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1. INTRODUCTION

A group divisible design (or GDD) is a triple (X,G,B) which satisfies the following prop-
erties:

1. G is a partition of a set X (of points) into subsets called groups;
2. B is a set of subsets of X (called blocks) such that a group and a block contain at most

one common point;
3. Every pair of points from distinct groups occurs in exactly λ blocks.

The group type (or type) of the GDD is the multiset {|G| : G ∈ G}. We shall use an
“exponential” notation to describe types: so type t

u1
1 · · · tuk

k denotes ui occurrences of ti, 1 ≤
i ≤ k, in the multiset.
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A GDD with block sizes from a positive integer set K is called a (K, λ)-GDD. When
K={k}, we simply write k for K. When λ = 1, we simply write K-GDD for a (K, λ)-GDD.
A (k, λ)-GDD with group type 1v (k < v) is called a balanced incomplete block design,
denoted by (v, k, λ)-BIBD.

A design is called simple if it contains no repeated blocks. A design is said to be super-
simple if the intersection of any two blocks has at most two elements. When k = 3, a
super-simple design is just a simple design. When λ = 1, the designs are necessarily super-
simple. In this article, when we talk about super-simple BIBDs, we usually mean the case
k ≥ 4 and λ > 1.

The term super-simple designs was introduced by Gronau and Mullin in [24] (see the
survey paper [9]). The existence of super-simple designs is an interesting extremal problem
in itself, but there are also some useful applications. Such designs are used in the construction
of coverings [8], in construction of new designs [7], and in the construction of superimposed
codes [26].

For the existence of super-simple (v, 4, λ)-BIBDs, the necessary conditions are known
to be sufficient for λ = 2, 3, 4, 6 (see [12]). Gronau and Mullin [24] solved the case for
λ = 2, and the corrected proof appeared in [25]. The λ = 3 case was solved by Chen [10].
The λ = 4 case was solved independently by Adams, Bryant, and Khodkar [6] and Chen
[11]. The case of λ = 6 was solved by Chen, Cao, and Wei [12]. A recent survey on super-
simple (v, 4, λ)-BIBDs with v ≤ 32 appeared in [9]. We summarize these known results in
the following theorem.

Theorem 1.1 [24,25,10,6,11,12]. A super-simple (v, 4, λ)-BIBD exists for λ = 2, 3, 4, 6
if and only if the following conditions are satisfied:

1. λ = 2, v ≡ 1 (mod 3) and v ≥ 7;
2. λ = 3, v ≡ 0, 1 (mod 4) and v ≥ 8;
3. λ = 4, v ≡ 1 (mod 3) and v ≥ 10;
4. λ = 6, v ≥ 14.

For the existence of super-simple (v, 5, λ)-BIBDs, the necessary conditions for λ =
2, 4, 5 are proved to be sufficient with a finite number of possible exceptions. Gronau,
Kreher, and Ling [23] solved the case of λ = 2 with 11 unsettled values. Recently, 9 of
these values were removed by Abel and Bennett [1], and Chen and Wei [13]. The λ = 4, 5
cases were solved by Chen and Wei [13,14]. We summarize these known results for k = 5
in the following theorem.

Theorem 1.2 [23,1,13,14]. A super-simple (v, 5, λ)-BIBD exists for λ = 2, 4, 5 if and
only if the following conditions are satisfied:

1. λ = 2, v ≡ 1, 5 (mod 10), v �= 5, 15, except possibly when v ∈ {115, 135};
2. λ = 4, v ≡ 0, 1 (mod 5), v ≥ 15;
3. λ = 5, v ≡ 1 (mod 4) and v ≥ 17, except possibly when v = 21.

A GDD or a BIBD is said to be resolvable if its blocks can be partitioned into parallel
classes each of which spans the set of points. We denote them by (K, λ)-RGDD or (v, k, λ)-
RBIBD.

It is well known that the following are the necessary conditions for the existence of a
super-simple (v, k, λ)-RBIBD:
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1. v ≥ (k − 2)λ + 2;
2. λ(v − 1) ≡ 0 (mod k − 1);
3. v ≡ 0 (mod k).

The existence result on super-simple (v, k, λ)-RBIBDs for k = 4 and λ = 3 has been
established by Ge and Lam [19], which is restated in the following theorem.

Theorem 1.3 [19]. The necessary conditions for the existence of a super-simple (v, 4, 3)-
RBIBD, that is, v ≥ 8 and v ≡ 0 (mod 4), are also sufficient except for v = 12.

In this article we investigate the existence of super-simple (v, 4, 2)-RBIBDs, for which
the necessary conditions reduce to v ≡ 4 (mod 12). It is easy to see that there exists no
super-simple (4, 4, 2)-RBIBD. So we only need to consider the case of v ≥ 16. We shall
prove the following main result.

Theorem 1.4. The necessary conditions for the existence of a super-simple (v, 4, 2)-
RBIBD, namely, v ≡ 4 (mod 12) and v ≥ 16, are also sufficient.

The article is organized as follows. In Section 2, we shall introduce a special class
of k-frames, that is, k-frames with a GP-fixed automorphism, which can be used to con-
struct super-simple (k, 2)-frames. Some recursive constructions will also be listed there. In
Section 3, partitionable skew Room frames will be employed to construct 4-frames with
a GP-fixed automorphism, and the existence of a new class of partitionable skew Room
frames will be established. In Section 4, some ingredient super-simple RBIBDs will be
constructed directly by computer search. The crucial class of super-simple (4, 2)-frames of
type 12n will be constructed in Section 5. Some remarks and conclusion will be given in
the last section.

