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Monochromatic

Thm: If k is sufficiently large, then there exists a k−uniform family
F s.t.|F | ≤ k22k and F is not 2−colorable

proof:r = bk2
2
c, Let F = {A1, · · · , Ab} be a random k−uniform

family over [r],i.e. each Ai is chosen with probability 1/

(
r

k

)
, inde-

pendently of other choice.Let B be the event that F is 2−colorable.
For each 2−coloring χ : [r] → {red, blue},let Bχ be the event that
no subset Ai ∈ F is monochromatic under χ, then B = ∪χ∈2[r]Bχ.
Suppose χ colors a red points and r − a blue points, Then

Pr[Ai ∈ F is monochromatic underχ]

= Pr[Ai is red] + Pr[Ai is blue]

=

(
a

k

)
+

(
r − a
k

)
(
r

k

)
Jensen’s Inequality

≥
2

(
r/2

k

)
(
r

k

) := p

≈ e−121−k.

since Ai are chosen independently,Then

1



Pr[Bχ] = Pr[∩bi=1(Ai is not monochromatic)]

=
b∏
i=1

(1− Pr(Ai is monochromatic)) ≤ (1− p)b.

Then Pr[B] ≤
∑
χ∈2[r]

Pr[Bχ] ≤ 2r(1− p)b < er ln 2−pb.

when b = (r ln 2)/p = (1 + o(1))k22k−2e ln 2, P r[B] < 1.
⇒ Pr[F is not 2-colorable] = 1− Pr[B] > 0. b ≤ k22k. �

Let B(k) be the minimum possible number of sets in a k−uniform
family which is not 2−colorable. Then 2k−1 ≤ B(k) ≤ k22k.

The linearity of expectation

• E[X + Y ] = E[X] + E[Y ],∀X, Y

• Pr[X ≥ E[X]] > 0, P r[X ≤ E[X]] > 0

Def:subset A of an addictive group is sum-free,if ∀x, y ∈ A, x+y /∈
A(allow x = y). E.g.

• A = {n+ 1, n+ 2, · · · , 2n} ⊂ Z is sum-free.

• A = {odd integers} ⊂ Z is sum-free.

Thm: For any set A of non-zero integers, there is a sum-free set
B ⊂ A with |B| ≥ |A|/3.

proof:Let p = 3k + 2 be a prime,s.t. p > 2 max
a∈A
|a|

[such a prime exists by Dirichlet’s prime number theorem:∀a, b s.t. (a, b) =
1,∃ infinity many primes of the form a+ nb]

Let S = {k + 1, k + 2, · · · 2k + 1}, |S| = k + 1. and S is sum-
free in Zp, we proceed by reducing the original problem to Zp,For
x ∈ Z∗p = Zp\{0}. Let Ax = {a ∈ A : (ax mod p) ∈ S} ⊂ A.

Note that Ax is sum-free in A, because ∀a, b ∈ Ax, (ax mod p) ∈
S, (bx mod p) ∈ S, then (ax + bx mod p) /∈ S by sum-free of
S.Then we want to find some x ∈ Z∗p. s.t.|Ax| ≥ |A|/3. Choose
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x ∈ Z∗p uniformly at random, We compute E[|Ax|].

∀a ∈ A, Let |Aa,x| be a random variable Z∗p → {0, 1}, where |Aa,x|
maps x to 1 if (ax mod p) ∈ S, and 0 otherwise.
Note that |Ax| =

∑
a∈A
|Aa,x|, by linearity of expectation, E[|Ax|] =∑

a∈A
E[|Aa,x|] =

∑
a∈A

Pr[(ax mod p) ∈ S].

observe that for fixed a ∈ A,running over all x ∈ Z∗p, then (ax

mod p) also run over all Z∗p, so Pr[(ax mod p) ∈ S] =
|S|
p− 1

> 1
3
.

Then E[|Ax|] =
∑
a∈A

Pr[(ax mod p) ∈ S] >
|A|
3
.

Then, there must exists some x ∈ Z∗p, s.t.|Ax| ≥ E[|Ax|] >
|A|
3
.

where Ax is sum-free. �

Def: A dominating set of vertices in a graph G = (V,E) is a subset
A ⊂ V (G) such that every v ∈ V \A has a neighbor in A.

