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Abstract: Determination of maximal resolvable packing number and minimal resolvable
covering number is a fundamental problem in designs theory. In this article, we investigate
the existence of maximal resolvable packings of triples by quadruples of order v (MRPQS(v))
and minimal resolvable coverings of triples by quadruples of order v (MRCQS(v)). We show
that an MRPQS(v) (MRCQS(v)) with the number of blocks meeting the upper (lower) bound
exists if and only if v≡0 (mod 4). As a byproduct, we also show that a uniformly resolvable
Steiner system URS(3,{4,6},{r4,r6},v) with r6 ≤1 exists if and only if v≡0 (mod 4). All of
these results are obtained by the approach of establishing a new existence result on RH(62n)

for all n≥2. q 2009 Wiley Periodicals, Inc. J Combin Designs 18: 209–223, 2010
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1. INTRODUCTION

A packing quadruple system (covering quadruple system, respectively) of order v,
denoted by PQS(v) (CQS(v)) is a pair (X,B), where X is a set of cardinality n and
B is a set of 4-subsets of X such that every 3-subset of X is contained in at most one
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210 ZHANG AND GE

(at least one) block of B. Note that in this article the notation of CQS does not denote
a candelabra quadruple system.
A PQS(v) (CQS(v)) (X,B) is called maximal (minimal), denoted by MPQS(v)

(MCQS(v)), if there does not exists any PQS(v) (CQS(v)) (X,A) with |A|> |B| (|A|<
|B|). We denote by p(v) (c(v)) the number of blocks in an MPQS(v) (MCQS(v)).
The Johnson bound [12] j (v) for the packing numbers is given by

p(v)≤ j (v)=
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, v≡0 (mod 6).

Here, �x� denotes the largest integer not greater than x .
When v≡2,4 (mod 6), Hanani [3] showed that p(v)= j (v) by constructing a PQS(v)

with the property that each triple is contained in exactly one block. Such a design is called
a Steiner quadruple system of order v and denoted by SQS(v). Deleting a point and all
blocks containing it from an SQS(v+1) yields that p(v)= j (v) for v≡1,3 (mod 6).
Brouwer [1] showed that p(v)= j (v) for all v≡0 (mod 6). Recently, Ji [8] showed that
the last packing number for v≡5 (mod 6) is equal to Johnson bound with 21 undecided
values v=6k+5,k∈{m :m is odd, 3≤m≤35,m �=17,21}∪{45,47,75,77,79,159}.
The Schönheim bound [14] s(v) for the covering numbers is given by

c(v)≥s(v)=
⌈
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.

Here, 
x� denotes the smallest integer not less than x .
Mills [15] has shown that c(v)=s(v) for all v �≡7 (mod 12). Kalbfleisch and Stanton

[13] and Swift [19] have noted that c(7)=s(7)+1. Mills [16] has also proved that
c(499)=s(499). Hartman et al. [6] have shown that c(v)=s(v) for all v≥52423.
Recently, Ji [9] proved that c(v)=s(v) for all v≡7 (mod 12)with an exception v=7 and
possible exceptions of v=12k+7,k∈{1,2,3,4,5,7,8,9,10,11,12,16,21,23,25,29}.
A PQS(v) (CQS(v)) (X,B) is called resolvable, denoted by RPQS(v) (RCQS(v)), if

B can be partitioned into parallel classes, each of which partitions the set X .
An RPQS(v) (RCQS(v)) (X,B) is called maximal (minimal), denoted by MRPQS(v)

(MRCQS(v)), if there does not exist any RPQS(v) (RCQS(v)) (X,A) with |A|>
|B| (|A|< |B|). It is easy to see that the necessary condition for the existence of an
MRPQS(v) (MRCQS(v)) is v≡0 (mod 4). In 1986, Hartman [5] proved that there exist
RPQS(v)s (RCQS(v)s) which have the property that each triple is contained in exactly
one block with 23 possible exceptions, where v≡4,8 (mod 12). Such a design is called
a resolvable Steiner quadruple system of order v and denoted by RSQS(v). Recently,
Ji and Zhu [11] constructed RSQS(v)s for the last 23 undecided orders. The results are
summarized as follows.

Theorem 1.1. There exists an RSQS(v) if and only if v≡4,8 (mod 12).

Maximal resolvable packings and minimal resolvable coverings with strength t=2
are fundamental problems in combinatorial designs theory (see, for examples, [2, 7]).
It is natural and interesting to consider the corresponding problems for strength t=3.
For the existence of MRPQS(v) and MRCQS(v), we need only to consider the case
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v≡0 (mod 12) by Theorem 1.1, since an RSQS(v) is simply both an MRPQS(v) and
an MRCQS(v). In this article, we will focus on the investigation of the existence of
MRPQS(v) and MRCQS(v) with v=12t for all t≥1. Denote by p′(v) (c′(v)) the
number of blocks in an MRPQS(v) (MRCQS(v)). Since v=12t , it is easy to check that
p′(v)≤3t (24t2−6t−1) and c′(v)≥3t (24t2−6t+1). In the remainder of this article,
when we talk about anMRPQS(v) (MRCQS(v))wewill mean the RPQS(v) (RCQS(v))
with the number of blocks meeting the previous upper (lower) bound for p′(v) (c′(v)).
The article is organized as follows. In Section 2, we show that the existence of both

an MRPQS(12t) and an MRCQS(12t) can be implied by that of an RH(62t ) (For the
definition of RH(gn), see Section 2). We give a product construction and a tripling
construction for RH(gn) in Section 3, and use them to present a complete solution to
the existence problem of an RH(62t ) for any integer t≥2 in Section 4. We state our
main result in Section 5.