2. RECURSIVE CONSTRUCTIONS

To describe our recursive constructions, we need the following auxiliary designs.
If (X,G,B) is a (k, λ)-GDD and G ∈ G, then we say that a set P ⊂ B of blocks is a holey

parallel class with hole G provided that P consists of (|X| − |G|)/k disjoint blocks that
partition X \ G. If we can partition the set of blocks B into a set P of holey parallel classes,
then we say that (X,G,B) is a (k, λ)-frame.

The group-type (or type) of the frame is the multiset {|G| : G ∈ G}. As with GDDs we
shall use an “exponential” notation to describe group-type.

A transversal design (TD) TD(k, n) is a GDD of group type nk and block size k. A
resolvable TD(k, n) (denoted by RTD(k, n)) is equivalent to a TD(k + 1, n). It is well known
that a TD(k, n) is equivalent to k − 2 mutually orthogonal Latin squares (MOLS) of order
n. In this article, we mainly employ the following known results on TDs.

Lemma 2.1 [4]. An RTD(4, n) exists for all n ≥ 4 except for n = 6 and possibly excepting
n = 10.

An incomplete balanced incomplete block design (IBIBD) with block size k and index
λ is a triple (X, H,B) which satisfies the following properties:
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1. H is a subset of X (of points) called the hole;
2. B is a collection of k-subsets of X, called blocks, such that any block shares at most

one common point with the hole;
3. Every pair of points from X is either in H or in exactly λ blocks but not in both.

We denote this design by (k, λ)-IBIBD(v, h), where v is size of the point set X and h is
size of the hole set H . When H = ∅, a (k, λ)-IBIBD(v, h) is just a (v, k, λ)-BIBD.

A (k, λ)-IBIBD(v, h) is said to be resolvable if its blocks can be partitioned into parallel
classes and partial parallel classes, called holey parallel classes, the latter partitioning X\H .
We denote it by (k, λ)-IRBIBD(v, h).

To obtain the main results, we shall use the following basic constructions, for which
proofs can be found in [18]. Here, we just need to do the routine check for the super-simple
property.

Construction 2.2 (Weighting I). Let (X,G,B) be a GDD with index unity, and let w :
X → Z+ ∪ {0} be a weight function on X. Suppose that for each block B ∈ B, there exists
a super-simple (k, λ)-frame of type {w(x) : x ∈ B}. Then there is a super-simple (k, λ)-frame
of type {∑x∈Gi

w(x) : Gi ∈ G}.
Construction 2.3 (Weighting II). Let (X,G,B) be a super-simple GDD with index λ, and
let w : X → Z+ ∪ {0} be a weight function on X. Suppose that for each block B ∈ B, there
exists a k-frame of type {w(x) : x ∈ B}. Then there is a super-simple (k, λ)-frame of type
{∑x∈Gi

w(x) : Gi ∈ G}.
Construction 2.4 (Generalized frame constructions). Suppose there is a super-simple
(k, λ)-frame with type T = {ti : i = 1, 2, . . . , n}. Let b > 0. If there exists a super-
simple (k, λ)-IRBIBD(ti + b, b) for i = 1, 2, . . . , n − 1, then there exists a super-simple
(k, λ)-IRBIBD(u + b, tn + b) where u = ∑n

i=1 ti. Furthermore, if a super-simple (tn + b,

k, λ)-RBIBD exists, then a super-simple (u + b, k, λ)-RBIBD also exists.

In this article the main construction we use is Construction 2.4. If we have got a super-
simple (16, 4, 2)-RBIBD and a super-simple (4, 2)-IRBIBD(12 + 4, 4) as ingredient de-
signs, then using Construction 2.4, we only need a super-simple (4, 2)-frame of type 12n

to obtain a super-simple (12n + 4, 4, 2)-RBIBD. To get the super-simple (4, 2)-frames, we
consider a special class of 4-frames.

Suppose that (X,G,B) is a k-frame, P is the set of holey parallel classes. Let σ be a
permutation on X. If the block set, the group set and the set of holey parallel classes are
fixed under the action of σ, that is, ∀ B ∈ B, σ(B) ∈ B, ∀ G ∈ G, σ(G) ∈ G, and ∀ P ∈ P,
σ(P) = {σ(B)|B ∈ P} ∈ P, then σ is called an automorphism of (X,G,B). Furthermore, if
the automorphism σ keeps each of the groups as well as each of the holey parallel classes
fixed, we say that the automorphism is GP-fixed. k-frames with a GP-fixed automorphism
that decomposes each group into h cycles of length 2 play an essential role in the construction
of super-simple (k, 2)-frames, which is stated in the following theorem.

Theorem 2.5. Suppose there exists a k-frame of type (2h)n with a GP-fixed automorphism
that decomposes each group into h cycles of length 2, then there exists a super-simple (k, 2)-
frame of type hn.

Proof. Suppose that (X,G,B) is a k-frame of type (2h)n with a GP-fixed automorphism σ

that decomposes each group into h cycles of length 2, P is the set of holey parallel classes.
Let X′ be a maximal subset of X such that if x ∈ X′ then σ(x) ∈ X \ X′. Hence, |X′| = hn.
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For the set X′, we define a new group set G′ = {G′ = G ∩ X′ : G ∈ G}, and a new block
set B′ = {B′ = (B ∩ X′) ∪ (σ(B) ∩ X′) : B, σ(B) ∈ B}; then |G′| = h for any G′ ∈ G′, and
|B′| = k for any B′ ∈ B′. We will show that (X′,G′,B′) is the desired design.

