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Abstract: We prove quadratic upper bounds on the order of any autotopism of a quasigroup
or Latin square, and hence also on the order of any automorphism of a Steiner triple system
or 1-factorization of a complete graph. A corollary is that a permutation σ chosen uniformly
at random from the symmetric group Sn will almost surely not be an automorphism of a
Steiner triple system of order n, a quasigroup of order n or a 1-factorization of the complete
graph Kn. Nor will σ be one component of an autotopism for any Latin square of order n. For
groups of order n it is known that automorphisms must have order less than n, but we show
that quasigroups of order n can have automorphisms of order greater than n. The smallest
such quasigroup has order 7034. We also show that quasigroups of prime order can possess
autotopisms that consist of three permutations with different cycle structures. Our results
answer three questions originally posed by D. Stones. C© 2014 Wiley Periodicals, Inc. J. Combin.
Designs 23: 275–288, 2015

Keywords: quasigroup; automorphism; Latin square; autotopism; autoparatopism; Steiner triple
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1. INTRODUCTION

Ann× nLatin square is ann× n array ofn symbols such that each symbol occurs exactly
once in each row and exactly once in each column. A quasigroupQ is a nonempty set with
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276 MCKAY, WANLESS, AND ZHANG

one binary operation � such that for every a, b ∈ Q there is a unique x ∈ Q and a unique
y ∈ Q satisfying a � x = b and y � a = b. Multiplication tables of finite quasigroups are
Latin squares.

Let [n] = {1, 2, . . . , n} and let Sn denote the symmetric group on [n]. It is convenient
to associate a quasigroup (or Latin square) of order nwith a set of n2 triples in [n] × [n] ×
[n], with the property that no two distinct triples agree in more than one coordinate. If
(r, c, s) is one of the triples then the interpretation is that r � c = s. This interpretation in
terms of triples allows for a natural action ofSn × Sn × Sn on quasigroups of ordern. This
action is known as isotopism and its diagonal subgroup is known as isomorphism. There
is also a natural action of Sn � S3 on triples, which is known as paratopism. The orbits of
a quasigroup under isomorphism, isotopism, and paratopism, respectively, are known as
its isomorphism class, isotopism class, and paratopism class (this last is also known as
species or main class). The stabilizers of a quasigroup under isomorphism, isotopism, and
paratopism are known respectively as its automorphism group, autotopism group, and
autoparatopism group. For a quasigroup Q we denote these groups by aut(Q), atp(Q),
and par(Q), respectively. These symmetries of quasigroups play an important role in
various enumeration problems (e.g. [2,7,9,12,13]). For studies of which symmetries can
be achieved, see [3, 14, 16].

This paper is motivated by several questions posed by D. Stones [11], which were
also published in [14]. Specifically, we resolve the following conjecture and two open
questions.

Conjecture 1. For n > 0 let P(n) be the probability that a randomly chosen α ∈
Sn is a component of an autotopism (α, β, γ ) of some quasigroup of order n. Then
limn→∞ P(n) = 0.

Problem 1. Suppose θ is an autotopism of a quasigroup of order n. Is the order of θ
at most n?

Problem 2. Let (α, β, γ ) be an autotopism of a quasigroup of prime order p. Must it
be true that either

1. one of α, β or γ is the identity and the other two are p-cycles; or
2. α, β, and γ all have the same cycle structure?

It was previously known that both open problems have an affirmative answer for
small orders, but we show for both that the answer is negative in general. Interestingly,
Horoševskiı̆ [6] proved that if G is a group of order n > 1, then any automorphism of
G has order at most n− 1. We show in Section 4 that this property does not extend to
quasigroups, but in Section 3 we show that there is a quadratic upper bound on the order
of any automorphism. Our bound necessarily applies to several combinatorial objects
related to quasigroups. In particular, it is well known that a totally symmetric idempotent
quasigroup is equivalent to a Steiner triple system, whereas a symmetric idempotent
quasigroup is equivalent to a 1-factorization of a complete graph.

A number of computational results are reported in this paper. To reduce the likelihood
of programming errors, all such results were independently checked by at least two of
the authors.
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2. NOTATION AND TERMINOLOGY

The cycle structure of a permutation σ ∈ Sn is the partition of n determined by the lengths
of the cycles of σ . We denote a partition of n by listing its parts in decreasing order, with
exponents denoting multiplicities. Hence 623113 is a partition of 18 with two parts of size
6, one part of size 3 and three parts of size 1.

For any partition π of an integer n, we define ψ(π, k) to be the sum of the parts of
π that are divisible by k. For a permutation σ ∈ Sn with cycle structure π we define
ψ(σ, k) = ψ(π, k).

Suppose θ = (α, β, γ ) ∈ Sn × Sn × Sn. The cycle structure of θ is the multiset con-
taining three elements, namely the cycle structures of α, β, and γ . The cycle structure of
θ entirely determines whether or not θ is realized as the autotopism of some quasigroup
[14].

