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Theorem1(Nullstellensatz) Let f ∈ F [x1, · · · , xn], and let S1, · · · , Sn be nonempty subsets

of F . If f(x) = 0,∀x ∈ S1 × · · ·Sn, then ∃polynomials h1, h2, · · · , hn ∈ F [x1, · · · , xn] such that

deg(hi) ≤ deg(f)− |Si| and f =
∑m

i=1 hi
∏

s∈Si
(xi − s).

Proof:Let ti = |Si| − 1, define gi(xi) =
∏

s∈Si
(xi − s) = xti+1

i −
∑ti

j=0 aijx
j
i . Replace each

occurrence of xti+1
i by gi(xi) +

∑ti
j=0 aijx

j
i . f = h1g1(x1) + f1, degh1 ≤ degf − |S1| and max deg of

x1 ≤ t1. Repeat this procedure for all xti+1
i , we get f =

∑n
i=1 higi + f̄ , with deghi ≤ degf − |Si|

and maximum degree of xi in f̄ is ≤ ti, i ∈ [n]. Since f̄ = f = 0 for all x ∈ S1 × · · ·Sn, we have

f̄ ≡ 0. Hence f =
∑
higi. �

Theorem2(Combinatorial Nullstellensatz)Let f ∈ F [x1, · · · , xn] be a polynomial of degree d.

Suppose [xt11 x
t2
2 · · ·xtnn ]f 6= 0 and

∑
ti = d. If Si ⊂ F with |Si| ≥ ti+1, i ∈ [n], then ∃x ∈ S1×· · ·Sn

for which f(x) 6= 0.

Proof: Assume |Si| = ti + 1, i ∈ [n], Suppose f(x) = 0 for all x ∈ S1× · · ·Sn, define gi(xi) =∏
s∈Si

(xi − s) and hi(xi, x2, · · · , xn) guaranteed by Nullstellensatz. Hence deghi ≤ degf − |Si| =
degf − (ti + 1). Since f(x) =

∑n
i=1 hi(x)gi(x), that is f(x) =

∑n
i=1 x

ti+1
i hi(x)+(terms of degree

<degf). By assumption, the [xt11 x
t2
2 · · ·xtnn ]f on LHS is nonzero, but it is impossible to have such

a monomial on RHS. �

Application of Combinatorial Nullstellensatz

Theorem3(Chevalley-Warning)Let p be a prime and f1, · · · , fm ∈ F [x1, · · · , xn]. If
∑m

i=1 degfi <

n, and f1, · · · , fm have a common root (c1, · · · , cn), then they have another common root.

Proof: Suppose (c1, · · · , cn) is the only common root of f1, · · · , fm. Define f(x1, · · · , xn) =∏m
i=1(1−fi(x1, · · · , xn)p−1)−δ

∏n
j=1

∏
c∈Fp,c 6=cj

(xj−c), where δ is chosen so that f(c1, · · · , cn) = 0.
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Hence δ = 1∏n
j=1

∏
c∈Fp,c6=cj

(cj−c) 6= 0. Given (s1, · · · , sn) ∈ F n
p and (s1, · · · , sn) 6= (c1, · · · , cn), then

∃i ∈ [m], fi(s1, · · · , sn) 6= 0 in Fp. By Fermat’s little Theorem, fi(s1, · · · , sn)p−1 ≡ 1(modp),i.e.the

first product on RHS is zero. It is easy to check that the second term is also zero. so fi(x1, · · · , xn) =

0 for all (x1, · · · , xn) ∈ F n
p . Now check the degree of f. In the first product,the degree≤

∑m
i=1 degfi ·

(p− 1) < n(p− 1). , and the monomial xp−11 xp−12 · · ·xp−1n has coefficient δ 6= 0. Let Si = Fp, then

apply Combinatorial Nullstellensatz, ∃x ∈ F n
p , s.t.f(x) 6= 0, a contradiction. �

Recall: A = (aij)n×n, per(A) =
∑

(i1,··· ,in) a1,i1a2,i2 · · · an,in , where (i1, · · · , in) runs over all

permutations of [n].

