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Abstract. We demonstrate that certain Johnson-type bounds are asymptotically exact for a
variety of classes of codes, namely, constant-composition codes, nonbinary constant-weight codes,
group divisible codes, and multiply constant-weight codes. We achieve this via an application of the
theory of decomposition of edge-colored digraphs.
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1. Introduction. Binary constant-weight codes form an important class of codes
where every codeword has the same weight. A fundamental problem in this study is
to determine A(n, d, w), the maximum number of codewords in a constant-weight
code of length n with Hamming distance d and constant-weight w [24]. In recent
years, binary constant-weight codes have been generalized to constant-composition
codes and nonbinary constant-weight codes and have found applications in coding for
bandwidth-efficient channels [14], powerline communications [11, 8], and frequency
hopping [12]. More recently, the class of multiply constant-weight codes was intro-
duced in applications for physically unclonable functions [1] and simultaneous energy
and information transfer [29]. In these studies, quantities analogous to A(n, d, w) have
been defined, and these quantities are objects of interest.

Constant-weight codes have deep connections with many combinatorial objects
in design theory, such as Steiner systems and packing designs [24, 13]. In the 1970s,
Wilson [32, 33, 31, 34] demonstrated that the elementary necessary conditions for
the existence of balanced incomplete block designs, a special case of Steiner systems,
are asymptotically sufficient as well. His work, therefore, determined the size of an
optimal binary constant-weight code of weight w and distance 2w  - 2, provided that
the length n is sufficiently large and satisfies certain congruence conditions. More
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recently, Keevash [21] demonstrated the existence of general Steiner systems. His
result implies that the Johnson bound for binary constant-weight codes is exact,
whenever the distance is fixed, and the code length is sufficiently large and satisfies
certain congruence conditions.

Since Wilson's seminal work, there have been interesting developments in the
area of combinatorial designs. Wilson's ideas have been generalized into Lamken and
Wilson's theory of decomposition of edge-colored digraphs [23], and the theory has
been used extensively in establishing the asymptotic existence of many combinatorial
designs. Theoretical developments also extend Lamken and Wilson's results to other
types of decompositions. Of particular interest is the class of superpure decompositions
[20].

Therefore, a natural question is whether these advanced techniques in the de-
composition of edge-colored digraphs are relevant in constructing optimal codes in
these generalizations. In this paper, we answer this question in the affirmative for
certain distances. Specifically, we construct families of optimal codes by establishing
the connection between these codes and the decompositions of edge-colored digraphs.

The rest of this paper is organized as follows. In section 2, we define relevant ter-
minology in detail, present the known results of these codes, and summarize our con-
tributions. In sections 3--6, we establish the connections between these three classes of
codes and the decomposition of edge-colored digraphs, and prove that some bounds---
in particular, the Johnson-type bounds---can be reached for sufficiently large code
lengths. Related open problems are discussed in section 7.

2. Preliminary. The ring \BbbZ /q\BbbZ is denoted by \BbbZ q. For positive integer n, the
set \{ 1, 2, . . . , n\} is denoted by [n].

Let \BbbZ X
q denote the set of vectors whose elements belong to \BbbZ q and are indexed

by X. A q-ary code of length n is then a set \scrC \subseteq \BbbZ X
q with | X| = n. The support of a

vector \sansu \in \BbbZ X
q , denoted supp(\sansu ), is the set \{ x \in X : \sansu x \not = 0\} . The Hamming weight of

\sansu \in \BbbZ X
q is defined as

\bigm\| \bigm\| \sansu \bigm\| \bigm\| = | supp(\sansu )| . The distance induced by this norm is called the

Hamming distance, so that d(\sansu , \sansv ) =
\bigm\| \bigm\| \sansu  - \sansv 

\bigm\| \bigm\| , for \sansu , \sansv \in \BbbZ X
q . A code \scrC is said to have

distance d if d(\sansu , \sansv ) \geq d for all distinct \sansu , \sansv \in \scrC . The composition of a vector \sansu \in \BbbZ X
q

is the tuple w = [w1, . . . , wq - 1], where wi = | \{ x \in X : \sansu x = i\} | , where i \in \BbbZ q \setminus \{ 0\} .
Unless mentioned otherwise, we always assume q \geq 3 and w1 \geq w2 \geq \cdot \cdot \cdot \geq wq - 1.

2.1. Constant-weight codes and constant-composition codes. A code \scrC 
is said to have constant-weight w if every codeword in \scrC has weight w, and to have
constant-composition w if every codeword in \scrC has composition w. We refer to a q-ary
code of length n, distance d, and constant-weight w as a CWC(n, d, w)q. If in addition,
the code has constant-composition w, then it is referred to as a CCC(n, d, w)q. The
maximum size of a CWC(n, d, w)q is denoted Aq(n, d, w), while the maximum size of a
CCC(n, d, w)q is denoted Aq(n, d, w). Any CWC(n, d, w)q or CCC(n, d, w)q attaining
the maximum size is called optimal.

Consider a composition w and let w =
\sum q - 1

i=1 wi. Then a CCC(n, d, w)q is also a
CWC(n, d, w)q.

The following Johnson-type bounds for q-ary constant-weight codes and constant-
composition codes have been derived.
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Lemma 2.1 (Svanstr\"om [26]; Svanstr\"om, \"Osterg\r ard, and Bogdanova [28]).

Aq(n, d, w) \leq 
\biggl\lfloor 
n

w1
Aq(n - 1, d, [w1  - 1, . . . , wq - 1])

\biggr\rfloor 
,

Aq(n, d, w) \leq 
\biggl\lfloor 
(q  - 1)n

w
Aq(n - 1, d, w  - 1)

\biggr\rfloor 
.

Applying the facts that Aq(n, 2w,w) = \lfloor n/w\rfloor and Aq(n, 2w,w) = \lfloor n/w\rfloor (see Fu,
Vinck, and Shen [16] and Chee, Ge, and Ling [6]) to Lemma 2.1, we have the following
upper bounds:

Aq(n, 2w  - 2, w) \leq 
\biggl\lfloor 
n

w1

\biggl\lfloor 
n - 1

w  - 1

\biggr\rfloor \biggr\rfloor 
,(1)

Aq(n, 2w  - 3, w) \leq 

\left\{   
\Bigl\lfloor 

n
w1

\Bigl\lfloor 
n - 1
w1 - 1

\Bigr\rfloor \Bigr\rfloor 
if w1 > w2,\Bigl\lfloor 

n
w1

\Bigl\lfloor 
n - 1
w1

\Bigr\rfloor \Bigr\rfloor 
otherwise,

(2)

Aq(n, 2w  - 2, w) \leq 
\biggl\lfloor 
(q  - 1)n

w

\biggl\lfloor 
n - 1

w  - 1

\biggr\rfloor \biggr\rfloor 
,(3)

Aq(n, 2w  - 3, w) \leq 
\biggl\lfloor 
(q  - 1)n

w

\biggl\lfloor 
(q  - 1)(n - 1)

w  - 1

\biggr\rfloor \biggr\rfloor 
.(4)

We list some previous asymptotic or exact results.
(i) Results for Aq(n, d, w) are known

(a) for all w and d = 2w  - 1 [4, 10];
(b) for all d where w \leq 3 [27, 4];
(c) for (q, d, w) = (3, 5, 4) [17].

(ii) Results for Aq(n, d, w) are known
(a) for all w and d = 2w  - 1 [9, 4];
(b) for all q and (d,w) \in \{ (3, 2), (4, 3), (5, 3)\} [9, 3, 7];
(c) for (q, d, w) \in \{ (3, 5, 4), (3, 6, 4), (4, 5, 4)\} [35, 37, 36].

Our contributions. In this paper, we show that the inequalities (1)--(4) are
exact provided that n is sufficiently large and n satisfies certain congruence conditions.
In other words, for any fixed composition w or fixed weight w, we determineAq(n, d, w)
and Aq(n, d, w) for d \in \{ 2w - 2, 2w - 3\} when n is sufficiently large and satisfies certain
congruence conditions.

2.2. Multiply constant-weight codes. Consider a binary code \scrC \subseteq \BbbZ [m]\times [n]
2 of

constant-weight mw and distance d. The code \scrC is said to be of multiply
constant-weight w if for \sansu \in \scrC , i \in [m], the subword (\sansu i,j)j\in [n] is of constant-weight
w. Denote such a code by MCWC(m,n, d, w). Similarly, the maximum size of an
MCWC(m,n, d, w) is given by M(m,n, d, w), and a multiply constant-weight code
attaining the maximum size is said to be optimal. The following bounds can be
derived from [1].

Lemma 2.2 (Chee et al. [1]).