Paratopisms, that is, elements of Sn � S3, will be written in the form (α, β, γ ; δ),
where α, β, γ ∈ Sn, and δ ∈ S3. This paratopism acts on quasigroups by sending the
triple (i, j, k) to (α(i), β(j ), γ (k))δ , where δ acts on the triple by permuting its three
coordinates.

We will borrow the idea of block diagrams from [14]. Suppose Q is a quasigroup
with an automorphism α ∈ Sn that has r cycles, α1, α2, . . . , αr of respective lengths
c1, c2, . . . , cr . A block diagram for Q (with respect to α) is an r × r matrix B where
the cell B(i, j ) specifies the composition of the submatrix Qij of the Cayley table of Q
defined by the rows in the orbit of αi and the columns in the orbit of αj . We write αk : fk
in a block B(i, j ) if every symbol in αk appears in Qij precisely fk = fk(i, j ) times. If
fk(i, j ) = 0, we usually omit αk : fk from B(i, j ). The result is the block diagram of
Q according to the cycles of α. Figure 1 and Figure 2 show two block diagrams whose
relevance to the paper will be explained in Section 4.

α1 α2 α3 α4 α5 α6

α1

α1 : 2379
α6 : 2380

α3 : 1545
α4 : 1456
α5 : 1326

α2 : 1188
α4 : 847
α5 : 986

α2 : 820
α3 : 655
α5 : 68

α2 : 372
α3 : 180
α4 : 77

α1 : 1

α2

α3 : 1565
α4 : 1281
α5 : 1683

α2 : 1784
α6 : 1785

α1 : 840
α4 : 497
α5 : 102

α1 : 633
α3 : 220

α1 : 312
α4 : 7

α2 : 1

α3

α2 : 1204
α4 : 1029
α5 : 476

α1 : 1044
α4 : 63

α3 : 1427
α6 : 1428

α1 : 312
α2 : 176
α5 : 952

α1 : 72
α2 : 48
α4 : 336

α3 : 1

α4

α2 : 860
α3 : 560
α5 : 221

α1 : 552
α3 : 220
α5 : 459

α1 : 432
α2 : 160
α5 : 340

α4 : 1019
α6 : 1020

α1 : 36
α3 : 240

α4 : 1

α5

α2 : 316
α3 : 255
α4 : 70

α1 : 189
α3 : 20
α4 : 266

α1 : 156
α2 : 80
α4 : 84

α1 : 75
α2 : 24
α3 : 145

α5 : 419
α6 : 420

α5 : 1

α6 α1 : 1 α2 : 1 α3 : 1 α4 : 1 α5 : 1 α6 : 1

FIGURE 1. Block diagram for Q7034.
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α1 α2 α3 α4 α5

α1

α1 : 9009 α3 : 6318
α4 : 6435

α2 : 4361
α5 : 4914

α2 : 3528
α5 : 4095

α2 : 1120
α3 : 2691
α4 : 2574

α2

α3 : 5121
α4 : 2453
α5 : 6435

α2 : 6435 α1 : 2170
α4 : 3091

α1 : 2195
α3 : 1314

α1 : 2070
α4 : 891

α3

α2 : 3738
α4 : 5005
α5 : 156

α1 : 1710
α5 : 4849

α3 : 5005 α1 : 1900
α2 : 525

α1 : 1395
α2 : 742

α4

α2 : 1848
α3 : 3321
α5 : 2418

α1 : 2315
α5 : 1586

α1 : 1780
α2 : 644
α5 : 91

α4 : 4095 α2 : 1603
α3 : 774

α5

α2 : 3423
α3 : 567
α4 : 1551

α1 : 2410
α3 : 117

α1 : 1055
α4 : 1914

α2 : 42
α3 : 2781

α5 : 3465

FIGURE 2. Block diagram for Q28009.

When constructing a block diagram, it is helpful to keep in mind that in every block
B(i, j ) we must have

∑

1�k�r
ckfk(i, j ) = cicj , (1)

in order to have the correct number of entries inQij . In addition, each symbol must occur
exactly once in each row and column, which implies that

∑

1�j�r
fk(i, j ) = ci (2)

for 1 � i, k � r and
∑

1�i�r
fk(i, j ) = cj (3)

for 1 � j, k � r . An important tool when considering block diagrams is the following
result from [14].

Lemma 1. Let θ = (α, β, γ ) be an autotopism of some quasigroup (Q, �). If i belongs
to an a-cycle of α and j belongs to a b-cycle of β, then i � j belongs to a c-cycle of γ ,
for some c such that lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c).

