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UNIVERSAL CYCLES FOR MINIMUM COVERINGS OF PAIRS

BY TRIPLES, WITH APPLICATION TO 2-RADIUS SEQUENCES

YEOW MENG CHEE, SAN LING, YIN TAN, AND XIANDE ZHANG

Abstract. A new ordering, extending the notion of universal cycles of Chung
et al. (1992), is proposed for the blocks of k-uniform set systems. Existence
of minimum coverings of pairs by triples that possess such an ordering is es-
tablished for all orders. The application to the construction of short 2-radius
sequences is given, along with some new 2-radius sequences found through a
computer search.

1. Introduction

Determining the existence of orderings on the blocks of various classes of set
systems (all terms are defined in the next section) to meet specified criteria is a
fundamental problem in discrete mathematics, due to applications in combinatorial
computing. The following two types of orderings have long histories:

(i) An ordering of the blocks such that any two successive blocks have sym-
metric difference of the smallest possible size (the size of one for set systems
having more than one block size, and the size of two for k-uniform set sys-
tems). This type of ordering was first studied by Gray [16] and has now
come to be known as combinatorial Gray codes [27]. Combinatorial Gray
codes are known to exist for the complete set system (X, 2X) [16], for the

complete k-uniform set system (X,
(
X
k

)
) [3, 11, 26], and for some classes of

triple systems with index two [10].
(ii) An ordering of the blocks such that any two successive blocks have non-

empty intersection. Such an ordering is also equivalent to a hamiltonian
path (or hamiltonian cycle, if one also insists that the first block and last
block have nonempty intersection) in the block intersection graph of the
set system. The existence question for this type of ordering for Steiner
triple systems was first raised by Ron Graham in 1987 at an American
Mathematical Society meeting. It is known that such orderings exist for
Steiner 2-designs [20], for pairwise balanced designs whose maximum block
size is at most twice the minimum block size [2], for pairwise balanced

Received by the editor September 20, 2009 and, in revised form, August 6, 2010.
2010 Mathematics Subject Classification. Primary 05B05, 05B07, 05B40; Secondary 05C38,

68R05.
Key words and phrases. Alternating Hamiltonian cycle, block intersection graph, group divis-

ible design, minimum covering, sequence of radius two, Steiner triple system, universal cycle.
This research was supported in part by the National Research Foundation of Singapore under

Research Grant NRF-CRP2-2007-03 and by the Nanyang Technological University under Research
Grant M58110040.

c©2011 American Mathematical Society

585



586 YEOW MENG CHEE, SAN LING, YIN TAN, AND XIANDE ZHANG

designs whose minimum block size is at least three [18], and for triple
systems of arbitrary index [19].

Recently, Dewar [10] studied universal cycles for block designs. This is an order-
ing of the blocks such that two successive blocks differ in a small structural way.
The concept of universal cycles was introduced by Chung et al. [6] as a generaliza-
tion of de Bruijn sequences [9]. Universal cycles are known to exist for the complete

k-uniform set system (X,
(
X
k

)
) when k ∈ {2, 3, 4, 5, 6}, provided k divides

(|X|−1
k−1

)
and |X| is sufficiently large [6, 23, 21, 22], and for some classes of triple systems of
index two [10].

Under the definition of universal cycles of Chung et al. [6], universal cycles cannot
exist for k-uniform set systems in which there are two blocks intersecting in less
than k − 1 points. To overcome this restriction, Dewar [10] proposed an extension
to the definition of universal cycles and showed that with this new definition there
exist universal cycles for some classes of Steiner 2-designs, including Steiner triple
systems. However, these new universal cycles of Dewar have the disadvantage that
the blocks of a set system cannot always be recovered from its universal cycle.

In this paper, the concept of s-shift universal cycles is proposed as another
natural extension to the universal cycles of Chung et al. [6]. Minimum (n, 3, 2)-
coverings for which there exist 2-shift universal cycles are constructed for all n ≥ 3
by considering alternating hamiltonian cycles in their block intersection graphs. An
application to the construction of 2-radius sequences of order n [24] is given.

2. Notation, terminology, and known results

The ring Z/mZ is denoted by Zm, and the set of nonnegative integers is denoted
by Z≥0. For n a positive integer, the set {1, 2, . . . , n} is denoted by [n]. For X a
finite set and k an integer, 0 ≤ k ≤ |X|, the set of all k-subsets of X is denoted by(
X
k

)
.

A set system is a pair S = (X,A), where X is a finite set and A ⊆ 2X . The
members of X are called vertices or points, and the members of A are called edges
or blocks. The order of S is the number of vertices |X|, and the size of S is the
number of edges |A|. Let K ⊆ Z≥0. The set system S is said to be K-uniform if
|A| ∈ K for all A ∈ A. We often write {k}-uniformity as k-uniformity. A 2-uniform
set system is also known simply as a graph.

An edge-colored graph is a pair (Γ, χ), where Γ = (X,A) is a graph and χ is a
function on A (called a coloring). The image of χ, C = {χ(A) : A ∈ A}, is called
the color set. Elements of the color set are called colors. An edge A ∈ A is said
to have color c ∈ C if χ(A) = c. A cycle in an edge-colored graph is colorful if for
every color there exists some edge in the cycle having that color. An alternating
cycle in an edge-colored graph is a cycle where adjacent edges have distinct colors.

A pairwise balanced design (PBD), or more specifically a PBD(n,K), is a K-

uniform set system (X,A) of order n such that every T ∈
(
X
2

)
is contained in

exactly one block of A. A PBD(n, {3}) is called a Steiner triple system of order n
and is denoted by STS(n). It is well known (see, for example, [8]) that an STS(n)
exists if and only if n ≡ 1 or 3 (mod 6).

A covering of pairs by triples of order n (or (n, 3, 2)-covering) is a 3-uniform set

system (X,A) of order n such that every T ∈
(
X
2

)
is contained in at least one block

of A. The minimum size of an (n, 3, 2)-covering is the covering number C(n, 3, 2).
An (n, 3, 2)-covering of size C(n, 3, 2) is said to be minimum. Fort and Hedlund
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[12] determined that for all n ≥ 3,

C(n, 3, 2) =

⌈
n

3

⌈
n− 1

2

⌉⌉
.

Note that an STS(n) is a minimum (n, 3, 2)-covering.
Let (X,A) be a set system, and let G = {G1, G2, . . . , Gs} be a partition of X

into subsets, called groups. The triple (X,G,A) is a group divisible design (GDD)
when every 2-subset of X not contained in a group appears in exactly one block,
and |A∩G| ≤ 1 for all A ∈ A and G ∈ G. We denote a GDD (X,G,A) by K-GDD
if (X,A) is K-uniform. The type of a GDD (X,G,A) is the multiset [|G| : G ∈ G].
When more convenient, the exponentiation notation is used to describe the type of
GDD: a GDD of type gt11 gt22 . . . gtss is a GDD where there are exactly ti groups of
size gi, i ∈ [s]. A PBD(n,K) can be regarded as a K-GDD of type 1n, where each
group contains a single point.

The existence of classes of PBDs and GDDs required in this paper is given below.

Theorem 2.1 (Gronau, Mullin, and Pietsch [17]). There exists a PBD(n, {3,
4, 5, 6, 8}), for all n ≥ 3.

Theorem 2.2 (Lenz [25]). There exists a PBD(n, {4, 5, 6, 7}), for all n ≥ 4, except
when n ∈ {8, 9, 10, 11, 12, 14, 15, 18, 19, 23}.
Theorem 2.3 (Colbourn, Hoffman, and Rees [7]). Let g, t, u ∈ Z≥0. There exists
a {3}-GDD of type gtu1 if and only if the following conditions are all satisfied:

(i) if g > 0, then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;
(ii) u ≤ g(t− 1) or gt = 0;
(iii) g(t− 1) + u ≡ 0 (mod 2) or gt = 0;
(iv) gt ≡ 0 (mod 2) or u = 0;
(v) g2

(
t
2

)
+ gtu ≡ 0 (mod 3).

Theorem 2.4 (Brouwer, Schrijver, and Hanani [5]). There exists a {4}-GDD of
type gt if and only if t ≥ 4 and

(i) g ≡ 1 or 5 (mod 6) and t ≡ 1 or 4 (mod 12); or
(ii) g ≡ 2 or 4 (mod 6) and t ≡ 1 (mod 3); or
(iii) g ≡ 3 (mod 6) and t ≡ 0 or 1 (mod 4); or
(iv) g ≡ 0 (mod 6),

with the two exceptions of types 24 and 64, for which {4}-GDDs do not exist.

Given a set system S = (X,A) or GDD S = (X,G,A), the block intersection
graph of S is a loopless multigraph ΓS = (Y,B) such that Y = A, and there exist
λ edges between distinct A,A′ ∈ Y if and only if |A∩A′| = λ. Let χ be a function
that assigns to each edge between A,A′ ∈ Y a distinct color in A∩A′. Then (ΓS, χ)
is called the edge-colored block intersection graph of S. A set system or GDD is
colorful alternating hamiltonian (c.a.h.) if its edge-colored block intersection graph
has a c.a.h. cycle. For brevity, a c.a.h. cycle in the edge-colored block intersection
graph of a set system or GDD is simply referred to as a c.a.h. cycle in the set
system or GDD.

3. s-Shift universal cycles

Let F be a set of combinatorial objects, each of “rank” r, such that each F ∈ F
is specified by a sequence 〈x1, x2, . . . , xr〉, where xi ∈ X, for some fixed X.
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Definition 3.1 (Universal cycle [6]). U = (u0, u1, . . . , u|F|−1) is a universal cycle
for F if 〈ui+1, ui+2, . . . , ui+r〉, i ∈ Z|F|, runs through each element of F exactly
once.