2. CONSTRUCTING MRPQS AND MRCQS BY RH

In this section, we show that the existence of both MRPQS(12t) and MRCQS(12t) can
be implied by that of RH(62t ). We need the following concept.
A regular graph (V,E) of degree k is said to have a one-factorization if the edge set

E can be partitioned into k parts E=F1|F2| · · · |Fk so that each Fi is a partition of the
vertex set V into pairs. The parts Fi are called one-factors.
For x ∈ Zn , we define |x | by

|x |=
{
x if 0≤ x≤n/2,
−x if n/2< x<n.

For n≥2 and L⊆{1,2, . . . ,�n/2�}, define G(n, L) to be the regular graph with vertex
set Zn and edge set E given by {x, y}∈E if and only if |x− y|∈L .
The following lemma is proved by Stern and Lenz in [18].

Lemma 2.1. Let L⊆{1,2, . . . ,n}. Then G(2n, L) has a one-factorization if and only
if 2n/gcd( j,2n) is even for some j ∈L.

First, we prove the existence of both an MRPQS(12) and an MRCQS(12).

Lemma 2.2. There exist both an MRPQS(12) and an MRCQS(12).

Proof. It is easy to check that p′(12)≤51 and c′(12)≥57.
Let X = Z6×Z2 with two subsets A= Z6×{0} and B= Z6×{1}. It is easy to check

that F1={{0,1},{2,4},{3,5}}, F2={{4,5},{0,2},{1,3}}, F3={{0,3},{2,5},{1,4}},
F4={{2,3}, {0,4},{1,5}} and F5={{0,5},{1,2},{3,4}} form a one-factorization of
the complete graph on Z6. Let f j

i,k ={(x, j), (y, j)}, where {x, y} is the kth member

of Fi ,1≤k≤3, 1≤ i≤5 and j ∈ Z2. Then {F j
i ={ f j

i,k :1≤k≤3} :1≤ i ≤5} is a one-
factorization of the complete graph on Z6×{ j} for each j ∈ Z2. We will construct an
MRCQS(12) and an MRPQS(12) on X as follows.
For MRPQS(12), { f 0i,k∪ f 1i,k+l :1≤k≤3} with (i, l)∈({2,3,4,5}×Z3)∪({1}×(Z3\

{0})) are the first 14 parallel classes. Next, { f 01,s∪ f 01,1+s, f
1
1,s∪ f 11,1+s, f

0
1,2+s∪ f 11,2+s}

for s∈ Z3 are the last 3 parallel classes. It is clear that all the blocks in these 17 parallel
classes form an MRPQS(12).
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For MRCQS(12), { f 0i,k∪ f 1i,k+l :1≤k≤3} with (i, l)∈({3,5}×Z3)∪({1,2,4}×(Z3\
{0})) are the first 12 parallel classes. Next, { f 0i,1∪ f 1i,1 : i=1,2,4} and { f 0i,1∪ f 0i,1+l , f

1
i,1∪

f 1i,1+l , f
0
i,1+l ′ ∪ f 1i,1+l ′ } for i ∈{1,2,4} and (l, l ′)∈{(1,2), (2,1)} are the last 7 parallel

classes. It is clear that all the blocks in these 19 parallel classes form an MRCQS(12).
�

Let v be a non-negative integer, t be a positive integer and K be a set of positive
integers. A G-design of order v with block sizes from K , denoted by G(t,K ,v), is a
quadruple (X,G,A) that satisfies the following properties:

(1) X is a set of v elements (called points);
(3) G={G1,G2, . . .} is a set of nonempty subsets (called groups or branches) of X ,

which partition X ;
(4) A is a family of subsets (called blocks) of X , each of cardinality from K ;
(5) every t-subset T of X with |T ∩Gi |< t , for all i , is contained in a unique block,

and no t-subset of Gi , for any i , is contained in any block.

The type of the G(t,K ,v) is defined as the list (|G||G∈G). In this article, we denote
a G(3, {4},v) of type gn by G(gn) for short.
A G(gn) is said to be resolvable, denoted by RG(gn), if the block set can be parti-

tioned into parallel classes.

Lemma 2.3. If there exists an RG(12t ), then there exist both an MRPQS(12t) and
an MRCQS(12t).

Proof. Suppose that the RG(12t ) is based on X with |X |=12t . It is easy to check
that an RG(12t ) contains 18t (4t+3)(t−1) blocks. Adjoining these 18t (4t+3)(t−1)
blocks with t disjoint MRPQS(12)s based on the t different groups of the RG(12t ), we
obtain 3t (24t2−6t−1) blocks which cover the triples of X at most once. Hence, we
have an MRPQS(12t). Similarly, we can obtain an MRCQS(12t). �

Let v be a non-negative integer, t be a positive integer and K be a set of positive
integers. A group divisible t-design of order v with block sizes from K , denoted by
GDD(t,K ,v), is a triple (X,G,B) such that

(1) X is a set of v elements;
(2) G={G1,G2, . . .} is a set of nonempty subsets of X , which partition X ;
(3) B is a family of subsets of X , each of cardinality from K such that each block

intersects any given group in at most one point;
(4) every t-subset T of X from t distinct groups is contained in a unique block.

