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Abstract—We construct the first class of permutation codes
that are capable of correcting a burst of up to s unstable deletions,
for general s. Efficient decoding algorithms are presented to show
the correctness of our constructions.

I. INTRODUCTION

Flash memories have become a mature technology for the
nonvolatile storage of information that can be electrically
erased and/or reprogrammed. They are increasingly replacing
hard disks, offering the advantage of speed, noise, power
consumption, and physical reliability. However, there remain
two primary factors affecting more pervasive applications of
flash memories:

(i) high cost per gigabyte of storage, and
(ii) limited number of program-erase (P/E) cycles.

To overcome the high cost per gigabyte, flash memories have
moved from single-level cell (SLC) to multi-level cell (MLC)
technology, where data in a multi-level cell is represented
by q > 2 charge levels, instead of two charge levels in
a single-level cell [1]. This increases the storage density of
flash memories. To address the limited number of P/E cycles,
rewritable codes aimed at performing multiple writes per cell
before erasure, and hence increasing the overall lifetime of the
flash memory have been studied [2]–[4].

The dominant source of errors in flash memories is charge
leakage in cells [5]. Since the charge levels in a multi-level
cell are closer together than in a single-level cell, MLC flash
memories are more prone to errors due to charge leakage. A
permutation coded rank modulation scheme was first intro-
duced by Jiang et al. [2] to combat errors in flash memories
due to charge leakage. This scheme was later extended to
tolerate more severe and other errors [6]–[9].

More recently, Gabrys et al. [10], [11] considered deletion
errors in rank modulated flash memories. Such errors can
occur when cells are corrupted and the charge levels cannot be
read correctly. In particular, Gabrys et al. gave distance prop-
erties under which permutation codes are capable of correcting
against deletion errors. In this paper, we study the related
problem of burst deletions in rank modulated flash memories,
that is, a series of deletions that occur in consecutive cells.
The motivation behind considering burst deletions is that as
flash memory scales, the parasitic capacitance of adjacent cells
increases, which can cause corruptions in a cell to bleed to
adjacent cells, through capacitative coupling [12], [13].
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Fig. 1: Charge levels in a block of eight cells in a flash memory. The relative
values of the charge levels give the permutation (5, 3, 2, 8, 4, 6, 7, 1), which
represents the information stored in the block.

In a rank modulated flash memory, information is written
in blocks of n cells, and is represented as the relative values
of the charge levels (see Fig. 1). Hence, each block stores a
permutation of degree n. A deletion occurs when the charge
level in a cell cannot be read and the location of that cell is
not known. Deletions can be further classified according to
their stability, a notion introduced by Gabrys et al. [10], [11].

(i) Stable deletion: In such a deletion, the absolute values of
the remaining components of the permutation are known.

(ii) Unstable deletion: In such a deletion, only the relative
values of the remaining components of the permutation
are known.

Example 1. Suppose a deletion occurs in cell 3 of the block
depicted in Fig. 1. In a stable deletion, the remaining com-
ponents of the permutation gives the vector (5, 3, 8, 4, 6, 7, 1),
whereas in an unstable deletion the remaining components of
the permutation gives the vector (4, 2, 7, 3, 5, 6, 1).

Our focus in this paper is on unstable deletions. The
unstable deletion model has an analogue for insertions. For
single insertion and deletion, the duality was described in [11].
We explain how multiple insertions work in this model. Now
suppose symbols 4 and 2 are going to be inserted between
symbols 1 and 4 in permutation (3, 1, 4, 2). We first deal with
the smaller symbol 2, and insert it into the third position.
Then the resulting permutation is (4, 1, 2, 5, 3), where all the
symbols in the original permutation of value greater than or
equal to 2 are incremented by one. Second, the next smaller
symbol 4 is inserted to the third position of (4, 1, 2, 5, 3),
which results in a permutation (5, 1, 4, 2, 6, 3) by increasing
each symbol greater than or equal to 4 by one. The duality
between multiple insertions and deletions is clear.
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A permutation that experiences unstable deletions loses all
information on values and locations of the corrupted cells.
Hence, codes capable of correcting unstable deletion errors
need more constraints than codes for correcting stable dele-
tions. For stable deletions, perfect permutation codes correct-
ing a single deletion have been constructed [14]. For unstable
deletions, an asymptotically optimal family of single-deletion
correcting codes were constructed by Gabrys et al. [11].