M(m,n, 2mw  - 2, w) \leq 
\Bigl\lfloor n
w

\Bigl\lfloor n
w

\Bigr\rfloor \Bigr\rfloor 
,(5)

M(m,n, d, w) \leq 
\biggl\lfloor 

d/2

d/2 +mw2/n - mw

\biggr\rfloor 
.(6)
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Our contributions. Again, we verify that the upper bound (5) in Lemma 2.2 is
exact provided n is sufficiently large for some cases, and the upper bound (6) is also
exact for a large range of parameters. In particular, we demonstrate the following:
(i) When distance d = 2mw - 2 for any fixed m and w, we determine M(m,n, d, w)

provided that n is sufficiently large and satisfies certain congruence conditions.
(ii) When distance d = 2(mw - \lambda ) for any fixed w and \lambda , we determine M(m,n, d, w)

provided that n is some function of m and m is sufficiently large.
Next, we describe the main tool in our constructions of optimal codes.

2.3. Decomposition of edge-colored complete digraphs. Denote the set of

all ordered pairs of a finite set X with distinct components by
\bigl( 
X
2

\bigr) 
. An edge-colored

digraph is a triple G = (V,C,E), where V is a finite set of vertices, C is a finite set of

colors, and E is a subset of
\bigl( 
V
2

\bigr) 
\times C. Members of E are called edges. The complete

edge-colored digraph on n vertices with r colors, denoted by K
(r)
n , is the edge-colored

digraph (V,C,E), where | V | = n, | C| = r, and E =
\bigl( 
V
2

\bigr) 
\times C.

A family \scrF of edge-colored subgraphs of an edge-colored digraph K is a decom-
position of K if every edge of K belongs to exactly one member of \scrF . Given a family
of edge-colored digraphs \scrG , a decomposition \scrF of K is a \scrG -decomposition of K if
each edge-colored digraph in \scrF is isomorphic to some G \in \scrG . Furthermore, a \scrG -
decomposition of K is said to be superpure if any two distinct edge-colored subgraphs
in \scrF share at most two vertices.

Lamken and Wilson [23] exhibited the asymptotic existence of decompositions of

K
(r)
n for a fixed family of digraphs. Hartmann [20] later extended their results to

superpure decompositions. To state the theorems, we require more concepts.
Consider an edge-colored digraph G = (V,C,E) with | C| = r. Let ((u, v), c) \in E

denote a directed edge from u to v, colored by c. For any vertex u and color c,
define the indegree and outdegree of u with respect to c as the number of directed
edges of color c entering and leaving u, respectively. Then for vertex u, we define
the degree vector of u in G, denoted by \tau (u,G), as the vector of length 2r, \tau (u,G) \triangleq 
(in1(u,G), out1(u,G), . . . , inr(u,G), outr(u,G)). Define \alpha (\scrG ) as the greatest common
divisor of the integers t such that the 2r-vector (t, t, . . . , t) is a nonnegative integral
linear combination of the degree vectors \tau (u,G) as u ranges over all vertices of all
digraphs G \in \scrG .

For each G = (V,C,E) \in \scrG , let \mu (G) be the edge vector of length r given by
\mu (G) \triangleq (m1(G),m2(G), . . . ,mr(G)), where mi(G) is the number of edges with color
i in G. We denote by \beta (\scrG ) the greatest common divisor of the integers m such that
the r-vector (m,m, . . . ,m) is a nonnegative integral linear combination of the vectors
\mu (G), G \in \scrG . Then \scrG is said to be admissible if (1, 1, . . . , 1) can be expressed as a
positive rational combination of the vectors \mu (G), G \in \scrG .

Below is the main theorem we allude to in our proofs.

Theorem 2.3 (Lamken and Wilson [23]; Hartmann [20]). Let \scrG be an admissible
family of edge-colored digraphs with r colors. Then there exists a constant n0 (resp.,

n1) such that a (resp., superpure) \scrG -decomposition of K
(r)
n exists for every n \geq n0

(resp., n \geq n1) satisfying n(n - 1) \equiv 0 (mod \beta (\scrG )) and n - 1 \equiv 0 (mod \alpha (\scrG )).

We apply Theorem 2.3 to construct codes that meet the upper bounds (1)--(6).
To do so, we have two main steps.

(A) Define a family \scrG of edge-colored digraphs on a set of r colors. We then show

that a \scrG -decomposition of K
(r)
n results in a code of length n satisfying certain

weight and distance properties.
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(B) Compute \alpha (\scrG ) and \beta (\scrG ) and hence determine the congruence conditions that
n needs to satisfy.

In certain cases, it may not be easy to compute the exact values of \alpha (\scrG ) and
\beta (\scrG ). In these cases, we then demonstrate that \alpha (\scrG ) and \beta (\scrG ) divide some \alpha \prime and \beta \prime ,
respectively. Observe that whenever \alpha \prime and \beta \prime divide n - 1 and n(n - 1), respectively,
we have that \alpha (\scrG ) and \beta (\scrG ) also divide n  - 1 and n(n  - 1), respectively. Hence, we
may obtain a weaker version of Theorem 2.3.

Corollary 2.4. Let \scrG be an admissible family of edge-colored digraphs with r
colors. Suppose that \alpha (\scrG ) | \alpha \prime and \beta (\scrG ) | \beta \prime for some \alpha \prime and \beta \prime . Then there exists a

constant n0 (resp., n1) such that a (resp., superpure) \scrG -decomposition of K
(r)
n exists

for every n \geq n0 (resp., n \geq n1) satisfying n(n  - 1) \equiv 0 (mod \beta \prime ) and n  - 1 \equiv 0
(mod \alpha \prime ).

3. Asymptotic exactness of Johnson-type bounds for codes with con-
stant composition. Fix w = [w1, w2, . . . , wq - 1] with w1 \geq \cdot \cdot \cdot \geq wq - 1 > 0, and let

w =
\sum q - 1

i=1 wi. In this section, we construct infinite families of optimal CCC(n, d, w)q
for d = 2w  - 2 or d = 2w  - 3 and establish the asymptotic exactness of (1) and (2).

3.1. When distance \bfitd = 2\bfitw  - 2. Consider the following characterization
of codes of constant-weight w with distance 2w  - 2. Note that since the constant-
composition codes are constant-weight codes, the lemma is applicable for both classes
of codes.

Lemma 3.1. The following are necessary and sufficient for a code \scrC of constant-
weight w to have distance 2w  - 2:

(C1) For i \in [q  - 1], the ordered pairs in the set \{ (x, y) : \sansu x = i, y \in supp(\sansu ) \setminus 
\{ x\} , for any \sansu \in \scrC \} are distinct; and

(C2) for any \sansu , \sansv \in \scrC , | supp(\sansu ) \cap supp(\sansv )| \leq 2.

Proof. Suppose that a code \scrC of constant-weight w has distance 2w  - 2. Now
we show that (C1) and (C2) hold for \scrC . For (C1), assume that for some i \in [q  - 
1], an ordered pair (x, y) appears twice in the set \{ (x, y) : \sansu x = i, y \in supp(\sansu ) \setminus 
\{ x\} , for any \sansu \in \scrC \} . That means that there exist some distinct \sansu , \sansv \in \scrC , such that
\sansu x = \sansv x = i, \sansu y \not = 0, and \sansv y \not = 0. Hence, d(\sansu , \sansv ) \leq 2(w  - 2) + 1 < 2w  - 2, which
contradicts the distance. For (C2), assume there exist distinct \sansu , \sansv \in \scrC such that
| supp(\sansu ) \cap supp(\sansv )| \geq 3; then d(\sansu , \sansv ) \leq 2w  - | supp(\sansu ) \cap supp(\sansv )| \leq 2w  - 3 < 2w  - 2,
which also causes a contradiction. Therefore, the conditions (C1) and (C2) hold for
the code \scrC .

For the converse, suppose conditions (C1) and (C2) hold for a code \scrC of constant-
weight w. Assume there exist distinct \sansu , \sansv \in \scrC such that d(\sansu , \sansv ) \leq 2w  - 3; then we
have either | supp(\sansu ) \cap supp(\sansv )| = 2, \sansu x = \sansv x \not = 0, \sansu y \not = 0, and \sansv y \not = 0 for some x \not = y,
or | supp(\sansu )\cap supp(\sansv )| \geq 3, which contradict either condition (C1) or (C2). Therefore,
the distance of the code \scrC is at least 2w  - 2.

Definition of the family \bfscrG (\bfitw ). For any fixed w, we define an edge-colored
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digraph G(w) = (V (w), C(w), E(w)), where

V (w) \triangleq \{ xij : i \in [q  - 1], j \in [wi]\} ;
C(w) \triangleq [q  - 1];

E(w) \triangleq 

\Biggl\{ 
((xij , xij\prime ), i) : i \in [q  - 1], (j, j\prime ) \in 

\biggl( 
[wi]

2

\biggr) \Biggr\} 
\bigcup \Biggl\{ 

((xij , xi\prime j\prime ), i) : (i, i
\prime ) \in 

\biggl( 
[q  - 1]

2

\biggr) 
, j \in [wi], j

\prime \in [wi\prime ]

\Biggr\} 
.