The type of the GDD(t,K ,v) is defined as the list (|G||G∈G). Mills used H(n,g,k, t)
to denote the GDD(t,k,ng) of type gn , and he proved the existence for H(n,g,4,3),
which we simply write H(gn) for short. In [17], he showed that for n>3, n �=5, an
H(gn) exists if and only if ng is even and g(n−1)(n−2) is divisible by 3, and that for
n=5, an H(g5) exists if g is divisible by 4 or 6. Recently, L. Ji [10] improved the result
by showing that an H(g5) exists whenever g is even, g �=2, and g �≡10,26 (mod 48).
An H(gn) is said to be resolvable, denoted by RH(gn), if the block set can be

partitioned into parallel classes.
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Lemma 2.4. If there exists an RH(g2t ) with g even, then there exist both an
RG((2g)t ) and an RG(g2t ).

Proof. Let (X,G,B) be the given RH(g2t ), where G={G0, . . . ,G2t−1}. Let F =
{F1, . . . ,F2t−1} be a one-factorization of the complete graph on Z2t .
For 0≤ i≤2t−1, letF i ={Fi

1, . . . ,F
i
g−1} be a one-factorization of the complete graph

on Gi . Let Fi
j ={ f ij (0), . . . , f ij (g/2−1)}. For all n, j,k, 1≤n≤2t−2, 1≤ j ≤g−1,

0≤k≤g/2−1, it is easy to see that

{ f xj (l)∪ f yj (l+k) :0≤ l≤g/2−1,{x, y}∈Fn}
is a partition of X . Denote the set of all these blocks by A.
Then it is easy to check that (X,G′,A∪B) is an RG((2g)t ) with group set G′ =

{Gx ∪Gy : {x, y}∈F2t−1}.
Furthermore, if we adjoin the parallel classes formed by { f xj (l)∪ f yj (l+k) :0≤ l≤

g/2−1, {x, y}∈Fn} into the RG((2g)t ), where n=2t−1, 1≤ j ≤g−1, 0≤k≤g/2−1,
then we obtain an RG(g2t ) with group set G. �

Lemma 2.5. If there exists an RH(62t ), then there exist both an MRPQS(12t) and an
MRCQS(12t).

Proof. Combining Lemmas 2.3 and 2.4, the conclusion then follows. �

3. PRODUCT AND TRIPLING CONSTRUCTIONS FOR RH(gn)

In this section, we give the product construction and tripling construction for RH(gn).
In [11], we have the following results for RHs.

Lemma 3.1 (Ji and Zhu [11]). There exists an RH(g4) for any positive integer g.

Lemma 3.2 (Ji and Zhu [11]). Suppose that there exists an RH(gu). Then there is an
RH((mg)u) for any positive integer m.

For non-negative integers q,g,k, and t , an H(q,g,k, t) frame (as in [6]) is an ordered
four-tuple (X,G,B,F) with the following properties:

1. X is a set of qg points;
2. G={G1,G2, . . . ,Gq} is an equipartition of X into q groups;
3. F is a family {Fi } of subsets of G called holes, which is closed under intersections.

Hence each hole Fi ∈F is of the form Fi ={Gi1,Gi2, . . . ,Gis }, and if Fi and Fj
are holes then Fi ∩Fj is also a hole. The number of groups in a hole is its size;
and

4. B is a set of k-element transverses (called blocks) of G with the property that every
t-element transverse of G, which is not a t-element transverse of any hole Fi ∈F ,
is contained in precisely one block, and no block contains a t-element transverse
of any hole, where a transverse is a subset of X that meets each Gi in at most one
point.

In this article, an H(q,g,k, t) frame is shortly denoted by HF(q,g,k, t). If an
HF(q,g,4,3) has n holes of size m+s, which intersect on a common hole of size s,
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then such a design will be denoted by HF(mn :s) with group size g. If an HF(q,g,4,3)
has only one hole of size s, then we call it an incomplete H-design of type (gq :gs),
denoted by IH(gq :gs).
An HF(mn :s) (X,G,B,F) with group size g, F ={Fi :0≤ i≤n} and F0 the common

hole of size s is said to be resolvable, denoted by RHF(mn :s), if the block set can
be partitioned into (nmg2(m+2s−3)+n(n−1)(mg)2)/6 parts with the following
properties:

(1) For each hole Fi , 1≤ i≤n, there are exactly mg2(m+2s−3)/6 parts, each being
a partition of X \F∗

i (called a partial parallel class), where F∗
i =⋃

G∈Fi G;

(2) There are n(n−1)(mg)2/6 parts, each being a parallel class on X .

An IH(gm+s :gs) (X,G,B,F) with the only hole F of size s is said to be resolvable,
denoted by IRH(gm+s :gs), if the block set can be partitioned into (m+s−1)(m+
s−2)g2/6 parts, (s−1)(s−2)g2/6 of which being partitions of X \(

⋃
G∈F G), and

m(m+2s−3)g2/6 of which being parallel classes on X .
The following lemma is simple, but useful.

