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Abstract—Perfect deletion-correcting codes of the same length
over the same alphabet can have different sizes. The interesting
problem of determining the possible sizes of perfect deletion-
correcting codes has previously been studied. In this paper, we
study the corresponding problem for burst deletion-correcting
codes. We completely determine the spectrum of sizes for perfect
burst deletion-correcting codes for certain classes of parameters
and also construct new classes of perfect deletion-correcting
codes.

I. INTRODUCTION

Deletion errors are very common in channels such as
magnetic and optical recording [1], packet-switched commu-
nication [2], and DNA replication [3]. Codes that are capable
of correcting deletions were first introduced by Levenshteı̆n
[4] in the 1960s, and have been systematically studied since
[5]–[16].

Most of the work on deletion-correcting codes have focused
on the channels where deletions are randomly scattered in
a codeword. However, in certain memory systems, such as
spacecraft memories subject to soft upsets [17], and digital
video recording [18], [19], the effect of burst deletions (that
is, a run of deletions that occur in consecutive components of
a codeword) is significant. It is therefore important to consider
codes for combating burst deletion errors, which we call burst
deletion-correcting codes. Levenshteı̆n [4] presented asymp-
totic upper bounds on the size of such codes and constructed
asymptotically optimally codes capable of correcting burst of
up to two deletions. Codes capable of correcting bursts of
higher number of deletions are considered recently by Cheng
et al. [20].

Sloane [11] observed that unlike error-correcting codes,
perfect deletion-correcting codes of the same length over
the same alphabet can surprisingly have different sizes. The
same holds for perfect burst deletion-correcting codes. It is
interesting, therefore, to ask for the possible sizes a perfect
deletion-correcting code and a perfect burst deletion-correcting
code can have. The spectrum of possible sizes for perfect q-ary
deletion-correcting codes of length n, capable of correcting up
to t deletions, was determined when (t, n) ∈ {(1, 3), (2, 4)}
for almost all q by Chee et al. [14].

In this paper, we initiate the determination of the spectrum
of possible sizes for perfect burst deletion-correcting codes.
In particular, for perfect q-ary burst deletion-correcting code
of length n, capable of correcting a burst deletion of length t,
we completely determine the spectrum of their sizes when

(i) n ≥ 4 and t = n− 2.
(ii) n ≥ 6, t = n− 3, and q even.

II. PRELIMINARIES AND NOTATION

For a ∈ Z and S ⊆ Z, aS denotes the set {a · s : s ∈ S}.
Let X be a finite set of q elements and n be a positive

integer. A set C ⊆ Xn is called a q-ary code of length n. The
set X is called the alphabet of the code C and the elements
of C are called codewords. The size of C is |C|, the number of
codewords it contains.

For x ∈ Xn and 0 ≤ t ≤ n, let Dt(x) denote the set of
t-th order descendants, that is, the set of y ∈ Xn−t that are
obtained if any t components are deleted from x. The q-ary
code C ⊂ Xn is said to be t-deletion-correcting if Dt(x) ∩
Dt(y) = ∅ for all distinct x, y ∈ C. We call such a code
an (n, t)q-deletion-correcting code and denote it by (n, t)q-
DCC. An (n, t)q-DCC is called optimal if it has maximum
size among all the codes with same parameters.

An (n, t)q-DCC C ⊆ Xn is perfect if the balls Dt(x), x ∈
C, partition Xn−t. As observed by Sloane [11], perfect (n, t)q-
DCCs can have different sizes because the balls Dt(x) have
different sizes depending on x.

Define the spectrum of sizes of a perfect (n, t)q-DCC to be

Spec(q, n, t) = {|C| : C is a perfect (n, t)q-DCC}.

Chee et al. [14] determined that
(i) Spec(q, n, n) = {1};

(ii) Spec(q, n, n− 1) = [dq/ne, q];
(iii) Spec(q, 3, 1) = [dq2/3e, bq(q + 2)/3c];
(iv) Spec(q, 4, 2) = [d q4d

2q
3 ee, b

q
4b

2(q−1)
3 cc+ q],

where [a, b] denotes the interval of integers {a, a+ 1, . . . , b},
for positive integers a < b.