(7)

Let s be the largest integer such that w1 = w2 = \cdot \cdot \cdot = ws. For each s+ 1 \leq i \leq 
q - 1, let Gi be an edge-colored digraph with two vertices yi, zi and one directed edge
with color i from yi to zi. Then \scrG (w) = \{ G(w)\} \cup \{ Gi : s+ 1 \leq i \leq q  - 1\} .

Example 3.2. Let q = 3 and w = [w1, w2] = [3, 2]. The edge-colored digraph G(w)
is given below, where the solid lines denote directed edges with color 1, the dotted
lines denote the directed edges with color 2, and `` oo // "" (`` oo // "") denotes two
directed edges with the same color in each direction.

x11
oo //ww ''

�� $$

x12
oo //

}} ��

x13

tt }}
x21

UU >> 44

oo // x22

dd UU >>

Then G2 is the digraph y2 // z2 , and the family of digraphs is given by \scrG (w) =
\{ G(w), G2\} .

Construction of an optimal CCC(\bfitn , 2\bfitw  - 2, \bfitw )\bfitq . Suppose a superpure

\scrG (w)-decomposition of K
(q - 1)
n exists. For each F isomorphic to G(w), there is a

unique partition of the vertex set V (F ) =
\bigcup q - 1

i=1 Si so that all outgoing edges from x
in F have color i if and only if x \in Si. Then construct one codeword \sansu with support
V (F ) such that \sansu x = i for x \in Si. Hence, \sansu has composition w. Let \scrC be the code
consisting of all the codewords \sansu constructed in this way. Now, we check that \scrC is the
desired code.1

Since we have a \scrG (w)-decomposition of K
(q - 1)
n , for any i \in [q  - 1], the pairs

(x, y) \in 
\bigl( 
[n]
2

\bigr) 
in the edges ((x, y), i) with color i are distinct; that is, the pairs in

\{ (x, y) : \sansu x = i, y \in supp(\sansu ) \setminus \{ x\} , for any \sansu \in \scrC \} are all distinct by the definition of
G(w), and then (C1) of Lemma 3.1 is satisfied. Since the decomposition is superpure,
any distinct F, F \prime isomorphic to G(w) in the decomposition share at most two vertices,
that is, | V (F ) \cap V (F \prime )| \leq 2. Let \sansu , \sansv \in \scrC be the codewords obtained from F and F \prime ;
then we have | supp(\sansu ) \cap supp(\sansv )| \leq 2, and (C2) is also met. Furthermore, since each

G(w) uses w1(w - 1) edges of color 1, and the total number of edges of color 1 inK
(q - 1)
n

is n(n - 1), we obtain that \scrC is a CCC(n, 2w - 2, w)q code of size n(n - 1)/(w1(w - 1))
by Lemma 3.1. The code \scrC meets the upper bound in (1) and is therefore optimal.

1While we only use the G(w)'s in the construction of the codewords, the Gi's are needed to

ensure that every edge of K
(q - 1)
n appears in the \scrG (w)-decomposition.
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Example 3.3. Let w = [2, 1]. Consider the following superpure \scrG (w)-decomposition

of K
(2)
5 :

2 oo //

��

4

vv3

TT 55 3 oo //

��

5

vv2

TT 55 1 oo //

��

3

vv4

TT 55

1 oo //

��

2

vv5

TT 55 4 oo //

��

5

vv1

TT 55

1 // 2 2 // 1 3 // 1 4 // 2 5 // 3

1 // 3 2 // 4 3 // 5 4 // 5 5 // 4

The corresponding code is then given by \{ (0, 1, 2, 1, 0), (0, 2, 1, 0, 1), (1, 0, 1, 2, 0),
(1, 1, 0, 0, 2), (2, 0, 0, 1, 1)\} , which is indeed an optimal CCC(5, 4, [2, 1])3.

Computation of \bfitalpha (\bfscrG (\bfitw )) and \bfitbeta (\bfscrG (\bfitw )). First, consider the digraph G(w).
Observe that for i, j \in [q - 1], k \in [wi] we have ini(xik, G(w)) = wi - 1, outi(xik, G(w)) =
w  - 1, inj(xik, G(w)) = wj , and outj(xik, G(w)) = 0 for j \not = i. Consider Gi for
s + 1 \leq i \leq q  - 1. Then ini(zi, Gi) = outi(yi, Gi) = 1 and all other indegrees and
outdegrees are zero.

Let a = gcd(w1, w). Pick t = \lfloor w/w1\rfloor so that 0 \leq w  - tw1 < w1. Observe also
that t \geq s. Consider the vector

\upsilon =
w  - tw1

a
\tau (x(t+1)1, G(w)) +

w1

a

t\sum 
i=1

\tau (xi1, G(w)).

For j \in [q  - 1], let inj(\upsilon ) and outj(\upsilon ) denote the coordinates in \upsilon corresponding to
the summation of the indegrees or outdegrees with respect to color j. Then we have

inj(\upsilon ) =

\left\{         
wwj - w1

a = w1(w - 1)
a for j \in [s],

wwj - w1

a < w1(w - 1)
a for s+ 1 \leq j \leq t,

wwt+1 - w+tw1

a \leq wwt+1

a for j = t+ 1,
wwj

a otherwise,

outj(\upsilon ) =

\left\{     
w1(w - 1)

a for j \in [t],
(w - tw1)(w - 1)

a < w1(w - 1)
a for j = t+ 1,

0 otherwise.

Observe that the first 2s coordinates of \upsilon are w1(w  - 1)/a and all other coordinates
have values at most w1(w  - 1)/a. Adding to \upsilon a suitable nonnegative integral com-
bination of \tau (yi, Gi)'s and \tau (zi, Gi)'s, we get w1(w  - 1)/a \cdot (1, 1, . . . , 1). Hence, we
conclude that \alpha (\scrG (w)) divides w1(w  - 1)/a.

Next, consider the edge vector \mu (G) with G \in \scrG (w). For G(w), mi(G(w)) =
wi(w  - 1) for i \in [q  - 1], while for Gi with s + 1 \leq i \leq q  - 1, mi(Gi) = 1 and
mj(Gi) = 0 for j \not = i. Consider the vector

\upsilon \prime = \mu (G(w)) +

q - 1\sum 
i=s+1

(w1(w  - 1) - mi(G(w)))\mu (Gi).
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Since each coordinate of \upsilon \prime is w1(w  - 1), we have that \beta (\scrG (w)) divides w1(w  - 1).
It is obvious that 1

w1(w - 1)\upsilon 
\prime is the all one vector of positive rational combination of

\{ \mu (G) : G \in \scrG (w)\} . Hence, we have that \scrG (w) is admissible.
Finally, applying Corollary 2.4, we obtain our first asymptotic result.

Proposition 3.4. Fix w and let w =
\sum q - 1

i=1 wi. There exists an integer n0 such
that

Aq(n, 2w  - 2, w) =
n(n - 1)

w1(w  - 1)

for all n \geq n0 satisfying n(n - 1) \equiv 0 (mod w1(w  - 1)) and n - 1 \equiv 0 (mod w1(w  - 
1)/a), where a = gcd(w1, w).

3.2. When distance \bfitd = 2\bfitw  - 3. We have the following analogous character-
ization of codes of constant-weight w with distance 2w  - 3.

Lemma 3.5. The following are sufficient for a code \scrC of weight w to have distance
2w  - 3:

(C3) For i, j \in [q  - 1], the ordered pairs in the set \{ (x, y) : \sansu x = i, \sansu y = j, x \not =
y, for any \sansu \in \scrC \} are distinct; and

(C4) for any \sansu , \sansv \in \scrC , | supp(\sansu ) \cap supp(\sansv )| \leq 2.

Proof. Suppose conditions (C3) and (C4) hold for a code \scrC of weight w. Assume
there exist distinct \sansu , \sansv \in \scrC such that d(\sansu , \sansv ) \leq 2w - 4; then we have either | supp(\sansu )\cap 
supp(\sansv )| = 2, \sansu x = \sansv x \not = 0 and \sansu y = \sansv y \not = 0 for some x \not = y, or | supp(\sansu )\cap supp(\sansv )| \geq 3,
which contradict either condition (C1) or (C2). Therefore, the distance of the code \scrC 
is at least 2w  - 3.

Definition of the family \bfscrG \ast (\bfitw ). For any fixed w, we define an edge-colored
digraph G\ast (w) = (V \ast (w), C\ast (w), E\ast (w)), where

V \ast (w) \triangleq \{ xij : i \in [q  - 1], j \in [wi]\} ;
C\ast (w) \triangleq [q  - 1]\times [q  - 1];

E\ast (w) \triangleq 

\Biggl\{ 
((xij , xij\prime ), (i, i)) : i \in [q  - 1], (j, j\prime ) \in 

\biggl( 
[wi]

2

\biggr) \Biggr\} 
\bigcup \Biggl\{ 

((xij , xi\prime j\prime ), (i, i
\prime )) : (i, i\prime ) \in 

\biggl( 
[q  - 1]

2

\biggr) 
, j \in [wi], j

\prime \in [wi\prime ]

\Biggr\} 
.