Lemma 3.3. Suppose that there exist both an IRH(gm+s :gs) and an RH(gs). Then
there exists an RH(gm+s).

Lemma 3.4. Suppose that there exists an RHF(mn :s) with group size g. If there exists
an IRH(gm+s :gs), then there exist both an IRH(gmn+s :gm+s) and an IRH(gmn+s :gs).
Proof. Let (X,G,B,F) be the given RHF(mn :s), F ={Fk :0≤k≤n} and F0 be the
common hole of size s. Let F∗

k =⋃
G∈Fk G, 0≤k≤n. Then the block set B has a parti-

tion {P(k, j) : 1≤ k ≤ n,1≤ j ≤mg2(m+2s−3)/6}∪{P ′(i) :1≤ i≤n(n−1)(mg)2/6}
such that (1) for each pair (k, j), 1≤k≤n and 1≤ j ≤mg2(m+2s−3)/6, P(k, j) is a
partition of X \F∗

k ; (2) for each i , 1≤ i≤n(n−1)(mg)2/6, P ′(i) is a parallel class on X .
For 1≤k≤n−1, construct an IRH(gm+s :gs) on F∗

k with group set Fk and hole
F0. Denote the set of blocks by Ak . Then there are (m+s−1)(m+s−2)g2/6 parts
Q(k, j), such that for 1≤ j≤m(m+2s−3)g2/6, Q(k, j) is a partition of F∗

k ; for
m(m+2s−3)g2/6< j ≤(m+s−1)(m+s−2)g2/6, each Q(k, j) is a partition of
F∗
k \F∗

0 . Then each P(k, j)∪Q(k, j) with 1≤k≤n−1,1≤ j≤mg2(m+2s−3)/6
forms a parallel class on X . Each

⋃
1≤k≤n−1 Q(k, j) with m(m+2s−3)g2/6< j ≤

(m+s−1)(m+s−2)g2/6 forms a partition of X \F∗
n . So the resulting design is an

IRH(gmn+s :gm+s).
Furthermore, if we construct an IRH(gm+s :gs) on F∗

n with group set Fn and hole
F0, then we obtain an IRH(gmn+s :gs). �

Lemma 3.5 (Product construction). Suppose that there exist both an RH(g2u) and an
RH(g2t ). Then there exists an RH(g2ut ).

Proof. Let(X,G,B) be the given RH(g2u), where G={G0, . . . ,G2u−1}. Let F =
{F1, . . . ,F2u−1} be a one-factorization of the complete graph on Z2u . Applying
Lemma 3.2, we construct an RH((tg)2u) on X ′ = X×Zt with the group set
G′ ={G ′

i =Gi ×Zt :0≤ i≤2u−1} and a resolution of the block set A, P1 | P2 | · · · | Ps ,
where s=(2u−1)(2u−2)(tg)2/6.
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Since an RH(g2t ) exists, gt is even. For 0≤ i≤2u−1, let F i ={Fi
1, . . . ,F

i
g(t−1)} be

a one-factorization of the complete multiple-graph on Gi ×Zt with t parts {Gi ×{l} :
l∈ Zt }. For any {a,b}∈Fx

m and {c,d}∈Fy
m , construct a block {a,b,c,d}, where 1≤m≤

g(t−1) and {x, y}∈Fn with 2≤n≤2u−1. Denote the set of all these blocks by A′.
Here, for any fixed r , 0≤r ≤ tg/2−1, the blocks {a,b,c,d} with {a,b} being the kth
edge of Fx

m , {c,d} being the (k+r)th edge of Fy
m with 1≤k≤ tg/2 form a partition of

the set G ′
x ∪G ′

y . Hence, for each {x, y}∈Fn , we can obtain g(t−1) ·tg/2 parts each of
which partitions G ′

x ∪G ′
y . In total, we can get (2u−2) ·g(t−1) ·tg/2 parallel classes.

For 1≤k≤u, let the kth edge of F1 be {x, y}. Construct an RH(g2t ) on G ′
x ∪G ′

y with
group set {Gx ×{l},Gy×{l} : l∈ Zt }. Denote its block set by Ck , which can be parti-
tioned into parallel classes Q(k,1), . . . ,Q(k, (2t−1)(2t−2)g2/6). Let C=⋃

1≤k≤u Ck .
Here, for each fixed j , 1≤ j ≤(2t−1)(2t−2)g2/6,

⋃
1≤k≤u Q(k, j) forms a parallel

class.
Let G′′ ={Gi ×{l} :0≤ i ≤2u−1, l∈ Zt }; it is easy to check that (X ′,G′′,A∪

A′ ∪C) is an H(g2ut ). By the construction, the number of parallel classes is
(2u−1)(2u−2)(tg)2/6+(2u−2) ·g(t−1) ·tg/2+(2t−1)(2t−2)g2/6=(2ut−1)(2ut−2)
g2/6. Hence, the resulting H-design is resolvable. �

The tripling construction has played an important role in the construction of resolvable
Steiner quadruple systems [6]. In the remainder of this section, we generalize this
construction to the case for RHs (for the case of H-design, see [4]).
For non-negative integers n and s, a B-pairing B(n,s) consists of four subsets

D, R0, R1, R2 of Z6(n+s) and three subsets PR0, PR1, PR2 of Z6(n+s)×Z6(n+s) with
the following properties for each i ∈ Z3:

(1) Cardinality and symmetry conditions
(a) |D|=6s, |Ri |=2n,
(b) D=−D.