In this paper, we construct the first family of permutation
codes that are capable of correcting a single burst of s
unstable deletions, for general s. Our constructions are based
on an application of permutation interleaving. For the use
of specialized forms of interleaving in other areas of coding
theory, interested readers are referred to [6], [8], [15]–[17].

II. PRELIMINARIES

A. Definitions

For integers a ≤ b, [a, b] denotes the set {a, . . . , b}. Let n
be a positive integer and Sn be the set of all permutations on
the set [1, n].

For a permutation σ ∈ Sn, let σi be the ith component of σ,
that is, σ = (σ1, σ2, . . . , σn). For a set of positions I ⊆ [1, n],
define σ(I) = {σi : i ∈ I}. For a ∈ [1, n] and I ⊆ [1, n], the
integer a(I) ∈ [1, n] is defined so that a(I) = a−|{i ∈ I : i <
a}|. For example, if σ = (5, 1, 4, 2, 6, 3) and I = {3, 4}, then
σ(I) = {2, 4}, 5(σ(I)) = 5 − 2 = 3, 1(σ(I)) = 1 − 0 = 1,
6(σ(I)) = 6− 2 = 4 and 3(σ(I)) = 3− 1 = 2.

Definition 1. Assume that σ = (σ1, σ2, . . . , σn) ∈ Sn and
I ⊆ [1, n] is a set of size s. We say the permutation σ suffers
s unstable deletions in I , resulting in the permutation σ↓,I =
(σ′1, . . . , σ

′
n−s) ∈ Sn−s, if for all k ∈ [1, n] \ I , and i = k(I),

we have σ′i = σk(σ(I)). If I = [a, b] for some a and b, then
σ suffers an unstable burst deletion of length s.

As an example, let σ = (5, 1, 4, 2, 6, 3) and I = {3, 4}. If
σ suffers an unstable burst deletion in I , then it results in the
permutation σ↓,I = (3, 1, 4, 2).

Definition 2. A code C ⊆ Sn is called an s-UD permutation
code if it can correct up to s unstable deletions, or an s-
UBD permutation code if it can correct a single unstable burst
deletion of length s.

B. 1-UD Permutation Codes

For a positive integer a ∈ Zn, let

Cna =

{
u ∈ {0, 1}n :

n∑
i=1

iui ≡ a mod (n+ 1)

}
,

where ui is the ith component of u. Then Cna are the family of
binary codes known as the Varshamov-Tenengolts codes [18].
These codes are capable of correcting a single deletion.

For a permutation σ = (σ1, σ2, . . . , σn) ∈ Sn, its inverse is
the permutation σ−1 = (σ−11 , σ−12 , . . . , σ−1n ), where σ−1i is the
location of i in σ. As in [19], the signature of σ is the binary
vector α(σ) = (α(σ)1, . . . , α(σ)n−1) of length n − 1, where
α(σ)i = 1 if σi+1 ≥ σi, and 0 otherwise, for all i ∈ [1, n−1].

The 1-UD permutation codes of Gabrys et al. [11] are
defined as follows. Given a, b ∈ Zn, let

Cna,b =
{
σ ∈ Sn : α(σ) ∈ Cn−1a and α(σ−1) ∈ Cn−1b

}
.

Note that there are two defining constraints for Cna,b. If a
codeword in Cna,b suffers a single unstable deletion, then the
signature constraint helps to get some information about the
deleted location, while the inverse signature constraint helps
to get some information about the deleted value. Combining
both allows the recovery of the original codeword. An efficient
decoding algorithm is given by Gabrys et al. [11].