First, we prove that (X′,G′,B′) is a (k, 2)-GDD of type hn. It is only to be checked that
every pair of points from distinct groups occurs in exactly 2 blocks. For any pair {x, y} with
x ∈ G′

1 ∈ G′ and y ∈ G′
2 ∈ G′, we have four distinct blocks B1, σ(B1), B2, σ(B2) such that

{x, y} ⊂ B1, {σ(x), σ(y)} ⊂ σ(B1), {x, σ(y)} ⊂ B2, {σ(x), y} ⊂ σ(B2). Then we get B′
1 =

(B1 ∩ X′) ∪ (σ(B1) ∩ X′), B′
2 = (B2 ∩ X′) ∪ (σ(B2) ∩ X′) such that {x, y} ⊂ B′

1, {x, y} ⊂
B′

2.
Second, we check the resolvability. Denote t = h(n − 1)/k, and suppose P ∈ P, P =

{B1, B2, . . . , Bt, σ(B1), σ(B2), . . . , σ(Bt)}. Then we obtain P ′ = {B′
1, B

′
2, . . . , B

′
t}, where

B′
i = (Bi ∩ X′) ∪ (σ(Bi) ∩ X′) for 1 ≤ i ≤ t satisfying

t⋃
i=1

B′
i =

t⋃
i=1

((Bi ∩ X′) ∪ (σ(Bi) ∩ X′)) =
t⋃

i=1

((Bi ∪ σ(Bi)) ∩ X′)

=
(

t⋃
i=1

(Bi ∪ σ(Bi))

)
∩ X′ = (X \ G) ∩ X′ = X′ \ G′.

Hence we get the conclusion that P ′ is a holey parallel class.
Finally, we check the super-simplicity. Suppose there are two blocks B′

1 and B′
2 sharing

at least three common points. Suppose {x, y, z} ⊂ B′
1 ∩ B′

2, and {x, y, z} ⊂ B1, where B′
1

is obtained from B1 and σ(B1), B′
2 is obtained from B2 and σ(B2). We can conclude that

there exist two blocks of {B1, B2, σ(B1), σ(B2)} sharing at least two common points, which
contradicts to the fact that (X,G,B) is a k-frame. �

Similar to the proof of Theorem 2.5, we can obtain the following lemma.

Lemma 2.6. Suppose there is a k-RGDD of type 2n with a GP-fixed automorphism that
decomposes each group into one cycle of length 2. Then there is a super-simple (n, k, 2)-
RBIBD.

Before closing this section, we provide the following two ingredient designs.

Lemma 2.7. There exists a super-simple (16, 4, 2)-RBIBD.

Proof. It is easy to check that the super-simple 2-resolvable (16, 4, 2)-design presented in
[23, Lemma 2.9] is also resolvable. Colbourn also gave a solution in [15]. �

Lemma 2.8. There exists a super-simple (4, 2)-IRBIBD(12 + 4, 4).

Proof. Let the point set be X = {1, 2, . . . , 16} and the hole set be H = {1, 2, 3, 4}. The
required blocks are listed below:
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{5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16},
{5, 6, 9, 10}, {7, 8, 13, 14}, {11, 12, 15, 16},
{1, 5, 7, 11}, {2, 6, 8, 12}, {3, 9, 13, 15}, {4, 10, 14, 16},
{1, 5, 12, 14}, {2, 6, 11, 13}, {3, 7, 10, 16}, {4, 8, 9, 15},
{1, 6, 9, 16}, {2, 5, 10, 15}, {3, 7, 12, 14}, {4, 8, 11, 13},
{1, 6, 14, 15}, {2, 5, 13, 16}, {3, 8, 9, 12}, {4, 7, 10, 11},
{1, 7, 9, 13}, {2, 8, 10, 14}, {3, 5, 11, 15}, {4, 6, 12, 16},
{1, 10, 12, 13}, {2, 9, 11, 14}, {3, 5, 8, 16}, {4, 6, 7, 15},
{1, 8, 10, 15}, {2, 7, 9, 16}, {3, 6, 11, 14}, {4, 5, 12, 13},
{1, 8, 11, 16}, {2, 7, 12, 15}, {3, 6, 10, 13}, {4, 5, 9, 14}.

Each of the first two rows gives a holey parallel class missing the hole H , and each of
the remaining eight rows gives a parallel class. It is readily checked that the design is a
super-simple IRBIBD. �

3. PARTITIONABLE SKEW ROOM FRAMES

To construct 4-frames with GP-fixed automorphisms, we need the concept of skew Room
frames.

Let X be a set, and let {H1, . . . , Hn} be a partition of X. An {H1, . . . , Hn}-Room frame
is an |X| × |X| array, F , indexed by X, which satisfies the properties:

1. every cell either is empty or contains an unordered pair of symbols of X,
2. the subarrays H2

k are empty, for 1 ≤ k ≤ n (these subarrays are referred to as holes),
3. each symbol of X \ Hk occurs precisely once in row (or column) r, where r ∈ Hk,
4. the pairs occurring in F are precisely those {i, j} where (i, j) ∈ X2 \ ∪n

k=1H
2
k .

A skew Room frame is a Room frame in which cell (i, j) is occupied if and only if cell
(j, i) is empty.