(2) Partitioning conditions
(a) PRi is a partition of Ri into pairs, thus |PRi |=n,
(b) Z6(n+s) =D∪R0∪R1∪R2.

(3) Pairing conditions
Let Li ={|x− y| : {x, y}∈ PRi } and N ={n+s,2(n+s),3(n+s)},
(a) N∩Li =∅,
(b) |Li |=n,
(c) the complement Gi of the graph G(6(n+s), Li ∪N ) has a one-factorization.

Let S0, S1, S2, R0, R1, R2 be subsets of Z6(2n+s) and PS0, PS1, PS2 be subsets of
Z6(2n+s)×Z6(2n+s). A B-pairing B(2n,s) with D, R0, R1, R2, PR0, PR1 and PR2 is
said to be resolvable, denoted by RB(2n,s), if the following properties are satisfied for
each i ∈ Z3:

(1) Cardinality and symmetry conditions
(c) |Si |=4n, |Ri |=2n.

(2) Partitioning conditions
(c) PSi is a partition of Si into pairs, thus |PSi |=2n,
(d) Z6(2n+s) =D∪Ri ∪Si ∪Ri+1∪−Ri−1.

(3) Pairing conditions
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Let Oi ={|x− y| : {x, y}∈ PSi },
(d) N∩Oi =∅,
(e) |Oi |=2n, Li ∩Oi =∅, and all members of Oi are odd,
(f) the complement G ′

i of the graph G(6(2n+s), Li ∪Oi ∪N ) has a one-
factorization.

Now, we give two examples of resolvable B-pairings.

Example 1. Let n=1,s=1; we construct an RB(2,1) on Z18 as follows:

D={0,3,6,9,12,15}.
PR0={{1,17},{4,14}}, PR1={{2,16},{5,13}}, PR2={{7,11},{8,10}}.
PS0={{2,13},{7,8}}, PS1={{1,14},{10,11}}, PS2={{4,17},{5,16}}.
R0={1,14}, R1={5,16}, R2={7,8}.

Example 2. Let n=2,s=2; we construct an RB(4,2) on Z36 as follows:

D={0,6,12,18,24,30,3,9,15,21,27,33}.
PR0={{1,35},{2,34},{4,32},{5,31}}, PR1={{7,29},{8,28},{16,20},{17,19}},
PR2={{10,26},{11,25},{13,23},{14,22}}.
PS0={{8,17},{7,20},{10,25},{11,22}}, PS1={{2,5},{1,32},{26,11},{25,14}},
PS2={{34,31},{35,4},{28,19},{29,16}}.
R0={1,2,32,5}, R1={29,28,16,19}, R2={10,23,13,22}.

Theorem 3.6. If there exists an RB(2n,s), then there exists an RHF((2n+s)3 :s) of
group size 6.

Proof. Let X =(Z6(2n+s)×Z3)∪{∞0,∞1, . . . ,∞6s−1}. Define the groups G(i, j)=
{(k(2n+s)+i, j) :k∈ Z6}, i ∈ Z2n+s, j ∈ Z3, G(∞, j)={∞ks+ j :k∈ Z6}, j ∈ Zs and
the holes F ={F0,F1,F2,F3} with F0={G(∞, j) : j ∈ Zs} and F1+ j =F0∪{G(i, j) :
i ∈ Z2n+s}, j =0,1,2.
For i ∈ Z3, let D, Ri , Ri , Si , PRi , PSi be a resolvable B-pairing RB(2n,s).

Let F2k−1
i |F2k

i be a one-factorization of the graph G(12n+6s,{m}), where m is
the kth member of Oi for 1≤k≤2n. Let F4n+1

i |F4n+2
i | · · · |F8n+6s−6

i be a one-
factorization of the complement of the graph G(6(2n+s), Li ∪Oi ∪N ). Then it is
natural that F1

i |F2
i | · · · |F8n+6s−6

i is a one-factorization of the complement of the graph
G(6(2n+s), Li ∪N ).
We construct an HF(X,G,B,F) with the block set B consisting of the following three

parts:

(1) {∞ j , (a,0), (b,1), (c,2)}, where a+b+c≡d (mod 6(2n+s)), d is the j th member
of D and 0≤ j <6s.

(2) {(a+q, i), (a+t, i), (b, i+1), (c, i+2)}, where a+b+c≡0 (mod 6(2n+s)),{q, t}∈
PRi and i ∈ Z3.

(3) {(a, i), (b, i), (c, i+1), (d, i+1)}, where {a,b}∈F j
i and {c,d}∈F j

i+1, i ∈ Z3 and
j =1,2, . . . ,8n+6s−6.

Now, we partition them into (partial) parallel classes.
First, we give the partial parallel classes. Define F j

i ={F j
i (k) :0≤k≤6n+3s−1}.

