Combinatorics, 2017 Fall, USTC
Week 3 Note 3

2017.9.30, Saturday

Definition 1. A partially ordered set(poset) P = (X,<) is a set X with a
relation "<” on X, s.t.

(1) Reflectivity: < x;
(2) Antisymmetry: If ¢ <y and y < z, then © = y;

(8) Transitivity: If v <y and y < z, then z < z.

E.g.
(1) (Z>9,<), "less than” relation.
(2) (Zso,<), divisor poset, a < b < a | b.
(3) (2%, <), inclusion relation, A < B & A C B.

Definition 2. P = (X, >), the incidence algebra of P is

A(P) = {f: P> = R|f(z,y) = 0, whenever x £y}

E.g.
(1) 0(z,y) = 0.

1, z=y

(2) Kronecker delta function: 6(z,y) —{ 0 zhy’

(3) Zeta function: ((z,y) = { (1)’ iég .
Facts:

(1) f,g€ A(P) = f+geAP).

(2) feA(P) = cf € A(P),VceR.



Definition 3. Let f,g € A(P), the Dedekind convolution of f and g is f xg €
A(P), where (f xg)(z.y) = X flx,2)9(29).

E.g.
(1) (f*0)(z,y) =0.
(2) (f x0)(z,y) = f(z,y)0(y,y) = f(z,y) = (0 % f)(x,y), so § is the identity.
@) (f+Q@y)= X [flz2)

siw<z<y
Exercise: x is commutative?(N) associative?(Y) distributive?(Y)
Definition 4. If f x g =6, we say f, g is invertible.
frga=g2%f=0=g1=ga.
Theorem 1. f € A(P), then f is invertible <= f(x,z) # 0, Vx € P.

Proof. =7 3g € A(P), st. fxg=20. 0#£1=6(z,2) = (f *xg)(z,x) =
f(z,z)g(x, 7).
"<” Find g € A(P), s.t. fxg=24.

f(@,2)g(x,x) = (x,x) = 1 = g(x,7) = 5555,V

> [z, 2)g(zy) = 6(x,y) =0 T Fy

Then
fla)ge,y)+ > flx,2)g(z,y) =0,
xz < z <wy
i.e. g(x,y) = —ﬁ ( > f(ac,z)g(z,y)) =0, by recursion. O
v<z<y

Note: If use g * f = §, then g(z,y) = —m ( > g(x,z)f(z,y)) .

z
z<z2<vy

Definition 5. Mdbius Function over P is up = (1, where

17 =y
pp(ey) =4 = X pely) == ¥ prlez), 1<y
0, else



Theorem 2. (Inverse Formula I) Suppose P has a unique minimal element.
Lete: P — R be a function. If we have n: P — R s.t.

n(y) = Z e(z), Yy € P,

then

€)= D n(nr(zy):

z <y

The converse is also true.

Proof. Let m be the minimal element of P. Define f,g € A(P) as the following:

f(%y)_{ S(y), i;z , g(%y)_{ gfy), z=m

; T #m

We want to prove g = f * (.
=2 elz)= X flmz)= X [flm2)(zy) =

g(m,y) =n(y > > 3
(f*Q)(m,y). Yo £m, g(z,y) =0=(f+)(x,y) = g=f+( = f=g*up
= e(y) = f(m,y) = <Z< g(m, 2)up(z,y) = §<3 n(z)pup(2,y)- O

Theorem 3. Q = (Zo, <) is the divisor poset, then po(z,y) = p(2) if v | y.

Proof. (1) Show pq(x,y) = pa(l,2) if x| y. Prove by induction on the fprime
factors of £.

If £ =1, pa(z,y) = pa(l,1) = 1. Assume po(z,y) = pa(l,2) if £ has <k
prime factors. Take x |y and £ has k + 1 prime factors.

MQ('T7y):_ Z MQ(J?,Z):— Z MQ(17§)7

z<z<uy z< z<uy

2= Yo onelz)=— Y pa(l,z)

1<z< ¥ z<zz<y

(2) Show pq(1,d) = u(d). Prove by induction on the fprime factors of d.

/1'52(171) = N(l)a
pa(lp)=— Y pallz)=—1=pup),

1<z<p
po(l,pip2) = —(pa(1,1) + pa(l,p1) + pa(l,p2)) =1 = u(pip2),
pa(l,p?) = 0= pu(p?).
Assume uo(l,d) = p(d) if d has < k prime factors.

Case 1: d=p1 -+ pr+1

p(d) == 3 ol == 3 (T = (<) = (@)

1<z<d 1=0



Case 2: d=p" - -pkr, ki 4+ -k, =k +1 and k; > 2 for some i € [r]

by induction
po(l,d) = = 3 po(lz) === - ¥  po(l,2)=0=

1<z<d 1<z<py- - pr
u(d).

Corollary 1. g(n) = %: f(d) = f(n) = %: u(3)9(d).

O

Theorem 4. (Inverse Formula II) Suppose P has a unique mazimal ele-
ment. Let e: P — R be a function. If we haven: P — R s.t.

then

e(r) = Z wp(x, z)n(z).

v <
Proof. Ezercise! O
Theorem 5. |X| =n P, = (2%, <) with "C” relation. Then

pp, (A, B) = (-1)/P\M i AC B,
Proof. Prove by induction on |B\ A|(Ezercise!) O
Corollary 2. (IEP) |[ASN---NAS| = Y (—1)1]A;].

ICn]

Proof. Let X = [n], P, = (2%, <) with "C” relation.

Define
n: P, >R asn(|I]) =|Ar| =| AOIAi|,
1€
e: P, > Rasn(|I])=|ArN (QIA§)|
J
Then n(J) = e(I). Since P, has a unique mazimal element [n], by
JCI1C )
Theorem 4
e()= Y wp(LDnd)= Y (=14l

JCICn] JCICn]

Particularly, e(0) = |[ASN---NAS| = > (—=1)H]Af]. O

ICn]