(8)

For i, j \in [q - 1], let G\ast 
ij be a digraph with vertices yij , zij and one directed edge

with color (i, j) from yij to zij . To define \scrG \ast (w), we have the following two cases
depending on whether w1 = w2:
(i) When w1 > w2, let r be the largest integer such that w2 = \cdot \cdot \cdot = wr = w1  - 1.

Especially, if w1 > w2 + 1, we let r = 1. Then set \scrG \ast (w) = \{ G\ast (w)\} \cup \{ G\ast 
ij :

(i, j) \in [q  - 1]\times [q  - 1] \setminus \{ (1, 1), (1, 2), (1, 3), . . . , (1, r), (2, 1), (3, 1) . . . , (r, 1)\} \} .
(ii) When w1 = w2, let r be the largest integer such that w1 = \cdot \cdot \cdot = wr. Then set

\scrG \ast (w) = \{ G\ast (w)\} \cup \{ G\ast 
ij : (i, j) \in [q  - 1]\times [q  - 1] \setminus 

\bigl( 
[r]
2

\bigr) 
\} .

Example 3.6. Let w = [3, 2]. The edge-colored digraph G\ast (w) is given below,
where the lines `` // "", `` // "", `` // "", and `` // "" denote directed
edges with colors (1, 1), (1, 2), (2, 1), and (2, 2) respectively.
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x11
oo //ww ''

�� $$

x12
oo //

}} ��

x13

tt }}
x21

UU >> 44

oo // x22

dd UU >>

ThenG\ast 
22 is the digraph y22 // z22, and the family of digraphs is given by \scrG \ast (w) =

\{ G\ast (w), G\ast 
22\} .

Construction of an optimal CCC(\bfitn , 2\bfitw  - 3, \bfitw )\bfitq . Suppose a superpure

\scrG \ast (w)-decomposition of K
(q - 1)2

n exists. For F isomorphic to G\ast (w), there is a unique

partition of vertex V (F ) =
\bigcup q - 1

i=1 Si so that the edges from x to y in F have color
(i, j) if x \in Si and y \in Sj . Construct a codeword \sansu with support V (F ) such that
\sansu x = i for x \in Si. So, \sansu has composition w. Let \scrC be the code consisting of all the
codewords \sansu constructed in this way. Now, we check that \scrC is the desired code.

Since we have a \scrG \ast (w)-decomposition of K
(q - 1)2

n , for any i, j \in [q  - 1], the pairs

(x, y) \in 
\bigl( 
[n]
2

\bigr) 
in the edges ((x, y), (i, j)) with color (i, j) are distinct; that is, the pairs

in \{ (x, y) : \sansu x = i, \sansu y = j, x \not = y, for any \sansu \in \scrC \} are all distinct by the definition of
G\ast (w), and then (C3) of Lemma 3.5 is satisfied. Since the decomposition is superpure,
(C4) is also met as in section 3.1. Furthermore, if w1 \not = w2, since the number of
edges of color (1, 1) in G\ast (w) is w1(w1  - 1), and the total number of edges of color

(1, 1) in K
(q - 1)2

n is n(n  - 1), we obtain that \scrC is a CCC(n, 2w  - 3, w)q code of size
n(n - 1)/(w1(w1 - 1)) by Lemma 3.5; if w1 = w2, by counting the number of edges of
color (1, 2) similarly, we obtain that \scrC is a CCC(n, 2w - 3, w)q code of size n(n - 1)/w2

1.
The code \scrC meets the upper bound in (2) and is hence optimal.

Computation of \bfitalpha (\bfscrG (\bfitw )) and \bfitbeta (\bfscrG (\bfitw )).
(i) When w1 > w2: Recall that r is the largest integer such that w2 = \cdot \cdot \cdot = wr =

w1 - 1 and \scrG \ast (w) = \{ G\ast (w)\} \cup \{ G\ast 
ij : (i, j) \in [q - 1]\times [q - 1]\setminus \{ (1, 1), (1, 2), (1, 3), . . . , (1, r),

(2, 1), (3, 1) . . . , (r, 1)\} \} .
Consider the digraph G\ast (w). Observe that for i, j \in [q  - 1] and k \in [wi],

we have in(i,i)(xik, G
\ast (w)) = out(i,i)(xik, G

\ast (w)) = wi  - 1, in(j,i)(xik, G
\ast (w)) =

out(i,j)(xik, G
\ast (w)) = wj for j \not = i, and the other indegrees and outdegrees are zero.

For the digraph G\ast 
ij , we have out(i,j)(yij , G

\ast 
ij) = in(i,j)(zij , G

\ast 
ij) = 1, and the other

indegrees and outdegrees are zero.
Consider the vector

\upsilon = w1\tau (x11, G
\ast (w)) + (w1  - 1)

q - 1\sum 
i=2

\tau (xi1, G
\ast (w)).

For (i, j) \in [q  - 1] \times [q  - 1], let in(i,j)(\upsilon ) and out(i,j)(\upsilon ) denote the coordinates in \upsilon 
corresponding to the summation of the indegrees and outdegrees with respect to color
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(i, j). Then we have

in(i,j)(\upsilon ) =

\left\{               

w1(w1  - 1) for i = j = 1,

w1(w1  - 1) for i = 1, j \not = 1,

w1wi for i \not = 1, j = 1,

(w1  - 1)(wi  - 1) for i = j, i \not = 1,

wi(w1  - 1) otherwise,

out(i,j)(\upsilon ) =

\left\{               

w1(w1  - 1) for i = j = 1,

w1wj for i = 1, j \not = 1,

w1(w1  - 1) for i \not = 1, j = 1,

(w1  - 1)(wi  - 1) for i = j, i \not = 1,

wj(w1  - 1) otherwise.

Observe that the coordinates of \upsilon corresponding to indegrees and outdegrees with
respect to colors in \{ (1, 1), (1, 2), (1, 3), . . . , (1, r), (2, 1), (3, 1) . . . , (r, 1)\} have value
w1(w1  - 1). All other coordinates have values at most w1(w1  - 1). Adding to \upsilon 
a suitable nonnegative integral combination of \tau (yij , G

\ast 
ij)'s and \tau (zij , G

\ast 
ij)'s, we ob-

tain w1(w1  - 1) \cdot (1, 1, . . . , 1). Hence, we conclude that \alpha (\scrG \ast (w)) | (w1(w1  - 1)).
Next, consider the edge vector \mu (G) with G \in \scrG \ast (w). For G\ast (w), we have

m(i,i)(G
\ast (w)) = wi(wi  - 1) and m(i,j)(G

\ast (w)) = wiwj for j \not = i. On the other hand,
for G\ast 

ij we have m(i,j)(G
\ast 
ij) = 1 and m(i\prime ,j\prime )(G

\ast 
ij) = 0 for (i\prime , j\prime ) \not = (i, j). Consider the

vector

\upsilon \prime =\mu (G\ast (w)) +
\sum 

(i,j)\in [q - 1]\times [q - 1]\setminus \{ (1,a),(a,1):a\in [r]\} 

(w1(w1  - 1) - m(i,j)(G
\ast (w)))\mu (G\ast 

ij).

Since each coordinate of \upsilon \prime is w1(w1  - 1), we have \beta (\scrG \ast (w)) | (w1(w1  - 1)). It
is obvious that 1

w1(w1 - 1)\upsilon 
\prime is the all one vector of positive rational combination of

\{ \mu (G) : G \in \scrG \ast (w)\} ; then we have that \scrG \ast (w) is admissible.
(ii) When w1 = w2: Recall that r is the largest integer such that w1 = \cdot \cdot \cdot = wr

and \scrG \ast (w) = \{ G\ast (w)\} \cup \{ Gij : (i, j) \in [q  - 1]\times [q  - 1] \setminus 
\bigl( 
[r]
2

\bigr) 
\} .

Here, we consider the vector \upsilon =
\sum q - 1

i=1 \tau (xi1, G
\ast (w)). Then the coordinates of \upsilon 

corresponding to indegrees and outdegrees with respect to colors in
\bigl( 
[r]
2

\bigr) 
have value

w1. All other coordinates have values at most w1. Adding to \upsilon a suitable nonnegative
integral combination of \tau (yij , G

\ast 
ij)'s and \tau (zij , G

\ast 
ij)'s, we conclude that \alpha (\scrG \ast (w)) | w1.

Similar to the case where w1 \not = w2, we have \beta (\scrG \ast (w)) | w2
1 and \scrG \ast (w) is admissible.

Finally, applying Corollary 2.4, we obtain the following proposition.