Theorem4(Permanent Lemma)Let b ∈ F n and s1, · · · , Sn be subsets of F, each of cardinality

at least 2. If the per(A) 6= 0, then there ∃x ∈ S1 × · · ·Sn such that Ax differs from b in all

coordinates.

Proof: Define f =
∏n

i=1(aijxj − bi), need to show ∃x, s.t.f(x) 6= 0, degf = n.[x1 · · ·xn]f =

per(A) 6= 0. Since |Si| ≥ 2, i ∈ [n]. then apply Combinatorial Nullstellensatz. �

Corollary5: If per(A) 6= 0, then for any b ∈ F n, there is a subset of columns of A whose

sum differs from b in all coordinates.

Theorem6 Let G = (V,E), no loops but multiple edges allowed. p is a prime, if average

degree > 2p− 2, max degree ≤ 2p− 1. then G contains a p-regular subgraph.

Proof: Associate each edge e with xe. define f =
∏

v∈V [1− (
∑

e∈E av,exe)
p−1]−

∏
e∈E(1−xe)

over FP , where av,e = 1, if v ∈ e and av,e = 0 if v /∈ e. In the first product, the degree≤ (p−1)|V | <
|E|. Since

∑
v∈V d(v) = 2|E|, averge degree is 2|E|

|V | > 2p−2 =⇒ (p−1)|V | < |E|. So degf=|E|, and

[
∏

e∈E xe]f = (−1)|E|+1 6= 0. Now apply Combinatorial Nullstellensatz with Si = {0, 1}, te = 1, e ∈
E. then we get a 0-1 vector x = (xe : e ∈ E)s.t.f(x) 6= 0. Now consider the spanning subgraph H

consisting of all edges e ∈ E with xe = 1. Since f(0) = 0, x 6= 0, H is non-empty. So the second

terms
∏

e∈E(1−xe) = 0, which means the first term
∏

v∈V [1− (
∑

e∈E av,exe)
p−1] 6= 0. By Fermat’s

little Theorem,
∑

e∈E av,exe ≡ 0(modp),∀v ∈ V . Therefore, ∀v ∈ V, in H deg(v) ≡ 0(modp). Since

the maximum degree is smaller than 2p, all positive degrees are precisely p. �

2017/12/08

Sum-set::A+B = a+ b, a ∈ A, b ∈ B, simple set.

Theorem5(Cauchy-Davenport)If p is a prime, and A,B are two non-empty subsets of Fp,

then |A+B| ≥ min{p, |A|+ |B| − 1}.
Proof:

(1) If |A|+|B| ≥ p+1, then ∀x ∈ Zp, A∩(x−B) 6= ∅.i.e.∀x ∈ Zp,∃a ∈ A, b ∈ B, a = x−b, i.e.x =

a+ b, which means A+B = Zp. So |A+B| ≥ p.

(2) |A| + |B| ≤ p. Suppose |A + B| ≤ |A| + |B| − 2,∃C ⊂ Zp, s.t.A + B ⊂ C and |C| =

|A|+ |B|−2. Define f(x1, x2) =
∏

c∈C(x1 +x2− c), then f(x1, x2) = 0 if (x1, x2) ∈ A×B. Let
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t1 = |A|−1, t2 = |B|−1. degf=t1 + t2 = |C|. [xt11 x
t2
2 ]f =

(
t1 + t2
t1

)
=

(
|A|+ |B| − 2

|A| − 1

)
. Since

|A|+ |B|−2 < p, we have p -
(
|A|+ |B| − 2

|A| − 1

)
. Now apply Combinatorial Nullstellensatz with

n = 2. S1 = A, S2 = B, we have a pair (x1, x2) ∈ S1× S2, s.t.f(x1, x2) 6= 0, a contradiction.�

Zero-sum-sets

Q1 Any sequence a1, · · · , an of n integers contains a non-empty consecutive subsequence ai, ai+1, · · · , ai+m

whose sum is divisible by n.

