
820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

On the List-Decodability of Random
Self-Orthogonal Codes
Lingfei Jin, Chaoping Xing, and Xiande Zhang

Abstract— Guruswami et al. showed that the list-decodability
of random linear codes is as good as that of general random
codes. In this paper, we further strengthen the result by showing
that the list-decodability of random Euclidean self-orthogonal
codes is as good as that of general random codes as well,
i.e., achieves the classical Gilbert–Varshamov bound. In partic-
ular, we show that, for any fixed finite field Fq , error fraction
δ ∈ (0, 1 − 1/q) satisfying 1 − Hq(δ) ≤ 1/2, and small ε > 0,
with high probability a random Euclidean self-orthogonal code
over Fq of rate 1 − Hq(δ) − ε is (δ, O(1/ε))-list-decodable. This
generalizes the result of linear codes to Euclidean self-orthogonal
codes. In addition, we extend the result to list decoding symplectic
dual-containing codes by showing that the list-decodability of
random symplectic dual-containing codes achieves the quantum
Gilbert–Varshamov bound as well. This implies that list-
decodability of quantum stabilizer codes can achieve the quantum
Gilbert–Varshamov bound. The counting argument on self-
orthogonal codes is an important ingredient to prove our result.

Index Terms— List decoding, probability method,
self-orthogonal codes, random codes.

I. INTRODUCTION

THE notion of list decoding was introduced independently
by Elias and Wozencraft [4], [5], [18]. Instead of insisting

on a unique output of codeword, in the list decoding model the
decoder allows to output a list of possible codewords which
includes the actual transmitted codeword. Compared with the
classical unique decoding model, the model of list decoding
allows larger number of corrupted errors. A fundamental prob-
lem in coding theory is the trade-off between the information
rate and the fraction of errors that can be corrected. For
list decoding, we have another important parameter, i.e., the
largest list size of the decoder’s output. We hope the list size
to be small.

Manuscript received September 27, 2013; revised July 16, 2014; accepted
September 16, 2014. Date of publication October 3, 2014; date of current
version January 16, 2015. C. Xing was supported by the Singapore Ministry
of Education through the Tier 1 Program under Grant RG20/13. X. Zhang
was supported by the National Natural Science Foundation of China under
Grant 11301503.

L. Jin is with the Shanghai Key Laboratory of Intelligent Information
Processing, School of Computer Science, Fudan University, Shanghai 200438,
China (e-mail: lfjin@fudan.edu.cn).

C. Xing is with the Division of Mathematical Sciences, School of
Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 639798 (e-mail: xingcp@ntu.edu.sg).

X. Zhang is with the Division of Mathematical Sciences, School of
Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 639798, and also with the School of Mathematical Sciences,
University of Science and Technology of China, Hefei 230026, China (e-mail:
xiandezhang@ntu.edu.sg).

Communicated by A. Ashikhmin, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2014.2361333

From the algorithm point of view, a good list decoding
algorithm should have polynomial time, which means that the
list size should be at most polynomial in the block length of
the code. Researchers have been devoted to finding good list
decodable codes with efficient list-decoding algorithms due to
the wide applications to complexity theory and more general
for computer science [6], [14], [15], and communications [5].
The fraction of errors δ close to 1−1/q is more interesting for
complexity theory, while it is more attractive for δ close to 0
for communication side. Thus, it is meaningful to consider the
full range of possibilities for δ.

A. The Gilbert-Varshamov Bound

Before starting our paper, we first introduce the
Gilbert-Varshamov bound in coding theory that plays a central
role in this paper.

For an integer q ≥ 2, we define the q-ary entropy function
by Hq(x) = x logq(q−1)−x logq x −(1−x) logq(1−x). Then
it is easy to verify the identity Hq2(x) = 1

2 Hq(x) + 1
2 x logq

(q+1). It has been proved that, with high probability, a random
q-ary classical block code (and a random q-ary classical
linear block code, respectively) of sufficiently large length with
rate R and relative Hamming minimum distance δ satisfies the
following q-ary classical Gilbert-Varshamov bound [16]

R ≥ 1 − Hq(δ). (1)

Similarly, with high probability, a random q-ary quantum code
of sufficiently large length with rate R and relative symplectic
minimum distance δ satisfies the following q-ary quantum
Gilbert-Varshamov bound [1]

R ≥ 1 − Hq(δ)− δ logq(q + 1). (2)

B. Status of List Decoding Random Codes

It is well known that the list-decodability of classical block
codes is upper bounded by the classical Gilbert-Varshamov
bound (see [6]), i.e., the tolerance error rate δ ≤ H −1

q (1 − R).
On the other hand, it was shown in [5] that for a random code
with rate R ≤ 1− Hq(δ)−1/L, it is (δ, L)-list-decodable with
probability at least 1 − q−�(n). However, it is not obvious to
generalize this result to linear codes.

Zyablov-Pinsker [19] established an optimal tradeoff
between the rate R and the fraction of errors δ for binary
linear codes. The results in [19] can be easily generalized to
q-ary codes which shows that the minimum list size of a linear
code with rate 1 − Hq(δ) − ε is bounded by exp(Oq (1/ε)).

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

JIN et al.: ON THE LIST-DECODABILITY OF RANDOM SELF-ORTHOGONAL CODES 821

But this bound is exponentially worse than the bound O(1/ε)
for arbitrary codes.

In [7], Guruswami-Håstad-Sudan-Zuckerman showed exis-
tence of (δ, 1/ε)-list-decodable linear codes of rate at least
1 − H2(δ) − ε for binary codes. Although the exten-
sion of the results in [7] to larger alphabets is not easy,
Guruswami-Håstad-Kopparty [8] finally managed to show that
a list size of Oq (1/ε) suffices to have rate within ε of
the information-theoretically optimal rate of 1 − Hq(δ). This
means that the list-decodability of random linear codes is
as good as that of general codes. In the latest development,
M. Wootters [17] improved the constant in the list size
Oq (1/ε) for random linear codes when the decoding radius
δ is close to 1 − 1/q .

C. Motivation

It is well known that (symplectic) self-orthogonal codes
form a useful and important class of linear codes which
have found wide applications in communications [9], [12],
multiplicative secret sharing [3] and quantum codes [2], etc..
It is natural to ask the question about how well one can
list decode a random (symplectic) self-orthogonal code or
dual-containing code (a symplectic dual-containing code is a
subspace of F

2n
q that contains its dual under the symplectic

inner product).
Euclidean self-orthogonal codes are extensively used for

construction of linear multiplicative secret sharing [3]. In the
event that some dishonest players provide fault shares, we
have to carry on error correction to recover the secret. In this
scenario, one has to consider decoding of Euclidean self-
orthogonal codes.