For each i ∈ Z3, the 6(2n+s)(2n+3s−3) partial parallel classes missing the hole Fi
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are defined as follows:

Pi ( j,k)={{(a, i+1), (b, i+1), (c, i+2), (d, i+2)}:{a,b}=F j
i+1(m),{c,d}=F j

i+2(m+k),

0≤m≤6n+3s−1} where 4n+1≤ j≤8n+6s−6 and 0≤k≤6n+3s−1.

It is clear that each Pi ( j,k) forms a partition of X \(
⋃

G∈Fi G).

Next, we give the (6(2n+s))2 complete parallel classes. For each (a,b,c) such that
a+b+c≡0 (mod 6(2n+s)), let P(a,b,c) be comprised of 6s blocks from Part (�),
6n blocks from Part (�) and 3n blocks from Part (�) as follows:
Part (�): {{∞ j , (a+d,0), (b−d,1), (c+d,2)} :d is the j th member of D,0≤ j<6s}.
Part (�):

{(a+q,0), (a+ t,0), (b−u,1), (c+u,2)} for i=0,

{(a+u,0), (b+q,1), (b+ t,1), (c−u,2)} for i=1,

{(a−u,0), (b+u,1), (c+q,2), (c+ t,2)} for i=2,

where {q, t} is the j th pair in PRi and u is the j th member of Ri , 1≤ j ≤2n.
Part (�): To select the blocks of Part (�), let PAi |PBi be a partition of PSi into parts
of size n. Then the blocks of Part (�) are all those of the forms:

{(a+s,0), (a+s′,0), (b+ t,1), (b+ t ′,1)},

{(b+u,1), (b+u′,1), (c+w,2), (c+w′,2)},

{(c+ y,2), (c+ y′,2), (a+z,0), (a+z′,0)},
where the pairs {s,s′},{t, t ′},{u,u′},{w,w′},{y, y′} and {z, z′} are the j th (1≤ j ≤n)
pairs selected from the sets PAi , PBi according to the parities of a,b and c as follows:

(i) If a,b and c are all even, then {s,s′}∈ PA0,{t, t ′}∈ PA1,{u,u′}∈ PB1,{w,w′}∈
PB2, {y, y′}∈ PA2,{z, z′}∈ PB0.

(ii) If just a is even, then {s,s′}∈ PB0,{t, t ′}∈ PB1,{u,u′}∈ PA1,{w,w′}∈
PB2, {y, y′}∈ PA2,{z, z′}∈ PA0.

(iii) If just b is even, then {s,s′}∈ PB0,{t, t ′}∈ PB1,{u,u′}∈ PA1,{w,w′}∈
PA2, {y, y′}∈ PB2,{z, z′}∈ PA0.

(iv) If just c is even, then {s,s′}∈ PA0,{t, t ′}∈ PA1,{u,u′}∈ PB1,{w,w′}∈
PA2, {y, y′}∈ PB2,{z, z′}∈ PB0.

It is clear that each P(a,b,c) forms a partition of X . Note that for all (a,b,c) such
that a+b+c≡0 (mod 6(2n+s)), the blocks of Part (�) cover all the blocks of the

form {(x, i+1), (y, i+1), (z, i+2), (w, i+2)}, where {x, y}∈F j
i+1 and {z,w}∈F j ′

i+2
such that 1≤ j, j ′ ≤4n and { j, j ′} is an appropriate pair, i ∈ Z3. �

Lemma 3.7. Suppose that n≥0 and s≥1. An RB(2n,s) exists for each n whenever
s is odd, and for each n �=1 whenever s is even.

Journal of Combinatorial Designs DOI 10.1002/jcd



218 ZHANG AND GE

TABLE I.
0 2n+s 2(2n+s) 3(2n+s) 4(2n+s) 5(2n+s)

1
...

...
...

...
...

...

n

n+1
...

...
...

...
...

...

n+s−1

n+s
...

...
...

...
...

...

2n+s−1

D D D D D D

R0 R0 S0 −R2 S0 R1

S1 −R0 R2 S1 R1 R1

R0 S2 R2 R2 −R1 S2
D D D D D D

S0 R1 S0 −R2 R0 R0

R1 R1 R2 S1 S1 −R0

−R1 S2 R2 R2 R0 S2

Proof. When n=0, we take D= Z6(2n+s) and Ri = Si = Ri =∅. When n>0, the
desired RB(2n,s) is constructed directly as follows:
For s odd, let

D={(2n+s) j :0≤ j ≤5}∪{(2n+s)i+ j :0≤ i≤5,n+1≤ j≤n+s−1},
PR0={{ j,− j} :1≤ j ≤n or (2n+s)+1≤ j≤(2n+s)+n},
PR1={{ j,− j} :n+s≤ j≤2n+s−1 or (2n+s)+n+s≤ j≤2(2n+s)−1},
PR2={{ j,− j} :2(2n+s)+1≤ j≤2(2n+s)+n or 2(2n+s)+n+s≤ j≤3(2n+s)−1},
PS0={{ j,− j−(2n+s)} :n+s≤ j≤2n+s−1 or 2(2n+s)+1≤ j≤2(2n+s)+n},
PS1={{ j,− j−(2n+s)}:1≤ j≤n}∪{{ j+(2n+s),− j}:2(2n+s)+1≤ j≤2(2n+s)+n},
PS2={{ j+(2n+s),− j} :1≤ j ≤n or n+s≤ j ≤2n+s−1},
R0={ j :1≤ j ≤n or 4(2n+s)+n+s≤ j ≤5(2n+s)−1},
R1={ j :(2n+s)+n+s≤ j ≤2(2n+s)−1 or 5(2n+s)+1≤ j≤5(2n+s)+n},
R2={ j :2(2n+s)+1≤ j≤2(2n+s)+n or 2(2n+s)+n+s≤ j ≤3(2n+s)−1}.