The type of an {H1, . . . , Hn}-Room frame F will be the multiset {|H1|, . . . , |Hn|}. We
will say that F has type t

u1
1 · · · tuk

k provided there are uj Hi’s of cardinality tj , for 1 ≤ j ≤ k.
From a skew Room frame of type hn, one can get a 4-GDD of type (6h)n [29]. The 4-GDD

is based on Hi × Z6, 1 ≤ i ≤ n. The block set B contains all blocks {(a, j), (b, j), (c, 1 +
j), (r, 4 + j)}, where j ∈ Z6, {a, b} ∈ F, {a, b} occurs in column c and row r.

If all the quadruples (a, b, c, r) can be partitioned into sets such that each set forms a
partition of X \ Hi for some i, and each Hi corresponds to 2h of the sets, we call the skew
Room frame partitionable.

Skew Room frames have played an important role in the constructions of BIBDs and
GDDs with block size four [29] and the resolution of the existence problem for weakly
3-chromatic BIBDs with block size four [30]. Partitionable skew Room frames were first
introduced by Colbourn, Stinson, and Zhu in [17] to construct 4-frames. Here, we restate
their construction as follows.

Lemma 3.1 [17]. If there is a partitionable skew Room frame of type hn, then there exists
a 4-frame of type (6h)n.

The following is a simple observation based on the Colbourn–Stinson–Zhu construction.
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Lemma 3.2. Suppose there exists a partitionable skew Room frame of type hn. Then there
exists a 4-frame of type (6h)n with a GP-fixed automorphism σ that decomposes each group
into 3h cycles of length 2. Moreover, there exists a super-simple (4, 2)-frame of type (3h)n.

Proof. Suppose (X × Z6,G,B) is a 4-frame obtained from a partitionable skew Room
frame, where G = {Hi × Z6 : 1 ≤ i ≤ n}. We define an automorphism on X × Z6, σ :
(x, i) → (x, i + 3 mod 6). It is easy to check that σ is a GP-fixed automorphism of order 2
on X × Z6, which decomposes each group into 3h cycles of length 2. The second assertion
comes from Theorem 2.5. �

In the remainder of this section, we shall concentrate on the constructions of partitionable
skew Room frames of type 4n, which will provide us the super-simple (4, 2)-frames of type
12n by Lemma 3.2. First, we need the following recursive constructions, which are simple
modifications of the constructions for skew Room frames [31].

Theorem 3.3 (Inflation Construction). Suppose there is a partitionable skew Room frame
of type t1

u1 t2
u2 . . . tk

uk , and suppose also that m �= 2, 3, 6, or 10. Then there exists a
partitionable skew Room frame of type (mt1)u1 (mt2)u2 . . . (mtk)uk .

Theorem 3.4 (Wilson’s Fundamental Construction). Let (X,G,B) be a GDD with index
unity, and let w : X → Z+ ∪ {0} be a weight function on X. Suppose that for each block
B ∈ B, there exists a partitionable skew Room frame of type {w(x) : x ∈ B}. Then there is
a partitionable skew Room frame of type {∑x∈Gi

w(x) : Gi ∈ G}.
Define PSF4 = {n : there exists a partitionable skew Room frame of type 4n}. Then

the following corollary of Theorem 3.4 says that the set PSF4 is PBD-closed, which was
similarly stated in [27].

Corollary 3.5. Suppose there is an (n, PSF4)-PBD. Then n ∈ PSF4.

Proof. The hypothesized PBD can be thought of as a GDD in which every group has
size 1. Give every point weight 4 and apply Theorem 3.4. �

Room frames of type hn are often constructed using an abelian group of order hn, which
can be found in [17]. Let G be an abelian group, written additively, and let H be a subgroup
of G. Denote g = |G|, h = |H |, and suppose that g − h is even. A frame starter in G \ H

is a set of unordered pairs S = {{si, ti} : 1 ≤ i ≤ (g − h)/2} satisfying

1.
⋃

1≤i≤(g−h)/2({si} ∪ {ti}) = G \ H , and
2.
⋃

1≤i≤(g−h)/2{±(si − ti)} = G \ H .

An adder for S is an injection A : S → G \ H such that

⋃
1≤i≤(g−h)/2

({si + ai} ∪ {ti + ai}) = G \ H,

where ai = A(si, ti), 1 ≤ i ≤ (g − h)/2. An adder A is skew if, further,

⋃
1≤i≤(g−h)/2

({ai} ∪ {−ai}) = G \ H.
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From a starter S and a skew adder A, we can construct a skew Room frame F in which
the cell (j, −ai + j) is occupied by {si + j, ti + j} for 1 ≤ i ≤ (g − h)/2 and any j ∈ G.
To obtain a 4-frame, it suffices to partition the quadruples: (si + j, ti + j, −ai + j, j).

Below are direct constructions for some partitionable skew Room frames.

Lemma 3.6. There exists a partitionable skew Room frame of type 45.

Proof. Using a computer program we found a starter S and a skew adder A of type 45 as
follows.

G = Z20 and H = {0, 5, 10, 15}.
S = {{1, 2}, {3, 6}, {4, 8}, {7, 16}, {9, 17}, {11, 18}, {12, 14}, {13, 19}}.
A = {2, 6, 13, 12, 9, 16, 19, 3}.