Given a k-uniform set system S = (X,A), it is natural to ask if there exists a
universal cycle for S, that is, a cycle (x0, x1, . . . , x|A|−1) such that {xi+1, xi+2, . . .,
xi+k} runs through A exactly once, for 0 ≤ i < |A|. Notice that for 0 ≤ i < j < |A|,
{xi+1, xi+2, . . . , xi+k} and {xj+1, xj+2, . . . , xj+k} intersect in k − (j − i) points.
In particular, for every i ∈ {0, 1, . . . , k − 1}, A must contain a pair of blocks
intersecting in i points. This rules out the existence of universal cycles for k-
uniform set systems in which there are no pairs of blocks that intersect in j points,
for some j ∈ {0, 1, . . . , k − 1}. In particular, there cannot exist universal cycles for
Steiner triple systems.

To overcome the stringent condition for the existence of universal cycles for set
systems, Dewar [10] relaxed the condition by allowing a universal sequence for
a k-uniform set system S to just generate some representation of S instead of
generating all the blocks of S. The specific representation considered by Dewar
is defined as follows. Let S = (X,A) be a set system. A set R ⊆

(
X
r

)
is said

to represent S if every block in A contains exactly one element of R and if every
R ∈ R is contained in exactly one block of A.

Example 3.2. Consider the STS(7) whose blocks are {1, 3, 7}, {1, 5, 6}, {4, 5, 7},
{2, 6, 7}, {3, 4, 6}, {1, 2, 4}, and {2, 3, 5}. This set system can be represented by
R = {{1, 3}, {1, 5}, {5, 7}, {6, 7}, {4, 6}, {2, 4}, {2, 3}}, for which there exists a
universal cycle (3, 1, 5, 7, 6, 4, 2).

One disadvantage with Dewar’s approach is that the set system may not be
recoverable from a given universal cycle of its representation, as seen in the example
below.

Example 3.3. Consider the STS(7) whose blocks are {1, 3, 4}, {2, 3, 6}, {2, 4, 7},
{4, 5, 6}, {1, 6, 7}, {3, 5, 7}, and {1, 2, 5}. This set system is distinct from that in
Example 3.2, but it has the same representation R = {{1, 3}, {1, 5}, {5, 7}, {6, 7},
{4, 6}, {2, 4}, {2, 3}}.

Here, the notion of universal cycles is extended in another direction.

Definition 3.4 (s-Shift universal cycle). Let s be a positive integer. U = (u0,
u1, . . . , us|F|−1) is an s-shift universal cycle for F if 〈usi+1, usi+2, . . . , usi+r〉, i ∈
Z|F|, runs through each element of F exactly once.

A 1-shift universal cycle is equivalent to the universal cycle of Chung et al. [6].

Example 3.5. U = (1, 3, 7, 2, 6, 4, 3, 5, 2, 1, 4, 7, 5, 6) is a 2-shift universal cycle for
the STS(7) in Example 3.2. The blocks of the STS(7) can be recovered from U .

The next result gives the equivalence between certain shift universal cycles and
alternating hamiltonian cycles.

Proposition 3.6. For k ≥ 2, a (k − 1)-shift universal cycle for a k-uniform set
system S is equivalent to an alternating hamiltonian cycle in S.

Proof. Suppose U = (u0, u1, . . . , um(k−1)−1) is a (k − 1)-shift universal cycle for a
k-uniform set system S. Let Ai = {ui(k−1), ui(k−1)+1, . . . , ui(k−1)+(k−1)}, i ∈ Zm.
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Then {A0, A1}, {A1, A2}, . . . , {Am−1, A0} are edges of an alternating hamiltonian
cycle in S, noting that the color of edge {Ai, Ai+1} is u(i+1)(k−1), i ∈ Zm. Hence
{Ai, Ai+1} and {Ai+1, Ai+2} cannot possibly be of the same color since u(i+1)(k−1)

and u(i+2)(k−1) are both contained in the Ai+1.
Conversely, suppose that A = {A0, A1, . . . , Am−1} is the set of blocks of a k-

uniform set system S and that {A0, A1}, {A1, A2}, . . . , {Am−1, A0} are edges of an
alternating hamiltonian cycle in S. For i ∈ Zm, order the points within Ai so that

(i) its first point is the color of the edge {Ai−1, Ai} and
(ii) its last point is the color of the edge {Ai, Ai+1}.

According to this order, construct the sequence obtained by listing the points of
A0, A1, . . . , Am−1, with the condition that only one of the last points of Ai and the
first point of Ai+1 is included in the listing. This sequence is a k-shift universal
cycle for S. �

In the next section, the existence of minimum (n, 3, 2)-coverings that admit 2-
shift universal cycles is established for all n ≥ 3, by considering their alternating
hamiltonian cycles.

4. Alternating Hamiltonian cycles in edge-colored

block intersection graphs

Some useful recursive constructions are first described.

4.1. Recursive constructions. We begin with a simple observation.

Proposition 4.1. Let (Γ, χ) be an edge-colored block intersection graph, and let C1

and C2 be two (vertex) disjoint alternating cycles, of length m1 and m2, respectively.
If there is an edge in C1 of the same color as some edge in C2, then Γ has an
alternating cycle of length m1 +m2.

Proof. Suppose A = {a, b} and B = {c, d} are edges in C1 and C2, respectively,
such that χ(A) = χ(B). The (C1 \ {a, b}) ∪ (C2 \ {c, d}) ∪ {{a, c}, {b, d}} is an
alternating cycle of length m1 +m2. �
Proposition 4.2 (Filling in groups). If there exists a c.a.h. {3}-GDD of type
[g1, g2, . . . , gt], and for each i ∈ [t] there exists a c.a.h. (gi, 3, 2)-covering, then

there exists a c.a.h. (
∑t

i=1 gi, 3, 2)-covering.

Proof. Let D = (X,G,A) be a c.a.h. {3}-GDD of type [g1, g2, . . . , gt], with C as a
c.a.h. cycle in D. For each group G ∈ G, let DG = (G,BG) be a c.a.h. (|G|, 3, 2)-
covering, with CG as a c.a.h. cycle in DG. It is clear that D

∗ = (X,A∪(
⋃

G∈G BG))

is a (
∑t

i=1 gi, 3, 2)-covering. Each of CG contains an edge of the same color as some
edge in C, so these can be combined with C via Proposition 4.1 to give one c.a.h.
cycle for D∗. �

The following is another useful construction for c.a.h. (n, 3, 2)-coverings from
GDDs.

Proposition 4.3 (Adjoining y points and filling in groups). Let y ∈ Z≥0. Suppose
there exists a (master) c.a.h. {3}-GDD of type [g1, g2, . . . , gt], and suppose the
following (ingredients) also exist:

(i) a c.a.h. (gt + y, 3, 2)-covering,
(ii) a c.a.h. {3}-GDD of type 1giy1, for i ∈ [t− 1].
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Then there exists a c.a.h. (y +
∑t

i=1 gi, 3, 2)-covering.

Proof. Let (X,G,A) be a c.a.h. {3}-GDD of type [g1, g2, . . . , gt], with G = {G1, G2,
. . . , Gt} such that |Gi| = gi, i ∈ [t]. Let Y be a set of size y, disjoint from X. Let
(Gt ∪Y,Bt) be a c.a.h. (gt + y, 3, 2)-covering and (Gi ∪Y, {{x} : x ∈ Gi}∪ {Y },Bi)
be a c.a.h. {3}-GDD of type 1giy1, for i ∈ [t− 1]. Then the set system

S =

(
X ∪ Y,A ∪

(
t⋃

i=1

Bi

))

is a (y +
∑t

i=1 gi, 3, 2)-covering. To show that S is c.a.h., mimic the proof of
Proposition 4.2. �

The following construction is similar to that in Proposition 4.3, except that we
end up with a GDD with smaller groups instead of an (n, 3, 2)-covering.

Proposition 4.4 (Adjoining y points and breaking up groups). Let y ∈ Z≥0.
Suppose there exists a (master) c.a.h. {3}-GDD of type [g1, g2, . . . , gt], and suppose
that an (ingredient) c.a.h. {3}-GDD of type hgi/hy1 exists for each i ∈ [t]. Then

there exists a c.a.h. {3}-GDD of type h(
∑t

i=1 gi)/hy1.

Input: (master) GDD D = (X,G,A);
weight function ω : X → Z≥0;
(ingredient) K-GDD DA = (XA,GA,BA) of type [ω(a) : a ∈ A],
for each block A ∈ A, where
XA =

⋃
a∈A{{a} × {1, 2, . . . , ω(a)}} and

GA = {{a} × {1, 2, . . . , ω(a)} : a ∈ A}.
Output: K-GDD D∗ = (X∗,G∗,A∗) of type [

∑
x∈G ω(x) : G ∈ G], where

X∗ =
⋃

x∈X({x} × {1, 2, . . . , ω(x)}),
G∗ = {

⋃
x∈G({x} × {1, 2, . . . , ω(x)}) : G ∈ G}, and

A∗ =
⋃

A∈A BA.
Notation: D∗ = WFC(D, ω, {DA : A ∈ A}).
Note: By convention, for x ∈ X, {x} × {1, 2, . . . , ω(x)} = ∅ if ω(x) = 0.

Figure 1. Wilson’s Fundamental Construction for GDDs.

Proof. Let (X,G,A) be a c.a.h. {3}-GDD of type [g1, g2, . . . , gt], with G = {G1, G2,
. . . , Gt}. Let Y be a set of size y, disjoint from X. Let (Gi ∪ Y,Gi,Bi) be a c.a.h.
{3}-GDD of type h|Gi|/hy1, with Y as the group of size y. Then the set system

S =

(
X ∪ Y,

t⋃
i=1

Gi,A ∪
(

t⋃
i=1

Bi

))

is a {3}-GDD of type h(
∑t

i=1 gi)/hy1. To show that S is c.a.h., mimic the proof of
Proposition 4.2. �

For Propositions 4.2, 4.3, and 4.4 to be useful, large classes of c.a.h. {3}-GDDs
are needed. These can be produced with the next theorem, a direct analogue of
Wilson’s Fundamental Construction for GDDs [30] (shown in Figure 1), for c.a.h.
GDDs.
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Theorem 4.5 (Fundamental construction). Let D = (X,G,A) be a (master) GDD,
and let ω : X → Z≥0 be a weight function. Suppose that for each A ∈ A, there
exists an (ingredient) c.a.h. K-GDD DA of type [ω(a) : a ∈ A]. Then there exists
a c.a.h. K-GDD D∗ of type [

∑
x∈G ω(x) : G ∈ G].