III. AN UPPER BOUND

Let AUBD(n, s) be the maximum size of an s-UBD per-
mutation code in Sn. We abbreviate AUBD(n, 1) to AUBD(n).
Gabrys et al. [11] gave the following upper bound.

Lemma 1 (Gabrys et al. [11]). For any positive ε < 1,
there exists an Nε such that for all n ≥ Nε, AUBD(n) ≤

n!
n(n−logn) (1 + ε).

The 1-UD permutation codes constructed of Gabrys et al.
[11] are of size at least n!/n2. Thus they are asymptotically
optimal with respect to this upper bound.

We provide a corresponding upper bound for AUBD(n, s) in
this section.

Let σ = (σ1, σ2, . . . , σn) ∈ Sn. For each i ∈ [1, s],
let Ii = [1, n] \

{
i, s+ i, . . . , bn−is

⌋
s+ i

}
. Then σ↓,Ii is

a permutation over
[
1, bn−is

⌋
+ 1
]
, induced by ranking the

symbols in the subsequence
(
σi, σs+i, . . . , σbn−i

s

⌋
s+i

)
. Let

Bs(σ) be the set of all permutations in Sn−s received as a
result of a burst of s unstable deletions in σ. A consecutive
run of σ is a substring of maximal length in σ that contains
consecutively valued symbols, increasing or decreasing. Let
R(σ) be the number of consecutive runs in σ. For example,
σ = (5, 1, 2, 4, 3, 6) has four consecutive runs (5), (1, 2), (4, 3)
and (6). It is easy to see that |B1(σ)| = R(σ) [11]. For
the number of permutations with exactly r consecutive runs,
please see [20].

Lemma 2. Let n > s be positive integers. For any permutation
σ ∈ Sn, we have

|Bs(σ)| ≥ 1 +

s∑
i=1

(R(σ↓,Ii)− 1). (1)

Proof. The proof is by induction on n. It is easy to see that (1)
holds for n = s+1. Assume that (1) holds for s+1 ≤ n ≤ k.
We prove that it also holds for n = k + 1.

Now, σ is a permutation of length k + 1 and consider the
permutation π = σ↓,{k+1}. Let n0 ∈ [1, s] be the integer such
that n0 ≡ k + 1 mod s. We note that

R(σ↓,Ii) = R(π↓,Ii), ∀ i ∈ [1, s] \ {n0}. (2)

Moreover, when there is a burst of exactly s unstable deletions
in the permutations σ and π, there is exactly one symbol
deleted in σ↓,In0

and π↓,In0
, respectively. Hence,

|B1(σ↓,In0
)| − |B1(π↓,In0

)| ≤ |Bs(σ)| − |Bs(π)|. (3)
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Because of (2), (3), and the induction hypothesis, we have

1 +
s∑
i=1

(R(σ↓,Ii)− 1)

=1 +
s∑
i=1

(R(π↓,Ii)− 1) +R(σ↓,In0
)−R(π↓,In0

)

≤|Bs(π)|+R(σ↓,In0
)−R(π↓,In0

) ≤ |Bs(σ)|.
This completes the proof. �

The following result is useful in the estimate of AUBD(n, s).

Lemma 3 (Gabrys et al. [11]). The number of permutations
in Sn with at most n − log n consecutive runs is at most
n!(n−logn)2

(logn)! .

We are now ready to provide an upper bound for the
maximum size of a permutation code correcting a burst of
s unstable deletions.

Theorem 1. Let s be a fixed positive integer, m1 =
⌊
n
s

⌋
and

m2 =
⌈
n
s

⌉
. For any positive ε < 1, there exists an Nε such

that for all n ≥ Nε,

AUBD(n, s) ≤ (1 + ε)
(n− s)!

s(m1 − logm1)
.

