designs with group size 2. As a
corollary of Theorem 3.7, we have the following result by the Group Halving Construction.

Lemma 4.1 There exists an RH(2n) for each n ≡ 2, 4 (mod 6) and n /∈ {146, 298}.
Lemma 4.2 There exists an RH(2146) and an RH(2298).

Proof An RH(2146) was constructed in [12]. For RH(2298), there exists an RHF2(13 : 1)

which is actually an RH(24). By the Tripling Construction I, there is an RHF2(93 : 1) and
an RHF2(273 : 1). Applying Theorem 2.4 with an RCQS(35 : 1) from Theorem 2.3, an
RHF2(93 : 1) and an RH(184), we get an RHF2(275 : 1). Start from an URCS(111 : 1) with
block sizes k ∈ {4, 6}, which is obtained from an RG(62) (see [16]). Applying Theorem 2.4
again with an RHF2(27k−1 : 1) and an RH(54k) for k ∈ {4, 6}, we get an RHF2(2711 : 1).
Applying Theorem 2.5 with an RH(228), we get an RH(2298). Here, the input RH(546) can
be obtained from an RH(66) (see [16]) by applying the Weighting Construction with m = 9.

��
Combining Lemmas 4.1 and 4.2, we obtain

Theorem 4.3 The necessary conditions n ≡ 2 or 4 (mod 6) and n ≥ 4 for the existence
of an RH(2n) are also sufficient.

As a consequence of Theorem 4.3, we have the following corollary by the Group Halving
Construction.

Corollary 4.4 The necessary condition v ≡ 4 or 8 (mod 12) for the existence of an
RSQS(v) is also sufficient.

As the other consequence of Theorem 4.3, we reestablish the existence result for resolv-
able H-designs with group size 6. The following construction was proved in [16], which is
similar to but much stronger than the Product Construction in Theorem 2.6.

Lemma 4.5 Suppose that there exist both an RH(g2u) and an RH(g2t ). Then there exists an
RH(g2ut ).
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Theorem 4.6 There exists an RH(6n) for each n ≡ 0 (mod 2) and n ≥ 4.

Proof For each n ≡ 2 or 4 (mod 6) and n ≥ 4, there exists an RH(6n) by applying the
Weighting Construction with an RH(2n) from Theorem 4.3 and m = 3.

For n = 6, there exists an RH(66) [16]. For each n = 6h and h ≥ 2, the proof proceeds
by induction. Assume that for each n′ ≡ 0 (mod 6) and n′ < n, there exists an RH(6n′

).
Thus there exists an RH(6k) for each k ≡ 0 (mod 2) and k < n. By Lemma 4.5, an RH(6n)

exists since there exists an RH(66) and an RH(62h). ��
As a corollary of Theorem 4.6, we have the following result by the Group Halving Con-

struction.

Theorem 4.7 The necessary conditions n ≡ 0 (mod 4) and n ≥ 4 for the existence of an
RH(3n) are also sufficient.

According to the necessary conditions for the existence of an RH(gn) and by the Weight-
ing Construction, the general existence problem of RH(gn) depends on the solution of the
following six cases, which have been listed in [16]:

(1) g = 1 and n ≡ 4, 8 (mod 12),
(2) g = 2 and n ≡ 2, 4 (mod 6),
(3) g = 3 and n ≡ 0 (mod 4),
(4) g = 4 and n ≡ 1, 2 (mod 3),
(5) g = 6 and n ≡ 0 (mod 2),
(6) g = 12 and n ∈ N .

For Case (1), an RH(1n) is actually an RSQS(n), whose existence has been solved completely
[9,12]. For Cases (2) and (4), the existence of RH(2n) and RH(4n) were studied in this paper.
For Cases (3) and (5), the existence of RH(gn) was established in Theorems 4.7 and 4.6,
respectively. Hence, the whole problem can be reduced to the odd orders of n in Case (6) and
the two remaining orders of n = 73, 149 in Case (4), which will be an interesting topic for
further investigation. Now, Theorem 1.1 can be updated as follows.

Theorem 4.8 The necessary conditions gn ≡ 0 (mod 4), g(n − 1)(n − 2) ≡ 0 (mod 3)

and n ≥ 4 for the existence of a resolvable H-design of type gn are also sufficient for each
g ≡ 1, 2, 3, 5, 6, 7, 9, 10, 11 (mod 12), and also sufficient for each g ≡ 4, 8 (mod 12) with
two possible exceptions n = 73, 149.

As an application of the above existence result of resolvable H-designs, we give a complete
solution to the existence problem of resolvable G-designs.

A G-design of order v with block sizes from K , denoted by G(t, K , v), is a triple (X, G, A)

that satisfies the following properties:

(1) X is a set of v elements;
(3) G = {G1, G2, . . . } is a set of nonempty subsets of X , which partition X ;
(4) A is a family of subsets of X , each of cardinality from K ;
(5) every t-subset T of X with |T ∩ Gi | < t , for all i , is contained in a unique block, and

no t-subset of Gi , for any i , is contained in any block.

