
Combinatorics 2017 Fall

week8 note

Teaching by: Professor Xiande Zhang

Reference:

Extremal Combinatorics with applications in Computer Science. 2nd Edition.Stasys Jukna,Springer.

2017/11/14

Intersecting Family

Definition: F ⊂ 2X , if A,B ∈ F , A ∩B 6= ∅.
Example

• fix a ∈ X,F = {A ⊂ X : a ∈ A}.|F| = 2n−1.

• |X| = n, n is odd. F = {A ⊂ X : |A| > n
2
}, |F| =

∑n
i=n+1

2

(
n

i

)
.

Fact: For any intersecting family F ⊂ 2X , |F| ≤ 2n−1.

k-uniform: F ⊂
(
X

k

)
, intersecting family.

Example

• F = {A ⊂ X : a ∈ A, |A| = k}.|F| =
(
n− 1

k − 1

)
.

• n < 2k, |F| =
(
X

k

)
.

Theorem1(Erdős-Ko-Rado EKR) If n ≥ 2k.F ⊂
(
X

k

)
is intersecting family, then |F| ≤(

n− 1

k − 1

)
.

Proof: consider a cyclic permutation π = (a1, a2, · · · , an). in total (n−1)! cyclic permutation.

say π contain a subset A if A appears as consecutive elements in π. Suppose A ∈ F and A is

contained in π. ∃2(k − 1) subsets B contain in π. B 6= A,B ∩ A 6= ∅. These 2(k-1) subsets can

be partitioned into k-1 pairs of disjoint subsets and F contains at most one subset from each
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pair. N = #(π,A), s.t. A ∈ F . Fix A, #{π contain A} = k!(n − k)!. N =
∑

A∈F k!(n − k)! =

|F|k!(n− k)! ≤
∑

π k = (n− k)!k. �

Theorem2(EKR) If n > 2k., the intersecting family F ⊂
(
X

k

)
with |F| =

(
n− 1

k − 1

)
must

be a star.

Proof:

• (1) ∀π contain exactly k subsets of F .

• (2) if π = (a1, a2, · · · , an).π contains Aj ∈ F . where Aj = (aj, · · · , aj+k−1). Fix π, let

A1 ∩ A2 ∩ · · · ∩ Ak = {ak}. If A0 ∈ F , ak ∈ A0. Aim: F =

(
A1 ∪ Ak

k

)
Claim1:∀B ∈

(
A1 ∪ Ak

k

)
and ak ∈ B, then B ∈ F .

Proof: B ∩ A1 = {ak, b1, · · · , bs}, B ∩ Ak = {ak, c1, · · · , bt}, s + t + 1 = k.π = (A1 \
B, b1, · · · , bs, c1, · · · , bt, Ak \B · · · ). By (2), B ∈ F . �

Claim2:A0 ⊆ (A1 ∪ Ak) \ {ak}.

Proof: If A0 * A1 ∪Ak, |A0 ∩ (A1 ∪Ak)| ≤ k− 1. ∃B ∈ A1 ∪Ak, |B| = k, ak ∈ B. By Claim1,

B ∈ F . But A0 ∩B = ∅. contradiction. �

Claim3:

(
A1 ∪ Ak

k

)
⊂ F .

Proof: ∀C ∈
(
A1 ∪ Ak

k

)
, ak /∈ C,C ∩ A0 = {b1, b2, · · · , bs}. π = (· · · b1, · · · , bs · · · ), C ∈ F . �

Claim4: F =

(
A1 ∪ Ak

k

)
.

Proof:∃B ∈ F .B /∈ A1∪Ak.|B ∩ (A1∪Ak)| ≤ k− 1. Then ∃C ⊂ A1∪Ak, |C| = k, C ∪B = ∅.
But by Claim3, C ∈ F . contradiction. �

Fisher Inequality: Let A1, · · · , Am ∈ 2X . be distinct subsets. if |Ai ∩ Aj| = k.∃i 6= j. then

m ≤ |X| = n.