Proposition 3.7. Fix w and let w =
\sum q - 1

i=1 wi. There exists an integer n0 such
that

Aq(n, 2w  - 3, w) =

\left\{   
n(n - 1)

w1(w1 - 1) if w1 > w2,

n(n - 1)
w2

1
otherwise

for all n \geq n0 satisfying
(i) n - 1 \equiv 0 (mod w1(w1  - 1)) if w1 > w2, and
(ii) n - 1 \equiv 0 (mod w2

1) otherwise.
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4. Asymptotic exactness of Johnson-type bounds for constant-weight
codes. In this section, we construct infinite families of optimal CWC(n, d, w)q for
d = 2w  - 2 or d = 2w  - 3 and establish the asymptotic exactness of (3) and (4).

Note that constant-composition codes are special instances of constant-weight
codes. Hence, we make slight modifications of the definitions of G(w) and G\ast (w) in
section 3 to form the desired families of digraphs for constant-weight codes. Specifi-
cally, consider the following set of compositions:

W =

\Biggl\{ 
[w1, w2, . . . , wq - 1] : 0 \leq wi \leq w for i \in [q  - 1],

q - 1\sum 
i=1

wi = w

\Biggr\} 
.

Example 4.1. Let w = 3 and q = 3. Then the set W of compositions is given by
\{ [0, 3], [1, 2], [2, 1], [3, 0]\} . Furthermore, a 3-ary word \sansu has weight w if and only \sansu has
composition belonging to W .

For every w \in W , we define G(w) = (V (w), C(w), E(w)) as in (7) and G\ast (w) =
(V \ast (w), C\ast (w), E\ast (w)) as in (8). Observe that we do not require all values in the
compositions in W to be positive and the compositions to be monotone decreasing.

Finally, we define the following families of digraphs:

\scrG (w) \triangleq 
\bigcup 

w\in W

G(w) and \scrG \ast (w) \triangleq 
\bigcup 

w\in W

G\ast (w).

Note that unlike the digraph families \scrG (w) and \scrG \ast (w), the above digraph families
\scrG (w) and \scrG \ast (w) do not contain digraphs with single edges.

Similar to constructions in section 3, we have that a superpure \scrG (w)-decomposition

ofK
(q - 1)
n and a superpure \scrG \ast (w)-decomposition ofK

(q - 1)2

n yield a CWC(n, 2w - 2, w)q
and a CWC(n, 2w  - 3, w)q, respectively. To show this, suppose a superpure \scrG (w)-
decomposition of K

(q - 1)
n exists. For each F isomorphic to G(w) \in \scrG (w), there is a

unique partition of the vertex set V (F ) =
\bigcup q - 1

i=1 Si (here, Si = \varnothing if wi = 0), so that
all outgoing edges from x in F have color i if and only if x \in Si. Then construct one
codeword \sansu with support V (F ) such that \sansu x = i for x \in Si. Hence, \sansu has constant-
weight w. Let \scrC be the code consisting of all the codewords \sansu constructed in this way.
Now, we check that \scrC is the desired code.

Since we have a superpure \scrG (w)-decomposition of K
(q - 1)
n , similar to section 3.1,

the conditions (C1) and (C2) of Lemma 3.1 are satisfied. Therefore, the code \scrC has
distance 2w - 2 by Lemma 3.1. Furthermore, since the total number of directed edges

in K
(q - 1)
n is (q  - 1)n(n  - 1), and each digraph in \scrG (w) uses w(w  - 1) of them, we

obtain that \scrC is a CWC(n, 2w  - 2, w)q of size (q  - 1)n(n - 1)/(w(w  - 1)).
The case for CWC(n, 2w  - 3, w)q can be proved similarly.
Unfortunately, it is not straightforward to determine \alpha (\scrG (w)) and \beta (\scrG (w)). In-

stead, we follow the methodology of Lamken and Wilson (see [23, Theorem 8.1]) to
complete the proof of Proposition 4.3. Specifically, by Theorem 2.3, to make sure the

superpure \scrG (w)-decomposition of K
(q - 1)
n exists, it is sufficient to show that provided

(q  - 1)n(n - 1) \equiv 0 (mod w(w  - 1)), n - 1 \equiv 0 (mod w  - 1), we have the following:
(i) n(n - 1) \cdot (1, 1, . . . , 1) of length q - 1 is an integral linear combination of vectors

in \{ \mu (G) : G \in \scrG (w)\} , that is, n(n - 1) \equiv 0 (mod \beta (\scrG (w)));
(ii) (n - 1) \cdot (1, 1, . . . , 1) of length 2(q - 1) is an integral linear combination of vectors

in \{ \tau (u,G) : u \in G,G \in \scrG (w)\} , that is, n - 1 \equiv 0 (mod \alpha (\scrG (w))); and
(iii) \scrG (w) is admissible.

To establish (i) and (ii), we apply the following lemma.
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Lemma 4.2 (Schrijver [25]). Let M be a rational m by n matrix, and let c be a
rational vector of length m. Then Mx = c has an integral solution if and only if for
all rational vectors y of length m, yT c is integral whenever yTM is integral.

For convenience, we write a \equiv b if a - b is an integer.

Proof of (i). To establish the implication by Lemma 4.2, it suffices to show the
following: whenever we are given q  - 1 rationals Xi with i \in [q  - 1] such that\sum 

i

Ximi(G) \equiv 0 for all G \in \scrG (w),

then
n(n - 1)

\sum 
i

Xi \equiv 0.

For i \in [q  - 1], consider the digraph G(w) with wi = w and wj = 0 for j \not = i.
Hence, we have

(9) w(w  - 1)Xi \equiv 0.

For (i, j) \in 
\bigl( 
[q - 1]

2

\bigr) 
, consider the digraph G(w) with wi = w  - 1, wj = 1, and wk = 0

for k /\in \{ i, j\} . Hence, we have

(10) (w  - 1)2Xi + (w  - 1)Xj \equiv 0.

Subtracting (10) from (9), we have (w  - 1)Xi \equiv (w  - 1)Xj for all i, j. Since w  - 1
divides n - 1, we have

(n - 1)Xi \equiv (n - 1)Xj .

Finally, we have

n(n - 1)
\sum 
i

Xi \equiv (q  - 1)n(n - 1)X1 \equiv 0

since w(w  - 1) divides (q  - 1)n(n - 1) and (9) holds.

Proof of (ii). To establish the implication by Lemma 4.2, it suffices to show the
following: whenever we are given 2(q  - 1) rationals Xi, Yi with i \in [q  - 1] such that\sum 

i

Xiini(u,G) + Yiouti(u,G) \equiv 0 for all G \in \scrG (w) and u \in G,

then

(11) (n - 1)
\sum 
i

(Xi + Yi) \equiv 0.

For i \in [q  - 1], consider the digraph G(w) with wi = w and wj = 0 for j \not = i,
and consider any vertex in G(w). Hence, we have (w  - 1)Xi + (w  - 1)Yi \equiv 0. Since
(w  - 1) divides (n - 1),

(n - 1)Xi + (n - 1)Yi \equiv 0.

Therefore, (11) is immediate.

Proof of (iii). Summing up \mu (G) for G \in \scrG (w), we obtain a constant vector of
length q  - 1 by symmetry. Therefore, admissibility of \scrG (w) is immediate.
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Proposition 4.3. Fix w. There exists an integer n0 such that

Aq(n, 2w  - 2, w) =
(q  - 1)n(n - 1)

w(w  - 1)

for all n \geq n0 satisfying (q - 1)n(n - 1) \equiv 0 (mod w(w - 1)) and n - 1 \equiv 0 (mod w - 1).

On the other hand, \scrG \ast (w) corresponds to the family of digraphs constructed in
the proof of [23, Theorem 8.1]. Therefore, we have the following proposition.

Proposition 4.4. Fix w. There exists an integer n0 such that

Aq(n, 2w  - 3, w) =
(q  - 1)2n(n - 1)

w(w  - 1)

for all n \geq n0 satisfying (q - 1)2n(n - 1) \equiv 0 (mod w(w - 1)) and (q - 1)(n - 1) \equiv 0
(mod w  - 1).

5. Asymptotic exactness of Johnson-type bounds for codes with con-
stant composition using group divisible codes. Chee, Ge, and Ling [6] first
introduced the notion of group divisible codes (GDCs), and later many authors
[17, 35, 37, 36] made use of GDCs to construct many families of optimal CWCs
and CCCs. In this section, we construct families of GDCs using the decompositions
of edge-colored digraphs and hence obtain families of optimal CCC(n, 2w - 2, w) that
are different from those in section 3.