Proof. Suppose that C ⊆ Sn is an s-UBD permutation code.
Let C1 = {σ ∈ C : |B1(σ↓,Ii)| > m1 − logm1 for all i ∈
[1, s]} and C2 = C \C1. Note that for each σ ∈ C2, there exists
at least one i such that |B1(σ↓,Ii)| ≤ m1 − logm1. Since
Bs(σ) ⊆ Sn−s, by Lemma 2, we have |C1|(s(m1− logm1)+
1) ≤ (n− s)!. Hence,

|C1| ≤
(n− s)!

s(m1 − logm1)
. (4)

Since m1 ≤ m2, we have
m1!(m1 − logm1)

2

(logm1)!
≤ m2!(m2 − logm2)

2

(logm2)!
.

Therefore, for each i ∈ [1, s], by Lemma 3, |{σ ∈ C2 :

|B1(σ↓,Ii)| ≤ m1 − logm1}| ≤ m2!(m2−logm2)
2

(logm2)!
. Hence,

|C2| ≤ s
m2!(m2 − logm2)

2

(logm2)!
. (5)

From (4) and (5), we get

|C| = |C1|+ |C2| ≤
(n− s)!

s(m1 − logm1)
+ s

m2!(m2 − logm2)
2

(logm2)!

≤ (n− s)!
s(m1 − logm1)

(1 +
s2m2!(m2 − logm2)

3

(n− s)!(logm2)!
).

Since limn→∞
s2m2!(m2−logm2)

3

(n−s)!(logm2)!
= 0 for fixed s, there

exists an Nε such that for all n ≥ Nε,

AUBD(n, s) ≤ (1 + ε)
(n− s)!

s(m1 − logm1)
.

�

Note that when s = 1, the upper bound for AUBD(n, s) in
Theorem 1 is exactly the same as the upper bound for AUBD(n)
in Lemma 1.

IV. CONSTRUCTIONS

In this section, we apply the permutation interleaving
method to construct s-UBD permutation codes for s ≥ 2.

Definition 3. For vectors τ i = (τ i1, τ
i
2, . . . , τ

i
m) , i ∈ [1, s], of

length m, the interleaved vector σ = τ1◦τ2◦· · ·◦τs is obtained
by alternatively placing the elements of τ1, τ2, . . . , τ s in order.
That is

σj = τ idj/se, j ∈ [1,ms]

where i ≡ j mod s. For a class of s codes Ci, i ∈ [1, s] of
same length, the interleaved code

C1 ◦ C2 ◦ · · · ◦ Cs = {τ1 ◦ τ2 ◦ · · · ◦ τs : τ i ∈ Ci, i ∈ [1, s]}.

For any integer a, a vector τ = (τ1, τ2, . . . , τm) and a code
C, define τ + a = (τ1 + a, τ2 + a, . . . , τm + a) and C + a =
{τ + a : τ ∈ C}.

Since the decoding algorithm for our codes is rather com-
plex for general s, we first consider the case s = 2 to explain
the idea. To simplify notations, we assume that n is even.

Theorem 2. Let m ≥ 3 and n = 2m. Suppose that for each
i ∈ {1, 2}, Ci ⊆ Sm is a 1-UD permutation code. Then the
interleaved code C = C1 ◦ (C2 +m) is a 2-UBD permutation
code in Sn.

Proof. Suppose we receive a permutation π ∈ Sn−t, 1 ≤ t ≤
2. We want to find the unique permutation σ = τ ◦(υ+m) ∈ C
such that π is obtained from σ through a burst of at most two
unstable deletions.

If t = 1, that is, π ∈ Sn−1, then we know that only one
symbol is deleted from σ. Let f1 be the subsequence of π with
values from [1,m−1], which is a permutation in Sm−1. Note
that f1 is obtained from τ by experiencing a single unstable
deletion, thus we can recover τ from f1 since C1 is a 1-UD
permutation code. Let f2 be the subsequence of π with values
from [m+1, n− 1], which is a permutation over [m+1, n−
1]. Note that values in f2 are originally from υ + m before
the unstable deletion. Thus f2 −m is a permutation in Sm−1
obtained from υ by experiencing a single unstable deletion.
Note that f2−m = π↓,I , where I = {i ∈ [1, n−1] : πi ≤ m}.
Since C2 is a 1-UD permutation code, we can recover υ from
f2. Hence σ is the interleaved vector τ ◦ (υ +m) determined
uniquely.