We display the above sets in Table I, which is separated into two parts: the upper part
is an arrangement of the elements of Z6(2n+s) and the lower one is an arrangement of
these sets correspondingly.
For s even and n>1, let

D={(2n+s) j :0≤ j ≤5}∪{(2n+s)i+ j :0≤ i≤5,n+1≤ j≤n+s−1},
PR0={{ j,− j} :1≤ j ≤n or n+s≤ j ≤2n+s−1},
PR1={{ j,− j} :(2n+s)+1≤ j≤(2n+s)+n or 2(2n+s)+n+s≤ j ≤3(2n+s)−1},
PR2={{ j,− j} :(2n+s)+n+s≤ j≤2(2n+s)−1 or 2(2n+s)+1≤ j≤2(2n+s)+n}.
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FIGURE 1. PR0 and PA0.
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3(2 ) 2

3(2 ) 1

n s

n s
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n s n s

n s n

n s n

n s

n s

FIGURE 2. PR1 and PA1.

Let

PA0={{ j,2n+s+1− j} :2≤ j≤n}∪{{1,5(2n+s)+2}},
PA1={{2n+s+ j,3(2n+s)+1− j} :2≤ j≤n}∪{{2n+s+1,3(2n+s)+2}},
PA2={{2(2n+s)− j,4(2n+s)−1+ j} :2≤ j≤n}∪{{2(2n+s)−1,4(2n+s)−2}}.

We illustrate the above sets in Figures 1–3.
Let

PS0= PA1∪PA2, PS1= PA0∪(−PA2), PS2=(−PA0)∪(−PA1),
R0=−(R0\A0), R1= R1\A1, R2=−(R2\A2), where Ai =⋃

{x,y}∈PAi
{x, y}.

It is readily checked that the above sets D, PR0, PR1, PR2, PS0, PS1, PS2, R0, R1, R2
form an RB(2n,s) on Z6(2n+s). �

Combining Theorem 3.6 and Lemma 3.7, we obtain the following lemma.

Lemma 3.8. Suppose that n≥0 and s≥1. There exists an RHF((2n+s)3 :s) with
group size 6 for each n whenever s is odd and for each n �=1 whenever s is even.
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FIGURE 3. PR2 and PA2.

Combining Lemmas 3.4 and 3.8, we obtain the following theorem.

Theorem 3.9 (Tripling construction). Suppose m≥s≥1 and m−s �=2 when s is
even. If there exists an IRH(6m+s :6s), then there exist both an IRH(63m+s :6s) and an
IRH(63m+s :6m+s).

4. THE EXISTENCE OF RH(62t) FOR ALL INTEGERS t≥2

In this section, we shall give the existence of RH(62t ) for all integers t≥2.

Lemma 4.1 (Ji and Zhu [11]). There exists an RH(22n) for each n∈{5,7,13}, hence
there exists an RH(62n) for each n∈{5,7,13}.
Lemma 4.2. There exists an RH(66).

Proof. Let the point set be G= Z36, and the group set be {{ j, j+6, . . . , j+30} : j =
0,1, . . . ,5}. We construct the base blocks as follows:

Part 1: {7,9,14,16}, {5,10,27,32}, {1,3,12,14},
{2,5,16,19}, {1,11,20,30}, {1,4,11,14}.

Part 2: {0,2,4,9}, {14,21,22,30}, {6,11,34,3},
{18,31,5,10}, {12,16,26,1}, {19,20,23,24},
{25,32,33,35}, {7,27,28,29}, {8,13,15,17}.

Part 3: {11,16,27,32}, {1,14,17,34}, {2,13,21,30},
{5,9,24,28}, {19,23,4,8}, {35,7,12,22},
{18,20,3,10}, {26,31,6,15}, {0,25,29,33}.

Part 4: {18,32,33,34}, {1,5,16,27}, {19,29,9,10},
{14,22,23,0}, {20,21,24,25}, {12,17,3,7},
{2,11,15,31}, {8,30,35,4}, {6,13,26,28}.

Part 5: {9,22,23,31}, {17,25,26,33}, {29,0,16,20},
{4,7,12,15}, {14,21,35,1}, {8,10,11,18},
{5,13,24,32}, {2,27,30,34}, {19,28,3,6}.
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Part 6: {0,2,5,15}, {9,30,4,7}, {29,31,12,14},
{23,27,16,20}, {3,10,25,32}, {24,26,35,1},
{11,13,21,28}, {6,19,22,33}, {17,18,34,8}.