In quantum coding theory, decoding of a quantum stabilizer
code Q obtained from a classical self-orthogonal code C can
be reduced to decoding of the symplectic dual code C⊥S

(see Section III.C for details). Therefore, list decoding of
dual-containing codes with symplectic inner product plays an
important role on quantum decoding.

D. Our Work and Techniques

In this work, we focus on list decoding of Euclidean self-
orthogonal and symplectic dual-containing codes. Surprisingly,
our results show that the list-decodability of random Euclidean
self-orthogonal codes and symplectic dual-containing codes
are as good as that of general random codes and random
linear codes, namely, the list-decodability of random Euclidean
self-orthogonal codes and symplectic dual-containing codes
achieves the classical and quantum Gilbert-Varshamov bounds,
respectively. Furthermore, we show that the list decodability of
symplectic dual-containing is upper bounded by the quantum
Gilbert-Varshamov bound, namely, every symplectic dual-
containing code with decoding radius δ and rate bigger than
1 − Hq(δ)− δ logq(q + 1) must have exponential list size.

A main technique is the powerful probabilistic fact which
says that there is a limited correlation between the linear
spaces and Hamming balls. More precisely, it is unlikely that
the intersection of a linear subspace spanned by t random
vectors from a Hamming ball has size more than �(t).

This fact was used in [8] and is also an important ingredient
in our proof.

Apart from the above fact, the counting idea on Euclidean
(symplectic) self-orthogonal linearly independent vectors and
spaces by using solutions of quadratic forms is of great
important in computation of probability.

E. Organization

The organization of this paper is as follows. We first review
some basic results on self-orthogonal codes and quadratic
forms in Subsections II.A and II.B. In Subsection II.3,
we briefly discuss construction of random Euclidean self-
orthogonal codes based on quadratic forms. Subsection II.D
presents list decoding and the Main Theorem I.
Subsection II.E is fully devoted to a proof of our Main
Theorem I, i.e., Theorem 2.3. In Subsection II.F, we prove a
lemma on the number of certain self-orthogonal spaces that
is used in the proof of Theorem 2.3. Section III studies list
decoding of symplectic dual-containing codes. We present a
connection between decoding quantum stabilizer codes and
symplectic dual-containing codes in Subsection III.C. Then
we show that list decodability of symplectic dual-containing
is upper bounded by the quantum Gilbert-Varshamov bound
in Subsection III.D. Finally in Subsection III.E we prove
our Main Theorem II which says that the list decodability
of symplectic dual-containing codes achieves the quantum
Gilbert-Varshamov bound.

II. LIST DECODING OF EUCLIDEAN

SELF-ORTHOGONAL CODES

A. Euclidean Self-Orthogonal Codes

Let us quickly recall some basic concepts and results in
coding theory. As we focus on self-orthogonal codes which
are always linear, we assume from now on that q is a
prime power and denote by Fq the finite field of q elements.
A q-ary [n, k]-linear code C is a subspace of F

n
q with dimen-

sion k, where n and k are called the length and dimension of
the code C , respectively. The information rate of the code C
is R = k/n in this case.

Two vectors u and v are said Euclidean orthogonal if
〈u, v〉 = ∑n

i=1 uivi = 0. A vector u is said Euclidean self-
orthogonal if 〈u,u〉 = 0. The Euclidean dual code C⊥E of a
linear code C consists of all vectors in F

n
q that are orthogonal

to every codeword in C . A subset {v1, . . . , vt } of F
n
q is called

Euclidean self-orthogonal if 〈vi , v j 〉 = 0 for all 1 ≤ i, j ≤ t .
A linear code C is said Euclidean self-orthogonal if

C ⊆ C⊥E . It is easy to see that any Euclidean self-orthogonal
code has dimension k ≤ n

2 . Hence a self-orthogonal code has
information rate 0 ≤ R ≤ 1/2.

B. Quadratic Forms

An n-variate quadratic form over Fq is a zero polynomial
or homogeneous polynomial of degree 2 in n variables with
coefficients in Fq , i.e.,

f (x) = f (x1, . . . , xn) =
n∑

i, j=1

ai j xi x j , ai j ∈ Fq .

822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

A fundamental problem in the theory of quadratic form is
how much one can simplify f (x) by means of nonsingular
linear transformation of indeterminates. Two quadratic forms
f (x) and g(x) are said equivalent if there exists a nonsingular
n × n matrix A such that the quadratic form f (xA) is equal
to g(x). It is easy to verify that this is indeed an equivalence
relation. Furthermore, two equivalent quadratic forms have the
same number of zeros. For a nonzero quadratic form f (x),
the smallest number m for which f (x) is not equivalent to a
quadratic form in fewer than m indeterminates is called the
rank of f (x). The rank of the zero quadratic is defined to
be 0. If the rank of a nonzero quadratic form f (x) is n, then
f (x) is called non-degenerate. If Fq has an odd characteristic,
then a quadratic form f (x) can be written as f (x) = xBxT

for a symmetric matrix B of size n over Fq . The rank of B
is in fact equal to the rank of f (x). The reader may refer to
[11, pp. 278–289] for the details about quadratic forms.

For the purpose of this paper, we are mainly interested in the
number of solutions of f (x) = 0 for a quadratic form f (x).
We combine several results in [11, Sec. 6.2] in the following
lemma.

Lemma 2.1: Let f (x) := f (x1, . . . , xn) be a quadratic form
defined over Fq with rank m. Denote by N(f (x) = 0) the
number of solutions of f (x) = 0 in F

n
q . If m = 0, then

N(f (x) = 0) = qn. If 1 ≤ m ≤ n, then

N(f (x) = 0) =
{

qn−1 m is odd;
qn−1 ± (q − 1)qn− m

2 −1 m is even.
(3)

C. Construction of Random Euclidean Self-Orthogonal Codes

Unlike construction of a random linear code where one
can choose a random set of linearly independent vectors,
construction of a random Euclidean self-orthogonal code is not
straightforward. In this part, we briefly discuss construction
of random Euclidean self-orthogonal codes through quadratic
forms.

Note that construction of a random Euclidean self-
orthogonal code is equivalent to finding a linearly independent
set {v1, . . . , vk} of random Euclidean self-orthogonal vectors.