If t = 2, that is, the permutation π has length n − 2,
then we know that there are exactly two symbols deleted.
Since the deletions are adjacent, by definition of C, there are
exactly one symbol from τ and one symbol from υ + m
that are deleted. Now we de-interleave permutation π. Let
f1 = (π1, π3, . . . , πn−3) and f2 = (π2, π4, . . . , πn−2). Then
it must be the case that f1 ∈ Sm−1 and f2 is a permutation
over [m,n−2]. Similarly, we can recover τ and υ from f1 and
f2− (m−1) respectively, where f2− (m−1) is actually π↓,I
with I = {i ∈ [1, n− 2] : πi ≤ m− 1}. Thus σ = τ ◦ (υ+m)
is uniquely determined.

Therefore, the interleaved code C = C1 ◦ (C2 + m) is a
2-UBD permutation code in Sn. �
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We are now ready to give the decoding algorithm for the
codes in Theorem 2.

Algorithm 1 Sn−t → Sn, 2 ≥ t ≥ 1

Input: m ≥ 3, n = 2m,π = (π1, π2 . . . , πn−t)
Output: σ = (σ1, σ2, . . . , σn) ∈ C

m′ ←− n− t−m+ 1
f1 ←− subsequence of π with entries from [1,m− 1]
τ ←− correcting f1 by a decoder of C1
f2 ←− subsequence of π with entries from [m′ + 1, n− t]
υ ←− correcting f2 −m′ by a decoder of C2
σ ←− τ ◦ (υ +m)

We illustrate the preceding algorithm with the following
example.

Example 2. Let m = 4 and n = 8. Suppose that τ =
(2, 1, 4, 3) ∈ C1 and υ = (1, 3, 4, 2) ∈ C2. Then σ =
τ ◦ (υ +m) = (2, 5, 1, 7, 4, 8, 3, 6) ∈ C.

If only one symbol 4 is deleted from σ, then π =
(2, 4, 1, 6, 7, 3, 5) is received. By Algorithm 1, m′ = 4,
f1 = (2, 1, 3), and f2 = (6, 7, 5). From f1 and f2 − 4 =
(2, 3, 1), we can recover τ = (2, 1, 4, 3) and υ = (1, 3, 4, 2)
by the decoders of C1 and C2 in [11], respectively. Hence
σ = τ ◦ (υ +m) is determined in this case.

If two adjacent symbols 7 and 4 are deleted, then π =
(2, 4, 1, 6, 3, 5) is received. By Algorithm 1, m′ = 3, f1 =
(2, 1, 3), and f2 = (4, 6, 5). From f1 and f2 − 3 = (1, 3, 2),
again we can recover τ = (2, 1, 4, 3) and υ = (1, 3, 4, 2) by
the decoders of C1 and C2. Hence σ = τ ◦ (υ + m) is also
uniquely determined in this case.

Now we generalize the interleaving method in Theorem 2
to construct s-UBD permutation codes. We sketch the main
idea of the decoding algorithm first. In Theorem 3, the code
is constructed by interleaving s 1-UD permutation codes.
Suppose we receive a permutation π ∈ Sn−t with t < s. The
main task is to find an appropriate permutation π′ ∈ Sn−s
which is obtained from π by experiencing a burst of s − t
unstable deletions, and in such a way that π′ is simultaneously
obtained from the original permutation σ by suffering a burst
of s unstable deletions. Hence we can recover σ by correcting
the de-interleaved components of π′. Note that values from
[1,m− 1] and [n− t−m+ 2, n− t] in π are originally from
[1,m] and [n−m+ 1, n] in σ, which are periodically placed
in σ, respectively. The permutation π′ is obtained by carefully
checking the change of placement of these values in π. Due
to lack of space, some explanations of facts are omitted in the
proof.

Theorem 3. Let m, s ≥ 3 and n = ms. For each i ∈ [1, s],
let Ci be a 1-UD permutation code over [1,m]. Then the
interleaved code C = C1◦(C2+m)◦· · ·◦(Ci+(i−1)m)◦· · ·◦
(Cs + (s− 1)m) is an s-UBD permutation code over [1, n].