It is immediate from this result that

fk(i, j ) = 0 unless lcm(ci, cj ) = lcm(ci, ck) = lcm(cj , ck). (4)

Journal of Combinatorial Designs DOI 10.1002/jcd
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Another consequence of Lemma 1 is:

Lemma 2. Suppose {π1, π2, π3} is the cycle structure of an autotopism of some
quasigroup. For each part of size a in π1, the number of parts of size b in π2 cannot
exceed 1

b

∑
c where the sum is over all parts c of π3 that satisfy lcm(b, c) = lcm(b, a) =

lcm(c, a).
More generally, let a be a part of π1, B be a set of parts of π2, and C the set of all

parts c of π3 such that lcm(b, c) = lcm(b, a) = lcm(c, a) for some b ∈ B. Then

∑

b∈B
b �

∑

c∈C
c. (5)

Proof. Let (α, β, γ ) be the autotopism in question. Let r be one row in an orbit of α
of size a. Let X be the columns in orbits of β of size b. For there to be enough distinct
symbols available to fill the columnsX in row r , we must have |X| �

∑
c, where the sum

is over all parts c of π3 that satisfy lcm(b, c) = lcm(b, a) = lcm(c, a). The first claim
follows.

Applying the same logic, if we choose any set B of parts of π2 and consider which
symbols are available to fill the corresponding columns in row r , then we derive (5). �

3. SYMMETRIES HAVE SMALL ORDER

Our aim for this section is to find polynomial bounds on the order of automor-
phisms, autotopisms, and autoparatopisms of quasigroups. As a corollary, we will prove
Conjecture 1.

We begin with a theorem of McKay et al. [9]. An autotopism is trivial if all three of
its components are the identity permutation, and nontrivial otherwise.

Theorem 1. Let Q be a quasigroup of order n and let (α, β, γ ) be a nontrivial
autotopism of Q. Then one of the following holds:

(a) α, β, and γ have the same cycle structure with at least 1 and at most
⌊

1
2n

⌋
fixed

points,
(b) one of α, β, or γ has at least 1 fixed point and the other two permutations have

the same cycle structure with no fixed points,
(c) α, β, and γ have no fixed points.

An interesting parallel to Lemma 1 is obtained by considering the order of the three
components of an autotopism. We use ord(σ ) to denote the order of a permutation σ , that
is, the least positive integer k such that σ k is the identity.

Lemma 3. Let θ = (α, β, γ ) be an autotopism of some quasigroup (Q, �). Let
a = ord(α), b = ord(β) and c = ord(γ ). Then lcm(a, b) = lcm(b, c) = lcm(a, c) =
lcm(a, b, c).

Proof. As θ lcm(a,b) has two trivial components, it must be the trivial autotopism, by
Theorem 1. Thus c divides lcm(a, b). The result follows by symmetry. �

From Theorem 1, we can also infer some other useful consequences.
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Lemma 4. SupposeQ is a quasigroup of order n and that α ∈ aut(Q). If α has a cycle
of length c, and there are more than n/2 points in cycles of α whose length divides c,
then ord(α) = c.

Proof. Clearly ord(α) � c. However, αc ∈ aut(Q) has more than n/2 fixed points, so
by Theorem 1 it must be the identity. Therefore ord(α) = c. �

We note in particular that the hypotheses of Lemma 4 are satisfied if α has any cycle
of length more than n/2.

Lemma 5. Suppose Q is a quasigroup of order n and that θ = (α, β, γ ) is an auto-
topism of Q. If k is any prime power divisor of ord(θ) then one of the following holds

ψ(α, k) = ψ(β, k) = ψ(γ, k) � 1

2
n, (6)

ψ(α, k) = ψ(β, k) = n,

ψ(α, k) = ψ(γ, k) = n,

ψ(β, k) = ψ(γ, k) = n.

Proof. Let ord(θ) = qa� for some prime q and positive integers a and �, with � not
divisible by q. Suppose that k = qb, where 1 � b � a. Let m = qb−1�. Note that every
cycle length in αm, βm, or γ m is a power of q.

Suppose that two of αm, βm, and γ m have fixed points. Applying Theorem 1 to θm tells
us that αm and βm have the same cycle structure with at most n/2 fixed points. Hence

ψ(α, qb) = ψ(αm, q) = ψ(βm, q) = ψ(β, qb).

By symmetry ψ(α, qb) = ψ(γ, qb). Now (6) follows by observing that ψ(αm, q) is the
number of points not fixed by αm.

It remains to consider the case when at least two of αm, βm , and γ m do not have
fixed points. However, if αm has no fixed points then ψ(α, qb) = ψ(αm, q) = n. Similar
statements for βm and γ m imply the claimed result. �

The condition (6) holds whenever θ is an automorphism. However, there are plenty of
autotopisms listed in [14] for which it fails. For example, there is a quasigroup of order
12 with an autotopism with cycle structure {43, 6132, 121}. This autotopism fails the
equalities in (6) for k ∈ {2, 3, 4}. The inequality in (6) fails, for example, for k ∈ {2, 3}
in an autotopism with cycle structure {121, 121, 312117}.

We are now in a position to prove our bounds.