Recently, it was shown that there exists a perfect (4, 1)q-
DCC for all q [13], [15], [21]. For even q, the perfect (4, 1)q-
DCC constructed by Kim et al. [15] is also optimal. However,
it seems difficult to determine Spec(q, 4, 1) completely.

We now introduce notations for codes that can correct burst
deletion errors. For x ∈ Xn and 0 ≤ t ≤ n, let D̄t(x)
denote the set of all y ∈ Xn−t that are obtained by deleting
t consecutive components from x. A q-ary code C ⊆ Xn is
said to be capable of correcting a burst deletion of length t
if D̄t(x) ∩ D̄t(y) = ∅ for all distinct x, y ∈ C. We call such
a code an (n, t)q-burst deletion-correcting code and denote
it by (n, t)q-BDCC. Similar to deletion-correcting codes, an
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(n, t)q-BDCC is optimal if it has maximum size among all
(n, t)q-BDCCs. An (n, t)q-BDCC is perfect if the balls D̄t(x),
x ∈ C, partition Xn−t. Since maxx∈Xn |D̄t(x)| = n− t+ 1,
a lower bound on the size of a perfect (n, t)q-BDCC is
qn−t/(n− t+ 1).

We define the spectrum of sizes of a perfect (n, t)q-BDCC
as

SpecB(q, n, t) = {|C| : C is a perfect (n, t)q-BDCC}.

Then SpecB(q, n, 1) = Spec(q, n, 1). We also have
SpecB(q, n, n) = {1} and SpecB(q, n, n− 1) = [dq/2e, q].

Our results in this paper can be summarized as follows:
(i) SpecB(q, n, n− 2) = [dq2/3e, q2] for all n ≥ 4.

(ii) SpecB(q, 5, 2) ⊇ q[dq2/3e, bq(q + 2)/3c] for all q, and
inf SpecB(q, 5, 2) = q3/4 for even q.

(iii) Let n ≥ 6. Then SpecB(q, n, n− 3) ⊇ [qdq2/3e, q3] for
odd q, and SpecB(q, n, n− 3) = [q3/4, q3] for even q.

(iv) There exist perfect (4, 1)q-DCCs of size q(q2 + q + 4)/4

and q3+5q2/4
4 for all q ≡ 0 mod 8, and of size q3+3q2/2

4
for all q ≡ 0 mod 4.

III. CONSTRUCTIONS FROM SHORTER
DELETION-CORRECTING CODES

This section is devoted to the study of SpecB(q, n, t),
with t ∈ {n − 3, n − 2}, by constructing burst deletion-
correcting codes from shorter deletion-correcting codes and
burst deletion-correcting codes.

A. Determination of SpecB(q, n, n− 2)

Recall that when n = 3, SpecB(q, 3, 1) = Spec(q, 3, 1) =

[d q
2

3 e, b
q2+2q

3 c]. Thus, we assume n ≥ 4.
Let x = (x1, x2, . . . , xn−1, xn) ∈ Xn. Then D̄n−2(x) =

{(x1, x2), (x1, xn), (xn−1, xn)}, which is independent of the
symbols x3, . . . , xn−2. So any (n, n − 2)q-BDCC of length
n > 4 can be obtained from a (4, 2)q-BDCC by inserting any
n−4 symbols into the center of each codeword. Further, since
1 ≤ |D̄n−2(x)| ≤ 3, we have SpecB(q, n, n− 2) ⊆ [d q

2

3 e, q
2]

for all n ≥ 4.
By the analysis above, we only need to consider the case

n = 4.
First, we construct a perfect (4, 2)q-BDCC from a perfect

(3, 1)q-DCC as follows. Suppose D ⊆ X3 is a perfect (3, 1)q-
DCC. For each x = (a, b, c) ∈ D, let εx = (a, b, b, c). Note
that D̄2(εx) = D1(x). Then C = {εx : x ∈ D} is a perfect
(4, 2)q-BDCC. Since d q

2

3 e ∈ Spec(q, 3, 1), we have a perfect
(4, 2)q-BDCC of size d q

2

3 e.
Next, we construct perfect (4, 2)q-BDCCs with bigger sizes

as follows. For each word x = (a, b, c, d) with (a, b) 6= (c, d),
let

Ax =

{
{(a, d, c, d), (a, b, a, b)}, if b 6= d

{(a, b, a, d), (c, d, c, d)}, otherwise.