Part 7: {1,10,14,33}, {4,11,19,32}, {31,9,12,26},
{13,15,16,18}, {0,5,20,21}, {24,25,34,35},
{2,17,27,28}, {22,23,3,6}, {7,8,29,30}.

Here, the base blocks are developed by +2 modulo 36. The elements of each block
in Part 1 cover the residues modulo 4; hence, each block in Part 1 gives a parallel class
when developed by +4 modulo 36. The elements of blocks in each of the other parts
are different. Hence, each of these parts forms a parallel class. �

Lemma 4.3. If there exists an RH(62p) for each prime p, then there exists an RH(62n)
for each integer n≥2.

Proof. For each integer n≥2, if n is a prime, then there exists an RH(62n) by assump-
tion. Otherwise, let n= p1×n1, where p1 is a prime. There exists an RH(62p1) by
assumption. If n1 is also a prime, then there exists an RH(62n1). Applying Lemma 3.5,
we obtain an RH(62n). If n1 is not a prime, let n1= p2×n2, we repeat the previous
procedure. Since n is a finite number, this procedure will stop after finite steps. This
completes the proof. �

Lemma 4.4. There exists an RH(62p) for each prime p.

Proof. There exist both an RH(64) and an RH(66) by Lemmas 3.1 and 4.2. We need
only to consider the case of prime p≥5. Hence, 2p=12k+10 or 12k+14,k≥0.
For 2p=12k+10,12k+14,k≥0, the proof proceeds by induction. When k=0, we

have an RH(62p) for p∈{5,7} by Lemma 4.1. For k≥1, suppose that there exists an
RH(62p) for each prime p, 2p<12k+10. Then by the proof of Lemma 4.3, there
exist both an RH(64(k+1)) and an RH(64k+6), as well as an IRH(64(k+1) :61) and an
IRH(64k+6 :62). For 2p=12k+10, apply Theorem 3.9 with s=1 and m=4k+3 to
obtain an IRH(612k+10 :61). For 2p=12k+14, apply Theorem 3.9 with s=2 and m=
4k+4 to obtain an IRH(612k+14 :62). This completes the proof. �

Theorem 4.5. There exists an RH(62t ) for any integer t≥2.

Proof. Combining Lemmas 4.3 and 4.4, the conclusion then follows. �

5. CONCLUDING REMARKS

Now, we are in a position to state our main result of this article.

Theorem 5.1. An MRPQS(v) (MRCQS(v)) with the number of blocks meeting the
upper (lower) bound exists if and only if v≡0 (mod 4).

Proof. Combining Theorem 1.1, Lemma 2.2, Lemma 2.5, and Theorem 4.5, the conclu-
sion then follows. �
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A t-wise balanced design (tBD) of type t-(v,K ,�) is a pair (X,B), where X is a v-set
of points and B is a collection of subsets of X (blocks) with the property that the size
of every block is in the set K and every t-subset of X is contained in exactly � blocks.
A t-(v,K ,�) design is also denoted by S�(t,K ,v). If �=1, the notation S(t,K ,v) is
often used and the design is a Steiner system.
An S(t,K ,v) (X,B) is said to be resolvable, denoted by RS(t,K ,v), if the block

set B can be partitioned into parallel classes. A parallel class is uniform if all blocks
in the parallel class have the same size. A uniformly resolvable Steiner system,
URS(t,K , R,v), is an RS(t,K ,v) such that all of the parallel classes are uniform,
where R is a multiset with |R|=|K | and for each k∈K there corresponds a positive
rk ∈ R such that there are exactly rk parallel classes of size k.
It is easy to check that the necessary condition for the existence of a URS(3,{4,6},

{r4,r6}, v) with r6≤1 is v≡0 (mod 4). For each v≡4,8 (mod 12), there exists an
RSQS(v) which is a URS(3,{4,6},{r4,r6},v) with r6=0 indeed. For each v≡
0 (mod 12), there exists an RG(6v/6) by Lemma 2.4 and Theorem 4.5. If each group
is regarded as a block, then all the groups form a parallel class, each block of which
is of size 6. Hence, we obtain a URS(3,{4,6},{r4,r6},v) with r6=1. Thus, we obtain
the following theorem.

Theorem 5.2. There exists a URS(3,{4,6},{r4,r6},v) with r6≤1 for each v≡0
(mod 4).

In this article, the product and tripling constructions for RH(gn) play an important
role in the construction of RH(62t ), from which the maximal resolvable packings and
minimal resolvable coverings are obtained. It is believed that these two constructions
may also be useful in the investigation of the general existence problem of RH(gn)
for all admissible integers g and n≥4. According to the necessary conditions for the
existence of an RH(gn) and by Lemma 3.2, the general existence problem of RH(gn)
depends on the solution of the following six cases:

(1) g=1 and n≡4,8 (mod 12),
(2) g=2 and n≡2,4 (mod 6),
(3) g=3 and n≡0 (mod 4),
(4) g=4 and n≡1,2 (mod 3),
(5) g=6 and n≡0 (mod 2),
(6) g=12 and n∈N .

For Case (1), an RH(1n) is actually an RSQS(n), which exists from [11]. For Case
(5), the existence of RH(6n) is proved in this article. Hence, the existence of RH(gn)
for Cases (2), (3), (4) and (6) will be an interesting topic for further investigation.
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