Proof. Apply Wilson’s Fundamental Construction (Figure 1) to obtain a K-GDD
D∗ of type [

∑
x∈G ω(x) : G ∈ G]. That this GDD is c.a.h. can be seen as follows.

Let CA be a c.a.h. cycle in the K-GDD DA, A ∈ A. There exists an edge in each
of CA and CA′ of the same color if A ∩ A′ 
= ∅, and CA and CA′ can be combined
into one c.a.h. cycle (with respect to colors in A ∩ A′) via Proposition 4.1.

The construction for a c.a.h. cycle in D∗ proceeds as follows. Start with the set
of cycles C = {CA : A ∈ A}. As long as C contains more than one cycle, choose two
cycles in C, each containing an edge of the same color, and combine them. This
can always be done unless the set C is reduced to a set of cycles, each containing
edge colors that appear in no other cycles. However, this is impossible, since every
pair of points (which corresponds to colors of edges) in D∗ appears in some block,
and hence some cycle of C. The result is therefore a c.a.h. cycle in D∗. �

To seed the recursive constructions above, some small c.a.h. set systems are
required. These are given in the next subsection.

4.2. Small orders.

Proposition 4.6. There exists a c.a.h. STS(n) for n ∈ {3, 7, 9, 13, 15}.

Proof. The proposition is trivially true for n = 3. The required c.a.h. STS(n) for
n ∈ {7, 9, 13, 15} are given in Appendix A.1. �

Proposition 4.7. There exists an alternating hamiltonian minimum (n, 3, 2)-
covering for n ∈ {4, 5, 6, 8, 10, 11, 12, 14, 16, 20}.

Proof. The required alternating hamiltonian minimum (n, 3, 2)-coverings are given
in Appendix A.2. �

Proposition 4.8. There exists an alternating hamiltonian {3}-GDD of type 23

and a c.a.h. {3}-GDD of the following types:
(i) 24 (ii) 1631 (iii) 33 (iv) 2341 (v) 26 (vi) 11231 (vii) 53.

Proof. For the alternating hamiltonian {3}-GDD (X,G,A) of type 23, take X = [6],
the groups to be {i, i+ 3}, i ∈ [3], and the blocks to be {2, 1, 3}, {3, 4, 5}, {5, 1, 6},
and {6, 4, 2}.

The other required c.a.h. {3}-GDDs are given in Appendix A.3, noting the
following.

For the c.a.h. {3}-GDD of type 24, the groups are {i, i+ 4}, i ∈ [4].
For the c.a.h. {3}-GDD of type 1631, the group of size three is {4, 5, 9}.
For the c.a.h. {3}-GDD of type 33, the groups are {i, i+ 3, i+ 6}, i ∈ [3].
For the c.a.h. {3}-GDD of type 2341, the groups are {1, 5}, {2, 6}, {3, 7}, {4, 8,

9, 10}.
For the c.a.h. {3}-GDD of type 26, the groups are {i, i+ 6}, i ∈ [6].
For the c.a.h. {3}-GDD of type 11231, the group of size three is {3, 8, 14}.
For the c.a.h. {3}-GDD of type 53, the groups are {i, i + 3, i + 6, i + 9, i + 12},

i ∈ [3]. �
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Proposition 4.9. There exists a c.a.h. {3}-GDD of type 6t, for t ∈ {3, 4, 5, 6,
8}.

Proof. For t ∈ {3, 4, 6}, take a {3}-GDD of type 2t, which exists by Theorem 2.3,
as the master GDD and apply Theorem 4.5 with weight function ω(·) = 3. The
required ingredient, c.a.h. {3}-GDD of type 33, exists by Proposition 4.8.

For t ∈ {5, 8}, take a {4}-GDD of type 3t, which exists by Theorem 2.4, as the
master GDD and apply Theorem 4.5 with weight function ω(·) = 2. The required
ingredient, c.a.h. {3}-GDD of type 24, exists by Proposition 4.8. �

Proposition 4.10. There exists a c.a.h. {3}-GDD of type 6tu1, for n ∈ {3, 4, 5,
6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 22} and u ∈ {4, 8}.

Proof. For t ∈ {5, 6, 10} and u ∈ {4, 8}, take the {4, 7}-GDD of type 3tu1 in
Appendix B.2 as the master GDD, and apply Wilson’s Fundamental Construction
(Figure 1) with weight function ω that assigns weight zero to the u/2 points 3t +
u/2+1, 3t+u/2+2, . . . , 3t+u in the group of size u, and weight two to each of the
remaining points. Use as ingredient GDDs an alternating hamiltonian {3}-GDD of
type 23 and c.a.h. {3}-GDDs of types 24 and 26, all of which exist by Proposition
4.8. The result is a {3}-GDD D∗ of type 6tu1. Let A′ be the set of blocks, indicated
in bold (and also in italics when u = 8), of the master GDD. Then

⋃
A∈A′ BA (with

the notation in Figure 1), together with the blocks of D∗, is a c.a.h. cycle in D∗.
For t ∈ {3, 4, 7, 8, 11} and u = 4, take the {4}-GDD of type 3t+1 in Appendix B.1

as the master GDD and apply Wilson’s Fundamental Construction (Figure 1) with
weight function ω that assigns weight zero to the point 3(t+ 1) and weight two to
each of the remaining points. Use as ingredient GDDs an alternating hamiltonian
{3}-GDD of type 23 and a c.a.h. {3}-GDD of type 24, both of which exist by
Proposition 4.8. The result is a {3}-GDD D∗ of type 6t41. Let A′ be the set of
blocks, indicated in bold, of the master GDD. Then

⋃
A∈A′ BA (with the notation

in Figure 1), together with the blocks of D∗, is a c.a.h. cycle in D∗.
For t ∈ {3, 4, 7, 8, 11} and u = 8, take a {4}-GDD of type 3t+1, which exists by

Theorem 2.4, as the master GDD and apply Theorem 4.5 with a weight function
that assigns weight four to one point and weight two to each of the remaining
points. The required ingredient c.a.h. {3}-GDDs of types 24 and 2341 exist by
Proposition 4.8.

For the remaining t and u, we break into three cases.

t ∈ {9, 18}: Take a {3}-GDD of type (t/3)3, which exists by Theorem 2.4, as
the master GDD and apply Theorem 4.5 with weight function ω(·) = 6 to
obtain a c.a.h. {3}-GDD S of type (2t)3. The required ingredient c.a.h.
{3}-GDD of type 63 exists by Proposition 4.9. Now adjoin u points and
break up the groups of S (Proposition 4.4) using a c.a.h. {3}-GDD of
type 6t/3u1, whose existence has been established above, to obtain a c.a.h.
{3}-GDD of type 6tu1.

t ∈ {13, 14}: Take a {3}-GDD of type 63(2(t − 9))1, which exists by Theo-
rem 2.4, as the master GDD and apply Theorem 4.5 with weight function
ω(·) = 3 to obtain a c.a.h. {3}-GDD S of type 183(6(t−9))1. The required
ingredient c.a.h. {3}-GDD of type 33 exists by Proposition 4.8. Now ad-
join u points and break up the groups of S (Proposition 4.4) using c.a.h.
{3}-GDDs of type 6su1, s ∈ {3, t−9}, whose existence has been established
above, to obtain a c.a.h. {3}-GDD of type 6tu1.
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t ∈ {17, 22}: Take a {3}-GDD of type ((t−2)/5)4((t+8)/5)1, which exists by
Theorem 2.4, as the master GDD and apply Theorem 4.5 with weight func-
tion ω(·) = 6 to obtain a c.a.h. {3}-GDDS of type (6(t−2)/5)4(6(t+8)/5)1.
The required ingredient c.a.h. {3}-GDD of type 63 exists by Proposition
4.8. Now adjoin u points and break up the groups of S (Proposition 4.4)
using c.a.h. {3}-GDDs of type 6su1, s ∈ {(t − 2)/5, (t + 8)/5}, whose ex-
istence has been established above, to obtain a c.a.h. {3}-GDD of type
6tu1. �

4.3. Piecing things together.

Proposition 4.11. There exists a c.a.h. {3}-GDD of type 6t, for all t ≥ 3.

Proof. Take a PBD(t, {3, 4, 5, 6, 8}), which exists by Theorem 2.1, as the master
GDD and apply Theorem 4.5 with weight function ω(·) = 6. The required ingredi-
ent c.a.h. {3}-GDDs of type 6s, s ∈ {3, 4, 5, 6, 8}, exist by Proposition 4.9. �

Proposition 4.12. There exists a c.a.h. {3}-GDD of type 6tu1, for all t ≥ 3 and
u ∈ {4, 8}.

Proof. For t ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 22} and u ∈ {4, 8}, the required
GDDs exist by Proposition 4.10. For other values of t, take a PBD(t+1, {4, 5, 6, 7}),
which exists by Theorem 2.2, as the master GDD and apply Theorem 4.5 with
weight function ω that assigns weight six to each of t points and weight u to the
remaining point. The required ingredient c.a.h. {3}-GDDs of types 6s and 6s−1u1,
s ∈ {4, 5, 6, 7}, exist by either Proposition 4.11 or Proposition 4.10. �

We are now ready to state the main result of this section.

Theorem 4.13. There exists an alternating hamiltonian minimum (n, 3, 2)-
covering, for all n ≥ 3.

Proof. The existence of alternating hamiltonian minimum (n, 3, 2)-coverings for n ∈
{3, 4, . . . , 16} ∪ {20} has been established by either Proposition 4.6 or Proposition
4.7.