We first choose a nonzero random solution
v1 = (v11, . . . , v1n) of the quadratic equation x2

1 +· · ·+x2
n = 0

(note that this equation has at least qn−2 solutions by
Lemma 2.1). Then v1 is self-orthogonal. Assume that we
have already found a linearly independent set {v1, . . . , vk−1}
of random Euclidean self-orthogonal vectors. If we want to
find a kth vector vk = (vk1, . . . , vkn), then (vk1, . . . , vkn) is a
solution of the following equation system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v11x1 + · · · + v1nxn = 0,
...
vk−1,1x1 + · · · + vk−1,n xn = 0,
x2

1 + · · · + x2
n = 0.

(4)

Substituting the first k − 1 equations of (4) into the
last equation of (4), we obtain a quadratic equation
g(xi1 , . . . , xin−k+1) = 0 of n − k + 1 variables. Thus, as long
as N(g(xi1 , . . . , xin−k+1) = 0) is bigger than the cardinality
of span{v1, . . . , vk−1}, i.e., N(g(xi1 , . . . , xin−k+1) = 0) >

qk−1, we can randomly choose a solution vk of (4) which
is not contained in span {v1, . . . , vk−1} (note that the number
of solution of (4) is equal to N(g(xi1 , . . . , xin−k+1) = 0)).
Hence, we obtain a linearly independent set {v1, . . . , vk−1, vk}
of random self-orthogonal vectors.

On the other hand, by Lemma 2.1, the number N(g(xi1 , . . . ,
xin−k+1) = 0) of solutions of g(xi1, . . . , xin−k+1) = 0
is at least qn−k−1. Thus, as long as qn−k−1 > qk−1,
i.e., k ≤ (n − 1)/2, we can proceed to the next step to get
a basis {v1, . . . , vk−1, vk}.

D. List Decoding Random Euclidean Self-Orthogonal Codes

First of all, we assume that our channel has adversarial
noise. In other words, the channel can arbitrarily corrupt any
subset of up to a certain number of symbols of a codeword.
Our goal is to correct such errors and recover the original
message/codeword efficiently. An error-correcting code C of
block length n over a finite alphabet � of size q maps a set
of messages into codewords in �n . The rate of the code C is
defined to be R := R(C) = logq |C |

n .
The formal definition of list decoding can be stated combi-

natorially in the following way.
Definition 2.2: For integers q ≥ 2, L ≥ 1 and a real δ ∈

(0, 1−1/q), a q-ary code C of length n over a code alphabet�
of size q is called (δ, L)-list-decodable if, for every point
x ∈ �n , there are at most L codewords whose Hamming
distance from x is at most δn.

Note that while considering (δ, L)-list-decodability, we
always restrict the fraction δ < 1 − 1/q since decoding
from a fraction of 1 − 1/q or more errors is impossible
except for the trivial codes. If we want a polynomial size list,
the largest rate R of the code that one can hope is 1 − Hq(δ)
[4], [5], [7], [19].

The proof of our main theorem (Theorem 2.3) combines an
idea used for random linear codes [8] and the counting result
on self-orthogonal linearly independent vectors and spaces by
using solutions of quadratic forms.

Theorem 2.3 (Main Theorem I): For every prime power q
and a real δ ∈ (0, 1 − 1/q) satisfying 1 − H (δ) ≤ 1/2, there
exists a constant Mδ , such that for small ε > 0 and all large
enough n, a random self-orthogonal code C ⊆ F

n
q of rate

R = 1 − H (δ)− ε is (δ,
Mδ

ε
)-list-decodable with probability

1 − q−n .
The first step in the proof of Theorem 2.3 is to reduce

the problem of the list-decodability of a random Euclidean
self-orthogonal code to the problem of studying the weight
distribution of certain random linear code containing a given
Euclidean self-orthogonal code.

We quote a result from [8] below where Bn(x, δ) denotes
the Hamming ball with center x ∈ F

n
q and radius δn.

Lemma 2.4: For every δ ∈ (0, 1 − 1/q), there is a constant
M > 1 such that for all n and all t = o(

√
n), if X1, . . . , Xt are

picked independently and uniformly at random from Bn(0, δ),
then

Pr[|span(X1, . . . , Xt) ∩ Bn(0, δ)| ≥ M · t] ≤ q−(6−o(1))n.

JIN et al.: ON THE LIST-DECODABILITY OF RANDOM SELF-ORTHOGONAL CODES 823

This lemma shows that if we randomly pick t vectors from
the Hamming ball Bn(0, δ), where t is a constant depending
on the list size L, the probability that more than �(t) vectors
in the span of these t vectors lies in the ball Bn(0, δ) is
quite small. The detail of the proof for this lemma is given
in [8]. The key technique for proving this lemma involves a
Ramsey-theoretical lemma. Similar result for symplectic
distance can be easily reduced to the case of Hamming
distance by considering codes with alphabet size q2

(see Section III).
The second step in our proof uses the following result on the

probability that a random linear code of dimension k contains
a self-orthogonal subcode of dimension k − 1 and a given
set {v1, . . . , vt } ⊆ F

n
q of linearly independent vectors. Let C∗

k
denote the set of q-ary [n, k]-linear codes in which every code
contains a self-orthogonal subcode of dimension k − 1.

Lemma 2.5: For any linearly independent vectors v1, . . . , vt

in F
n
q with t ≤ k < n/2, the probability that a random code

C∗ from C∗
k contains {v1, . . . , vt } is

PrC∗∈ C∗
k
[{v1, . . . , vt } ⊆ C∗]

≤
{

q(k+t−n−1)t+2k−1 if q is even;
q(k+t−n−2)t+4k−2 if q is odd.

Hence, we always have

PrC∗∈C∗
k
[{v1, . . . , vt } ⊆ C∗] ≤ q(k+t−n−2)t+4k−1. (5)

We leave the proof of Lemma 2.5 to the coming
Subsection F.

E. Proof of Theorem 2.3

Proof: Pick Mδ = 5M , where M is the constant
in Lemma 2.4. Put L = �Mδ/ε
. Finally assume that n is large
enough to satisfy (i) n ≥ L; (ii) the term o(1) in Lemma 2.4
is at most 1; (iii) n ≥ 1

3(1−R) (logq(2L)+ L2 − L + 3), i.e.,

q−3(1−R)n × 2Lq L2−L+3 ≤ 1. (6)

Let C be a random self-orthogonal code with dimen-

sion Rn in F
n
q . To show that C is (δ,

Mδ

ε
)-list-decodable

with high probability, it is sufficient to show that with low

probability that C is not (δ,
Mδ

ε
)-list-decodable, i.e.,

PrC∈ CRn [∃x ∈ F
n
q such that |Bn(x, δ) ∩ C| ≥ L] < q−n,

(7)

where Ck denotes the set of q-ary [n, k]-self-orthogonal codes.
Thus, from now on we only need to prove that

PrC∈ CRn,x∈Fn
q
[|Bn(x, δ) ∩ C| ≥ L] < q−n · q−(1−R)n.