Translate the initial quadruples:

1, 2, −2, 0 —add 1— 2, 3, 19, 1
3, 6, −6, 0 —add 3— 6, 9, 17, 3
4, 8, −13, 0 —add 4— 8, 12, 11, 4
7, 16, −12, 0 —add 1— 8, 17, 9, 1
9, 17, −9, 0 —add 2— 11, 19, 13, 2

11, 18, −16, 0 —add 3— 14, 1, 7, 3
12, 14, −19, 0 —add 2— 14, 16, 3, 2
13, 19, −3, 0 —add 4— 17, 3, 1, 4

It is obvious that each quadruple on the right covers the four non-zero residues modulo 5,
and hence will give one partition of G \ H by adding k (mod 20), where k ∈ H . Altogether
we get eight partitions of G \ H . Under the action of G, we get further partitions so that the
skew Room frame is partitionable. �

Lemma 3.7. There exists a partitionable skew Room frame of type 46.

Proof. Using a computer program we found a starter S and a skew adder A of type 46 as
follows.

G = Z24 and H = {0, 6, 12, 18}.
S = {{1, 2}, {3, 5}, {4, 9}, {7, 16}, {8, 21}, {10, 14}, {11, 19}, {13, 23}, {15, 22},

{17, 20}}.
A = {13, 2, 17, 4, 1, 9, 21, 14, 19, 8}.

Translate the initial quadruples:
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1, 2, −13, 0 —add 2— 3, 4, 13, 2
4, 9, −17, 0 —add 10— 14, 19, 17, 10
7, 16, −4, 0 —add 9— 16, 1, 5, 9

11, 19, −21, 0 —add 20— 7, 15, 23, 20
13, 23, −14, 0 —add 22— 11, 21, 8, 22

3, 5, −2, 0 —add 5— 8, 10, 3, 5
8, 21, −1, 0 —add 23— 7, 20, 22, 23

10, 14, −9, 0 —add 1— 11, 15, 16, 1
15, 22, −19, 0 —add 4— 19, 2, 9, 4
17, 20, −8, 0 —add 21— 14, 17, 13, 21

It is evident that the first 5 quadruples on the right form a partition of G \ H , so do the last
5 quadruples. Hence this is a partitionable skew Room frame of type 46. �
Lemma 3.8. There exists a partitionable skew Room frame of type 47.

Proof. Using a computer program we found a starter S and a skew adder A of type 47 as
follows.

G = Z28 and H = {0, 7, 14, 21}.
S = {{1, 2}, {3, 5}, {4, 8}, {6, 9}, {10, 19}, {11, 23}, {12, 22}, {13, 26}, {15, 20},

{16, 27}, {17, 25}, {18, 24}}.
A = {8, 27, 9, 17, 10, 13, 3, 5, 24, 6, 2, 16}.

Translate the initial quadruples:

1, 2, 20, 0 —add 4— 5, 6, 24, 4
3, 5, 1, 0 —add 8— 11, 13, 9, 8

13, 26, 23, 0 —add 3— 16, 1, 26, 3
4, 8, 19, 0 —add 12— 16, 20, 3, 12
6, 9, 11, 0 —add 4— 10, 13, 15, 4

12, 22, 25, 0 —add 11— 23, 5, 8, 11
10, 19, 18, 0 —add 13— 23, 4, 3, 13
11, 23, 15, 0 —add 1— 12, 24, 16, 1
17, 25, 26, 0 —add 8— 25, 5, 6, 8
15, 20, 4, 0 —add 2— 17, 22, 6, 2
16, 27, 22, 0 —add 10— 26, 9, 4, 10
18, 24, 12, 0 —add 1— 19, 25, 13, 1

It is easily seen that the first 3 quadruples on the right cover the residues modulo 14 except
{0, 7}, and hence give one partition of G \ H by adding +14 (mod 28) to each element of
these 3 quadruples, so do the second 3 quadruples, the third 3 quadruples and the last 3
quadruples. Hence this is a partitionable skew Room frame of type 47. �
Lemma 3.9. There exists a partitionable skew Room frame of type 49.

Proof. Using a computer program, we found a starter S and a skew adder A of type 49 as
follows.

G = Z36 and H = {0, 9, 18, 27}.
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S = {{1, 2}, {3, 5}, {4, 7}, {6, 10}, {8, 13}, {11, 21}, {12, 24}, {14, 28}, {15, 26},
{16, 31}, {17, 34}, {19, 35}, {20, 33}, {22, 30}, {23, 29}, {25, 32}}.

A = {1, 2, 6, 15, 16, 5, 10, 14, 4, 19, 3, 13, 11, 29, 24, 8}.

Translate the initial quadruples:

1, 2, 35, 0 —add 6— 7, 8, 5, 6
17, 34, 33, 0 —add 4— 21, 2, 1, 4

3, 5, 34, 0 —add 3— 6, 8, 1, 3
23, 29, 12, 0 —add 2— 25, 31, 14, 2

4, 7, 30, 0 —add 4— 8, 11, 34, 4
25, 32, 28, 0 —add 5— 30, 1, 33, 5

6, 10, 21, 0 —add 5— 11, 15, 26, 5
12, 24, 26, 0 —add 4— 16, 28, 30, 4

8, 13, 20, 0 —add 8— 16, 21, 28, 8
11, 21, 31, 0 —add 2— 13, 23, 33, 2
14, 28, 22, 0 —add 7— 21, 35, 29, 7
16, 31, 17, 0 —add 6— 22, 1, 23, 6
15, 26, 32, 0 —add 5— 20, 31, 1, 5
19, 35, 23, 0 —add 7— 26, 6, 30, 7
20, 33, 25, 0 —add 6— 26, 3, 31, 6
22, 30, 7, 0 —add 7— 29, 1, 14, 7

It is easily seen that for each i = 1, 2, . . . , 8, the (2i − 1)-th and 2i-th quadruples cover
the eight non-zero residues modulo 9, and hence give one partition of G \ H . Altogether
we get eight partitions of G \ H . �
Lemma 3.10. There exists a partitionable skew Room frame of type 133.