Theorem 2. Suppose Q is a quasigroup of order n � 4. Then ord(θ) � n2/4 for all
θ ∈ atp(Q) and ord(φ) � 3n2/4 for all φ ∈ par(Q).

Proof. Suppose θ = (α, β, γ ) ∈ atp(Q). First consider the case when α has a cycle of
some length c > n/2. Let d be the largest prime power divisor of c. By examining the
catalog in [14] of autotopisms for n � 17 we can eliminate small orders. In particular,
we may assume that n � 12 and hence d � 4. By Lemma 5 there must be a cycle of β or
γ that has length divisible by d. If e is the length of the smallest cycle in βc or γ c, then
e � n/d � n/4. There are more than n/2 fixed points in αce and at least e fixed points in
βce or γ ce. By Theorem 1, we see that θce must be trivial, so ord(θ) � ce � n2/4.

Journal of Combinatorial Designs DOI 10.1002/jcd
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From now on we may assume that α has no cycle of length more than n/2. By
symmetry, we may also assume that β and γ have the same property.

For each i ∈ [n] and π ∈ Sn, let �i(π) be the length of the cycle of π that includes
i. Define P = ∏n

i=1 �i(α)�i(β)�i(γ ) and note that P � (n/2)3n. By Lemma 5, we have
ψ(α, k) + ψ(β, k) + ψ(γ, k) � 3n/2 for every prime power divisor k of ord(θ). It follows
that ord(θ)3n/2 divides P and hence ord(θ) � (n/2)2 as claimed.

Finally, suppose that φ = (α, β, γ ; δ) ∈ par(Q). Then δ ∈ S3 has order 1, 2, or 3, so
eitherφ2 ∈ atp(Q) orφ3 ∈ atp(Q). Applying the above bound for the order of autotopisms
now yields the claimed bound for the order of autoparatopisms. �

Corollary 1. Suppose ρ is chosen uniformly at random from Sn. Then with probability
approaching 1 as n → ∞, all the following statements hold:

1. ρ is not an automorphism of any quasigroup of order n,
2. ρ is not an automorphism of any Steiner triple system of order n,
3. ρ is not an automorphism of any 1-factorization of Kn,
4. there do not exist σ, τ ∈ Sn such that (ρ, σ, τ ) is an autotopism of any quasigroup

of order n.

Proof. Much work has been done on the order of random permutations (see, e.g. [15]).
It is known from [4] that the order of ρ will, with probability approaching 1, exceed
n(1/2+o(1)) log n. In particular the order of a random permutation in Sn is not bounded by
any polynomial in n. Hence Claim 4 of the corollary follows from Theorem 2. The first
three claims are special cases of Claim 4. �

In particular, Corollary 1 proves Conjecture 1. On hearing Theorem 2, but without
seeing the proof, a slightly weaker (but still quadratic) bound was found by Babai
(see [1]).

4. AN AUTOMORPHISM OF ORDER EXCEEDING n

Although Theorem 2 gives a quadratic bound on the order of a quasigroup automorphism,
it is natural to wonder whether this bound is of the right order. At this time, we are unable
to answer that question, however, we will shed some light on it in this section.

Recall that Horoševskiı̆ [6] proved that, if G is a group of order n > 1 then any
automorphism ofG has order at most n− 1. Problem 1 was motivated by the observation
that for all small orders n, the largest order of a quasigroup autotopism is exactly n. It is
not hard to prove the following existence result (see, e.g. [14], Thms 3.4 and 5.2]).

Lemma 6. For each odd n it is possible to find a quasigroup of order n with an
automorphism of order n. For each even n we can find a quasigroup of order n with an
automorphism of order n− 1, and another quasigroup of order n with an autotopism of
order n.

Given the above context, it is of considerable interest to know whether a quasigroup
of order n can ever have an automorphism of order greater than n. We answer this now.

Theorem 3. For n � 7033 there is no quasigroup of order n possessing an automor-
phism of order more than n. However, there is a quasigroup of order 7034 having an
automorphism of order 7140.
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Proof. Suppose there is a quasigroup of some order n � 7033 possessing an automor-
phism of order more than n. Among all such quasigroups let Q be one of smallest order,
and let n be that order. Among all automorphisms ofQ, suppose α has the smallest order
that still exceeds n. Letm be the order of α. Suppose π is the partition of n determined by
the cycle structure of α. We note the following immediate consequences of our choices.

1. m is the lowest common multiple of the parts of π .
2. m is not divisible by any prime p for which m > pn, since otherwise αp would be

an automorphism of Q of order m/p > n, contradicting the choice of α.
3. By Lemma 4, there is no part c of π for which the sum of the parts of π that divide
c exceeds n/2 (in particular, no single part of π exceeds n/2).