(8)

Note that the inequality (8) is derived from (7) since, for
every linear C for which there is a “bad” x such that |Bn(x, δ)∩
C| ≥ L, there are q Rn such “bad” x.

Furthermore, the probability at the left side of (8) can be
transformed into the following.

PrC∈ CRn,x∈Fn
q
[|Bn(x, δ) ∩ C| ≥ L]

= PrC∈CRn,x∈Fn
q
[|Bn(0, δ) ∩ (C + x)| ≥ L]

≤ PrC∈CRn,x∈Fn
q
[|Bn(0, δ) ∩ span{C, x}| ≥ L]

≤ PrC∗∈C∗
Rn+1

[|Bn(0, δ) ∩ C∗| ≥ L],
where C∗ is a random Rn+1 dimensional subspace containing
span{C, x}.

For any integer t with logq L ≤ t ≤ L (and hence
L ≤ qt), denote by Ft the set of all tuples (v1, . . . , vt) ∈
Bn(0, δ)t such that v1, . . . , vt are linearly independent and
|span{v1, . . . , vt } ∩ Bn(0, δ)| ≥ L. Put F = ∪L

t=�logq L
Ft and
denote by (v) and {v} the tuple (v1, . . . , vt) and the set
{v1, . . . , vt }, respectively.

We claim that if |Bn(0, δ) ∩ C∗| ≥ L, there must exist
(v) ∈ F such that C∗ ⊇ {v}. Indeed, let {u} be a maximal
linearly independent subset of Bn(0, δ)∩C∗. If |{u}| < L, then
we can simply take {v} = {u}. Otherwise, we can take {v} to
be any subset of {u} of size L. Therefore, we have

PrC∗∈ C∗
Rn+1

[|Bn(0, δ) ∩ C∗| ≥ L] (9)

≤
∑

(v)∈F
PrC∗∈C∗

Rn+1
[C∗ ⊇ {v}] (10)

=
L∑

t=�logq L

∑

(v)∈Ft

PrC∗∈C∗
Rn+1

[C∗ ⊇ {v}] (11)

≤
L∑

t=�logq L

|Ft |q((Rn+1)+t−n−2)t+4(Rn+1)−1 by (5).

(12)

Thus, to have a good bound on our probability, we need to
have a reasonably good upper bound for |Ft |. As in [8], we
divide the range of t into two intervals.

(1) If t < 5/ε, then

|Ft |
|Bn(0, δ)|t ≤ Pr[|span(X1, . . . , Xt) ∩ Bn(0, δ)| ≥ L].

Since L ≥ M · t , by Lemma 2.4 we have

|Ft | ≤ |Bn(0, δ)|t · q−5n ≤ qnt H(δ)−5n.

(2) If t ≥ 5/ε, then we have |Ft | ≤ |Bn(0, δ)|t ≤ qnt H(δ)

which is just a trivial bound.
Finally, by substituting the value of R = 1 − H (δ)− ε into

the inequality (12), we have

PrC∗∈ C∗
Rn+1

[|Bn(0, δ) ∩ C∗| ≥ L]

≤
�5/ε
−1∑

t=�logq L

qnt H(δ)−5n · q(−n+t+Rn−1)t+4Rn+3

+
L∑

t=�5/ε

qnt H(δ) · q(−n+t+Rn−1)t+4Rn+3

= q−5n+4Rn
�5/ε
−1∑

t=�logq L

q−εtn+t2−t+3

824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

+ q4Rn
L∑

t=�5/ε

q−εtn+t2−t+3

≤ q−5n+4Rn · L · q L2−L+3 + q4Rn · L · q−5n+L2−L+3

= q−n · q−(1−R)n × q−3(1−R)n × 2Lq L2−L+3

≤ q−n · q−(1−R)n by (6).

This completes the proof.

F. Proof of Lemma 2.5

Let us start with a lemma that will be used in this subsection.
Recall that Ck denotes the set of q-ary [n, k] Euclidean
self-orthogonal codes, while C∗

k denotes the set of q-ary
[n, k]-linear codes in which every code contains an Euclidean
self-orthogonal subcode of dimension k − 1.

Lemma 2.6: For any given linearly independent, self-
orthogonal set {v1, . . . , vt } with t < k < n/2 in a code
C∗ ∈ C∗

k , one can find a self-orthogonal subcode C ′ of C∗ with
dim(C ′) = k − 1 such that C ′ contains the set {v1, . . . , vt }.

Proof: Let V be the space spanned by {v1, . . . , vt }. Let C
be a self-orthogonal subcode of C∗ of dimension k − 1.
If V is a subspace of C , then we can simply take C ′ = C .
If t = k − 1, we can simply take C ′ = V . Now we assume
that V is not contained in C and t < k. In this case, we
must have dim(C ∩ V) = t − 1 ≤ k − 2. Choose a vector v
from V\C . Let U ⊆ F

n
q be the dual code of 〈v〉. Then U has

dimension n − 1 and the intersection U ∩ C has dimension at
least k − 2. It is clear that V ∩ C is contained in U ∩ C since
V ⊆ U . Thus, v is not contained in U ∩ C . Furthermore, we
can choose a subspace W of U ∩C such that V ∩C ⊆ W and
dim(W) = k − 2. Let C ′ be the space spanned by W and v.
It is clear that W is self-orthogonal since W ⊆ C . Moreover,
v is orthogonal to itself and every word in W since W ⊆ U .
As v is not contained in W , C ′ must have dimension k − 1.
This completes the proof.

Case 1: Fq Has Even Characteristic

If Fq has even characteristic, then we have the following
results from counting arguments.

Lemma 2.7: For k < n/2, the cardinality of C∗
k is at least

(qn−k+1 − 1)(qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Proof: Denote by B(1)k and B(2)k the cardinalities of Ck and
C∗

k \Ck , respectively. Then |C∗
k | = B(1)k + B(2)k .