Given a vector \sansu = (\sansu x)x\in X \in \BbbZ X
q and Y \subseteq X, the restriction of \sansu to Y , denoted

by \sansu | Y , is the vector \sansv \in \BbbZ Y
q such that \sansv = (\sansu x)x\in Y . Let | X| = m, \scrP = \{ P1, . . . , Pn\} 

be a partition of X and \scrC \subseteq \BbbZ X
q . A q-ary GDC of distance d is a triple (X,\scrP , \scrC ),

where \scrC is a q-ary code of distance d, and
\bigm\| \bigm\| \sansu | Pi

\bigm\| \bigm\| \leq 1 for all \sansu \in \scrC and 1 \leq i \leq n.
Elements of the partition \scrP are called groups, and the type of GDC (X,\scrP , \scrC ) is the
multiset \{ | P | : P \in \scrP \} . We are interested in the special case where | P1| = | P2| =
\cdot \cdot \cdot = | Pn| = g, and we say that the GDC is of type gn.

If a GDC (X,\scrP , \scrC ) with distance d and length m is of constant-composition w,
we denote \scrC by GDC(m, d,w). Here, we construct a family of GDC(gn, 2w  - 2, w)
of type gn which yields another class of optimal CCC(gn, 2w  - 2, w). To do so, we
define the following family of edge-colored digraphs.

Definition of the family \^\bfscrG (\bfitw , \bfitg ). For a fixed composition w and group size
g, let \Gamma (w, g) denote the following set of

\bigl( 
(q  - 1)g

\bigr) 
-tuple of nonnegative integers:

\Gamma (w, g) \triangleq 

\Biggl\{ 
\sanst = (tik)i\in [q - 1],k\in [g] :

g\sum 
k=1

tik = wi for all i \in [q  - 1]

\Biggr\} 
.

For each \sanst \in \Gamma (w, g), define an edge-colored digraph G(\sanst ) = (V (\sanst ), C(\sanst ), E(\sanst )), where

V (\sanst ) \triangleq 
q - 1\bigcup 
i=1

g\bigcup 
k=1

Tik, where Tik =
\Bigl\{ 
x
(r)
ik : r \in [tik]

\Bigr\} 
,

C(\sanst ) \triangleq [q  - 1]\times [g]\times [g],

E(\sanst ) \triangleq \{ ((x, x\prime ), (i, k, \ell )) : x \in Tik, x
\prime \in Tj\ell and x\prime \not = x\} .

In other words, G(\sanst ) is a digraph defined on w vertices. Its vertex set V (\sanst ) is par-
titioned into (q  - 1)g classes, where the size of the class Tik is determined by tik,
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i \in [q - 1], and k \in [g]. Suppose that x belongs to Tik \subseteq V (\sanst ). Observe that the edges
leaving x necessarily have color (i, k, \ast ). Since every vertex is connected to each of
the other w  - 1 vertices and there are

\sum g
k=1 t1k = w1 vertices in

\bigcup g
k=1 T1k, there are

exactly w1(w  - 1) edges of color (1, \ast , \ast ).
In addition to the graphs G(\sanst ), we consider the following graphs. Let s be the

largest integer such that w1 = w2 = \cdot \cdot \cdot = ws. For each s+1 \leq i \leq q - 1 and k, \ell \in [g],
let Gik\ell be an edge-colored digraph with two vertices yik\ell , zik\ell and one directed edge
with color (i, k, \ell ) from yik\ell to zik\ell .

Finally, we define the family of graphs of interest. Set

\^\scrG (w, g) \triangleq \{ G(\sanst ) : \sanst \in \Gamma (w, g)\} \cup \{ Gik\ell : s+ 1 \leq i \leq q  - 1, k, \ell \in [g]\} .

Construction of a GDC(\bfitg \bfitn , 2\bfitw  - 2, \bfitw ) of type \bfitg \bfitn . Suppose that a superpure
\^\scrG (w, g)-decomposition of K

((q - 1)g2)
n exists. Then we construct a code \scrC \subseteq \BbbZ [n]\times [g]

q .
Specifically, for each F isomorphic to one digraph in \{ G(\sanst ) : \sanst \in \Gamma (w, g)\} , there is a

unique partition of vertex V (F ) =
\bigcup q - 1

i=1

\bigcup g
k=1 Tik so that the outgoing edges from x

have color (i, k, \ast ) if and only if x \in Tik. Then we construct the codeword \sansu with
support V (F ) by assigning \sansu (x,k) = i for x \in Tik. Let \scrC be the code consisting of all
the codewords \sansu constructed in this way.

Similarly to section 3.1, by checking the conditions (C1) and (C2) in Lemma 3.1,
we can see that the code \scrC has distance 2w  - 2. Furthermore, if we set X = [n]\times [g]
and \scrP = \{ \{ x\} \times [g] : x \in [n]\} , we verify that (X,\scrP , \scrC ) is a GDC(gn, 2w  - 2, w) of

type gn. Observe that there are g2n(n  - 1) edges with color (1, \ast , \ast ) in K
((q - 1)g2)
n ,

and each digraph in \{ G(\sanst ) : \sanst \in \Gamma (w, g)\} uses w1(w  - 1) of them. Therefore, the size
of \scrC is given by g2n(n - 1)/(w1(w  - 1)).

To demonstrate the existence of such decompositions, we use a method similar to
that in section 4. As the proof is tedious and analogous, we defer it to the appendix.

Proposition 5.1. Let g \geq 2 and w1 \geq 2. For each w = [w1, w2, . . . , wq - 1], there
exists n0 such that a w-GDC(2w  - 2) of type gn and size g2n(n - 1)/(w1(w  - 1))
exists for all n \geq n0 satisfying

gn(n - 1) \equiv 0 (mod w1(w  - 1)),

g(n - 1) \equiv 0 (mod w  - 1).

Taking g = w  - 1 in Proposition 5.1, we obtain a CCC((w  - 1)n, 2w  - 2, w) of
size (w - 1)n(n - 1)/w1. These codes are optimal since (1) provides the upper bound\biggl\lfloor 

(w  - 1)n

w1

\biggl\lfloor 
(w  - 1)n - 1

w  - 1

\biggr\rfloor \biggr\rfloor 
=

(w  - 1)2n(n - 1)

w1(w  - 1)
=

(w  - 1)n(n - 1)

w1
.

Hence, we obtain the following corollary.

Corollary 5.2. For each w = [w1, w2, . . . , wq - 1] with w1 \geq 2, there exists an
integer n0 such that

Aq((w  - 1)n, 2w  - 2, w) =
(w  - 1)n(n - 1)

w1

for all n \geq n0 satisfying n(n - 1) \equiv 0 (mod w1).

Finally, we remark that the family of optimal codes in Corollary 5.2 is different
from that in Proposition 3.4. Specifically, the length of codes in Corollary 5.2 is a
multiple of w  - 1, while the codes in Proposition 3.4 have lengths congruent to 1
modulo w  - 1.
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6. Asymptotic exactness of bounds for multiply constant-weight codes.
In this section, we consider the asymptotic exactness of the bounds in Lemma 2.2 for
multiply constant-weight codes using two different methods.

6.1. When distance \bfitd = 2\bfitm \bfitw  - 2. First, we construct an infinite family of
optimal MCWC(m,n, 2mw  - 2, w) that meets the upper bound (5). Fix m and w.

Using digraphs from section 3.2, we define the edge-colored digraph H\ast (m,w) \triangleq 
G\ast (mw), where w1 = w2 = \cdot \cdot \cdot = wm = w (here, q  - 1 = m). For i \in [m], let G\ast 

ii be
a digraph with vertices yii, zii and one directed edge with color (i, i) from yii to zii.
Finally, define \scrH \ast (m,w) = \{ H\ast (m,w)\} \cup \{ G\ast 

ii : i \in [m]\} .

Construction of an optimal MCWC(\bfitm ,\bfitn , 2\bfitm \bfitw  - 2, \bfitw ). Suppose an

\scrH \ast (m,w)-decomposition of K
(m2)
n exists. For F isomorphic to H\ast (m,w), there is

a unique partition of vertex V (F ) =
\bigcup m

i=1 Si so that the edges from x to y in F have
color (i, j) if and only if x \in Si and y \in Sj . Then construct one codeword \sansu such that
\sansu (i,x) = 1 for i \in [m] and x \in Si. Let \scrC be the code consisting of all the codewords \sansu 
constructed in this way.

Since we have an \scrH \ast (m,w)-decomposition of K
(m2)
n , for any \sansu , \sansv \in \scrC , | supp(\sansu ) \cap 

supp(\sansv )| \leq 1, which means that the distance of the code is at least 2mw  - 2. Fur-

thermore, since the number of edges in K
(m2)
n of color (1, 2) is n(n  - 1), and each

digraph isomorphic to H\ast (m,w) uses w2 of them, we have an MCWC(m,n, 2mw  - 
2, w) of size n(n  - 1)/w2 that meets the upper bound given in Lemma 2.2. As
H\ast (m,w) = G\ast (mw), computations similar to those in section 3.2 yield \alpha (\scrH \ast (m,w)) | 
w, \beta (\scrH \ast (m,w)) | w2, and \scrH \ast (m,w) is admissible. Applying Corollary 2.4, we obtain
the following.