Proof. Let G = Z33 and H = {0}. A starter and a skew adder of type 133 are given as
follows:

S = {{1, 2}, {3, 5}, {4, 7}, {6, 10}, {8, 13}, {9, 20}, {11, 23}, {12, 25}, {14, 24},
{15, 30}, {16, 32}, {17, 31}, {18, 26}, {19, 28}, {21, 27}, {22, 29}}.

A = {1, 2, 6, 13, 16, 11, 26, 9, 3, 15, 12, 8, 29, 23, 5, 19}.

Translate the initial quadruples:

1, 2, −1, 0 —add 2— 3, 4, 1, 2
3, 5, −2, 0 —add 8— 11, 13, 6, 8

11, 23, −26, 0 —add 20— 31, 10, 27, 20
12, 25, −9, 0 —add 26— 5, 18, 17, 26
16, 32, −12, 0 —add 24— 7, 23, 12, 24
17, 31, −8, 0 —add 30— 14, 28, 22, 30
21, 27, −5, 0 —add 21— 9, 15, 16, 21

4, 7, −6, 0 —add 25— 29, 32, 19, 25
6, 10, −13, 0 —add 1— 7, 11, 21, 1
8, 13, −16, 0 —add 12— 20, 25, 29, 12
9, 20, −11, 0 —add 30— 6, 17, 19, 30
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14, 24, −3, 0 —add 18— 32, 9, 15, 18
15, 30, −15, 0 —add 8— 23, 5, 26, 8
18, 26, −29, 0 —add 10— 28, 3, 14, 10
19, 28, −23, 0 —add 27— 13, 22, 4, 27
22, 29, −19, 0 —add 2— 24, 31, 16, 2

It is easily seen that each of the first and the last 8 quadruples gives one partition of
G \ H . Under the action of group G, we get other partitions so that the skew Room frame
is partitionable. �

Lemma 3.11 [16]. B({5, 6, 7, 8, 9}) = N \ {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22,

23, 24, 27, 28, 29, 32, 33, 34}.
Lemma 3.12. There exists a partitionable skew Room frame of type 4n for each n ≥ 5
except possibly n ∈ {10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 27, 28, 32, 34}.
Proof. From [17, Lemma 2.6], there exists a partitionable skew Room frame of type 48.
Combining Lemmas 3.6–3.9, we get a partitionable skew Room frame of type 4n for each
n ∈ {5, 6, 7, 8, 9}. Applying Corollary 3.5 and Lemma 3.11, we obtain a partitionable skew
Room frame of type 4n for each n ∈ N \ {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23,

24, 27, 28, 29, 32, 33, 34}.
For each n ∈ {13, 17, 29, 33}, we have a partitionable skew Room frame of type 1n by

[17, Lemmas 2.4 and 2.5] and Lemma 3.10. Applying Theorem 3.3 with m = 4 gives the
desired partitionable skew Room frames of type 4n. �

4. DIRECT CONSTRUCTIONS

For most of our direct constructions, we adapt the familiar difference method, where a
finite abelian group is used to generate the set of blocks for a given design. Thus, instead
of listing all the blocks of the design, we list a set of base blocks and generate the others
by an additive group and perhaps some further automorphisms. If G is the additive group
under consideration, then we shall adapt the following convention:

dev B = {B + g : B ∈ B and g ∈ G},

where B is the collection of base blocks of the design.

Lemma 4.1. Let k ≥ 4. Suppose a GDD on Zv is obtained cyclicly from the base blocks
B = {Bi = {bi1, bi2, . . . , bik} : 1 ≤ i ≤ b′} without short orbit, then the GDD is super-
simple if and only if the difference pairs

{biy − bix, biz − bix}, {bix − biy, biz − biy}, {bix − biz, biy − biz},

are distinct for all possible triples {bix, biy, biz} ⊂ Bi with 1 ≤ i ≤ b′. Here, all the opera-
tions are performed modulo v.

Proof. We first check the sufficiency. Suppose that the GDD is not super-simple, and there
are two blocks intersecting at three points {a, b, c}, which are translates of {bix, biy, biz} ⊂
Bi and {bju, bjv, bjw} ⊂ Bj withBi, Bj ∈ B. Then |{bix, biy, biz} ∪ {bju, bjv, bjw}| ≥ 4 and
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the difference pairs of {bix, biy, biz} and {bju, bjv, bjw} are exactly the same, which leads
to a contradiction.

Conversely, suppose that the GDD is super-simple. Suppose that there are two dif-
ference pairs {biy − bix, biz − bix} = {bjv − bju, bjw − bju} with {bix, biy, biz} ⊂ Bi and
{bju, bjv, bjw} ⊂ Bj . According to the fact that each of the base blocks forms a full orbit,
we have |(Bi − bix) ∩ (Bj − bju)| ≥ 3, which contradicts to the super-simplicity. �
Lemma 4.2. There exists a super-simple (4, 2)-frame of type 35.

Proof. Let the point set be G = Z15, and let the group set be {{j, j + 5, j + 10} : j =
0, 1, . . . , 4}. We first construct a base block:

{1, 3, 4, 12}.

Multiplying each point in the above base block by 7 modulo 15, we get another base block

{7, 6, 13, 9}.