Let us consider B(1)k first. First of all, a vector
x = (x1, . . . , xn) is self-orthogonal if and only if x2

1 + · · · +
x2

n = 0. This quadratic form is equivalent to x2
1 = 0 and hence

by Lemma 2.1 it has qn−1 solutions.
For a code Ci−1 in Ci−1, we can span Ci−1 into a self-

orthogonal code Ci in Ci by adding one self-orthogonal
vector in C⊥E

i−1�Ci−1. Hence, we have qn−i − qi−1 choices
of such a vector. On the other hand, there are (qk − qk−1)
(qk − qk−2) · · · (qk − 1) choices of k-dimensional basis
generating the same code of dimension k. Therefore,

B(1)k ≥ (qn−2k+1 − 1)(qn−2k+3 − 1) · · · (qn−1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

The computation of B(2)k is a bit different from that of B(1)k
as codes in C∗

k \ Ck are not self-orthogonal. We first choose
a linearly independent, self-orthogonal set of size k − 1. One
can then span this set into a code in C∗

k \Ck by adding a vector
in F

n
q�C⊥E

k−1. Thus, we obtain a recursive formula and get the
following inequality

B(2)k ≥ (qn−k+1 − qn−2k+1)
∏k−1

i=1 (q
n−2i+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

The desired result follows from adding B(1)k with B(2)k .
Lemma 2.8: For given t (t < k < n/2) linearly independent

vectors v1, . . . , vt in F
n
q , the number of linear codes C∗ ∈ C∗

k
such that C∗ ⊇ {v1, . . . , vt } is at most

(qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−2t−1 − 1)(qn − qk−1)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

Proof: Denote by Ak the number of linear codes C∗ ∈ C∗
k

such that C∗ ⊇ {v1, . . . , vt }. Denote by D a maximal
self-orthogonal code in span{v1, . . . , vt }. Let A(1)k denote
the number of self-orthogonal codes C∗ in C∗

k such that
{v1, . . . , vt } ⊆ C∗; and let A(2)k denote the number of C∗ ∈ C∗

k
such that C∗ is not self-orthogonal and {v1, . . . , vt } ⊆ C∗.

Case 1: If dim(D) = t , then {v1, . . . , vt } is a self-
orthogonal set. By Lemma 2.6, we can span {v1, . . . , vt } into
a code in C∗

k .
The counting idea is similar to that in the proof of

Lemma 2.7 except for that we first fix t linearly independent
vectors {v1, . . . , vt } and then span them into a larger code.
Thus, we have

A(1)k ≤
∏k−1

i=t−1(q
n−2i+1 − 1)(qn−k − qk−1)

(qk−t − 1)(qk−t−1 − 1) · · · (q2 − 1)(qk − qk−1)
.

Similarly, we have

A(2)k ≤
∏k−1

i=t−1(q
n−2i+1 − 1)(qn − qn−k)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

The desired result follows from adding A(1)k with A(2)k .
Case 2: If dim(D) = t − 1, then we choose a suitable basis

u1, . . . ,ut for span{v1, . . . , vt } such that u1, . . . ,ut−1 ∈ D.
In this case, by Lemma 2.6 we can get a code C ′ of dimension
k − 1 that contains D, and then a code C∗ := span{C ′,ut }.
Hence,

Ak ≤ (qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−2t+1 − 1)

(qk−t − 1)(qk−t−1 − 1) · · · (q − 1)
.

Case 3: If dim(D) ≤ t −2, then in this case it is impossible
to find a code in C∗

k containing {v1, . . . , vt }. In other words,
Ak = 0.

This completes the proof.

Case 2: Fq Has Odd Characteristic

The counting technique for odd q is analogous with that
of even q . The only difference here is the number of self-
orthogonal vectors.

Note that a vector x = (x1, . . . , xn) ∈ F
n
q is self-orthogonal

if and only if

x2
1 + · · · + x2

n = 0. (13)

JIN et al.: ON THE LIST-DECODABILITY OF RANDOM SELF-ORTHOGONAL CODES 825

In the case where q is even, the quadratic form (13) has rank 1.
Hence, by Lemma 2.1 it has qn−1 solutions. However, in the
case where q is odd, the quadratic form (13) has rank n and
hence by Lemma 2.1 the number of its solutions is between
qn−1 − (q − 1)q

n
2 −1 and qn−1 + (q − 1)q

n
2 −1. Therefore,

the corresponding results of Lemmas 2.7 and 2.8 are slightly
different in the case of odd characteristic. We state the results
below without proofs.

Lemma 2.9: For k < n/2, the cardinality of C∗
k is at least

(qn−k+1 − 1)(qn−2k+2 − 1)(qn−2k+4 − 1) · · · (qn−2 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Lemma 2.10: For given t (t < k < n/2) linearly indepen-
dent vectors v1, . . . , vt over F

n
q , the number of linear codes

C∗ ∈ C∗
k such that C∗ ⊇ {v1, . . . , vt } is at most

∏k−1
i=t−1(2qn−2i+1 − 1)(qn + qn−2k+1)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

Proof of Lemma 2.5: For even q , by Lemmas 2.7 and 2.8,
we have

PrC∗∈ C∗
k
[{v1, . . . , vt } ⊆ C∗]

= |{C∗ ∈ Ck : C∗ ⊇ {v1, . . . , vt }}|
|C∗

k |

≤ q2k−t−1
(

qk−t+1

qn−2t+1

)t

≤ q(k−n+t−1)t+2k−1.

For odd q , by Lemmas 2.9 and 2.10, we have

PrC∗∈ C∗
k
[{v1, . . . , vt } ⊆ C∗]

= |{C∗ ∈ Ck : C∗ ⊇ {v1, . . . , vt }}|
|C∗

k |

≤
(

2qn−2k+3 − 1

qn−2k+2 − 1

)k−t−1

·
(

qk−t − 1

qn−2t − 1

)t

· (q
k − 1)(qn + qn−2k+1)

qn−k+1 − 1

≤ (3q)k−t−1
(

qk−t

qn−2t

)t

q2k

≤ q(−n+t+k−2)t+4k−2.

This completes the proof. �

III. LIST-DECODING OF SYMPLECTIC

SELF-ORTHOGONAL CODES

A. Symplectic Self-Orthogonal Codes

To define symplectic inner product, we have to
consider a q-ary [2n, k]-linear code C in F

2n
q . Two

vectors (u1|v1) and (u2|v2) are said symplectic orthogonal
if 〈u1, v2〉 − 〈u2, v1〉 = 0. Note that every vector (u|v) is
symplectic self-orthogonal. The dual code C⊥S of a linear
code C consists of all vectors in F

2n
q that are orthogonal

to every codeword in C . A subset {(u1|v1), . . . , (ut |vt)} of
F

2n
q is called symplectic self-orthogonal if the symplectic

inner product of (ui |vi) and (u j |v j) are 0 for all
1 ≤ i, j ≤ t .