Note that D̄2(y), y ∈ Ax partition D̄2(x). Then (C\{x})∪Ax

is also a perfect (4, 2)q-BDCC but with size increased by one.
Continuing this procedure until all the codewords have the

form (a, b, a, b), we can obtain a perfect (4, 2)q-BDCC for
any size in [d q

2

3 e, q
2]. Hence, SpecB(q, 4, 2) = [d q

2

3 e, q
2] and

consequently SpecB(q, n, n− 2) = [d q
2

3 e, q
2] for all n ≥ 4.

B. SpecB(q, 5, 2)

We show that SpecB(q, 5, 2) ⊇ qSpec(q, 3, 1) in this sub-
section.

Let x = (x1, x2, x3, x4, x5) ∈ X5, then D̄2(x) = {(x1,
x2, x3), (x1, x2, x5), (x1, x4, x5), (x3, x4, x5)}. Note that x2
and x4 are not related in D̄2(x). Hence, we consider a
special case that x2 = x4, where D̄2(x) = {(x1, x2, x3), (x1,
x2, x5), (x3, x2, x5)}.

Now we construct a perfect (5, 2)q-BDCC from a perfect
(3, 1)q-DCC as follows. Suppose D ⊆ X3 is a perfect (3, 1)q-
DCC. For each d ∈ X , let Ed = {(a, d, b, d, c) : (a, b, c) ∈
D}. Denote Td = X × {d} × X . Note that Td, d ∈ X
partition X3, while D̄2(x), x ∈ Ed partition Td. Hence,
C = ∪d∈XEd is a perfect (5, 2)q-BDCC of size q|D|. Thus,
we have SpecB(q, 5, 2) ⊇ qSpec(q, 3, 1) = q[d q

2

3 e, b
q2+2q

3 c].

C. SpecB(q, n, n− 3) for n ≥ 6

Let x = (x1, x2, . . . , xn−1, xn) ∈ Xn. Then D̄n−3(x) =
{(x1, x2, x3), (x1, x2, xn), (x1, xn−1, xn), (xn−2, xn−1, xn)},
which is independent of the symbols x4, . . . , xn−3. So any
(n, n − 3)q-BDCC of length n > 6 can be obtained from a
(6, 3)q-BDCC by inserting any n− 6 symbols into the center
of each codeword. So we only consider n = 6 here. Let
x = (x1, x2, . . . , x5, x6) ∈ X6. Note that x2 and x5 are not
related in D̄3(x). As in Section III-B, we consider a special
case when x2 = x5, and D̄3(x) is of size three.

First, we construct a perfect (6, 3)q-BDCC from a perfect
(4, 2)q-BDCC as follows. Suppose D ⊆ X4 is a perfect
(4, 2)q-BDCC. For each e ∈ X , let Ee = {(a, e, b, c, e, d) :
(a, b, c, d) ∈ D}. Denote Te = X × {e} × X . Note that Te,
e ∈ X partition X3, while D̄3(x), x ∈ Ee partition Te. Hence,
C = ∪e∈XEe is a perfect (6, 3)q-BDCC of size q|D|. By
Spec(q, 4, 2), we have a perfect (6, 3)q-BDCC of size qd q

2

3 e.
Second, we construct perfect (6, 3)q-BDCCs with bigger

sizes as follows. For each word x = (a, b, c, d, e, f) with
(a, b, c) 6= (d, e, f), let

Ax =
{(a, b, c, a, e, f), (d, e, f, d, e, f)}, if a 6= d

{(a, b, c, a, b, f), (a, e, f, a, e, f)}, if a = d and b 6= e

{(a, b, c, a, b, c), (a, b, f, a, b, f)}, otherwise.