By Lemma 4.1, it is readily checked that these 2 base blocks give a super-simple (4, 2)-frame
of type 35 as required. �

Since a (4, 2)-frame of type 12n can exist only when n ≥ 5, we can not use Construc-
tion 2.4 to get a super-simple (12n + 4, 4, 2)-RBIBD for n = 2, 3, 4. These designs can be
obtained directly by a computer search.

Lemma 4.3. There exists a 4-RGDD of type 228 with a GP-fixed automorphism that
decomposes each group into one cycle of length 2, and hence a super-simple (28, 4, 2)-
RBIBD.

Proof. First, we construct a 4-RGDD of type 228. Let the point set be Z28 × {0, 1}, and let
the group set be {{(i, j), (i + 14, j)} : i = 0, 1, 2, . . . , 13; j = 0, 1}. Below are the required
base blocks, which are to be developed by (+1 mod 28, −).

{(0,0), (1,0), (0,1), (3,1) }, {(1,0), (4,0), (2,1), (9,1)}, {(0,0), (2,0), (17,0), (21,0)},

{(7,1), (9,1), (13,1), (26,1)}, {(1,0), (6,0), (15,1), (25,1)}, {(4,0), (26,0), (8,1), (20,1)},

{(5,0), (25,0), (17,1), (18,1)}, {(8,0), (24,0), (14,1), (19,1)}, {(9,0), (27,0), (16,1), (24,1)}.

Here, the first 2 blocks (in the first row) give two parallel classes by adding +2 (mod 28)
to the first component. The remaining 7 blocks give a parallel class by adding +14 (mod 28)
to the first component.

Define an automorphism on Z28 × {0, 1}, σ : (i, j) → (i + 14 mod 28, j). It is easy to
check that σ is a GP-fixed automorphism of order 2 that decomposes each group into one
cycle of length 2. Using Lemma 2.6, there exists a super-simple (28, 4, 2)-RBIBD. �
Lemma 4.4. There exists a 4-RGDD of type 240 with a GP-fixed automorphism that
decomposes each group into one cycle of length 2, and hence a super-simple (40, 4, 2)-
RBIBD.

Proof. It is shown in [21, Lemma 3.5] that there exists a 4-RGDD of type 240 on the
point set Z40 × {0, 1} and group set {{(i, j), (i + 20, j)} : i = 0, 1, 2, . . . , 19; j = 0, 1}. We
define an automorphism on the point set, σ : (i, j) → (i + 20 mod 40, j). It is easy to check
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that σ is a GP-fixed automorphism of order 2 that decomposes each group into one cycle
of length 2. By Lemma 2.6, there exists a super-simple (40, 4, 2)-RBIBD. �
Lemma 4.5. There exists a super-simple (52, 4, 2)-RBIBD.

Proof. First, we give two (52, 4, 1)-RBIBDs (X,B1) and (X,B2). Let the point set be
X = Z4 × Z13. The left-hand column and the right-hand column below give the required
base blocks of the two RBIBDs.

{(0, 6), (1, 6), (2, 6), (3, 6)}, mod (−, 13), {(0, 12), (1, 12), (2, 12), (3, 12)}, mod (−, 13),
{(0, 0), (1, 1), (0, 4), (1, 8)}, mod (4, 13), {(0, 0), (1, 1), (0, 4), (1, 8)}, mod (4, 13),
{(0, 9), (2, 11), (0, 12), (0, 7)}, mod (4, 13), {(0, 7), (2, 9), (2, 11), (2, 6)}, mod (4, 13),
{(3, 10), (0, 2), (1, 5), (0, 3)}, mod (4, 13), {(0, 10), (1, 2), (2, 5), (1, 3)}, mod (4, 13),
{(0, 0), (2, 6), (1, 7), (3, 4)}, mod (4, 13), {(0, 0), (2, 6), (1, 7), (3, 4)}, mod (4, 13).

These base blocks are developed as follows. We first look at the blocks listed in the
left-hand column. Add +1 (mod 4) to the first component of the 2nd, 3rd, and 4th blocks
to obtain 12 blocks. These 12 blocks, together with the first block in this column, form
an initial parallel class. The fifth block gives another initial parallel class by adding +1
(mod 13) to the second component. Adding +1 (mod 13) to the second component for
each element of the first initial parallel class and adding +1 (mod 4) to the first component
of the second initial parallel class give the desired (52, 4, 1)-RBIBD (X,B1). Similarly, we
can obtain (X,B2) from the base blocks on the right-hand column.

Now, we define two maps from the set Z4 × Z13 to the set Z52:

f1 : (i, j) −→ (13i + j) (mod 52),

f2 : (i, j) −→ 17(i + 4j) (mod 52).

It is readily checked that (Z52, f1(B1) ∪ f2(B2)) is the super-simple (52, 4, 2)-RBIBD as
required. �

5. RESULTS OBTAINED BY RECURSION

In this section, we deal mainly with the existence of the crucial super-simple (4, 2)-frames
of type 12n and super-simple (12n + 4, 4, 2)-RBIBDs.