Thm:Let G = (V,E) be a graph on n vertices and with mini-
mum degree δ > 1.Then G contains a dominating set of at most
1 + ln (1 + δ)

1 + δ
n vertices.

proof:For p ∈ (0, 1), which will be determined later, We pick each
vertex in V (G) with probability p uniformly at random. Let X be
the random set of vertices picked. Let Y be the random set of ver-
tices y ∈ V \X, which has no neighbors in X. That is, y ∈ Y iff y
is not picked and al neighbors of y are not picked. So P (y ∈ Y ) =
(1− p)1+deg(y) ≤ (1− p)1+δ ≤ e−p(1+δ).

for any fixed y ∈ V Let I{y∈Y } be a random variable, 2[v] → {0, 1},
which maps Y to 1 if y ∈ Y , and 0 otherwise. i.e.

I{y∈Y } =

{
1 event: y ∈ Y. occur

0 event: y /∈ Y. occur

Then |Y | =
∑
y∈V

I{y∈Y },by linearity of expectation.
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E[|Y |] =
∑
y∈Y

E[|I{y∈Y }|] =
∑
y∈Y

Pr[y ∈ Y ] ≤ n · e−p(1+δ).

Claim: X ∪ Y is a dominating set of G. Why?(Exercise)

Since E[|X∪Y |] = E[|X|]+E[|Y |] ≤ np+e−p(1+δ) = n(p+e−p(1+δ)).

check: when p =
ln (1 + δ)

1 + δ
to get E[|X ∪ Y |] ≤ 1 + ln (1 + δ)

1 + δ
n.

Then there exists a dominating set of size at most
1 + ln (1 + δ)

1 + δ
n.�
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2017.12.22

Recall:α(G) = max |I| over all independent set I ⊂ V.

Thm: For any graph G,α(G) ≥
∑
v∈V

1

1 + deg(v)
.

Thm:Let V (G) = [n]. For i ∈ [n], Let Ni be the neighborhoods
of i in G, i.e. Ni = {j ∈ [n] : j ∼ i}, let Sn be the symmetric group
over [n].

For given π ∈ Sn we say a vertex i ∈ [n] is π−dominating, if
π(i) < π(j) for all j ∈ Ni. let Mπ ={all π−dominating vertices.}

Claim:∀π ∈ Sn,Mπ is a independent set.

proof of claim: Suppose not,then ∃i, j ∈ Mπ with i ∼ j. let
π(i) < π(j) ⇒ j is not π−dominating, i.e. j /∈ Mπ, a contra-
diction.

Pick an π ∈ Sn uniformly at random, compute E[|Mπ|].

For any fixed i ∈ [n], let I{i is π−dominating} be a random variable,
Sn → {0, 1}, which maps π to 1 if i is π−dominating. and 0 other-
wise. i.e.

I{i is π−dominating} =

{
1 event: i is π − dominating. occur

0 event: i is not π − dominating. occur

Then |Mπ| =
∑
i∈[n]

I{i is π−dominating},By linearity of expectation.

E[|Mπ|] =
∑
i∈[n]

E[|I{i is π−dominating}]

=
∑
i∈[n]

Pr[i is π − dominating]

By definition, i is π−dominating iff π(i) is minimum over π({i}∪Ni)
Since π is random,every vertex in {i}∪Ni has the equal probability
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to achieve the minimum in π, which is
1

1 + deg(i)
. Thus

E[|Mπ|] =
∑
i∈[n]

1

1 + deg(i)
=
∑
v∈V

1

1 + deg(v)
.

proof of Pr[i is π − dominating] =
#{π : i is π − dominating}

|Sn|
=(

n

deg(i) + 1

)
· deg(i)! · (n− deg(i)− 1)!

n!
=

1

deg(i) + 1
. �

Def:A biclique covering of a graph G is a set H1, · · · , Ht of its
biclique subgraphs such that each edge of G belongs to at least one

of those subgraphs. The weight of such a covering is
t∑
i=1

|V (Hi)|.