4. ψ(π, k) � n/2 for any prime power k that divides m, by Lemma 5.
5. For any parts a, b of π there exists a part c satisfying lcm(a, b) = lcm(b, c) =

lcm(a, c). Indeed, for each part a of π , (5) holds for all sets B of parts of π .
6. m is divisible by at least three distinct primes. Ifm = pk wherep is prime, thenπ has

a part of size pk and so m � n. Suppose instead that m = pkq� for distinct primes
p, q and k, � > 0. If m > n then π has no part divisible by pkq�, so ψ(π, pk) =
ψ(π, q�) = n/2 since they count disjoint sets of parts. But this implies n/2 is a
multiple of both pk and q� and so n � 2m.

7. A corollary of conditions 2 and 6 above is that m < n3/2.

Our aim was to try each plausible value of m and show that it cannot be realized by
any n � 7033 and π . For each m < 70333/2 with at least three distinct prime factors we
did the following. First we found the prime factorization of m = p

a1
1 p

a2
2 · · ·parr where

p1 < p2 < · · · < pr are primes. We treatedm as a constant and n as a variable. For each
divisor d of m we allocated a variable vd that counts the number of cycles of length d.
The constraints 1 to 7 above can then be encoded as the following integer linear program.

0 � vd � n/(2d) for all d by 3,

�m2/3 � � n =
∑

d

dvd � m− 1 by 7,

m/p1 � n � 7033 by 2,∑

d a multiple of p
ai
i

dvd � n/2 for 1 � i � r, by 1 and 4. (7)

If vd > 0 for some d, extra constraints can be applied:

∑

a|d
ava � n/2 by 3,

∑

b∈B
bvb �

∑

c∈C(d,B)

cvc for all setsB of divisors ofm, by 5, (8)

where C(d, B) is the set of all block sizes c of π such that lcm(d, b) = lcm(d, c) =
lcm(b, c) for some b ∈ B.

Next, we explain two independent computations that showed that there are no m, n, π
satisfying the above inequalities and also satisfying the block constraints (1)–(4), except

Journal of Combinatorial Designs DOI 10.1002/jcd
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for the case

n = 7033, m = 7144, π = 23801 17851 14281 10201 4201. (9)

One of the computations used the constraint-satisfaction program MINION [5]. Since the
number of solutions without the block constraints is very large, and they often differ only
in the number of fixed points, we instead sought solutions form, n′, π ′, where n′ = n− v1

is the number of points not fixed, and π ′ is the same as π except that the singletons are
removed. Considering the justifications for the various constraints above, we find that
they apply also to m, n′, π ′ except that �m2/3 � � n must be replaced by �m2/3 � � 2n′

andm/p1 � n must be replaced bym/p1 � 2n′. These are justified since n′ � n/2. The
validity of inequality (8) is less obvious but comes from the block constraints, as we now
show.

For each triple a, b, c of part sizes of π , define

gc(a, b) = c
∑

i:ci=a

∑

j :cj=b

∑

k:ck=c
fk(i, j ).

It follows from (1)–(3) that these nonnegative integers satisfy

∑

d

gd (a, b) = ava bvb,
∑

d

gc(d, b) = bvb cvc,
∑

d

gc(a, d) = ava cvc, (10)

for all a, b, c. Also, it follows from (4) that gc(a, b) = 0 unless lcm(a, b) = lcm(a, c) =
lcm(b, c). Applying the three parts of (10) for a = 1, b = 1, and c = 1, respectively,
we find that gd (1, d) = gd (d, 1) = g1(d, d) = v1dvd for all d. Therefore, if we define
g′
c(a, b) = gc(c, c) + v1cvc when a = b = c and g′

c(a, b) = gc(a, b) otherwise, we find
that (10) holds for π ′ with g replaced by g′.

For a being a block size of π ′ and B being a set of block sizes of π ′, we have

∑

b∈B
ava bvb =

∑

b∈B

∑

c∈C(a,B)

g′
c(a, b) =

∑

c∈C(a,B)

∑

b∈B
g′
c(a, b) �

∑

c∈C(a,B)

ava cvc,

where the first and third steps come from the first and third equations of (10). If va > 0,
this implies

∑
b∈B bvb �

∑
c∈C(a,B) cvc. In practice there are too many choices for B to

use all such inequalities, so we used all those for which C(a, B) = C(a, {b}) for some
b ∈ B.

MINION took about 30 minutes to find about 12 million solutions to these constraints
apart from (10). The smallest was n = 389, m = 420, π ′ = 1401 1051 841 601. For each
solution, Gaussian elimination was used to test if (10) was satisfiable modulo a large
prime (a necessary condition if (10) has a solution over the integers). Only the solution
(9) remained.