Proof. Suppose that a permutation σ = τ1 ◦ (τ2 +m) ◦ · · · ◦
(τ i + (i − 1)m) ◦ · · · ◦ (τs + (s − 1)m) ∈ C, where τ i ∈
Ci for i ∈ [1, s], suffers a burst of unstable deletions and
a permutation π = (π1, . . . , πn−t) ∈ Sn−t is received. We

show that σ is uniquely identifiable from π as follows. Let
Pi = [(i− 1)m+ 1, im] for each i ∈ [1, s].

Case 1 (t = s): In this case, exactly one symbol in
each Pi is deleted from σ since the unstable deletions are
adjacent. By de-interleaving the permutation π, we have
fi = (πi, πi+s, . . . , πi+(m−2)s) for each i ∈ [1, s]. Then τ i is
uniquely determined from the permutation fi− (i−1)(m−1)
by a decoder of Ci and consequently σ is recovered. Note that
fi − (i − 1)(m − 1) is actually π↓,Ii with Ii = [1, n − s] \
{i, i+ s, . . . , i+ (m− 2)s}.

Case 2 (t < s): In this case, we will get π′ = π↓,I for some
positions set I of size s− t and then apply Case 1 with π′ to
recover σ. Since there is a burst of t (< s) unstable deletions
from σ, there is at most one symbol in each Pi that is deleted
from σ. Let ki be the positions of values from [1,m − 1] in
π such that ki < ki+1, i ∈ [1,m− 1]. Define km := n− t+1
and let dj = kj+1 − kj , j ∈ [1,m− 1]. Note that k1 ≤ s+ 1.

Suppose 1 < k1 ≤ s. Then the deleted locations are among
the positions [1, s] in σ. Let π′ = π↓,[1,s−t].

Suppose k1 = s + 1. Then there must be a unique j ∈
[1,m−1] such that dj = s− t, and for all i ∈ [1,m−1]\{j},
di = s. Let π′ = π↓,[kj ,kj+1−1].

Suppose k1 = 1. There are only two possible cases: (1)
there is a unique j ∈ [1,m−1] such that dj = s− t; (2) there
is a unique j ∈ [1,m−1] such that dj = 2s−t. If (1) happens,
let π′ = π↓,[kj ,kj+1−1]. If (2) happens, let R = [kj , kj+1 − 1].
Note that |R| = 2s− t and a burst of unstable deletions have
occurred in some positions from R in π.

Now we turn to the positions hi of values from [n − t −
m + 2, n − t] in π such that hi < hi+1, i ∈ [1,m − 1]. By
similarly considering differences between hi and hi+1, we can
recover σ for almost all cases except one case where a set R′ =
[hj , hj+1− 1] of 2s− t positions in π is found for correction.
Let D = R ∩ R′, then errors occur in D. Suppose |D| < s,
then let π′ = π↓,[kj ,hj+1] if hj < kj and π′ = π↓,[hj+1,kj+1−1]
if hj > kj . It comes to the worst case if |D| > s. In this case,
hj = kj − 1 and hj+1 = kj+1 − 1. We split it in two cases
further.

Case 2a (t = 1): If πkj+1−s ∈ P1, then we know that an
error has occurred in a position from [kj , hj+1 − s] in π. Let
π′ = π↓,[kj ,hj+1−s]. If not, let π′ = π↓,[kj+s,hj+1].

Case 2b (1 < t < s): We know that πkj ∈ P1. If for all
i ∈ [1, s− 1], πkj+i ∈ Pi ∪Pi+1, then let π′ = π↓,[kj+s,hj+1].
Otherwise, find the smallest index i ∈ [1, s − 1] such that
πkj+i 6∈ (Pi ∪ Pi+1). Let π′ = π↓,[kj+i,kj+i+s−t−1].