A linear code C is said symplectic self-orthogonal if
C ⊆ C⊥S . It is well known that a q-ary [2n, k]-symplectic self-
orthogonal code gives a q-ary [[n, n − k]]-quantum code [2].
Thus, we define the rate of C in terms of the associated
quantum code, i.e., R := (n − k)/n.

Finally, let us define symplectic weight and distance. For a
vector (u|v) = (u1, . . . , un |v1, . . . , vn) ∈ F

2n
q , the symplectic

weight is defined to be wtS(u|v) = |{1 ≤ i ≤ n : (ui , vi) �=
(0, 0)}|. The symplectic distance of two vectors (u1|v2) and
(u2|v2) is defined to be wtS(u1 − u2|v1 − v2).

B. Construction of Symplectic Self-Orthogonal Codes

Compared with construction of random Euclidean self-
orthogonal codes, construction of random symplectic
self-orthogonal codes is much easier. This is because
every vector in F

2n
q is self-orthogonal under the symplectic

inner product. Again construction of a random symplectic
self-orthogonal code is equivalent to finding a linearly
independent set {(u1|v1), . . . , (ut |vt)} of random symplectic
self-orthogonal vectors. We first choose a nonzero random
vector (u1|v1) = (u11, . . . , u1n|v11, . . . , v1n). Assume that we
have already found a linearly independent set {(u1|v1), . . . ,
(uk−1|vk−1)} of random symplectic self-orthogonal vectors.
If we want to find a kth vector (uk |vk) = (uk1, . . . ,
ukn |vk1, . . . , vkn), then (uk1, . . . , ukn , vk1, . . . , vkn) is a
solution of the following equation system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v11x1 + · · · + v1n xn − (u11y1 + · · · + u1n yn) = 0,
...
vk−1,1x1 + · · · + vk−1,n xn−
(uk−1,1 y1 + · · · + uk−1,n yn) = 0.

(14)

C. Connection Between Decoding of Quantum
Stabilizer Codes and Decoding of Symplectic
Self-Orthogonal Codes

To simplify our presentation in this subsection, we consider
only binary quantum stabilizer codes. Let us briefly describe
the background on quantum stabilizer codes and their decod-
ing. The reader may refer to [2], [10], and [13] for the details
on decoding of quantum stabilizer codes.

The state space of one qubit is actually a 2-dimensional
complex space with a basis {|0〉, |1〉}. We can simply
denote this state space of one qubit by C

2. Let G1 =
{±I,±i I,±X,±i X,±Y,±iY,±Z ,±i Z} be the Pauli group
acting on C

2, where i is the imaginary unit, I is the 2 × 2
identity matrix and

X =
(

0 1
1 0

)

, Z =
(

1 0
0 −1

)

, Y = i X Z .

The tensor product (C2)⊗n is called the state space of
n qubits. Let Gn denote the Pauli group acting on (C2)⊗n , i.e.,

Gn = {imσ1 ⊗ σ2 ⊗ · · · ⊗ σn : m ∈ {0, 1, 2, 3},
σ j ∈ {I, X,Y, Z}},

where the action of an element of Gn on a state of n qubits is
through the componentwise action of σi on C

2.

826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

Quantum stabilizer codes are defined in the following man-
ner. Let S be a subgroup of Gn such that −I ⊗ I ⊗· · ·⊗ I �∈ S.
Then S is a 2-elementary abelian group. Assume that the
2-rank of S is k for some k ∈ [0, n] and S is generated by
{g1, g2, . . . , gk}. The subgroup S has a fixed subspace QS of
(C2)⊗n defined by

QS = {v ∈ (C2)⊗n : g(v) = v for all g ∈ S}.
The subspace QS is called an [[n, n − k]]-quantum stabilizer
code and it has dimension 2n−k .

To connect the quantum stabilizer code QS with a classical
linear code, we define a group epimorphism ψ : Gn → F

2n
2

given by

ψ(imσ1⊗σ2⊗· · ·⊗σn)=(x1, x2 . . . , xn|z1, z2 . . . , zn)=(x|z),
where x j , z j are elements of F2 that are determined as below

σ j I X Y Z
x j 0 1 1 0
z j 0 0 1 1

Furthermore, we define a 2n × 2n matrix over F2

	 =
(

O I
I O

)

,

where O is the n × n zero matrix and I is the n × n identity
matrix. Then it is easy to see that, for two elements g, h ∈ Gn ,
gh = hg if and only if ψ(g)	ψ(h)T = 0, i.e., ψ(g) and
ψ(h) are symplectic self-orthogonal. Through the k generators
{g1, g2, . . . , gk}, we define an k × 2n matrix over F2

H =

⎛

⎜
⎜
⎜
⎜
⎝

ψ(g1)
·
·
·

ψ(gk)

⎞

⎟
⎟
⎟
⎟
⎠
.

It is easy to see that H has rank k. Since S is abelian, we have
H	H T = 0. Thus, the binary code C with H as a generator
matrix is symplectic self-orthogonal.

Now we briefly review decoding of quantum stabilizer
codes. Consider an [[n, n −k]]-quantum stabilizer code QS as
defined above. Assume that a state of n − k quibits is encoded
into a coded state |α〉 of n qubits. Let ρ = |α〉〈α| be the
channel input and let EρE† be the channel output with error
E ∈ Gn , where E† denotes the Hermitian conjugation of E .
By computing the syndrome measurements of the received
state, one can determine the binary syndrome s which is equal
to ψ(E)	H T (see [10]). To decode, i.e., recover the channel
input ρ, it is sufficient to determine the error E . On the other
hand, finding E can be reduced to finding ψ(E) (note that the
scalar im does not affect error). Thus, we turn the problem of
decoding quantum stabilizer codes into decoding of C⊥S (to
see this, we notice that H is a parity-check matrix of C⊥S).
Assume that E has at most t errors, i.e., in the representation
E = imσ1 ⊗ σ2 ⊗ · · · ⊗ σn , there are at most t indices j such
that σ j �= I . Thus, the corresponding binary vector ψ(E) has
symplectic weight at most t . This implies that we have to find
an error e = ψ(E) ∈ F

2n
2 such that wtS(e) ≤ t and e	H T = s.

This is exactly the decoding problem of classical codes.

To list decode QS , we can find the list of all vectors e ∈ F
2n
2

such that wtS(e) ≤ t and e	H T = s. In other words, if x0 is
a solution of x	H T = s, then we have to find all codewords
c ∈ C⊥S such that wtS(c − x0) ≤ t .