Proof: ∀ vectors x, y ∈ R. Let 〈x, y〉 = x1y1 + · · · + xnyn. let v1, · · · , vm be columns of the

incidence matrix of A1, · · · , Am, then it suffices to show that v1, · · · , vm are linearly independent

over the reals. Assume the contrary,i.e.∃
∑m

i=1 λivi = 0 with not all coefficients being zero. Since

〈vi, vj〉 =

{
|Ai|, i = j

k, i 6= j.
then

0 = 〈
m∑
i=1

λivi,
m∑
j=1

λjvj〉 =
m∑
i=1

λ2i 〈vi, vi〉+
∑

1≤i 6=j≤m

λiλj〈vi, vj〉

=
m∑
i=1

λ2i |Ai|+
∑

1≤i 6=j≤m

λiλj(|Ai| − k) + k(
m∑
i=1

λ2i )
2

2



Note that |Ai| ≥ k for all i and |Ai| = k for at most one i. since otherwise the intersection condition

would not be satisfied.i.e if ∃|Ai| ≥ k, |Aj| = k, then |Ai ∩ Aj| < k. contradiction. If only one

λi 6= 0, then k(
∑m

i=1 λ
2
i )

2 > 0. Here RHS> 0. IF≥ 2, λi 6= 0, then (
∑m

i=1 λ
2
i )

2(|Ai| − k) > 0. Both

cases we have RHS> 0. a contradiction. �
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Preliminaries A real symmetric matrix of order n.

• λ1 6= λ2 different eigenvalues, Au = λ1u,Av = λ1v, then (u, v) = 0.

• if λ is an eigenvalue of A, then λ is a real number.

• if U is A-invariant subspace of Rn, then U⊥ is also A-invariant.

• if 0 6= U is A-invariant subspace of Rn, then U contains a real eigenvalue of A.

• Rn has an orthogonal basis consisting of eigen vectors of A.

Definition: Kneser graph KG(n,k) for n ≥ 2k is a graph with vertex set

(
[n]

k

)
s.t.A,B ∈(

[n]

k

)
, A ∼ B iff A ∩B = ∅.

Fact: an intersecting family F ⊂
(

[n]

k

)
is an independent set in KG(n,k). So EKR Theorem

⇔ α(KG(n, k)) ≤
(
n− 1

k − 1

)
.

Definition: adjacency matrix AG = (aij)m×n of an n-vertex graph G is defined by aij ={
1, if i ∼ j in G

0, oterwise.
Definition: The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of AG is called the eigenvalues of the graph

G, The eigenvalues v1, v2, · · · , vn of AGs.t.AGvi = λivi, ‖vi‖ = 1, vi ⊥ vj are called orthogonal

eigenvectors of G.

Definition: A graph G is regular if all vertices have the same degree.

Theorem1(Hoffman’s Theorem) If an n-vertex graph G is regular with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, then α(G) ≤ n −λn

λ1−λn .

Proof: Let v1, · · · , vn be the corresponding to orthogonal eigenvectors of λ1, · · · , λn. let I

be an independent set od G with |I| = α(G), let eI be the column indicator vector of I, write

eI =
∑n

i=1 αivi, Then |I| = 〈eI , eI〉 =
∑n

i=1 α
2
i . and αi = 〈eI , vi〉. since G is regular(all degree d),

we have λ1 = d and v1 = ( 1√
n
, · · · , 1√

n
)T . so α1 = 〈eI , v1〉 = |I|√

n
. since I is an independent set of

G, eTI eI =
∑

i,j xiaijxj = 0. where eI = (x1, · · · , xn)T .
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0 = eTI AGeI = eTI

m∑
i=1

αixivi =
m∑
i=1

αiλi〈eI , vi〉

=
n∑
i=1

α2
iλi ≥ α2

1λ1 + (α2
2 + · · ·+ α2

n)λn

= (
|I|√
n

)2λ1 + (|I| − |I|
2

√
n

)λn

=⇒ 0 ≥ |I|
2

√
n
λ1 + (|I| − |I|

2

√
n

)λn = |I|( |I|√
n
λ1 + λn −

|I|√
n
λn)

=⇒ |I|√
n
λ1 + λn −

|I|√
n
λn ≤ 0 =⇒ |I|√

n
(λ1 − λn) ≤ −λn

=⇒ |I| ≤ n
−λn

λ1 − λn
�

Lemma2: The eigenvalues of Kg(n,k) are uj = (−1)j
(
n− k − j
k − j

)
of multiplicity

(
n

j

)
−(

n

j − 1

)
for every 0 ≤ j ≤ k.