A c.a.h. minimum (17, 3, 2)-covering can be obtained by adjoining two points
and filling in the groups of a c.a.h. {3}-GDD of type 53 with a c.a.h. STS(7), which
exist by Propositions 4.6 and 4.8.

For n ≡ 0 (mod 6), n ≥ 18, take a c.a.h. {3}-GDD of type 6n/6, which exists by
Proposition 4.11, and fill in groups with a c.a.h. minimum (6, 3, 2)-covering, which
exists by Proposition 4.7.

For n ≡ 1 (mod 6), n ≥ 19, take a c.a.h. {3}-GDD of type 6(n−1)/6, which exists
by Proposition 4.11, adjoin one point and fill in groups with a c.a.h. STS(7), which
exists by Proposition 4.6.

For n ≡ 2 or 4 (mod 6), n ≥ 22, take a c.a.h. {3}-GDD of type 6(n−8)/681

or of type 6(n−4)/641 (which exists by Proposition 4.12), respectively, and fill in
groups with alternating hamiltonian minimum (m, 3, 2)-coverings, m ∈ {4, 6, 8},
which exist by Proposition 4.7.

For n ≡ 3 (mod 6), n ≥ 21, take a c.a.h. {3}-GDD of type 6(n−3)/6, adjoin three
points and fill in the groups with c.a.h. {3}-GDD of type 1631 and c.a.h. STS(9),
which exist by Propositions 4.6 and 4.8.
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For n ≡ 5 (mod 6), n ≥ 23, take a c.a.h. {3}-GDD of type 6(n−5)/641, adjoin
one point and fill in the groups with c.a.h. STS(7) and an alternating hamiltonian
minimum (5, 3, 2)-covering, which exist by Propositions 4.6 and 4.7. �

Corollary 4.14. There exists a minimum (n, 3, 2)-covering which possesses a 2-
shift universal cycle, for all n ≥ 3.

5. Application to 2-radius sequences

Jaromczyk and Lonc [24] studied sequences (a1, a2, . . . , am) ∈ [n]m with the
property that for every distinct x, y ∈ [n], there exist ai and aj such that {ai, aj} =
{x, y} and |i− j| ≤ k. These sequences are known as k-radius sequences of order n.
For given n and k, the objective is to find a shortest (optimal) k-radius sequence
of order n. The length of such a sequence is denoted fk(n).

Motivation for studying short k-radius sequences comes from computation where
a certain two-argument function must be evaluated for all pairs of n large objects
O1,O2, . . . ,On, which are too large to be all held in fast primary memory (such as
internal memory in the I/O model of Aggarwal and Vitter [1], and cache memory
in the cache model of Sen et al. [28]) at once. Hence, instead of the simple two-
loop algorithm that iterates through all the pairs of objects, a schedule to determine
which objects are to be fetched into memory and which are to be replaced is needed.
This schedule must ensure that for all pairs of objects x and y, there is some
point in time where x and y are both in memory. If the memory can only hold
k + 1 objects at any one time, such a schedule corresponds to a k-radius sequence
(a1, a2, . . . , am) of order n, assuming a first-in-first-out (FIFO) object replacement
strategy [24]: initially (at time step one) the objects Oa1

,Oa2
, . . . ,Oak+1

reside in
primary memory, and at step time step t ≥ 2 the object Oak+t

is fetched to replace
object Oat−1

. For reasons of efficiency, short schedules are desirable.
Extending beyond cache algorithms, k-radius sequences are also applicable when

the large objects reside in remote servers and local storage is not large enough to
store all the objects for computations required to run over all possible pairs of
objects. For bandwidth efficiency, we would like to minimize the fetching of the
large objects over the network into local storage. An example of this scenario is
the restoration of the order of images in a sequence of MRI slices, when the MRI
images (which are typically quite large) reside in remote databases [14].

The function f1(n) has been completely determined by Ghosh [13] in the context
of database theory.

Theorem 5.1 (Ghosh [13]).

f1(n) =

{(
n
2

)
+ 1, if n is odd,(

n
2

)
+ 1

2n, if n is even.

The function f2(n) has been recently investigated by Jaromczyk and Lonc [24],
who established the bounds below.

Theorem 5.2 (Jaromczyk and Lonc [24]).

L(n) ≤ f2(n) ≤
1

2

(
n

2

)
+

10n2

log2 n
+ 2n1.64,
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Table 1. New optimal 2-radius sequences of order n

n length sequence

8 17 (3, 6, 2, 7, 8, 5, 6, 4, 1, 8, 7, 3, 4, 2, 5, 1, 3)

10 30 (2, 6, 8, 10, 9, 1, 5, 4, 7, 10, 2, 6, 4, 5, 9, 2, 1, 3, 10, 5, 8, 7, 9, 3, 6, 7, 1, 8, 4, 3)

11 33 (10, 9, 7, 11, 2, 3, 1, 10, 11, 8, 6, 3, 1, 7, 4, 11, 3, 5, 9, 6, 4, 10, 2, 5, 6, 4, 7, 8, 5, 9, 1, 2, 8)

12 37 (12, 6, 7, 11, 10, 9, 3, 6, 5, 2, 9, 1, 8, 5, 7, 3, 12, 1, 10, 6, 4, 8, 3, 11, 2, 1, 7, 4, 9, 12, 8, 2,
10, 4, 5, 11, 12)

14 56 (13, 9, 8, 12, 2, 5, 3, 11, 13, 14, 4, 9, 10, 1, 6, 14, 8, 3, 7, 10, 11, 8, 14, 5, 7, 13, 12, 6, 4, 8,
1, 3, 6, 2, 11, 9, 12, 3, 10, 4, 13, 2, 1, 7, 11, 4, 1, 5, 12, 10, 14, 2, 5, 9, 6, 7)

15 60 (10, 9, 7, 1, 11, 14, 9, 15, 12, 2, 8, 6, 13, 7, 5, 3, 15, 6, 11, 12, 5, 14, 2, 3, 10, 12, 1, 13, 3,
4, 11, 15, 8, 10, 5, 6, 9, 3, 8, 5, 1, 4, 2, 6, 14, 1, 13, 15, 7, 8, 14, 4, 10, 11, 13, 2, 9, 7, 4,
12)

16 65 (7, 8, 9, 6, 10, 4, 15, 13, 1, 6, 12, 3, 15, 8, 16, 12, 10, 5, 2, 15, 6, 11, 16, 2, 13, 9, 12, 16,

14, 4, 3, 5, 11, 8, 10, 13, 7, 3, 15, 9, 14, 11, 13, 7, 5, 16, 1, 3, 10, 2, 14, 8, 4, 1, 2, 7, 12, 4,
11, 9, 1, 5, 14, 6, 7)

18 90 (2, 9, 7, 1, 17, 5, 12, 13, 4, 17, 9, 18, 6, 1, 15, 8, 13, 16, 6, 4, 7, 1, 16, 10, 18, 17, 6, 14, 11,
7, 12, 10, 14, 15, 13, 11, 16, 3, 15, 12, 18, 4, 3, 10, 6, 1, 12, 14, 8, 5, 18, 7, 13, 8, 9, 10, 3,
13, 1, 2, 11, 8, 17, 3, 5, 2, 6, 8, 11, 4, 14, 2, 18, 10, 11, 5, 9, 16, 15, 2, 17, 12, 16, 9, 14, 3,
7, 15, 4, 5)

Table 2. New short 2-radius sequences of order n

n length sequence

9 21 (9, 3, 2, 7, 8, 4, 9, 3, 1, 8, 5, 9, 7, 6, 1, 2, 4, 5, 6, 3, 8)

13 42 (4, 9, 11, 5, 7, 4, 8, 2, 11, 3, 1, 4, 12, 10, 11, 13, 6, 4, 9, 1, 8, 10, 6, 3, 12, 7, 9, 10, 2, 5, 6,
1, 7, 2, 13, 12, 5, 8, 3, 13, 9, 1)

17 73 (1, 2, 3, 4, 5, 1, 6, 7, 3, 8, 9, 1, 10, 11, 3, 12, 13, 1, 14, 15, 3, 16, 17, 2, 5, 7, 9, 4, 6, 8, 2, 11,
13, 4, 10, 12, 5, 8, 13, 15, 6, 10, 14, 2, 9, 15, 12, 7, 14, 11, 5, 15, 17, 4, 14, 16, 8, 10, 17, 7,
13, 16, 9, 11, 17, 6, 12, 16, 2, 5, 1, 17, 16)

where

L(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
n
2

)
+ 1

4n+ 1, if n ≡ 0 (mod 4),
1
2

(
n
2

)
+ 2, if n ≡ 1 (mod 4),

1
2

(
n
2

)
+ 3

4n, if n ≡ 2 (mod 4),
1
2

(
n
2

)
+ 1

2n, if n ≡ 3 (mod 4).

The upper bound in Theorem 5.2 comes from a number-theoretic construction
[24, Section 2], which we refer to as the Jaromczyk-Lonc construction. Exact val-
ues of f2(n) have been previously known only for n ≤ 7 [24, 15]. Next, f2(n)
is determined for n ∈ {8, 10, 11, 14, 15} and better upper bounds on f2(n), for
n ∈ {9, 12, 13, 16, 17, 18}, are given.

5.1. Some new 2-radius sequences. The value of f2(n) meets the lower bound
in Theorem 5.2 for n ∈ {8, 10, 11, 14, 15}. The new optimal 2-radius sequences
proving this are given in Table 1.

When n ∈ {9, 12, 13, 16, 17, 18}, we improve on the shortest 2-radius sequence
of order n currently known [24]. The new 2-radius sequences are given in Table 2.
These sequences are not known to be optimal.

The new 2-radius sequences obtained above are all found through a computer
search. The state of knowledge for small values of n is provided in Table 3, where an
entry with a single number gives the exact value of f2(n) and an entry of the form
“a–b” means that the corresponding value of f2(n) lies between a and b (inclusive).