Proposition 6.1. Fix m and w. There exists an integer n0 so that

M(m,n, 2mw  - 2, w) =
n(n - 1)

w2

for all n \geq n0 satisfying n(n - 1) \equiv 0 (mod w2) and n - 1 \equiv 0 (mod w), i.e., n - 1 \equiv 0
(mod w2).

6.2. When distance \bfitd = 2(\bfitm \bfitw  - \bfitlambda ). We consider the optimal multiply
constant-weight codes reaching the bound (6). First, we need the following concepts
from design theory.

For any positive integers v, k, \lambda , a balanced incomplete block design, (v, k, \lambda )-
BIBD, is a decomposition of \lambda Kv (that is, each edge in Kv appears \lambda times) into
Kk. The Kk's in the decomposition are called blocks. A (v, k, \lambda )-BIBD is said to be
\alpha -resolvable if the blocks can be partitioned into classes R1, R2, . . . , Rr (called parallel
classes) where r = \lambda (v  - 1)/(\alpha (k  - 1)) such that each vertex of Kv is contained in
precisely \alpha blocks of each class.

Wang et al. [30] established the following relation between \alpha -resolvable BIBDs
and multiply constant-weight codes.

Proposition 6.2 (Wang et al. [30]). If there exists an \alpha -resolvable (v, k, \lambda )-
BIBD, then M(m,n, d, w) = v, where m = \lambda (v  - 1)/(\alpha (k  - 1)), n = \alpha v/k, d =
2(mw  - \lambda ) = 2\lambda (v  - k)/(k  - 1), and w = \alpha .

Using this relation, Wang et al. then determined the value of M(m,n, 2(mw  - 
2), w) for sufficiently large m.

Theorem 6.3 (Wang et al. [30]). Given positive integers k and w with k| w, there
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exists a constant m0 = m0(k,w) such that

M(m,n, 2(mw  - w), w) = m(k  - 1) + 1

with n = w(m(k  - 1) + 1)/k for some m \geq m0.

Recently, Dukes, Ling, and Malloch [15] established the following asymptotic
existence of \alpha -resolvable BIBDs.

Theorem 6.4. Let k, \alpha , \lambda be positive integers, and let k \geq 2. The \alpha -resolvable
(v, k, \lambda )-BIBD exists if and only if \alpha v \equiv 0 (mod k) and \lambda (v - 1) \equiv 0 (mod \alpha (k - 1))
for sufficiently large v.

Combining Proposition 6.2 and Theorem 6.4, we have the following result.

Theorem 6.5. Given positive integers k, w, and \lambda < w, there exists a constant
m0 = m0(k,w, \lambda ) such that

M(m,n, 2(mw  - \lambda ), w) =
mw(k  - 1)

\lambda 
+ 1

with n = w/k (1 +mw(k  - 1)/\lambda ) for some m \geq m0.

7. Conclusion. We verify that some bounds, in particular, the Johnson bounds,
are asymptotically exact for several generalizations of binary constant-weight codes.
This was achieved via an interesting application of superpure decompositions of edge-
colored digraphs. For easy reference, in Table 1 we summarize the families of digraphs
used in this paper and their corresponding codes.

Table 1
Families of edge-colored digraphs and their corresponding codes.

Family of digraphs Codes Remarks
\scrG (w) CCC(n, 2w  - 2, w)q Proposition 3.4
\scrG \ast (w) CCC(n, 2w  - 3, w)q Proposition 3.7
\scrG (w) CWC(n, 2w  - 2, w)q Proposition 4.3
\^\scrG (w, g) GDC(gn, 2w  - 2, w) of type gn Proposition 5.1

\scrH \ast (m,w) MCWC(m,n, 2mw  - 2, w) Proposition 6.1

Observe that in Propositions 3.4, 3.7, 4.3, 4.4, 5.1, and 6.1, the Johnson-type
bounds are shown to be exact for sufficiently large n satisfying certain congruence
conditions. We hypothesize that the Johnson-type bounds are tight up to an additive
constant for sufficiently large n. Specifically, we make the following conjecture.

Conjecture. Fix q, w, w, m, and let d \in \{ 2w  - 2, 2w  - 3\} . Define Uq(n, d, w),
Uq(n, d, w), and U(m,n, d, w) to be the upper bounds given by (1)--(5). Then

Aq(n, d, w) = Uq(n, d, w) - O(1),

Aq(n, d, w) = Uq(n, d, w) - O(1),

M(m,n, 2mw  - 2, w) = U(m,n, 2mw  - 2, w) - O(1).

The case for binary constant-weight codes, that is, q = 2 and d = 2w  - 2, has been
verified by Chee et al. [2].

Finally, we point to recent remarkable results in design theory. Keevash [21]
established the asymptotic exactness of the Johnson bound for fixed weight w and
distance d. This implies that the Johnson bound is asymptotically exact for the
classes of codes studied in this paper. Another proof of the same result was later
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provided by Glock et al. [18, 19]. More recently, Keevash [22] extended his techniques
to demonstrate asymptotic existence of decompositions of edge-colored digraphs and
hypergraphs.

Appendix. On \^\bfscrG (\bfitw , \bfitg ) and the proof of Proposition 5.1. As with \scrG (w)
in section 4, it is difficult to determine \alpha ( \^\scrG (w, g)) and \beta ( \^\scrG (w, g)) exactly. Hence, we
adapt the methods of Lamken and Wilson (see [23, Theorem 8.1]) to complete the
proof of Proposition 5.1.

First, we make certain observations on the edge vectors and degree vectors of the
digraphs in \^\scrG (w, g). Recall the definition of \Gamma (w, g) and set tk \triangleq 

\sum q - 1
i=1 tik.

(A) For each G(\sanst ) with \sanst \in \Gamma (w, g), the edge vector

\mu (G(\sanst )) = (m(i,k,\ell ) : i \in [q  - 1], k, \ell \in [g])

is of length (q  - 1)g2. In particular, m(i,k,k) = tik(tk  - 1) and m(i,k,\ell ) = tikt\ell 
for \ell \not = k.
For each u \in V (\sanst ), the degree vector

\tau (u,G(\sanst )) = (in(i,k,\ell )(u,G(\sanst )), out(i,k,\ell )(u,G(\sanst )) : i \in [q  - 1], k, \ell \in [g])

is of length 2(q  - 1)g2. Suppose u \in Tik for some i \in [q  - 1], k \in [g]. Then
the entries of \tau (u,G(\sanst )) are as follows:

in(j,\ell ,\ell \prime )(u,G(\sanst )) =

\left\{     
tik  - 1 if (j, \ell ) = (i, k), \ell \prime = k,

tj\ell if (j, \ell ) \not = (i, k), \ell \prime = k,

0 if \ell \prime \not = k

and

out(j,\ell ,\ell \prime )(u,G(\sanst )) =

\left\{     
tk  - 1 if (j, \ell ) = (i, k), \ell \prime = k,

t\ell \prime if (j, \ell ) = (i, k), \ell \prime \not = \ell ,

0 if (j, \ell ) \not = (i, k).

(B) Recall that s is the largest integer such that w1 = w2 = \cdot \cdot \cdot = ws. For
s+ 1 \leq i \leq q  - 1, k, \ell \in [g], recall that Gik\ell is the edge-colored digraph with
two vertices yik\ell , zik\ell and one directed edge with color (i, k, \ell ) from yik\ell to
zik\ell .
Therefore, the edge vector \mu (Gik\ell ) = (m(i\prime ,k\prime ,\ell \prime ) : i

\prime \in [q  - 1], k\prime , \ell \prime \in [g]) has
entry one at index (i, k, \ell ) and zero otherwise. Similarly, the degree vectors for
the vertices yik\ell and zik\ell have in(i,k,\ell )(zik\ell , Gik\ell ) = out(i,k,\ell )(yik\ell , Gik\ell ) = 1
and zeros at all other entries.

Proof strategy. To complete the proof of Proposition 5.1 using Theorem 2.3,
it suffices to show that provided gn(n  - 1) \equiv 0 (mod w1(w  - 1)) and g(n  - 1) \equiv 0
(mod w  - 1), we have the following implications:
(i) The vector n(n - 1) \cdot (1, 1, . . . , 1) of length (q - 1)g2 is an integral linear combi-

nation of the vectors in \{ \mu (G) : G \in \^\scrG (w, g)\} .
(ii) The vector (n - 1) \cdot (1, 1, . . . , 1) of length 2(q  - 1)g2 is an integral linear combi-

nation of the vectors in \{ \tau (u,G) : u \in G,G \in \^\scrG (w, g)\} .
(iii) \^\scrG (w, g) is admissible.