Note that D̄3(y), y ∈ Ax partition D̄3(x). Then (C\{x})∪Ax

is also a perfect (6, 3)q-BDCC but with code size being
increased by one. Continuing this procedure until all the
codewords have the form (a, b, c, a, b, c), we can obtain a
perfect (6, 3)q-BDCC for any size in [qd q

2

3 e, q
3]. Hence,

SpecB(q, 6, 3) ⊇ [qd q
2

3 e, q
3] and consequently SpecB(q, n, n−

3) ⊇ [qd q
2

3 e, q
3] for all n ≥ 6.
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IV. PERFECT (n, n− 3)q -BDCCS OF MINIMUM SIZE

Note that the smallest possible size of a perfect (n, n−3)q-
BDCC is dq3/4e. In this section, we give recursive construc-
tions of perfect (n, n − 3)q-BDCCs from codes over smaller
alphabets, which yield the existence of perfect (n, n − 3)q-
BDCCs of size q3

4 for all n ≥ 5 and even q.
Suppose X , Y are two finite sets. For brevity, we write ab

for an element (a, b) ∈ X × Y . If x = (x1, . . . , xn) ∈ Xn

and y = (y1, . . . , yn) ∈ Y n, define x ◦ y = (x1y1
, . . . , xnyn

).

Theorem 1. If C is a perfect (5, 2)q-BDCC of size s such that
i 6= k and k 6= m for each (i, j, k, l,m) ∈ C, then there exits
a perfect (5, 2)vq-BDCC of size v3s for any positive integer
v.

Proof: Let C ⊆ X5 be a perfect (5, 2)q-BDCC of size s
such that i 6= k and k 6= m for each (i, j, k, l,m) ∈ C.

Let Y be a cyclic additive group of order v, and define
I ⊆ Y 5 so that

I = {(a, b, c, b, a+ c) : a, b, c ∈ Y }.

Let X ′ = Y ×X . For each x ∈ C, define

Ix = {y ◦ x : y ∈ I}.

Let D = ∪x∈CIx. It is easy to see that D is of size v3s.
We claim that D is a perfect (5, 2)q-BDCC.

First, we prove D is a (5, 2)q-BDCC, that is, D̄2(u) ∩
D̄2(u′) = ∅ for any two different codewords u = y ◦ x
and u′ = y′ ◦ x′. If x 6= x′, then D̄2(u) ∩ D̄2(u′) = ∅
since D̄2(x) ∩ D̄2(x′) = ∅. If x = x′, then y 6= y′.
Suppose that x = (i, j, k, l,m), y = (a, b, c, b, a + c) and
y′ = (a′, b′, c′, b′, a′ + c′). Then

D̄2(u) ={(ai, bj , ck), (ai, bj , (a+ c)m),

(ai, bl, (a+ c)m), (ck, bl, (a+ c)m)}

and

D̄2(u′) ={(a′i, b′j , c′k), (a′i, b
′
j , (a

′ + c′)m),

(a′i, b
′
l, (a

′ + c′)m), (c′k, b
′
l, (a

′ + c′)m)}.

By the assumption that i 6= k, k 6= m and (a, b, c) 6=
(a′, b′, c′), it is easy to verify that D̄2(u) ∩ D̄2(u′) = ∅.

Next, we prove D is a perfect code, that is, any element of
X ′3 belongs to D̄2(u) for some u ∈ D. This is true since C is
a code and after any deletion of two consecutive components
of elements of I, the derived 3-tuples cover exactly all the
elements of Y 3.

Let u = (0, 1, 1, 0, 0) and u′ = (1, 1, 0, 0, 1). Then {u, u′}
is a perfect (5, 2)2-BDCC of size two. Applying Theorem 1
gives the following.

Corollary 1. There exists a perfect (5, 2)q-BDCC of size q3/4,
for all even q.

Theorem 2. Let n ≥ 6. If there exits a perfect (n, n − 3)q-
BDCC of size s, then there exists a perfect (n, n−3)vq-BDCC
of size v3s, for any positive integer v.