596 YEOW MENG CHEE, SAN LING, YIN TAN, AND XIANDE ZHANG

Table 3. State of knowledge of f2(n), 2 ≤ n ≤ 18

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

f2(n) 2 3 5 7 12 14 17 20–21 30 33 37 41–42 56 60 65 70–73 90

A bold entry indicates new results obtained in this paper, while the other entries
are from [24, 15].

We now give details of our search procedure. The framework used is hillclimbing.
To construct a 2-radius sequence of order n and length m, we start with a random
sequence in [n]m and modify it iteratively to get “closer” and “closer” to a 2-radius
sequence, until either we end up with a 2-radius sequence or we get stuck. We
measure the “closeness” of a sequence S = (a1, a2, . . . , am) ∈ [n]m to a 2-radius
sequence by its defect, denoted def(S), defined as the number of pairs {x, y} ⊆ [n]
for which there do not exist ai, aj such that {ai, aj} = {x, y} and |i − j| ≤ 2. A
sequence is therefore a 2-radius sequence if and only if it has zero defect. At each
step, modification of a sequence (a1, a2, . . . , am) proceeds as follows. We select three
distinct positions i, j, k ∈ [m] and replace the values ai, aj , and ak by elements of
[n], drawn uniformly at random. If this modification does not result in a new
sequence of higher defect, we accept the modification. Otherwise, we reject the
modification. The procedure is terminated when we have a sequence of zero defect,
and it is restarted after a prespecified period of time without finding a defect-
reducing modification. This hillclimbing procedure is described more formally in
pseudocode in Algorithm 1.

Algorithm 1: Hillclimbing procedure for constructing 2-radius sequences

Input: n, m
Output: 2-radius sequence S = (a1, a2, . . . , am) of order n
S = random sequence (a1, a2, . . . , am) ∈ [n]m ;

while def(S) > 0 do
{i, j, k} = random 3-subset of [m] ;

(ri, rj , rk) = random element of [n]3 ;

S′ = (b1, b2, . . . , bm), where bh =

{
ah, if h ∈ [m] \ {i, j, k},
rh, if h ∈ {i, j, k};

if def(S′) ≤ def(S), then
S = (a1, a2, . . . , am) = S′ ;

end

end

All the 2-radius sequences in Tables 1 and 2 are obtained using Algorithm 1.

5.2. Improvements to theoretically provable bounds. Although the bounds
in Theorem 5.2 are asymptotically tight, proving f2(n) = (1+o(1))n2/4, the upper
bound is rather weak. Gilkerson et al. [15] proved the following upper bound, which,
although not asymptotically tight, improves on the upper bound in Theorem 5.2
for n ≤ 1.329× 1036.

Theorem 5.3 (Gilkerson et al. [15]). Let m2|n be such that there exists either a
PBD(m2, {m}) (affine plane of order m) or a PBD(m2 −m + 1, {m}) (projective
plane of order m− 1). Then f2(n) ≤ n2/3 + n.
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However, at present, PBD(m2, {m}) and PBD(m2 −m + 1, {m}) are known to
exist only when m or m− 1 is a prime power, respectively (see, for example, [29]).
Hence, the applicability of Theorem 5.3 is limited. The results in §4 imply the
following stronger result.

Theorem 5.4. For all n ≥ 3, f2(n) ≤ 2C(n, 3, 2) + 1.

Proof. Follows directly from Corollary 4.14 and the observation that if (u0, u1, . . .,
u2m−1) is a 2-shift universal cycle for an (n, 3, 2)-covering, then (u0, u1, . . . , u2m−1,
u0) is a 2-radius sequence of order n and length 2m+ 1. �

The upper bound in Theorem 5.4 is strictly better than the upper bound in
Theorem 5.3 for all n ≥ 3, since

(
n2

3
+ n

)
− (2C(n, 3, 2) + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4n
3 − 1, if n ≡ 1 or 3 (mod 6),

n− 5
3 , if n ≡ 2 or 4 (mod 6),

4n−7
3 , if n ≡ 5 (mod 6),

n− 1, if n ≡ 0 (mod 6).

It is also better than the upper bound in Theorem 5.2 for all n ≤ 1.329× 1036.

5.3. Actual performance of constructions. The upper bound in Theorem 5.2
is what is theoretically provable in the Jaromczyk-Lonc construction of 2-radius
sequences. However, its actual performance is much better. We provide in Ta-
ble 4 a comparison of the lengths of 2-radius sequences actually produced by the
Jaromczyk-Lonc construction and that obtained through our bound in Theorem
5.4. In Table 4,

Table 4. Performance comparison for constructions of 2-radius
sequences of order n, 9 ≤ n ≤ 44

n 9 10 11 12 13 14 15 16 17 18 19 20

lenJL theory 346 410 479 552 629 711 798 888 983 1082 1185 1292

lenJL actual 37 49 39 53 45 62 80 99 76 98 105 129

lenthis 25 35 39 49 53 67 71 87 93 109 115 135

n 21 22 23 24 25 26 27 28 29 30 31 32

lenJL theory 1403 1518 1638 1761 1888 2019 2153 2292 2434 2580 2730 2884

lenJL actual 158 185 150 179 170 202 256 290 217 254 297 336

lenthis 141 163 171 193 201 227 235 263 273 301 311 343

n 33 34 35 36 37 38 39 40 41 42 43 44

lenJL theory 3041 3202 3366 3535 3707 3882 4061 4244 4430 4620 4813 5010

lenJL actual 382 424 361 405 351 398 446 495 430 482 540 594

lenthis 353 387 399 433 445 483 495 535 549 589 603 647
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lenJL theory = theoretically provable length of 2-radius sequence of order n

produced by the Jaromczyk-Lonc construction,

lenJL actual = actual length of 2-radius sequence of order n produced by the

Jaromczyk-Lonc construction,

lenthis = actual (and also theoretically provable) length of 2-radius sequence

of order n produced by our construction in this paper.

Entries in bold denote orders for which our construction outperforms the actual
performance of the Jaromczyk-Lonc construction.

5.4. Recent advancements. Blackburn and Mckee [4] have very recently revealed
unexpected connections between k-radius sequences, lattice tilings, and logarithms
in Zk. In particular, they obtained an upper bound on f2(n) that improves on
Theorem 5.2.

6. Conclusion

A new ordering on the blocks of set systems, called shift universal cycles, is
introduced. Minimum (n, 3, 2)-coverings that admit 2-shift universal cycles are
shown to exist for all n. These minimum (n, 3, 2)-coverings are used to construct
short 2-radius sequences, which have applications in cache algorithms.

Appendix A. Some c.a.h. set systems

A hamiltonian cycle of length m in the block intersection graph of a set system
or GDD, S, is specified as a sequence of blocks in S: A0A1 · · ·Am−1. The edges of
the hamiltonian cycle is taken to be {Ai, Ai+1}, i ∈ Zm.

In each case, the set of points is taken to be [n].

A.1. Some small c.a.h. STS(n).

n c.a.h. cycle in STS(n)

7 {5, 3, 1} {1, 7, 4} {4, 2, 3} {3, 6, 7} {7, 5, 2} {2, 1, 6} {6, 4, 5}
9 {3, 6, 9} {9, 5, 1} {1, 6, 8} {8, 7, 9} {9, 4, 2} {2, 8, 5} {5, 3, 7} {7, 4, 1} {1, 3, 2} {2, 7, 6}

{6, 5, 4} {4, 8, 3}
13 {5, 10, 3} {3, 13, 12} {12, 7, 5} {5, 8, 4} {4, 11, 6} {6, 2, 3} {3, 8, 1} {1, 7, 9} {9, 6, 5}

{5, 1, 2} {2, 10, 8} {8, 12, 9} {9, 2, 4} {4, 12, 10} {10, 6, 7} {7, 8, 11} {11, 3, 9} {9, 13, 10}
{10, 1, 11} {11, 12, 2} {2, 13, 7} {7, 3, 4} {4, 13, 1} {1, 12, 6} {6, 8, 13} {13, 11, 5}

15 {7, 11, 1} {1, 10, 5} {5, 6, 15} {15, 8, 11} {11, 2, 4} {4, 13, 8} {8, 14, 1} {1, 9, 12} {12, 6, 11}
{11, 5, 13} {13, 14, 12} {12, 4, 15} {15, 1, 2} {2, 3, 12} {12, 7, 10} {10, 11, 9} {9, 13, 6}
{6, 7, 8} {8, 10, 2} {2, 14, 6} {6, 4, 1} {1, 13, 3} {3, 11, 14} {14, 15, 9} {9, 7, 4} {4, 10, 14}
{14, 5, 7} {7, 3, 15} {15, 13, 10} {10, 6, 3} {3, 4, 5} {5, 12, 8} {8, 3, 9} {9, 5, 2} {2, 13, 7}
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A.2. Some small alternating Hamiltonian minimum (n, 3, 2)-coverings.
The alternating hamiltonian minimum (n, 3, 2)-coverings given below for n ∈

{6, 8, 10, 11, 12, 14, 16, 20} are in fact c.a.h.

n alternating hamiltonian cycle in minimum (n, 3, 2)-coverings

4 {3, 1, 2} {2, 4, 1} {1, 4, 3}
5 {1, 2, 3} {3, 4, 5} {5, 2, 4} {4, 5, 1}
6 {6, 3, 1} {1, 4, 2} {2, 5, 3} {3, 6, 4} {4, 1, 5} {5, 2, 6}
8 {3, 8, 1} {1, 4, 2} {2, 5, 3} {3, 6, 4} {4, 8, 5} {5, 1, 6} {6, 2, 8} {8, 1, 7} {7, 4, 5} {5, 6, 7}

{7, 2, 3}
10 {7, 9, 8} {8, 4, 3} {3, 6, 9} {9, 10, 8} {8, 6, 1} {1, 10, 2} {2, 8, 5} {5, 1, 9} {9, 2, 4} {4, 1, 7}