D. Upper Bound on List Decodability of Symplectic
Self-Orthogonal Codes

Recall that the list decodability of classical block
codes is upper bounded by the classical Gilbert-Varshamov
bound ([6]). In this subsection, we show a similar result for
symplectic self-orthogonal codes, namely, the list decodability
of symplectic self-orthogonal codes is upper bounded by the
quantum Gilbert-Varshamov bound.

First, we have to give a formal definition of list decoding
for a symplectic dual-containing code.

Definition 3.1: For a prime q ≥ 2, an integer L ≥ 1 and a
real δ ∈ (0, 1/2), a q-ary symplectic self-orthogonal code C
of length 2n over a code alphabet Fq is called (δ, L)-list-
decodable if, for every point x ∈ F

2n
q , there are at most L

codewords in C⊥S whose symplectic distance from x is at
most δn.

Note that list decoding of C is in fact list decoding of its
symplectic dual C⊥S .

Theorem 3.2: For every prime power q and a real δ ∈
(0, 1/2), a q-ary symplectic self-orthogonal code C of
length 2n, decoding radius δ and rate R > 1 − Hq(δ)− δ logq
(q + 1)+ o(1) must have an exponential list size in n.

Proof: Let k be the dimension of C . Then the rate of C is
R = (n − k)/n. Pick up a random word x ∈ F

2n
q and consider

the random variable X := |B S
2n(x, δ)∩ C⊥S |, where B S

2n(x, δ)
is the symplectic ball of radius δn, i.e., B S

2n(x, δ) consists of all
vectors of F

2n
q that have symplectic distance at most δn from x.

The expected value of X is clearly |C⊥S | · |B S
2n(0, δ)|/q2n

which is at least

q2n−k × qnt (Hq (δ)+δ logq (q+1)) × q−2n

= qn(R−(1−Hq(δ)−δ logq (q+1))) = �(exp(n)).

This completes the proof.

E. List Decoding Random Symplectic Self-Orthogonal Codes

Now we state the list decodability of random symplectic
self-orthogonal codes below.

Theorem 3.3 (Main Theorem II): For every prime power q
and a real δ ∈ (0, 1/2), there exists a constant Mδ , such that
for every small ε > 0 and all large enough n, a q-ary random
symplectic self-orthogonal code C of length 2n and rate
R = 1 − Hq(δ)− δ logq(q + 1)− ε is (δ,Mδ/ε)-list-decodable
with probability 1 − q−n .

The proof of Theorem 3.3 is exactly similar to the one of
Theorem 2.3 except for the different counting of symplectic
self-orthogonal codes. For preparation, we give two lemmas
that are needed for the proof of Theorem 3.3.

By considering Hamming ball over alphabet size q2, we get
a similar result as in Lemma 2.4.

Lemma 3.4: For every δ ∈ (0, 1 − 1/q), there is a constant
M > 1 such that for all n and all t = o(

√
n), if X1, . . . , Xt are

JIN et al.: ON THE LIST-DECODABILITY OF RANDOM SELF-ORTHOGONAL CODES 827

picked independently and uniformly at random from B S
2n(0, δ),

then

Pr[|span(X1, . . . , Xt) ∩ B S
2n(0, δ)| ≥ M · t] ≤ q−2(6−o(1))n.

Next we prove a result on probability for a symplectic dual-
containing code containing a given set {v1, . . . , vt } of linearly
independent vectors in F

2n
q .

Let Sk denote the set of k-dimensional symplectic self-
orthogonal codes in F

2n
q .

Lemma 3.5: For any linearly independent vectors v1, . . . , vt

in F
2n
q , the probability that a random code C from Sk with C⊥S

containing {v1, . . . , vt } satisfies

PrC∈Sk [{v1, . . . , vt } ⊆ C⊥S] ≤ q−kt . (15)

Proof: Let us first compute the size of Sk . Note that every
element of F

2n
q is symplectic self-orthogonal. Thus, every

k-dimensional self-orthogonal code Ck ∈ Sk is spanned from
a k − 1-dimensional self-orthogonal code Ck−1 ∈ Sk−1 by
adding a vector in C⊥S

k−1\Ck−1. Given the fact that, for two
vectors u, v �∈ Ck−1, 〈u,Ck−1〉 = 〈v,Ck−1〉 if and only if
u − λv ∈ Ck−1 for some nonzero λ ∈ Fq , we know that
the number of symplectic self-orthogonal codes Ck containing
a fixed symplectic self-orthogonal Ck−1 is (q2n−2k+2 − 1)/
(q − 1). On the other hand, every k-dimensional symplec-
tic self-orthogonal code contains exactly (qk − 1)/(q − 1)
symplectic self-orthogonal spaces of dimension k − 1. This
gives the recursive formula |Sk |(qk − 1)/(q − 1) = |Sk−1|
(q2n−2k+2−1)/(q−1). From this recursive formula, we obtain

|Sk | = (q2n−2k+2 − 1)(q2n−2k+4 − 1) · · · (q2n − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

(16)

Let V be the linear span of v1, . . . , vt . Then C⊥S contains
v1, . . . , vt in F

2n
q if and only if C is a subspace of V ⊥S . Thus,

the number of symplectic self-orthogonal codes C with C⊥S

containing {v1, . . . , vt } is in fact the number of symplectic
self-orthogonal codes in V ⊥S . Since dim V ⊥S = 2n−t , by (16)
this number is at most

(q2n−t−2k+2 − 1)(q2n−t−2k+4 − 1) · · · (q2n−t − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (17)

Dividing (17) by (16) gives the desired result.
Proof of Theorem 3.3: Pick Mδ = 4M , where M is the

constant in Lemma 3.4. Put L = �Mδ/ε
. Assume that n is
sufficiently large.

Let C be a random symplectic self-orthogonal code with
rate R, i.e., dimension k of C satisfies k = (1 − R)n

in F
2n
q . To show that C⊥S is (δ,

Mδ

ε
)-list-decodable with high

probability, it is sufficient to show that with low probability

that C⊥S is not (δ,
Mδ

ε
)-list-decodable, i.e.,

PrC∈Sk [∃x ∈ F
2n
q such that |B S

2n(x, δ) ∩ C⊥S | ≥ L] < q−n.

(18)

Thus, from now on we only need to prove that

PrC∈Sk,x∈ F2n
q

[|B S
2n(x, δ) ∩ C⊥S | ≥ L] < q−n · qk−2n. (19)

Furthermore, the probability at the left side of (19) can be
transformed into the following.