Proof: It suffices to prove the case when n = 6. Let
C ⊆ X6 be a perfect (6, 3)q-BDCC of size s, and Y be an
alphabet of size v. Define I ⊆ Y 6 so that

I = {(a, b, c, a, b, c) : a, b, c ∈ Y }.

Let X ′ = Y ×X . For each x ∈ C, define

Ix = {y ◦ x : y ∈ I}.

Let D = ∪x∈CIx. The proof that D is a perfect (6, 3)q-BDCC
of size v3s is similar to that in Theorem 1, and is omitted.

Let u1 = (0, 1, 1, 1, 0, 0) and u2 = (1, 1, 0, 0, 0, 1). Then
{u, u′} is a perfect (6, 3)2-BDCC of size two. Applying
Theorem 2, we obtain a perfect (6, 3)q-BDCC of size q3/4 for
all even q. Further, we can determine the spectrum of possible
sizes of perfect (6, 3)q-BDCCs by using the same technique
as in Section III-C.

Corollary 2. SpecB(q, n, n − 3) = [q3/4, q3] for all n ≥ 6
and even q.

V. A CONSTRUCTION FOR (4, 1)q -DCCS

In this section, we apply similar ideas as in Section IV to
construct single-deletion-correcting codes.

An orthogonal array with k constraints, v levels, and
strength three, denoted OA(3, k, v), is a k × v3 array with
entries from a set of v ≥ 2 symbols, having the property that
in every 3× v3 submatrix, every 3× 1 column vector appears
exactly once. It is known that an OA(3, 4, v) exists for all v
[22].

Proposition 1. Suppose C is a (4, 1)q-DCC of size s. If each
codeword (i, j, k, l) ∈ C satisfies that i 6= j, j 6= l and l 6= k,
then there exits a (4, 1)vq-DCC of size v3s.

Proof: Let A be an OA(3, 4, v) with entries from X , and
let C be a (4, 1)q-DCC of size s over Y . Note that |X| = v
and |Y | = q. Now construct a code over X×Y as follows. For
each column B = (a, b, c, d)T in A, define DB ⊆ (X × Y )4

so that
DB = {B ◦ x : x ∈ C}.

Let D = ∪B∈ADB , which has size v3s. It is easy to verify
that D is a (4, 1)vq-DCC.

Note that we do not use perfect codes in Proposition 1 since
any perfect (4, 1)q-DCC does not satisfy the hypothesis. In
fact, if a code is perfect, then for any symbol a, there exists
a codeword x such that (a, a, a) ∈ D1(x). This codeword
x must have consecutive equal entries. However, we can still
produce perfect DCCs based on the construction in Proposition
1.

For any finite set Y , the set of all ordered k-tuples of Y
with distinct components is denoted

(
Y
k

)
. Levenshteı̆n [21]

shows that a (4, 1)q-DCC C over Y , with the property that
D1(u), u ∈ C partition

(
Y
3

)
, exists if and only if q is even.

Such a (4, 1)q-DCC satisfies the hypothesis of Proposition 1
and has size s = q(q−1)(q−2)/4. Let us denote this (4, 1)q-
DCC as L(q).
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Theorem 3. Let v, q > 0 be even integers. Suppose there exits
a perfect (4, 1)v-DCC of size s. Then there exits a perfect
(4, 1)vq-DCC of size 1

4q(q− 1)(q− 2)v3 + qs+ q(q− 1)v2 +
3
4q(q − 1)v2(v − 1).

Proof: Let X be a set of size v and Y be a set of size
q. We construct a perfect (4, 1)vq-DCC C ⊆ (X×Y )4, which
consists of four subcodes as follows.

Let D ⊆ (X × Y )4 be the (4, 1)vq-DCC that is obtained
by applying Proposition 1 with L(q). Note that |D| = 1

4q(q−
1)(q − 2)v3 and D1(u), u ∈ D partition

T1 =

{
x ◦ y : x ∈ X3, y ∈

(
Y

3

)}
.