Proof: By pigeonhole, n holes labeled from 0 to n−1, consider the n sequence (a1), (a1, a2), · · · ,
(a1, a2, · · · , an). If the sum of a sequence is i(modn), then put the sequence in the i-th holes,

if ∃ a sequence put in the 0-th hole,then done. If not, by P-P, we have two sequences in the

same hole, say (a1, a2, · · · , ai−1) and (a1, a2, · · · , ai, · · · , ai+m), then (ai, · · · , ai+m) with sum

divisible by n.

Q2 Given n > 0, what is the smallest N,s.t.any sequence of N integers contains a not necessarily

consecutive subsequence of n integers whose sum is divisible by n?

e.g. 0, · · · , 0, 1, · · · , 1, N ≤ 2n− 1.

Theorem6 p is a prime, any sequence of 2p-1 integers contains a subsequence of p integers,

whose sum is divisible by p(By Cauchy-Davenport Theorem or by Chevalley-Warning Theorem).

Proof: Let a1 ≤ a2 ≤ · · · ≤ a2p−1. If ∃i ∈ [p − 1], s.t.ai = ai+p−1, then ai + ai+1 + · · · +
ai+p−1 = pai = 0, done. If not, let Ai = {ai, ai+p−1}, i ∈ [p − 1], then |A1 + A2 + · · · + Ap−1| ≥
min{p, |A2 + · · ·+Ap−1|+ 1} ≥ min{p,A3 + · · ·+Ap−1|+ 2} ≥ · · · ≥ min{p, |Ap−1|+ p− 2} = p.

Hence A1 + A2 + · · · + Ap−1 = Zp, then −a2p−1 can be written at a sum of precisely p− 1 of the

first 2p− 2 elements of the sequence. �

Error-correcting codes

Let A be an alphabet, C ⊂ An is called a code, x ∈ C is called a codeword. The minimum

distance, dist(C) = min{dH(x, y) : x 6= y ∈ C}. ∀x ∈ C, the Hamming ball of the radius t

centered at x is Bt(x) = {y ∈ An : dH(x, y) ≤ t}.
Fact: The code C can correct up to t errors⇐⇒ ∀x, x′ ∈ C,Bt(x)∩Bt(x

′) = ∅.⇐⇒ ∀x, x′ ∈
C, dH(x, x′) ≥ 2t+ 1, i.e.dist(C) ≥ 2t+ 1.

Reason: Suppose x ∈ C is transmitted and y ∈ An is received. If at most t errors occurred, then

dH(x, y) ≤ t. If dist(C) ≥ 2t + 1, then the only codeword in C with distance ≤ t from y is x. So

we can correct y to x.

Main problem in coding theory: find large code with large distance.

Theorem1(Singleton bound) If C ⊆ An and d = dist(C) > 0, then |C| ≤ |A|n−d+1.
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Proof: Deleting the first d − 1 letters of each codeword, the resulting codewords of length

n− d+ 1 must be distinct, since dist(C) = d. So |C| ≤ |A|n−d+1. �

Reed-Solomon code:

k ≤ n ≤ q, q is a prime power. Let A = Fq, |A| = q. Fix n distinct elements α1, · · · , αn of

Fq(n ≤ q). Messages: w = (w1, · · · , wk) ∈ Fk
q . For each w ∈ Fk

q , let Pw(z) = w1+w2z+· · ·+wkz
k−1.

degPw ≤ k − 1. The codeword of w is the string xw = (Pw(α1), Pw(α2), · · · , Pw(αn)) ∈ Fn
q . Let

C = {xw : w ∈ Ak} be the resulting q-ary code. Since no two polynomial of degree at most

k − 1 can agree on k or more points, we have dist(C) ≥ n− k + 1. So we have a code C ⊆ An of

minimum distance d = n− k + 1 and size |C| = |A|k = |A|n−d+1.

In RS code, we need q ≥ n. How to reduce the alphabet size.

Binary-Red-Solomon code: replace each element of Fq by a binary string of length dlog2 qe,
let n′ = n dlog2 qe. Then we obtain a binary code C ⊆ {0, 1}n′

with length n′ = n dlog2 qe , size

|C| = qk and dist(C) ≥ n− k + 1.(n ≤ q).
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