Therefore, the interleaved code C is an s-UBD permutation
code over [1, n]. �

We only present an algorithm of computing π′ from π when
t < s as Case 2 in the proof of Theorem 3. Once π′ is
computed, it is easy to recover σ by applying Case 1.

Now we give an example to illustrate Case 2b, which is the
worst case in the proof of Theorem 3.

Example 3. Let m = 5, s = 3 and n = 15. Then
P1 = [1, 5], P2 = [6, 10] and P3 = [11, 15]. Suppose
that τ1 = (3, 1, 2, 5, 4) ∈ C1, τ2 = (2, 5, 1, 4, 3) ∈
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Algorithm 2 Sn−t → Sn−s, s > t ≥ 1

Input: m ≥ 3, n = sm, π = (π1, π2 . . . , πn−t)
Output: π′ = (π′1, π

′
2, . . . , π

′
n−s)

m′ ←− n− t−m+ 2
kj ←− positions of entries [1,m− 1] in π, j ∈ [1,m− 1]
hj ←− positions of entries [m′, n− t] in π, j ∈ [1,m− 1]
km ←− n− t+ 1; k0 ←− 1
for j ∈ [0,m− 1] do
dj ←− kj+1 − kj
if dj = s− t then

return π′ ←− π↓,[kj ,kj+1−1]

else if dj = 2s− t then
a←− kj , b←− kj+1

for j ∈ [1,m− 1] do
if a < hj < a+ s− 1 then

return π′ ←− π↓,[a,hj ]

else if hj = a+ s− 1 then
return π′ ←− π↓,[hj+1,b−1]

if t = 1 then
if πb−s ≤ m then

return π′ ←− π↓,[a,b−s−1]
else

return π′ ←− π↓,[a+s,b−1]
if t > 1 then

for i ∈ [1, s− 1] do
if πa+i 6∈ [(i− 1)m+ 1, (i+ 1)m] then

return π′ ←− π↓,[a+i,a+i+s−t−1]

return π′ ←− π↓,[a+s,b−1]

C2 and τ3 = (4, 2, 5, 1, 3) ∈ C3. Then σ =
(3, 7, 14, 1, 10, 12, 2, 6, 15, 5, 9, 11, 4, 8, 13) ∈ C.

Let t = 2. Suppose the two adjacent symbols 12 and
2 are deleted, then π = (2, 6, 12, 1, 9, 5, 13, 4, 8, 10, 3, 7, 11)
is received. By checking the positions of values from [1, 4]
and [10, 13] in π, we have R = [4, 7] and R′ = [3, 6].
That is a = kj = 4, b = 8 in Algorithm 2, and there
is no hj in [a, a + s − 1] = [4, 6]. Since the smallest
index i ∈ [1, 2] such that πkj+i 6∈ (Pi ∪ Pi+1) is 2, π′ =
(2, 5, 11, 1, 8, 12, 4, 7, 9, 3, 6, 10) = π↓,{6}. De-interleaving π′,
we have f1 = (2, 1, 4, 3), f2 = (5, 8, 7, 6) and f3 =
(11, 12, 9, 10). Thus τ i, i = 1, 2, 3 can be recovered from
f1, f2 − 4 = (1, 4, 3, 2) and f3 − 8 = (3, 4, 1, 2) by decoders
of Ci respectively, and consequently σ is uniquely determined.

V. CONCLUSION

We present the first class of permutation codes that are
capable of correcting a burst of up to s unstable deletions,
for general s. Efficient decoding algorithms are provided to
show the correctness of our constructions.

Since each 1-UD permutation code of length n/s has size
at least (n/s)!

(n/s)2 [11], the code we construct in Theorem 3 has

size at least
(

(n/s)!
(n/s)2

)s
. Although this is not optimal with

respect to the upper bound we derive in Theorem 1, its rate
is asymptotically

s ln (n/s)!− 2s ln (n/s)

lnn!
∼ (n− 2s) lnn+O(n)

n lnn+O(n)
∼ 1,

for fixed s.
Similar results for the case of stable deletions have also been

obtained recently by Chee et al. [21], and will be reported
elsewhere.
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