
Combinatorics, 2017 Fall, USTC

Week 10 Note 1

2017.11.21, Tuesday

Difference Sets(DS)

Note: Recall that a (v, k, λ) design implies r(k−1) = λ(v−1) and bk = vr.
=⇒ λ(v − 1) ≡ 0 (k − 1) and λv(v − 1) ≡ 0 (k(k − 1)).

Let Zv = {0, 1, 2, . . . , v − 1}.

Definition 1. 2 ≤ k < v, λ ≥ 1. A (v, k, λ) difference set is a k-subset
D = {d1, d2, . . . , dk} ⊆ Zv such that the collection of differences di − dj (i 6= j)
contains every element in Zv \ {0} exactly λ times.

Fact:

1© λ(v − 1) = k(k − 1).

2© A translate of D is a+D = {a+ d1, a+ d2, . . . , a+ dk} for some a in Zv.
Then a+D 6= D if a 6= 0.

Proof. 1© Count # of differences in D.

2© If a + D = D for some a 6= 0, then ∃ a permutation π of [k] satisfies
that π(i) 6= i and di + a = dπ(i) for all i ∈ [k]. Then a is expressed as a
difference dπ(i) − di in k ways. But k > λ, contradiction.

Theorem 1. If D is a (v, k, λ) difference set, then D, 1 + D, . . . , (v − 1) + D
are blocks of a symmetric (v, k, λ) design.

Proof. 1© v blocks, v points =⇒ symmetric.

2© |i+D| = k, ∀i.
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3© Show any pair of points is contained in exactly λ blocks. ∀x 6= y ∈ Zv,
then x, y ∈ a + D ⇐⇒ ∃di 6= dj, s.t. x = a + di, y = a + dj ⇐⇒
x− y = di− dj , d. Since there are exactly λ pairs di, dj s.t. di− dj = d,
and for each such pair, there are exactly one a = x − di = y − dj s.t.
s, y ∈ a+D.

Theorem 2. If v is a prime and v ≡ 3 (4), then all nonzero squares in Zv form
a (v, k, λ) DS with k = v−1

2 and λ = v−3
4 .

[The condition v ≡ 3 (4) is to ensure −1 is a nonsquare in Zv.]

Proof. Since v is odd, then a 6= −a in Zv when a 6= 0. Therefore for ∀a ∈
Zv \ {0}, x2 = a2 has two different solutions ±a ∈ Zv and ±a gives one square
a2 ∈ Zv. We have |D| = v−1

2 .
Since −1 /∈ D, then −D is the set of all nonsquares. ∀s ∈ D, ∃x, y ∈ D

and x − y = 1 ⇐⇒ ∃sx, sy ∈ D and sx − sy = s ⇐⇒ ∃sx, sy ∈ D and
sy − sx = −s. This means all nonzero squares and nonsquares have the same
# of representatives as a difference of two elements in D.

Hence λ = k(k−1)
v−1 =

v−1
2

v−3
2

v−1 = v−3
4 .

Projective Planes(PG(q))

Consider a linear space L ⊆ 2X , |L| = b, |X| = v, then b ≥ v.
We want b = v and each line has q + 1 points, then any two lines share

exactly one point. That is, all lines form a symmetric (v, k, λ) design with
λ = 1, k = q + 1, then b = v = q2 + q + 1. (Consider the dual design.)

Definition 2. A projective plane of order q consists of a set X with q2+q+1
points, and a family of lines satisfying

1© each line has q + 1 points.

2© any two points lie on a unique line.

Note: A PG(q) is a (q2 + q + 1, q + 1, 1) design.

Example:

(1) q = 1:

(2) q = 2, Fano plane:
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Propositon 3. In a projective plane of order q

1© Any point lies in q + 1 lines.

2© There are q2 + q + 1 lines.

3© Any two lines meet in a unique point.

Proof. 1© ∀x ∈ X, there are q2 + q points different from it. Each line con-
taining x contains q further points, and no other overlaps between them.
So there must be q + 1 lines through x.

2© Double count (x, L), x ∈ L, L ∈ L.

(q2 + q + 1)(q + 1) = |L|(q + 1) =⇒ |L| = q2 + q + 1.

3© If L1∩L2 = ∅, x ∈ L1, then the q+1 points of L2 gives q+1 different lines
containing x. Thus we get q+2 different lines through x, contradiction.

Construction of PG(q), q ≥ 2 prime

Recall Zq and Z∗
q = Zq \ {0} are cyclic groups.

V {(x0, x1, x2) ∈ Z∗
q : (x0, x1, x2) 6= (0, 0, 0)}, |V | = q3 − 1.

points: [x0, x1, x2] = {(cx0, cx1, cx2) : c ∈ Z∗
q}. So there are q3−1

q−1 = q2 + q+ 1
points.
lines: L(a0, a1, a2) ((a0, a1, a2) ∈ V ) is defined to be the set of points [x0, x1, x2]
for which a0x0 + a1x1 + a2x2 = 0. There are q2 − 1 solutions to this equation,

thus there are q2−1
q−1 points in line L(a0, a1, a2).

check any two points lie on a unique line: i.e. ∀[x0, x1, x2] 6= [y0, y1, y2],
∃! L(a0, a1, a2), s.t. {

a0x0 + a1x1 + a2x2 = 0
a0y0 + a1y1 + a2y2 = 0

.

Since

[
x0 x1 x2
y0 y1 y2

]
has rank 2, the solution space has dimension 1, i.e. ∃!

line L(a0, a1, a2) contains both [x0, x1, x2], [y0, y1, y2].

Bruen’s Theorem

A blocking set in a PG(q) is a set of points which intersects with every line.
E.g. the lines. A blocking set containing a line is called trivial.
Homework: the smallest blocking sets are just lines.

Question: what can be said about the size of non-trivial blocking sets?
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Theorem 4 (Bruen’s Theorem). Let B be a non-trivial blocking set in a PG(q).
Then |B| ≥ q +

√
q + 1.

[Note: Bruen’s theorem means that any set of at most q+
√
q points either

contains a line or avoids a line.]

Proof. If q = 1, the claim is true. Let q ≥ 2. Let |B| = q + m, m <
√
q + 1,

and B is a blocking set.
Let li=#{lines containing exactly i points inB}.(Homework: check when

i > m, li = 0.)
Double count lines, L ∩ V 6= ∅, point-line (x, L), x ∈ L ∩ B, and triples

(x, y, L) with x 6= y in B ∩ L, then

m∑
i=1

li = q2 + q + 1,

m∑
i=1

ili = |B|(q + 1), every point lies on q + 1 lines,

m∑
i=1

i(i− 1)li = |B|(|B| − 1), two points lie on exactly one line.

Since m <
√
q + 1, i−√q − 1 < 0, i ∈ [m], so

0 ≥
∑m
i=1(i− 1)(i−√q − 1)li

=
∑m
i=1 i(i− 1)li − (

√
q + 1)

∑m
i=1 ili + (

√
q + 1)

∑m
i=1 li

= |B|(|B| − 1)− (
√
q + 1)|B|(q + 1) + (

√
q + 1)(q2 + q + 1)

= [|B| − (q +
√
q + 1)][|B| − (q

√
q + 1)] > 0.

Contradiction.
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