Lemma 5.1. There exists a super-simple (4, 2)-frame of type 12n for each n ≥ 5 except
possibly n ∈ {10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 27, 28, 32, 34}.
Proof. Combining Lemmas 3.2 and 3.12, we obtain super-simple (4, 2)-frames as
desired. �
Lemma 5.2. There exists a super-simple (4, 2)-frame of type 3n for each n ∈ {13, 17}.
Proof. For each n ∈ {13, 17}, there exists a partitionable skew Room frame of type 1n

from [17, Lemmas 2.4 and 2.5]. Applying Lemma 3.2, we obtain the desired super-simple
(4, 2)-frames of type 3n. �
Lemma 5.3. There exists a super-simple (4, 2)-frame of type 12n for each n ∈ {10, 11, 15,

16, 20}.
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Proof. For each n ∈ {10, 11, 15, 16, 20}, start from a (5, 1)-GDD of type 4n coming from
[22], and apply Construction 2.2 with weight 3 to obtain the (4, 2)-frames as desired. Here,
we need the input super-simple (4, 2)-frame of type 35, which comes from Lemma 4.2. �
Lemma 5.4. There exists a super-simple (4, 2)-frame of type 1212.

Proof. There exists a 4-frame of type 2412 in [20, Lemma 3.2], which is based on the
point set Z48 × Z6 with the group set {{j, j + 12, j + 24, j + 36} × Z6 : j = 0, 1, . . . , 11}.
Define an automorphism σ on the point set Z48 × Z6, σ : (i, j) → (i, j + 3 mod 6). It is
easy to check that the design is a 4-frame with a GP-fixed automorphism of order 2. Applying
Theorem 2.5, we obtain the desired super-simple (4, 2)-frame. �
Lemma 5.5 There exists a super-simple (4, 2)-frame of type 12n for each n ∈ {18, 23, 28}.
Proof. For each n ∈ {18, 23, 28}, we have a (4n + 1, {5, 13∗}, 1)-PBD by
[28, Theorem 2.7]. Remove one point outside of the block of size 13 to obtain a
{5, 13}-GDD of type 4n. Apply Construction 2.2 with weight 3 to obtain the (4, 2)-frames
as desired. Here, we need the input super-simple (4, 2)-frames of types 35 and 313, which
come from Lemmas 4.2 and 5.2, respectively. �
Lemma 5.6. There exists a super-simple (4, 2)-frame of type 12n for each n ∈ {22, 24, 27,

32, 34}.
Proof. The proof is similar to that of Lemma 5.5. Here, for each n ∈ {22, 24, 27, 32, 34},
we need a (4n + 1, {5, 17∗}, 1)-PBD, which comes from [5]. �

Combining Lemmas 2.7, 2.8, 5.1, 5.3–5.6 and applying Construction 2.4 with b = 4, we
have the following.

Lemma 5.7. For each n ≥ 5 and n �∈ {14, 19}, there exist both a super-simple (4, 2)-frame
of type 12n and a super-simple (12n + 4, 4, 2)-RBIBD.

To get the super-simple (12n + 4, 4, 2)-RBIBDs with n ∈ {14, 19}, we need the follow-
ing concept.

Let S be a set andH = {S1, S2, . . . , Sn} be a set of subsets of S. A holey Steiner pentagon
system having hole setH is a triple (S,H,B) whereB is a collection of pentagons, satisfying
the following properties:

1. Two vertices from a same hole Si do not occur together in any pentagon of B.
2. Two vertices from different holes Si and Sj (i �= j) are joined by a path of length 1

in exactly one pentagon of B, and also by a path of length 2 in exactly one pentagon
of B.

The order of the system is |S|.
If H = {S1, S2, . . . , Sn} is a partition of S, then we simply denote the system by

HSPS(T ), where T is the type and is defined to be the multiset {|Si| : 1 ≤ i ≤ n}. The Si

are called holes. We shall use an “exponential” notation to describe types: so type t
u1
1 · · · tuk

k

denotes ui occurrences of ti, 1 ≤ i ≤ k, in the multiset.
It is known in [3] that the existence of an HSPS of type T implies the existence of

a (5, 2)-GDD of type T . We shall call an HSPS of type T super-simple if its underlying
(5, 2)-GDD of type T is super-simple; that is, any two blocks of the GDD intersect in at
most two points.

Lemma 5.8. There exists a super-simple (12n + 4, 4, 2)-RBIBD for each n ∈ {14, 19}.
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Proof. By [1,2], we have super-simple HSPSs of types 21241 and 21741, hence super-
simple (5, 2)-GDDs of types 21241 and 21741. From [28, Theorem 3.8] there exists a 4-frame
of type 65. Apply Construction 2.3 with weight 6 to obtain super-simple (4, 2)-frames of
types 1212241 and 1217241. Adjoin 4 infinite points and apply Construction 2.4 to obtain
the desired (12n + 4, 4, 2)-RBIBD. Here, we need a super-simple (4, 2)-IRBIBD(12 + 4, 4)
and a super-simple (28, 4, 2)-RBIBD as input designs, which come from Lemmas 2.8 and
4.3, respectively. �

6. CONCLUDING REMARKS

Now, we are in a position to prove our main result which is restated as follows.

Theorem 6.1. The necessary conditions for the existence of a super-simple (v, 4, 2)-
RBIBD, namely, v ≡ 4 (mod 12) and v ≥ 16, are also sufficient.

Proof. Combining Lemmas 2.7, 4.3–4.5, and 5.7–5.8, the conclusion then follows. �

In [17], partitionable skew Room frames have been found useful in the constructions of
4-frames. In this article, the existence of partitionable skew Room frames has played an
important role in the constructions of super-simple (4, 2)-frames, which are crucial in the
recursive constructions. This is another demonstration for the significance of partitionable
skew Room frames. Hence, the existence of partitionable skew Room frames will be an
interesting topic for further investigation. We will report it in a future paper.
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