{7, 8, 10} {10, 4, 3} {3, 1, 2} {2, 7, 6} {6, 10, 5} {5, 3, 7}
11 {8, 11, 3} {3, 6, 10} {10, 4, 9} {9, 8, 1} {1, 3, 2} {2, 7, 10} {10, 1, 11} {11, 7, 5} {5, 9, 6}

{6, 11, 4} {4, 1, 2} {2, 6, 8} {8, 10, 5} {5, 2, 1} {1, 6, 7} {7, 9, 3} {3, 5, 4} {4, 7, 8}
12 {11, 6, 4} {4, 5, 12} {12, 3, 1} {1, 8, 9} {9, 11, 2} {2, 12, 3} {3, 11, 8} {8, 12, 9} {9, 4, 10}

{10, 7, 2} {2, 1, 5} {5, 9, 6} {6, 12, 7} {7, 5, 11} {11, 1, 10} {10, 5, 8} {8, 6, 2} {2, 4, 1}
{1, 6, 7} {7, 9, 3} {3, 6, 10} {10, 12, 11}

14 {9, 10, 13} {13, 12, 14} {14, 9, 10} {10, 3, 5} {5, 8, 4} {4, 13, 1} {1, 8, 3} {3, 6, 2} {2, 7, 13}
{13, 5, 11} {11, 6, 4} {4, 3, 14} {14, 1, 2} {2, 10, 8} {8, 12, 9} {9, 6, 5} {5, 2, 1} {1, 10, 11}
{11, 14, 12} {12, 4, 10} {10, 6, 7} {7, 8, 11} {11, 2, 12} {12, 3, 13} {13, 6, 8} {8, 7, 14}
{14, 5, 6} {6, 12, 1} {1, 7, 9} {9, 2, 4} {4, 7, 3} {3, 11, 9}

16 {7, 6, 8} {8, 3, 9} {9, 7, 4} {4, 13, 8} {8, 14, 1} {1, 9, 12} {12, 11, 6} {6, 14, 2} {2, 13, 7}
{7, 10, 12} {12, 14, 13} {13, 11, 5} {5, 10, 1} {1, 4, 6} {6, 5, 16} {16, 1, 2} {2, 8, 10}
{10, 9, 11} {11, 7, 1} {1, 15, 2} {2, 3, 12} {12, 4, 15} {15, 5, 6} {6, 13, 9} {9, 14, 15}
{15, 11, 8} {8, 7, 16} {16, 9, 10} {10, 4, 14} {14, 16, 13} {13, 1, 3} {3, 14, 11} {11, 16, 12}
{12, 8, 5} {5, 7, 14} {14, 15, 16} {16, 3, 4} {4, 11, 2} {2, 9, 5} {5, 4, 3} {3, 6, 10}
{10, 13, 15} {15, 3, 7}

20 {12, 5, 3} {3, 14, 8} {8, 13, 19} {19, 11, 5} {5, 8, 4} {4, 2, 11} {11, 12, 15} {15, 14, 18}
{18, 1, 8} {8, 10, 17} {17, 3, 9} {9, 19, 2} {2, 3, 6} {6, 8, 15} {15, 10, 2} {2, 7, 13}
{13, 14, 20} {20, 1, 2} {2, 18, 17} {18, 13, 14} {14, 1, 9} {9, 13, 10} {10, 5, 16} {16, 9, 7}
{7, 19, 17} {17, 5, 15} {15, 7, 1} {1, 3, 10} {10, 6, 7} {7, 11, 8} {8, 2, 16} {16, 13, 12}
{12, 4, 17} {17, 18, 20} {20, 9, 10} {10, 4, 18} {18, 13, 5} {5, 6, 9} {9, 4, 15} {15, 20, 16}
{16, 3, 11} {11, 10, 14} {14, 16, 4} {4, 7, 3} {3, 19, 18} {18, 6, 16} {16, 1, 17} {17, 11, 6}
{6, 13, 4} {4, 3, 20} {20, 19, 18} {18, 7, 12} {12, 2, 14} {14, 7, 5} {5, 2, 1} {1, 6, 12}
{12, 8, 9} {9, 18, 11} {11, 12, 20} {20, 5, 6} {6, 14, 19} {19, 16, 15} {15, 3, 13} {13, 11, 1}
{1, 4, 19} {19, 10, 12}

A.3. Some small c.a.h. {3}-GDDs.

T c.a.h. cycle in {3}-GDD of type T

24 {2, 3, 1} {1, 8, 7} {7, 2, 4} {4, 1, 6} {6, 7, 5} {5, 4, 3} {3, 6, 8} {8, 5, 2}
1631 {8, 6, 4} {4, 1, 7} {7, 9, 2} {2, 4, 3} {3, 6, 9} {9, 8, 1} {1, 3, 5} {5, 8, 2} {2, 1, 6} {6, 5, 7}

{7, 3, 8}
33 {5, 6, 7} {7, 3, 8} {8, 1, 9} {9, 7, 2} {2, 4, 3} {3, 5, 1} {1, 2, 6} {6, 8, 4} {4, 9, 5}

2341 {4, 2, 1} {1, 8, 3} {3, 2, 9} {9, 6, 1} {1, 7, 10} {10, 5, 2} {2, 7, 8} {8, 5, 6} {6, 10, 3}
{3, 4, 5} {5, 9, 7} {7, 6, 4}

26 {3, 2, 1} {1, 5, 4} {4, 2, 6} {6, 8, 1} {1, 10, 9} {9, 2, 11} {11, 1, 12} {12, 10, 2} {2, 5, 7}
{7, 4, 3} {3, 5, 12} {12, 9, 4} {4, 8, 11} {11, 3, 6} {6, 7, 9} {9, 8, 5} {5, 6, 10} {10, 11, 7}
{7, 12, 8} {8, 10, 3}

11231 {11, 15, 5} {5, 13, 1} {1, 9, 12} {12, 3, 5} {5, 14, 9} {9, 15, 2} {2, 10, 13} {13, 12, 7}
{7, 6, 1} {1, 3, 2} {2, 8, 12} {12, 6, 14} {14, 15, 13} {13, 4, 3} {3, 15, 7} {7, 8, 9}
{9, 4, 10} {10, 8, 5} {5, 7, 2} {2, 14, 4} {4, 12, 15} {15, 1, 10} {10, 12, 11} {11, 3, 9}
{9, 6, 13} {13, 11, 8} {8, 15, 6} {6, 5, 4} {4, 8, 1} {1, 14, 11} {11, 4, 7} {7, 14, 10}
{10, 3, 6} {6, 2, 11}

53 {2, 3, 1} {1, 11, 6} {6, 4, 5} {5, 9, 1} {1, 8, 15} {15, 2, 4} {4, 9, 14} {14, 1, 12} {12, 8, 4}
{4, 11, 3} {3, 5, 7} {7, 8, 9} {9, 10, 2} {2, 12, 7} {7, 14, 6} {6, 10, 8} {8, 13, 3}
{3, 10, 14} {14, 15, 13} {13, 5, 12} {12, 11, 10} {10, 5, 15} {15, 7, 11} {11, 9, 13}
{13, 6, 2}
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Appendix B. Some GDDs

B.1. Some small {4}-GDDs of type 3t.
Each of the {4}-GDDs of type 3t listed in this section is on the set of points [3t],

with groups {i, i+ t, i+ 2t}, i ∈ [t].

T {4}-GDD of type T

34 {1, 2, 3, 4} {1, 6, 7, 8}{2, 8, 9, 11}{3, 5, 8, 10} {4, 5, 6, 11} {4, 7, 9, 10}{2, 5, 7, 12}
{1, 10, 11, 12} {3, 6, 9, 12}

35 {1, 2, 4, 8} {2, 3, 5, 9}{3, 4, 6, 10} {4, 5, 7, 11} {5, 6, 8, 12} {6, 7, 9, 13}
{7, 8, 10, 14} {2, 10, 11, 13} {1, 9, 10, 12} {3, 11, 12, 14} {4, 12, 13, 15} {1, 5, 13, 14}
{2, 6, 14, 15} {1, 3, 7, 15} {8, 9, 11, 15}

38 {9, 14, 15, 19}{1, 2, 5, 19} {1, 3, 8, 12} {2, 3, 6, 20} {2, 4, 13, 16}{3, 4, 7, 21}
{4, 5, 9, 22} {5, 6, 10, 23}{1, 6, 7, 11} {11, 17, 18, 21} {2, 7, 9, 12} {3, 9, 10, 13}
{4, 10, 11, 14} {5, 11, 12, 15} {6, 12, 13, 17} {7, 13, 14, 18} {10, 15, 17, 20} {12, 18, 19, 22}
{13, 19, 20, 23} {1, 14, 20, 21} {2, 15, 21, 22} {3, 17, 22, 23} {1, 4, 18, 23} {5, 8, 18, 20}
{4, 17, 19, 24} {3, 15, 16, 18} {2, 8, 14, 17} {1, 13, 15, 24} {12, 14, 16, 23} {2, 11, 23, 24}
{1, 10, 16, 22} {8, 9, 21, 23} {7, 20, 22, 24} {6, 16, 19, 21} {8, 11, 13, 22} {10, 12, 21, 24}
{9, 11, 16, 20} {7, 8, 10, 19} {6, 9, 18, 24} {5, 7, 16, 17} {4, 6, 8, 15} {3, 5, 14, 24}