PrC∈Sk,x∈Fn
q
[|B S

2n(x, δ) ∩ C⊥S | ≥ L] (20)

≤ PrD∈Sk−1[|B S
2n(0, δ) ∩ D⊥S | ≥ L] (21)

=
L∑

t=�logq L

∑

(v)∈Ft

PrD∈Sk−1[D⊥S ⊇ {v}] (22)

≤
L∑

t=�logq L

|Ft | · q−kt , by (15) (23)

where D⊥S is a random 2n − k + 1 dimensional subspace
containing span{C⊥S , x} and Ft is defined in the proof of
Theorem 2.3. Note that we use the fact that span{C⊥S , x} is
symplectic dual-containing whenever C⊥S is.

(1) If t < 4/ε, then

|Ft |
|B S

2n(0, δ)|t
≤ Pr[|span(X1, . . . , Xt) ∩ B S

2n(0, δ)| ≥ L].

Since L ≥ M · t , by Lemma 3.4 we have

|Ft | ≤ |B S
2n(0, δ)|t · q−10n ≤ q2nt Hq2 (δ)−10n

= qnt (Hq (δ)+δ logq (q+1))−10n.

(2) If t ≥ 4/ε, then we have |Ft | ≤ |B S
2n(0, δ)|t =

qnt (Hq (δ)+δ logq (q+1)) which is just a trivial bound.
Finally, substituting the value of k = (1 − R)n and

R = 1 − Hq(δ) − δ logq(q + 1) − ε into the inequality (23),
we get

PrC∈Sk,x∈Fn
q
[|B S

2n(x, δ) ∩ C⊥S | ≥ L]

≤
�4/ε
−1∑

t=�logq L

qnt (Hq(δ)+δ logq (q+1))−10n · q−kt

+
L∑

t=�4/ε

qnt (Hq (δ)+δ logq (q+1)) · q−kt

≤
�4/ε
−1∑

t=�logq L

q−εnt−10n +

L∑

t=�4/ε

q−εnt

≤ q−n · qk−2n .

This completes the proof.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees and
Professor Dr. Alexei Ashikhmin for their invaluable and
constructive comments and suggestions which have greatly
improved the structure and presentation of this paper and make
this paper more readable.

REFERENCES

[1] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 3065–3072, Nov. 2001.

[2] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
“Quantum error correction via codes over GF(4),” IEEE Trans. Inf.
Theory, vol. 44, no. 4, pp. 1369–1387, Jul. 1998.

828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

[3] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan,
“Secure computation from random error correcting codes,” in Advances
in Cryptology (Lecture Notes in Computer Science), vol. 4515. Berlin,
Germany: Springer-Verlag, May 2007, pp. 329–346.

[4] P. Elias, “List decoding for noisy channels,” Res. Lab. Electron., MIT,
Cambridge, MA, USA, Tech. Rep. 335, 1957.

[5] P. Elias, “Error-correcting codes for list decoding,” IEEE Trans. Inf.
Theory, vol. 37, no. 1, pp. 5–12, Jan. 1991.

[6] V. Guruswami, List Decoding of Error Correcting Codes (Lecture Notes
in Computer Science), vol. 3282. New York, NY, USA: Springer-Verlag,
2005.

[7] V. Guruswami, J. Håstad, M. Sudan, and D. Zuckerman, “Combinatorial
bounds for list decoding,” IEEE Trans. Inf. Theory, vol. 48, no. 5,
pp. 1021–1035, May 2002.

[8] V. Guruswami, J. Håstad, and S. Kopparty, “On the list-decodability
of random linear codes,” IEEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 718–725, Feb. 2011.

[9] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays:
Theory and Applications. New York, NY, USA: Springer-Verlag, 1999.

[10] K. Y. Kuo and C. C. Lu, “On the hardnesses of several quantum decoding
problems,” to be published.

[11] R. Lidl and H. Neiderriter, Finite Fields. Cambridge, U.K.:
Cambridge Univ. Press, 1997.

[12] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and
Invariant Theory. New York, NY, USA: Springer-Verlag, 2006.

[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[14] M. Sudan, “List decoding: Algorithms and applications,” in Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics.
Berlin, Germany: Springer-Verlag, 2000, pp. 25–41.

[15] S. Vadhan, “Pseudorandomness,” in Foundations and Trends in Theoret-
ical Computer Science. Norwell, MA, USA: NOW Publishers, 2011.

[16] R. R. Varshamov, “Estimate of the number of signals in error correcting
codes,” Doklady Akademii Nauk SSSR, vol. 117, pp. 739–741, Jan. 1957.

[17] M. Wootters, “On the list decodability of random linear codes with large
error rates,” in Proc. 45th Annu. ACM Symp. Theory Comput. (STOC),
2013, pp. 853–860.

[18] J. M. Wozencraft, “List decoding,” Res. Lab. Electron., MIT, Cambridge,
MA, USA, Quart. Prog. Rep., 1958.

[19] V. V. Zyablov and M. S. Pinsker, “List cascade decoding,” Problems Inf.
Transmiss., vol. 17, no. 4, pp. 29–34, 1981.

Lingfei Jin received her B.A. degree in mathematics from Hefei University
of Technology, China in 2009. In 2013, she received her Ph.D. degree from
Nanyang Technological University, Singapore. Currently, she is an associate
Professor at the School of Computer Science, Fudan University, China. Her
research interests include quantum information, cryptography and coding
theory.

Chaoping Xing received his Ph.D. degree in 1990 from University of Science
and Technology of China. From 1990 to 1993 he was a lecturer and associate
professor in the same university. He joined University of Essen, Germany as an
Alexander von Humboldt fellow from 1993 to 1995. After this he spent most
time in Institute of Information Processing, Austrian Academy of Sciences
until 1998. From March of 1998 to November of 2007, he was working in
National University of Singapore. Since December of 2007, he has been with
Nanyang Technological University and currently is a full Professor. Dr. Xing
has been working on the areas of algebraic curves over finite fields, coding
theory, cryptography and quasi-Monte Carlo methods, etc.

Xiande Zhang received the Ph.D. degree in mathematics from Zhejiang
University, Hangzhou, Zhejiang, P. R. China in 2009. After that, she held
postdoctoral positions in Nanyang Technological University and Monash
University. Currently, she is a Research Fellow at the Division of Mathematical
Sciences, School of Physical and Mathematical Sciences, Nanyang Technolog-
ical University, Singapore. Her research interests include combinatorial design
theory, coding theory, cryptography, and their interactions.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