The same result was obtained by an independent and lengthier computation using
Maple. This computation only used the constraints described prior to and including (7),
together with the |B| = 1 case of (8). These constraints were subject to a backtrack search
that made iterative use of Maple’s exact simplex algorithm to bound the variables. The
search branched by allocating values to the variables vi in decreasing order of i, although
we did not allocate values to v3, v2, or v1. Rather, when vi for i > 3 was known, we found
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it was sufficient to apply the block constraint (1) for distinct ci, cj > 3, (2) for distinct
ci, ck > 3, (3) for distinct cj , ck > 3, and (4). These block constraints were found to be
inconsistent over the rationals in all cases except (9).

The infeasibility of (9) is shown by Lemma 6.3(ii) in [14]. However, there is an easy
patch. By adding one fixed point, we get a cycle structure that is achievable. To be
precise, we found a quasigroup Q7034 that has an automorphism α with cycle structure
23801178511428110201420111. The order of α ism = 7140 > n = 7034, so its existence
completes the proof of the theorem. A block diagram for the Cayley table L of Q7034

is given in Figure 1. We assume that the last row and column of L are in natural order.
Then, to specify Q7034 it suffices to give 5 rows from L, one from each orbit of α on the
rows other than the last row. Five such rows can be downloaded from [17]. �

The example just described is not the only instance that we found of a quasigroup of or-
der nwith an automorphism of orderm > n. Another example,Q28009, has n = 28009 <
45045 = m. The cycle structure of the automorphism α is 9009164351500514095134651.
A block diagram for Q28009 is given in Figure 2. To specify Q28009 it suffices to give 5
rows from its Cayley table, one from each orbit of α on the rows. Five such rows can be
downloaded from [17].

The idea that led us to Q28009 is the following. Suppose that we have a set X of s
relatively prime positive integers of comparable size. We aim to choose cycle lengths
that are products of elements ofX, and then to buildQ with an automorphism with these
cycle lengths. Each cycle length c is associated with the subset of X consisting of the
factors of c. The cycle structure of the automorphism therefore corresponds to a system
Z of subsets of X. To avoid redundancy, we assume that every element of X is in at least
one set in Z . We then know that m, the order of the automorphism, will be the product
of all elements of X. The order n of the quasigroup Q will be minimized by keeping Z
and the sets in Z small. However, the sets must be compatible with Lemma 1. Hence for
each A,B ∈ Z there must be C ∈ Z such that

A ∪ B = A ∪ C = B ∪ C. (11)

We now discuss set systems that satisfy this property.
Suppose we take Z to be all subsets of X of size t . Roughly, this gives n ≈ (

s

t

)
mt/s .

ChoosingX = {5, 7, 9, 11, 13} and t = 4 provided us withQ28009. A necessary condition
for this construction to work is that t � 2s/3. However, we now present an example
showing that it is possible to achieve (11) using sets that are smaller relative to the
ground set.

Take X to be the nonzero binary vectors of length k. Take Z to consist of one set
SY for every nonempty subset Y of {1, . . . , k}. We define SY to be the set of vectors
whose coordinates in the positions indexed by Y add up to 1 mod 2. If A and B are two
distinct subsets of {1, . . . , k} then their symmetric difference C satisfies (11), because
the symmetric difference of SA and SB is SC . The cardinality of X in this example is
2k − 1. The cardinality of each SY is 2k−1, which is only very marginally more than half
the size of the ground set. This is best possible in the following sense:

Lemma 7. Let Z be a system of subsets of a ground set X such that each of the s
elements of X occurs in at least one set in Z . If (11) holds then Z contains at least one
set of cardinality greater than s/2.
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Proof. The claim is trivial for s = 1. Aiming for a contradiction, suppose s > 1 is the
smallest integer for which there exists Z satisfying (11) but where all sets in Z have
cardinality at most s/2. Let L ∈ Z be a largest set in Z . By assumption 1 � |L| � s/2.
Now construct a new set system by taking X′ = X \ L and Z ′ = {B \ L : B ∈ Z}. We
will argue that Z ′ contradicts the minimality of Z .

First note that |X′| = s − |L| � s/2. For each B ∈ Z , there exists C ∈ Z such that
B ∪ C = B ∪ L = C ∪ L. It follows that |L| � |C| � |B \ L| + |L \ B| = |B \ L| +
|L| − |B ∩ L| and hence |B \ L| � |B ∩ L|. Thus |B \ L| � |B|/2 � s/4 � |X′|/2. So
each set in Z ′ has cardinality no more than half |X′|.

Secondly, take any B1, B2 ∈ Z and let B ′
1 = B1 \ L and B ′

2 = B2 \ L. By the choice
of Z there exists B3 ∈ Z satisfying B1 ∪ B2 = B1 ∪ B3 = B2 ∪ B3. It is immediate
that B ′

3 = B3 \ L ∈ Z ′ satisfies B ′
1 ∪ B ′

2 = B ′
1 ∪ B ′

3 = B ′
2 ∪ B ′

3, so Z ′ satisfies (11) as
claimed. �

In practice, for each A and B there should be several choices of C that satisfy (11) in
order to provide enough flexibility to satisfy Lemma 2 and the block diagram constraints.
We conjecture that this is possible without making the largest set much larger than half
the size of the groundset.