39 {1, 16, 18, 22} {3, 16, 19, 24} {8, 10, 13, 24} {2, 13, 15, 25} {2, 4, 19, 23}
{1, 4, 15, 26} {3, 15, 20, 23}{3, 4, 5, 7} {2, 5, 6, 21} {1, 2, 7, 17} {3, 10, 14, 17}
{4, 9, 10, 25}{7, 8, 9, 12} {5, 12, 19, 26} {11, 12, 14, 24} {12, 13, 16, 23}
{1, 13, 14, 20} {2, 9, 14, 16} {14, 21, 22, 25} {2, 3, 8, 22} {3, 18, 25, 26} {7, 11, 18, 23}
{7, 10, 15, 21} {9, 11, 15, 17} {4, 6, 11, 16} {5, 8, 15, 16} {8, 11, 19, 25} {9, 19, 20, 21}
{9, 22, 23, 26} {7, 20, 22, 24} {17, 23, 24, 25} {6, 8, 18, 20} {4, 12, 17, 20} {2, 10, 12, 18}
{10, 16, 20, 26} {5, 10, 11, 22} {4, 18, 21, 24} {11, 13, 21, 26} {6, 7, 14, 26} {14, 15, 18, 19}
{6, 17, 19, 22} {1, 6, 12, 25} {1, 8, 21, 23} {1, 5, 9, 24} {3, 6, 9, 13} {5, 13, 17, 18}
{7, 13, 19, 27} {12, 15, 22, 27} {6, 10, 23, 27} {2, 24, 26, 27} {4, 8, 14, 27} {1, 3, 11, 27}
{16, 17, 21, 27} {5, 20, 25, 27}

312 {1, 8, 12, 19}{1, 2, 5, 10} {2, 3, 6, 11} {3, 4, 7, 13} {4, 5, 8, 14}{5, 6, 9, 15}
{6, 7, 10, 16} {7, 8, 11, 17}{8, 9, 13, 18} {9, 10, 14, 19} {2, 9, 20, 24}
{10, 11, 15, 20} {11, 13, 16, 21} {13, 14, 17, 22}{14, 15, 18, 23} {15, 16, 19, 25}
{16, 17, 20, 26}{17, 18, 21, 27} {18, 19, 22, 28} {19, 20, 23, 29}{20, 21, 25, 30}
{21, 22, 26, 31} {22, 23, 27, 32}{23, 25, 28, 33} {25, 26, 29, 34} {26, 27, 30, 35}
{1, 27, 28, 31} {2, 28, 29, 32} {3, 29, 30, 33} {4, 30, 31, 34}{5, 31, 32, 35}
{1, 6, 32, 33} {2, 7, 33, 34}{3, 8, 34, 35} {1, 4, 9, 35} {5, 7, 20, 27} {5, 13, 23, 24}
{4, 6, 19, 26} {4, 11, 12, 22} {3, 5, 18, 25} {3, 10, 21, 36} {2, 4, 17, 23} {1, 3, 16, 22}
{9, 11, 25, 31} {9, 17, 28, 36} {8, 10, 23, 30} {8, 16, 24, 27} {7, 9, 22, 29} {7, 12, 15, 26}
{6, 8, 21, 28} {6, 14, 25, 36} {14, 16, 29, 35} {12, 14, 21, 32} {13, 15, 28, 34}
{13, 20, 31, 36} {11, 14, 27, 33} {11, 19, 24, 30} {10, 13, 26, 32} {10, 12, 18, 29}
{3, 17, 19, 32} {12, 17, 25, 35} {2, 16, 18, 31} {16, 23, 34, 36} {1, 15, 17, 30}
{15, 22, 24, 33} {6, 20, 22, 35} {3, 12, 20, 28} {5, 19, 21, 34} {2, 19, 27, 36} {4, 18, 20, 33}
{1, 18, 24, 26} {3, 9, 23, 26} {6, 12, 23, 31} {2, 8, 22, 25} {5, 22, 30, 36} {1, 7, 21, 23}
{4, 21, 24, 29} {6, 13, 27, 29} {9, 12, 27, 34} {5, 11, 26, 28} {8, 26, 33, 36} {4, 10, 25, 27}
{7, 24, 25, 32} {9, 16, 30, 32} {2, 12, 13, 30} {8, 15, 29, 31} {1, 11, 29, 36} {7, 14, 28, 30}
{10, 24, 28, 35} {11, 18, 32, 34} {4, 15, 32, 36} {10, 17, 31, 33} {3, 14, 24, 31} {2, 15, 21, 35}
{7, 18, 35, 36} {1, 14, 20, 34} {6, 17, 24, 34} {13, 19, 33, 35} {5, 12, 16, 33}



UNIVERSAL CYCLES 601

B.2. Some small {4, 7}-GDDs of type 3tu1. Each of the {4, 7}-GDDs of type
3tu1 listed in this section is on the set of points [3t+u], with groups {3i−2, 3i−1, 3i},
i ∈ [t], and {3t+ 1, 3t+ 2, . . . , 3t+ u}.

T {4, 7}-GDD of type T

3561 {1, 4, 14, 16} {2, 11, 13, 16} {5, 7, 15, 16} {1, 7, 11, 17} {5, 10, 13, 17}
{6, 8, 15, 17}{6, 9, 12, 16} {3, 8, 10, 16} {2,9,14,17} {1,9,10,18} {3, 4, 12, 17}
{4, 9, 13, 19} {4, 11, 15, 18} {8, 12, 13, 18} {2, 6, 7, 18} {3, 5, 14, 18} {1, 5, 8, 19}
{7, 12, 14, 19} {2, 10, 15, 19} {3, 6, 11, 19} {1, 6, 13, 20} {4, 7, 10, 20} {8, 11, 14, 20}
{2, 5, 12, 20} {3, 9, 15, 20} {1, 12, 15, 21} {6, 10, 14, 21} {5, 9, 11, 21} {2, 4, 8, 21}
{3, 7, 13, 21}

3661 {10, 13, 18, 20} {3, 8, 11, 20} {1, 7, 11, 16}{3, 13, 16, 19} {5, 8, 18, 19}
{2, 5, 10, 14}{6, 11, 14, 19} {2, 4, 9, 19} {1, 12, 17, 19} {1, 5, 15, 20}
{1,4,18,21} {7,14,18,22} {2, 6, 16, 20} {4, 8, 13, 17} {9, 14, 17, 20} {4, 7, 12, 20}
{7, 10, 15, 19} {2, 11, 18, 23} {3, 5, 7, 21} {3, 10, 17, 22} {3, 4, 14, 23} {6, 8, 10, 21}
{1, 6, 13, 22} {6, 7, 17, 23} {9, 11, 13, 21} {5, 9, 16, 22} {1, 9, 10, 23} {12, 14, 16, 21}
{2, 8, 12, 22} {5, 12, 13, 23} {2, 15, 17, 21} {4, 11, 15, 22} {8, 15, 16, 23} {1, 8, 14, 24}
{4, 10, 16, 24} {5, 11, 17, 24} {2, 7, 13, 24} {3, 6, 9, 12, 15, 18, 24}

310121 {1, 4, 8, 31}{4, 7, 11, 32} {7, 16, 29, 31} {3, 19, 25, 31} {2, 10, 19, 32}
{2, 11, 18, 31} {12, 15, 24, 31} {13, 24, 25, 32}{6, 22, 28, 32}
{14, 17, 28, 31} {10, 21, 22, 31}{5, 14, 21, 32} {1, 17, 20, 32} {9, 20, 26, 31}
{8, 26, 30, 32} {12, 23, 29, 32} {15, 18, 27, 32}{6, 13, 30, 31} {6,12,19,33}
{2,6,14,34} {5, 23, 27, 31} {3, 9, 16, 32} {7, 10, 14, 33} {1, 9, 25, 33} {5, 13, 22, 33}
{16, 27, 28, 33} {4, 20, 23, 33} {3, 11, 29, 33} {2, 15, 26, 33} {8, 17, 24, 33}
{18, 21, 30, 33} {10, 13, 17, 34} {4, 12, 28, 34} {8, 16, 25, 34} {1, 19, 30, 34}
{7, 23, 26, 34} {9, 15, 22, 34} {5, 18, 29, 34} {11, 20, 27, 34} {3, 21, 24, 34}
{13, 16, 20, 35} {1, 7, 15, 35} {11, 19, 28, 35} {3, 4, 22, 35} {10, 26, 29, 35}
{12, 18, 25, 35} {5, 9, 17, 35} {2, 8, 21, 35} {14, 23, 30, 35} {6, 24, 27, 35} {16, 19, 23, 36}
{4, 10, 18, 36} {1, 14, 22, 36} {6, 7, 25, 36} {2, 13, 29, 36} {15, 21, 28, 36} {8, 12, 20, 36}
{5, 11, 24, 36} {3, 17, 26, 36} {9, 27, 30, 36} {19, 22, 26, 37} {7, 13, 21, 37} {4, 17, 25, 37}
{9, 10, 28, 37} {2, 5, 16, 37} {1, 18, 24, 37} {11, 15, 23, 37} {8, 14, 27, 37} {6, 20, 29, 37}
{3, 12, 30, 37} {22, 25, 29, 38} {10, 16, 24, 38} {7, 20, 28, 38} {1, 12, 13, 38} {5, 8, 19, 38}
{4, 21, 27, 38} {14, 18, 26, 38} {11, 17, 30, 38} {2, 9, 23, 38} {3, 6, 15, 38} {2, 25, 28, 39}
{13, 19, 27, 39} {1, 10, 23, 39} {4, 15, 16, 39} {8, 11, 22, 39} {7, 24, 30, 39}
{17, 21, 29, 39} {3, 14, 20, 39} {5, 12, 26, 39} {6, 9, 18, 39} {1, 5, 28, 40} {16, 22, 30, 40}
{4, 13, 26, 40} {7, 18, 19, 40} {11, 14, 25, 40} {3, 10, 27, 40} {2, 20, 24, 40}
{6, 17, 23, 40} {8, 15, 29, 40} {9, 12, 21, 40} {1, 27, 29, 41} {2, 4, 30, 41} {3, 5, 7, 41}
{6, 8, 10, 41} {9, 11, 13, 41} {12, 14, 16, 41} {15, 17, 19, 41} {18, 20, 22, 41}
{21, 23, 25, 41} {24, 26, 28, 41} {1, 6, 11, 16, 21, 26, 42} {2, 7, 12, 17, 22, 27, 42}
{3, 8, 13, 18, 23, 28, 42} {4, 9, 14, 19, 24, 29, 42} {5, 10, 15, 20, 25, 30, 42}

Acknowledgment

The authors are grateful to Megan Dewar for making available her Ph.D. thesis
[10] and to Jerzy Jaromczyk for making available the paper [15].