Recall: Any intersecting family F is an independent set of KG(n,k). Let α(G) = max|I|

over all independent set I of G. Thus, EKR Theorem ⇐⇒ α(KG(n, k)) ≤
(
n− 1

k − 1

)
. The second

proof of EKR Theorem: consider the eigenvalues of KG(n,k), say λ1 ≥ λ2 ≥ · · · ≥ λ(n
k

),

where λ1 =

(
n− k
k

)
= u0, λ(n

k

) = −
(
n− k − 1

k − 1

)
= u1. By Hoffman’s bound, α(KG(n, k)) ≤

(
n

k

) −λ(
n

k

)
λ1−λ(n

k

) =

(
n

k

) (
n− k − 1

k − 1

)
(
n− k
k

)
+

(
n− k − 1

k − 1

) =

(
n− 1

k − 1

)
.

Let X = [v] be a set of points.

Definition: A (v, k, λ) design over X is a collection D of distinct subsets of X(called blocks)

such that:

• (1) ∀B ∈ D, |B| = k.

• (2) ∀ pair of distinct points is contained in exactly λ blocks. Denote b = |D|, if we replace

(2) by
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• (2’) every t-subset of X is contained in exactly λ blocks.

then D is called a t − (v, k, λ) design. If λ = 1, a t − (v, k, λ) design is called a Steiner system

S(t,k,v). If b = v, then a t − (v, k, λ) design is called symmetric. A family of sets F is called

r-regular if every point lies in exactly r sets, r is the replication number of F .

Theorem3: D is a (v, k, λ) design with b blocks, then D is r-regular satisfying r(k − 1) =

λ(v − 1) and bv = vr.

Proof: For any fixed a ∈ X, assume a occurs in ra blocks, double count the cordinality of

S = {(x,B) : B ∈ D; a, x ∈ B;x 6= a}

• there are v-1 possibilities of x(x 6= a), and for each x there are exactly λ blocks B containing

both x and a, Hence |S| = (v − 1)λ.

• for each of the ra blocks B containing a, there are k-1 ways to choose an element x ∈ B \ a.
so |S| = ra(k − 1).

Hence ra(k − 1) = (v − 1)λ, ra is independent of a i.e. D is regular. To prove bv = vr, double

count T = {(X,B) : B ∈ D, x ∈ B}.

• ∀x ∈ X,B can be chosen in r ways, so |T | = vr.

• ∀B ∈ D, x can be chosen in k ways, so |T | = nk.

�

A finite linear space over a set X is a family L of its subsets, called lines, such that:

• every line contains at least two points.

• any two points are on exactly one line.

Theorem4: If L is a linear space over X, then |L| ≥ |X|, with equality holds iff any two

lines share exactly one point. Proof:(Conway) Let b = |L| ≥ 2, and v = |X|,∀x ∈ X, let rx be

the replication number,i.e. the number of lines in L containing x. If x /∈ L, then rx ≥ |L| since

there are |L| lines joining x to the points on L, suppose b ≤ v, for x /∈ L, we have b(V − |L|) =

bv − b|L| ≥ bv − v|L| ≥ v(b− rx). Hence

b =
∑
L∈L

1 =
∑
L∈L

∑
x:x/∈L

1

v − |L|
≤ b

v

∑
L∈L

∑
x:x/∈L

1

b− rx

=
b

v

∑
x:x/∈L

∑
L∈L

1

b− rx
=
b

v

∑
x∈X

1 = b.

This implies all inequalities are equalities so that b=v. and vx = |L| whenever x /∈ L,i.e. any line

containing x share one point with L. �
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