Conjecture 2. Let μ be a fixed positive integer. There exists an infinite family of set
systems parametrized by s, the size of the ground set, in which no set has cardinality
exceeding s/2 + o(s) and which has the property that for each choice of sets A and B
there are at least μ different choices of C that satisfy (11).

With such a family of set systems, say for μ = 3, it would be possible to choose
plausible cycle structures for automorphisms whose order grows quadratically in the
order of the quasigroups. We simply take s coprime integers of large, comparable size,
and use the set system to determine how to multiply them to produce the cycle lengths
of the automorphism. Our empirical experience with small examples leads us to suspect
that such automorphisms would exist, but constructing the quasigroups is not a simple
task with present methods.

We announced Conjecture 2 at the 2012 meeting of the Australian Mathematical
Society, and were shortly afterwards sent a proof by Gyula Károlyi [8]. Thus we are
emboldened to conjecture that Theorem 2 is sharp in this sense:

Conjecture 3. Let ε > 0. There is no O(n2−ε) bound on the order of automorphisms
of quasigroups of order n.

Although we have not resolved the question with which we opened this section, we
have at least shown that the answer to Problem 1 is negative for general n. We have
two examples where the order of the automorphism exceeds the order of the quasigroup.
An infinite family of such examples can now be found by taking direct products. If
quasigroups Q1 and Q2 have automorphisms of respective orders m1 and m2, where m1

andm2 are relatively prime, thenQ1 ×Q2 has an automorphism of orderm1m2 (see e.g.
[14, Lem 3.2]). ChoosingQ1 to be eitherQ7034 orQ28009 and using Lemma 6 to provide
Q2, we get infinitely many examples of quasigroups possessing an automorphism whose
order exceeds the order of the quasigroup. Examples for some other orders can then be
obtained by prolongations (see, e.g. [3]). Although we have not attempted a proof, we
suspect that for all large enough n there is a quasigroup of order n with an automorphism
of order more than n.
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5. QUASIGROUPS OF PRIME ORDER

In this last section, we answer Problem 2 by giving examples that show that other
possibilities are attained. However, first we give at least a partial explanation of why, for
small primes, only the two possibilities listed in Problem 2 occur.

SupposeQ is a quasigroup of order n and that θ is an autotopism ofQ. Suppose further
that k is a prime power divisor of ord(θ) and k does not divide n. Examining Lemma 5, we
see that the only possibility is that (6) holds. In practice, this is quite a strong restriction,
especially for quasigroups of prime order (since in that case the condition that k does
not divide n only rules out k = n). Indeed, we have the following result, in the spirit of
Problem 2.

Lemma 8. Let θ = (α, β, γ ) be an autotopism of a quasigroup of prime order p. Then
either

1. one of α, β or γ is the identity and the other two are p-cycles; or
2. ψ(α, k) = ψ(β, k) = ψ(γ, k) for every prime power k and hence α, β, γ have the

same order as permutations.

Proof. First suppose that one of α, β, γ is a p-cycle. By Lemma 5 at least two of
α, β, γ must be p-cycles. Hence θp must be trivial, by Theorem 1. Consequently, we
are either in the first case of the lemma, or else each of α, β, γ is a p-cycle, which falls
within the second case.

Hence we may assume that none of α, β, γ is a p-cycle. Let k be any prime power
dividing ord(θ). Since k does not divide p, we know that ψ(α, k), ψ(β, k), and ψ(γ, k)
are all strictly less than p. So Lemma 5 implies that (6) holds. For any prime power
k that does not divide ord(θ), we have ψ(α, k) = ψ(β, k) = ψ(γ, k) = 0. The lemma
follows. �

With Lemma 8 in mind, we undertook a computer search of all partitions of primes
p � 29 to find possible cycle structures for θ . Aside from the options listed in Problem 2,
the only 3 possibilities that satisfy (6) are that

� p = 23 and one of α, β, γ has cycle structure 62312116 while the other two have cycle
structure 613324.

� p = 29 and one of α, β, γ has cycle structure 62312416 while the other two have cycle
structure 613327.

� p = 29 and one of α, β, γ has cycle structure 63312116 while the other two have cycle
structure 623324.