Let A = ∪d∈Y Cd be the second (4, 1)vq-DCC, where Cd is
a perfect (4, 1)v-DCC of size s over X ×{d} for any d ∈ Y .
Here, Cd exists by assumption. Then |A| = qs and D1(u), u ∈
A partition

T2 = {x ◦ (d, d, d) : x ∈ X3, d ∈ Y }.

Let E = {(ia, jb, ia, jb), (jb, jb, ia, ia) : ia, jb ∈ X × Y, a ≺
b} be the third (4, 1)vq-DCC, where ≺ is an order defined over
Y . Then |E| = q(q− 1)v2 and the sets D1(u), u ∈ E partition

T3 =

{
(ia, jb, jb), (jb, ia, jb), (jb, jb, ia) :

(i, j) ∈ X2, (a, b) ∈
(
Y

2

)}
.

Finally, since v is even, for any d ∈ Y , there is a one-
factorization Fd = {F d

1 , . . . , F
d
v−1} of the complete graph on

vertex set X × {d}. Let

B = {{i, j, k, l} :{i, j} ∈ F a
n , {k, l} ∈ F b

n,

n ∈ [1, v − 1], a, b ∈ Y, a 6= b}.

Note that quadruples in B cover all triples of the form
{ia, jb, kb} ⊆ X × Y with j 6= k and a 6= b exactly
once. For each B ∈ B, let LB be an L(3, 4, 4) over B.
Then G = ∪B∈BLB is our fourth (4, 1)vq-DCC. Note that
|G| = 3

4q(q − 1)v2(v − 1) and D1(u), u ∈ G partition

T4 = {(ia, jb, kb),(jb, ia, kb), (jb, kb, ia) :

ia, jb, kb ∈ X × Y, a 6= b, j 6= k}.

Let C = D∪A∪E∪G. It is easy to check that Ti, 1 ≤ i ≤ 4
are disjoint and partition (X × Y )3. Hence, D1(u), u ∈ C
partition (X × Y )3 and C is a perfect (4, 1)vq-DCC of size
1
4q(q − 1)(q − 2)v3 + qs+ q(q − 1)v2 + 3

4q(q − 1)v2(v − 1).

Corollary 3. There exits a perfect (4, 1)q-DCC of size
q3+q2+4q

4 and q3+5q2/4
4 for all q ≡ 0 mod 8, and of size

q3+3q2/2
4 for all q ≡ 0 mod 4.

Proof: Kim et al. [15] gives a perfect (4, 1)4-DCC of size
24. Then applying Theorem 3 with v = 4, a perfect (4, 1)q-
DCC of size q3+q2+4q

4 exists for any q ≡ 0 mod 8.

Kim et al. [15] also gives a perfect (4, 1)v-DCC of size
v3+2v2

4 for all even v. Then applying Theorem 3 with v = q/4,
a perfect (4, 1)q-DCC of size q3+5q2/4

4 exists for any q ≡
0 mod 8. If we apply Theorem 3 with v = q/2, then a perfect
(4, 1)q-DCC of size q3+3q2/2

4 exists for all q ≡ 0 mod 4.
There are only two sizes of perfect (4, 1)q-DCCs known for

all even q:
(i) (q3 + q2 + 2q)/4 by Levenshteı̆n [21], and

(ii) (q3 + 2q2)/4 by Kim et al. [15].
Thus, the sizes of the codes obtained in Corollary 3 are new.
Our construction is also different from those of Wang and Ji
[13]. Similar to Corollary 3, it is also possible to obtain perfect
(4, 1)q-DCCs of further new sizes by applying Theorem 3. We
do not explore them in this paper due to lack of space.

VI. CONCLUSION

We initiate the investigation into the possible sizes of q-ary
perfect codes of length n that are capable of correcting burst
deletions of length t. The spectrum of sizes for such codes is
completely determined when

(i) n ≥ 4 and t = n− 2, and
(ii) n ≥ 6, t = n− 3, and q even.

We also show that the smallest possible size for such codes
with t = 2, n = 5, and even q is q3/4. Finally, new classes
of perfect (4, 1)q-DCCs are obtained.
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