The type of the G(t, K , v) is defined as the list (|G||G ∈ G). In this paper, we denote
a G(3, {4}, v) of type gn by G(gn) for short. Recently, Zhuralev et al. [17] investigated the
existence of such designs (called group divisible Steiner quadruple systems as in [17]). A
table was provided that includes existence results when the number of points is not more than
24. They also proved the following theorem in [17].
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Theorem 4.9 There exists a G(gn) if and only if g = 1 and n ≡ 2 or 4 (mod 6), or g is
even and g(n − 1)(n − 2) ≡ 0 (mod 3).

A G(gn) is said to be resolvable, denoted by RG(gn), if its block set can be partitioned
into parallel classes. It is clear that the necessary conditions for the existence of an RG(gn)

are g = 1 and n ≡ 4 or 8 (mod 12), or g is even, gn ≡ 0 (mod 4) and g(n − 1)(n − 2) ≡
0 (mod 3). The following lemma was proved in [16].

Lemma 4.10 [16] If there exists an RH(g2t ) with g even, then there exist both an RG((2g)t )

and an RG(g2t ).

Lemma 4.11 If there exists an RG(gn), then there exists an RG((2mg)n) for any positive
integer m.

Proof Let (X, G, B) be the given RG(gn) with G = {G1, G2, . . . , Gn} and B having a reso-
lution Pi , 1 ≤ i ≤ r , where r = ((gn − 1)(gn − 2)− (g − 1)(g − 2))/6. Let X ′ = X × Z2m

and G ′
k = Gk × Z2m, 1 ≤ k ≤ n. We will construct an RG((2mg)n) on X ′ with group set

G′ = {G ′
k : 1 ≤ k ≤ n}.

For each block B ∈ B, construct an RH((2m)4) on B × Z2m with group set {{x} × Z2m :
x ∈ B} and block set AB having resolution classes PB( j), 1 ≤ j ≤ (2m)2.

Let � be a multi-partite complete graph on the vertex set X with partite set G. Denote its
edge set by E . Then E is the block set of a GDD(2, 2, gn) of type gn on X with group set G.
Since an RG(gn) exists, gn is even. There exists a resolvable GDD(2, 2, gn) of type gn by
[3], i.e., E has a resolution {Qi : 1 ≤ i ≤ g(n − 1)} on X .

For each x ∈ X , let F x = {F x
1 , . . . , F x

2m−1} be a one-factorization of the complete graph
on {x} × Z2m . For each edge {x, y} ∈ E , let

E{x,y} = {{a, b, c, d} : {a, b} ∈ F x
k , {c, d} ∈ F y

k , 1 ≤ k ≤ 2m − 1}.
Then C = (

⋃
B∈B AB)

⋃
(
⋃

{x,y}∈E E{x,y}) is the block set of the required G((2mg)n). We
need to give its required resolution classes.

For each Pi , 1 ≤ i ≤ r, P ′
i, j = ⋃

B∈Pi
PB( j) is a parallel class of X ′, where 1 ≤ j ≤

(2m)2.
For each Qi , 1 ≤ i ≤ g(n − 1), and for each pair of k, l with 1 ≤ k ≤ 2m − 1 and

0 ≤ l ≤ m − 1,

Q′
i,k,l =

⋃

{x,y}∈Qi

{{a, b, c, d} : where {a, b} is the j th member of F x
k and

{c, d} is the ( j + l)th member of F y
k , 1 ≤ j ≤ m

}

is a parallel class of X ′.
Thus we obtain an RG((2mg)n). ��
We close this section by the following theorem.

Theorem 4.12 The necessary conditions g = 1 and n ≡ 4 or 8 (mod 12), or g is even,
gn ≡ 0 (mod 4) and g(n − 1)(n − 2) ≡ 0 (mod 3) for the existence of an RG(gn) are also
sufficient.

Proof According to the necessary conditions for the existence of an RG(gn), we partition
the parameters into seven classes as follows:
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(1) g = 1 and n ≡ 4, 8 (mod 12),
(2) g ≡ 2 (mod 12) and n ≡ 2, 4 (mod 6),
(3) g ≡ 4 (mod 12) and n ≡ 1, 2 (mod 3),
(4) g ≡ 6 (mod 12) and n ≡ 0 (mod 2),
(5) g ≡ 8 (mod 12) and n ≡ 1, 2 (mod 3),
(6) g ≡ 10 (mod 12) and n ≡ 2, 4 (mod 6),
(7) g ≡ 0 (mod 12) and n ∈ N .

For Case (1), an RG(1n) is actually an RSQS(n), whose existence has been solved completely
[9,12]. For Cases (2), (4) and (6), an RG(gn) can be obtained by applying Lemma 4.10 with
an RH(gn). For Cases (3), (5) and (7), we continue to partition them into two subcases (A)
g ≡ 4, 20, 12 (mod 24) and (B) g ≡ 16, 8, 0 (mod 24). For Subcase (A), an RG(gn) can
be obtained by applying Lemma 4.10 with an RH((g/2)2n). For Subcase (B), the existence
of an RG(gn) can be obtained by applying Lemma 4.11 with an RG(4n) or an RG(12n). ��
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