Of these options, the first two can be seen to be infeasible using [14, Lemma 3.8]. In
contrast, we now show that the last option is achieved, providing the smallest witness
that the answer to Problem 2 is negative. Take

α = β = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)

(22, 23)(24, 25)(26, 27)(28, 29)

γ = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21)(22, 23)
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and use the following for the rows indexed 1, 7, 13, 16, 19, 22, 24, 26, 28, respectively:

[24, 25, 19, 12, 13, 26, 23, 27, 28, 6, 7, 29, 22, 1, 18, 3, 15, 9, 14, 2, 8, 5, 21, 4, 20, 11, 17, 16, 10]
[27, 28, 29, 17, 6, 7, 24, 25, 19, 26, 18, 1, 2, 8, 14, 22, 10, 15, 23, 11, 5, 9, 3, 16, 4, 13, 21, 12, 20]
[22, 6, 7, 23, 3, 10, 17, 12, 1, 14, 9, 4, 19, 21, 20, 24, 25, 26, 27, 28, 29, 15, 18, 11, 8, 2, 5, 13, 16]
[10, 4, 13, 7, 1, 16, 22, 11, 6, 23, 8, 3, 27, 28, 29, 19, 21, 20, 24, 25, 26, 18, 15, 17, 14, 12, 9, 5, 2]
[23, 5, 18, 22, 2, 15, 16, 9, 17, 13, 12, 14, 24, 25, 26, 27, 28, 29, 19, 21, 20, 10, 7, 8, 11, 1, 4, 6, 3]
[19, 2, 21, 4, 20, 6, 1, 8, 3, 10, 5, 12, 14, 18, 16, 11, 9, 7, 13, 17, 15, 22, 24, 23, 25, 26, 28, 27, 29]
[21, 8, 20, 10, 19, 12, 13, 1, 15, 3, 17, 5, 4, 2, 6, 18, 16, 14, 11, 9, 7, 27, 29, 22, 24, 23, 25, 26, 28]
[13, 1, 15, 3, 17, 5, 19, 7, 21, 9, 20, 11, 12, 10, 8, 4, 2, 6, 18, 16, 14, 26, 28, 27, 29, 22, 24, 23, 25]
[18, 7, 14, 9, 16, 11, 21, 13, 20, 15, 19, 17, 8, 12, 10, 5, 3, 1, 2, 6, 4, 23, 25, 26, 28, 27, 29, 22, 24]

Then use the specified autotopism to complete the Latin square of order 29. The full Latin
square, together with another example of order 41, can be downloaded from [17]. This
latter example, for which α and β have cycle structure 643324 while γ has cycle structure
65312116, is referred to by [10]. Our new example above does not answer Problem 4.2 in
[10], since its multiplication group is the symmetric group S29.

Looking back at Theorem 1, there is another type of autotopism which we have not
yet witnessed in quasigroups of prime order, namely one for which the three component
permutations in the autotopism have pairwise different cycle structures. We call such an
autotopism a triceratopism. We found an example of a quasigroup of order 131 that has a
triceratopism with cycle structures 3011521036651, 3021036151310 , and 3021526151215.
The example can be downloaded from [17]. We now explain the process that allowed us
to find this example, and to conclude that there are no smaller examples of quasigroups
of prime order that possess a triceratopism.

For a prime p and positive integerm to be chosen below, we did the following. Suppose
θ = (α, β, γ ) is a triceratopism of order m for a quasigroup of order p. By Theorem 1,
none of α, β, γ have fixed points. We next argue that none of α, β, γ is a p-cycle. Say α
is a p-cycle, which means that all cycles in β and γ are of length relatively prime to p.
Hence βp has the same cycle structure as β, and similarly γ p has the same cycle structure
as γ . Now, applying Theorem 1 to θp we find that β must have the same cycle structure as
γ . This contradiction justifies our first step, which was to identify � = {x : 1 < x < p

and x divides m}, the set of possible cycle lengths. We then found �, the set of all
partitions π of the integer p satisfying

� Each part of π is a member of �.
� For each prime power q dividing m we have ψ(π, q) � p/2.

We then found all sets of three distinct π1, π2, π3 ∈ � that satisfy (6), assuming the
cycle structures of α, β, γ to be π1, π2, π3. For the few thousand candidates that made it
this far we had one final test. For all choices of {a, b, c} = {1, 2, 3} we checked that for
each choice of a part from πa and a part from πb, the parts of πc satisfied Lemma 2.

We performed these checks for p � 131 and m � p2/4, and the only candidate that
passed all the checks was the example given above. Hence, on the basis of Theorem 2,
we know that it is the smallest. To construct the quasigroup, we first chose a plausible
block diagram, then used a simple backtracking algorithm to find a quasigroup with that
block diagram.

We close the paper with a few comments on loops, that is, quasigroups with an identity
element. Since loops are quasigroups, results such as Theorem 2 apply to loops without
change. Also, every quasigroup is isotopic to a loop, and isotopisms preserve the cycle
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structure of autotopisms. This observation allows us to directly translate the results from
the present section to loops. For example, the smallest loop with a triceratopism has
order 131. Finally, we note that Q7034 from Section 4 is a loop, thereby demonstrating
that loops can have automorphisms with order greater than the order of the loop. The
quasigroupQ28009 can also be used to build a loop of order 28010 with a similar property.
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[7] A. Hulpke, P. Kaski, and P. R. J. Östergård, The number of Latin squares of order 11, Math
Comp 80 (2011), 1197–1219.
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