Proof of (i). As before, we establish the first implication using Lemma 4.2. Let X
be a rational column vector of length (q - 1)g2 indexed by the color set [q - 1]\times [g]\times [g].
Let M be a matrix (q - 1)g2\times | \^\scrG (w, g)| , where each column of M is an edge vector of
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a digraph in \^\scrG (w, g). To apply Lemma 4.2, it suffices to show that whenever XTM
is integral, then

(12) XT \cdot n(n - 1) \cdot (1, 1, . . . , 1)T = n(n - 1)
\sum 
i,k,\ell 

Xik\ell \equiv 0.

Recall that a \equiv b means that a - b is an integer.
For s+1 \leq i \leq q - 1, k, \ell \in [g], we have that \mu (Gik\ell ) has one at the entry indexed

by ik\ell and zero at all other entries. Hence, since XTM is integral, we have Xik\ell \equiv 0,
and it remains to consider the sum n(n  - 1)

\sum 
i,k,\ell Xik\ell for i \in [s]. Equivalently, we

consider the case where s = q  - 1, or wi = w1 for all i \in [q  - 1].
Consider G(\sanst ) for any \sanst \in \Gamma (w, g). From the characterization of edge vectors, we

have that

(13) XT \cdot \mu (G(\sanst ))T =
\sum 
i

\left[  \sum 
k \not =\ell 

tikt\ell Xik\ell +
\sum 
k

tik(tk  - 1)Xikk

\right]  \equiv 0.

In what follows, we select \sanst from \Gamma (w, g) and establish certain integral equations that
are implied from (13). Then using these integral equations, we establish the integral
equation (12).

Fix k \in [g]. We take the sequence \sanst with tik = wi for all i \in [q  - 1], and all other
entries of \sanst are zero. Then we have

(14)
\sum 
i

[wi(w  - 1)Xikk] \equiv 0.

Next, fix three indices i \in [q  - 1] and k, \ell \in [g], k \not = \ell , and take the sequence \sanst 
with tik = wi  - 1, ti\ell = 1, tjk = wj for any j \in [q  - 1] \setminus \{ i\} , and all other entries of \sanst 
are zero. Then

(15)
\sum 
j \not =i

\Bigl[ 
wjXjk\ell + wj(w  - 2)Xjkk

\Bigr] 
+ (wi  - 1)Xik\ell + (w  - 1)Xi\ell k + (wi  - 1)(w  - 2)Xikk \equiv 0.

Finally, we fix three indices i \in [q  - 1] and k, \ell \in [g], k \not = \ell , and take the sequence \sanst 
with tik = wi  - 2 and ti\ell = 2. Again, we set tjk = wj for any j \in [q - 1] \setminus \{ i\} , and all
other entries of \sanst are zero. Then

(16)
\sum 
j \not =i

\Bigl[ 
2wjXjk\ell + wj(w  - 3)Xjkk

\Bigr] 
+ 2(wi  - 2)Xik\ell + 2(w  - 2)Xi\ell k + (wi  - 2)(w  - 3)Xikk + 2Xi\ell \ell \equiv 0.

Taking 2\times (15) - (14) - (16), we have that

2(Xik\ell +Xi\ell k) \equiv 2(Xi\ell \ell +Xikk) for any i \in [q  - 1], k, \ell \in [g], k \not = \ell .

Taking the summation over i, k, \ell and multiplying both sides with n(n - 1)/2 \in \BbbZ ,
we have

n(n - 1)
\sum 
i,k,\ell 

Xik\ell \equiv gn(n - 1)
\sum 
i,k

Xikk.
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Suppose that gn(n - 1) \equiv 0 (mod w1(w - 1)). We have gn(n - 1) = w1(w - 1)n\ast 

for some n\ast \in \BbbZ . Therefore by (14),

n(n - 1)
\sum 
i,k,\ell 

Xik\ell \equiv n\ast 
\sum 
k

\sum 
i

w1(w  - 1)Xikk \equiv 0.

Proof of (ii). As before, we establish the first implication using Lemma 4.2. Let
X = (Xik\ell , Yik\ell : i \in [q - 1], k, \ell \in [g]) be a rational column vector of length 2(q - 1)g2.
Let M be a matrix where each column of M is a degree vector of some vertex of a
digraph in \^\scrG (w, g). To apply Lemma 4.2, it suffices to show that whenever XTM is
integral, then

(17) XT \cdot (n - 1) \cdot (1, 1, . . . , 1)T = (n - 1)
\sum 
i,k,\ell 

(Xik\ell + Yik\ell ) \equiv 0.

Similarly to the proof of (i), we assume that w1 = w2 = \cdot \cdot \cdot = wq - 1. Consider
the digraph G(\sanst ) for some \sanst \in \Gamma (w, g), and consider the degree vector for some vertex
u \in Tik for some i \in [q  - 1] and k \in [g]. From our characterization of degree vectors,
we have that

(18) XT \cdot \tau (u,G(\sanst ))T = (tik - 1)Xikk+(tk - 1)Yikk+
\sum 

(j,\ell )\not =(i,k)

tj\ell Xj\ell k+
\sum 
\ell \not =k

t\ell Yik\ell \equiv 0.

Again, we select \sanst from \Gamma (w, g) and establish certain integral equations using (18).
Then using these integral equations, we establish the integral equation (17).

First, we take the sequence \sanst to be tjk = wj for any j \in [q  - 1], and tj\ell = 0 for
all \ell \not = k. Then we have

(19)
\sum 
j

wjXjkk  - Xikk + (w  - 1)Yikk \equiv 0.

Now fix another index \ell , \ell \not = k, and take the sequence \sanst with tik = wi - 1, ti\ell = 1,
and tjk = wj for any j \in [q  - 1], j \not = i, and the other entries are all zero. Then we
have

(20)
\sum 
j

wjXjkk  - 2Xikk +Xi\ell k + (w  - 2)Yikk + Yik\ell \equiv 0.

Taking (19)--(20), we have that

Xi\ell k + Yik\ell \equiv Xikk + Yikk for any i \in [q  - 1], k, \ell \in [g], k \not = \ell .

Summing on both sides over i, k, \ell , we have\sum 
i,k,\ell 

(Xi\ell k + Yik\ell ) \equiv g
\sum 
i,k

(Xikk + Yikk).

Summing over i for (19),\sum 
i

(Xikk + Yikk) \equiv (q  - 1)
\sum 
j

wjXjkk + w
\sum 
i

Yikk \equiv w
\sum 
i

(Xikk + Yikk).

Hence,

(w  - 1)
\sum 
i

(Xikk + Yikk) \equiv 0.

D
ow

nl
oa

de
d 

05
/2

0/
19

 to
 2

18
.2

2.
21

.2
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

228 Y. CHEE, F. GAO, H. KIAH, A. LING, H. ZHANG, AND X. ZHANG

Suppose g(n  - 1) \equiv 0 (mod w  - 1) and g(n  - 1) = n\ast (w  - 1) for some n\ast \in \BbbZ ;
then we have

(n - 1)
\sum 
i,k,\ell 

(Xik\ell + Yik\ell ) = (n - 1)
\sum 
i,k,\ell 

(Xik\ell + Yi\ell k)

\equiv (n - 1)g
\sum 
i,k

(Xikk + Yikk)

\equiv n\ast 
\sum 
k

(w  - 1)
\sum 
i

(Xikk + Yikk) \equiv 0.

Proof of (iii). Again, we assume w1 = w2 = \cdot \cdot \cdot = wq - 1. Let \sansm 1 denote the
sum of \mu (G(\sanst )) for all \sanst \in \Gamma (w, g). Observe that from the symmetry of G(\sanst ), we can
assume the entries of vector \sansm 1 at indices (i, k, k) are A for i \in [q  - 1], k \in [g], and
the entries at indices (i, k, \ell ) are B for i \in [q  - 1], k, \ell \in [g], and k \not = \ell .

Let \sansm 2 denote the sum of \mu (G(\sanst )) for all \sanst with tik = wi for all i \in [q  - 1], and
some fixed k \in [g], and all other entries zero. Again from symmetry, we can assume
that the entries of the vector \sansm 2 at indices (i, k, k) are C for i \in [q  - 1], k \in [g].
Furthermore, the entries at the other indices are zero.

Let \sansm 3 denote the sum of \mu (G(\sanst )) for all \sanst where tik \in \{ \lfloor w1/g\rfloor , \lceil w1/g\rceil \} for
i \in [q  - 1] and k \in [g]. Again from symmetry, we can assume that the entries of
vector \sansm 3 at indices (i, k, k) are D for i \in [q  - 1], k \in [g] and the entries at indices
(i, k, \ell ) are E for i \in [q  - 1], k, \ell \in [g], and k \not = \ell . We can show that D < E.

To show that \^\scrG (w, g) is admissible, it suffices to demonstrate that we can obtain
a constant vector via a positive rational combination of edge vectors in \^\scrG (w, g). We
have the following cases:

\bullet If A = B, we simply take \sansm 1.
\bullet If A < B, we add a nonnegative multiple of \sansm 2 to \sansm 1.
\bullet if A > B, we add a nonnegative multiple of \sansm 3 to \sansm 1.
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