References

1. A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related problems,
Commun. ACM 31 (1988), no. 9, 1116–1127. MR1021794 (90k:68029)

2. B. Alspach, K. Heinrich, and B. Mohar, A note on Hamilton cycles in block-intersection
graphs, Finite geometries and combinatorial designs (Lincoln, NE, 1987), Contemp. Math.,
vol. 111, Amer. Math. Soc., Providence, RI, 1990, pp. 1–4. MR1079733 (91h:05079)

3. J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the binary reflected Gray
code and its applications, Comm. ACM 19 (1976), no. 9, 517–521. MR0424386 (54:12349)

4. S. R. Blackburn and J. F. Mckee, Constructing k-radius sequences, arXiv:1006.5812v1 (2010).
5. A. E. Brouwer, A. Schrijver, and H. Hanani, Group divisible designs with block-size four,

Discrete Math. 20 (1977), no. 1, 1–10. MR0465894 (57:5780)

http://www.ams.org/mathscinet-getitem?mr=1021794
http://www.ams.org/mathscinet-getitem?mr=1021794
http://www.ams.org/mathscinet-getitem?mr=1079733
http://www.ams.org/mathscinet-getitem?mr=1079733
http://www.ams.org/mathscinet-getitem?mr=0424386
http://www.ams.org/mathscinet-getitem?mr=0424386
http://www.ams.org/mathscinet-getitem?mr=0465894
http://www.ams.org/mathscinet-getitem?mr=0465894


602 YEOW MENG CHEE, SAN LING, YIN TAN, AND XIANDE ZHANG

6. F. Chung, P. Diaconis, and R. Graham, Universal cycles for combinatorial structures, Discrete
Math. 110 (1992), no. 1–3, 43–59. MR1197444 (93m:05018)

7. C. J. Colbourn, D. G. Hoffman, and R. Rees, A new class of group divisible designs with block
size three, J. Combin. Theory Ser. A 59 (1992), no. 1, 73–89. MR1141323 (93f:05015)

8. C. J. Colbourn and A. Rosa, Triple Systems, Oxford Mathematical Monographs, Oxford
University Press, New York, 1999. MR1843379 (2002h:05024)

9. N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758–764

= Indagationes Math. 8, 461–467 (1946). MR0018142 (8:247d)
10. M. Dewar, Gray codes, universal cycles and configuration orderings for block designs, Ph.D.

thesis, Carleton University, Ottawa, Ontario, Canada, ProQuest LLC, Ann Arbor, MI, 2007.
MR2711021

11. P. Eades and B. McKay, An algorithm for generating subsets of fixed size with a strong mini-
mal change property, Inform. Process. Lett. 19 (1984), no. 3, 131–133. MR782221 (86d:68058)

12. M. K. Fort, Jr. and G. A. Hedlund, Minimal coverings of pairs by triples, Pacific J. Math. 8
(1958), 709–719. MR0103831 (21:2595)

13. S. P. Ghosh, Consecutive storage of relevant records with redundancy, Commun. ACM 18
(1975), no. 8, 464–471. MR0383863 (52:4743)

14. J. W. Gilkerson and J. W. Jaromczyk, Restoring the order of images in a sequence of MRI
slices, unpublished manuscript (2002).

15. J. W. Gilkerson, J. W. Jaromczyk, and Z. Lonc, On constructing sequences of radius k using
finite geometries, unpublished manuscript.

16. F. Gray, Pulse code communication, 1953 (file 1947), US Patent 2,632,058.
17. H.-D. O. F. Gronau, R. C. Mullin, and Ch. Pietsch, The closure of all subsets of {3, 4, · · · , 10}

which include 3, Ars Combin. 41 (1995), 129–161. MR1365159 (96m:05023)
18. D. R. Hare, Cycles in the block-intersection graph of pairwise balanced designs, Discrete Math.

137 (1995), no. 1-3, 211–221. MR1312454 (95m:05027)
19. P. Horák, D. A. Pike, and M. E. Raines, Hamilton cycles in block-intersection graphs of triple

systems, J. Combin. Des. 7 (1999), no. 4, 243–246. MR1691408 (2000b:05026)
20. P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars

Combin. 26 (1988), 91–105. MR982111 (90a:05029)

21. G. Hurlbert, On universal cycles for k-subsets of an n-set, SIAM J. Discrete Math. 7 (1994),
no. 4, 598–604. MR1299088 (95k:05038)

22. B. Jackson, Universal cycles of 4-subsets and 5-subsets, unpublished manuscript.
23. B. W. Jackson, Universal cycles of k-subsets and k-permutations, Discrete Math. 117 (1993),

no. 1–3, 141–150. MR1226137 (94d:05002)
24. J. W. Jaromczyk and Z. Lonc, Sequences of radius k: how to fetch many huge objects into

small memory for pairwise computations, Algorithms and Computation, Lecture Notes in
Comput. Sci., vol. 3341, Springer, Berlin, 2004, pp. 594–605. MR2158364 (2006d:68048)

25. H. Lenz, Some remarks on pairwise balanced designs, Mitt. Math. Sem. Giessen (1984),
no. 165, 49–62. MR745869 (86g:05015)

26. F. Ruskey, Adjacent interchange generation of combinations, J. Algorithms 9 (1988), no. 2,
162–180. MR936104 (89d:68066)

27. C. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39 (1997), no. 4, 605–629.
MR1491049 (98m:94052)

28. S. Sen, S. Chatterjee, and N. Dumir, Towards a theory of cache-efficient algorithms, J. Assoc.
Comput. Mach. 49 (2002), no. 6, 828–858. MR2145858 (2005m:68271)

29. L. Storme, Finite geometry, The CRC Handbook of Combinatorial Designs (C. J. Colbourn
and J. H. Dinitz, eds.), Chapman & Hall, Boca Raton, FL, 2007, pp. 702–729. MR2246267
(2007i:05001)

30. R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems
and morphisms, J. Combin. Theory Ser. A 13 (1972), 220–245. MR0304203 (46:3338)

http://www.ams.org/mathscinet-getitem?mr=1197444
http://www.ams.org/mathscinet-getitem?mr=1197444
http://www.ams.org/mathscinet-getitem?mr=1141323
http://www.ams.org/mathscinet-getitem?mr=1141323
http://www.ams.org/mathscinet-getitem?mr=1843379
http://www.ams.org/mathscinet-getitem?mr=1843379
http://www.ams.org/mathscinet-getitem?mr=0018142
http://www.ams.org/mathscinet-getitem?mr=0018142
http://www.ams.org/mathscinet-getitem?mr=2711021
http://www.ams.org/mathscinet-getitem?mr=782221
http://www.ams.org/mathscinet-getitem?mr=782221
http://www.ams.org/mathscinet-getitem?mr=0103831
http://www.ams.org/mathscinet-getitem?mr=0103831
http://www.ams.org/mathscinet-getitem?mr=0383863
http://www.ams.org/mathscinet-getitem?mr=0383863
http://www.ams.org/mathscinet-getitem?mr=1365159
http://www.ams.org/mathscinet-getitem?mr=1365159
http://www.ams.org/mathscinet-getitem?mr=1312454
http://www.ams.org/mathscinet-getitem?mr=1312454
http://www.ams.org/mathscinet-getitem?mr=1691408
http://www.ams.org/mathscinet-getitem?mr=1691408
http://www.ams.org/mathscinet-getitem?mr=982111
http://www.ams.org/mathscinet-getitem?mr=982111
http://www.ams.org/mathscinet-getitem?mr=1299088
http://www.ams.org/mathscinet-getitem?mr=1299088
http://www.ams.org/mathscinet-getitem?mr=1226137
http://www.ams.org/mathscinet-getitem?mr=1226137
http://www.ams.org/mathscinet-getitem?mr=2158364
http://www.ams.org/mathscinet-getitem?mr=2158364
http://www.ams.org/mathscinet-getitem?mr=745869
http://www.ams.org/mathscinet-getitem?mr=745869
http://www.ams.org/mathscinet-getitem?mr=936104
http://www.ams.org/mathscinet-getitem?mr=936104
http://www.ams.org/mathscinet-getitem?mr=1491049
http://www.ams.org/mathscinet-getitem?mr=1491049
http://www.ams.org/mathscinet-getitem?mr=2145858
http://www.ams.org/mathscinet-getitem?mr=2145858
http://www.ams.org/mathscinet-getitem?mr=2246267
http://www.ams.org/mathscinet-getitem?mr=2246267
http://www.ams.org/mathscinet-getitem?mr=0304203
http://www.ams.org/mathscinet-getitem?mr=0304203


UNIVERSAL CYCLES 603

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

E-mail address: ymchee@ntu.edu.sg

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

E-mail address: lingsan@ntu.edu.sg

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

E-mail address: tanyin@ntu.edu.sg

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

E-mail address: ziandezhang@ntu.edu.sg


	1. Introduction
	2. Notation, terminology, and known results
	3. s-Shift universal cycles
	4. Alternating Hamiltonian cycles in edge-coloredblock intersection graphs
	4.1. Recursive constructions
	4.2. Small orders
	4.3. Piecing things together

	5. Application to 2-radius sequences
	5.1. Some new 2-radius sequences
	5.2. Improvements to theoretically provable bounds
	5.3. Actual performance of constructions
	5.4. Recent advancements

	6. Conclusion
	Appendix A. Some c.a.h. set systems
	A.1. Some small c.a.h. STS(n)
	A.2. Some small alternating Hamiltonian minimum (n,3,2)-coverings
	A.3. Some small c.a.h. {3}-GDDs

	Appendix B. Some GDDs
	B.1. Some small {4}-GDDs of type 3t
	B.2. Some small {4,7}-GDDs of type 3t u1

	Acknowledgment
	References