Let bc(G) be the smallest weight of a biclique covering of G.

Thm:

bc(Kn) ≥ n log2 n

proof:KAi,Bi
, i ∈ [t] be a covering of Kn, For v ∈ V (Kn),Let mv be

the number of these cliques containing v. By double-counting,
t∑
i=1

(|Ai|+

|Bi|) =
t∑
i=1

mv

So,it is enough to show that
t∑
i=1

mv ≥ n log2 n.

To do this, throw a fair 0 − 1 coin for each i ∈ [t], if outcome is
0 remove all vertices in Ai from Kn, else remove all vertices in Bi

from Kn.

Let Xv be the indicator variable for the event“vertex survives”. and
X = X1 + · · · + Xn, which is the number of vertices survive at the
end. since any two vertices are adjacent in Kn, and each edge occurs
in at least one biclique, we can have at most one vertex survive at
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the end,i.e. E[X] ≤ 1.

Further Pr[v survives] =
(
1
2

)mv
, By linearity expectation 1 ≥ E[X] =

n∑
v=1

E[Xv] =
n∑
v=1

Pr[v survives] =
n∑
v=1

(
1

2

)mv

.

By inequality
1

n

n∑
v=1

av ≥ (
n∏
v=1

av)
1
n , let av = 2−mv ,we have

1

n
≥ 1

n

n∑
v=1

2−mv ≥ (
n∏
v=1

2−mv)
1
n = 2−

∑n
v=1mv/n

Then 2

n∑
v=1

mv/n
≥ n, hence

n∑
v=1

mv ≥ n log2 n. �

Ex:Show bc(Kn) = n log2 n. if n is a power of two.

The deleting method

idea:A random structure doesn’t always have the directed prop-
erty, and may have some very few ”blemishes”. After deleting all
blemishes, we will obtain the wanted structure.

Recall:For any G, α(G) ≥
∑
v∈V

1

1 + deg(v)
.

Corollary:∀G with m edges and n vertices, then α(G) ≥ n2

2m+ n
.

If m = nd/2 where d is average degree, then α(G) ≥ n

1 + d
.

proof:By double-counting
∑
v∈V

deg(v) = 2m, then
∑
v∈V

deg(v) + 1 =

2m+ n.

By the fact that harmonic mean is less than arithmetic mean, i.e.
n

n∑
i=1

1/xi

≤
n∑
i=1

xi/n. we have
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α(G) ≥
∑
v∈V

1

1 + deg(v)
≥ n2∑

v∈V
deg(v) + 1

=
n2

2m+ n
. �

Next, we show the half-way of the previous result by a short ar-
gument.

Thm:Let G be a graph on n vertices and with average degree d.

Then α(G) ≥ n

2d
.

proof:Let S ⊂ V (G) be a random set, where for ∀v ∈ V, Pr(v ∈
S) = p and value of p will be determined later. Let X = |S| and

Y = #edges in S. Then E[X] = np,E[Y ] = |E(G)| · p2 =
nd

2
p2.

Then E[X − Y ] = np− nd

2
p2 = n(p− d

2
p2).

By choosing p =
1

d
, we have E[X − Y ] =

n

2d
which is maximum.

So there is a particular set S such that |S| − |Y | ≥ E[X − Y ] =
n

2d
.

Now,deleting one vertex form each edge of S. leaving a set S′.
This set S′ is independent and has at least

n

2d
vertices. �

Remark:If letE[Y ] < 1, i.e.p <

√
2

nd
we can get another bound.E[X] <

n ·
√

2

nd
⇒ α(G) ≥ n ·

√
2

nd+ 1
.

Recall:If

(
n

k

)
21−
(
k
2

)
< 1, then R(k, k) >

1

e
√

2
k2k/2.

Thm:∀n,R(k, k) > n−
(
n

k

)
21−
(
k
2

)

proof:Consider a random 2−edge-coloring of Kn, where each edge

is colored by red or blue with probability
1

2
, independent of other

choices. For A ∈
(

[n]

k

)
, Let XA be the indicator random variable
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of the event that A is monochromatic.

Let X =
∑

A∈
(
[n]
k

)E[XA] =

(
n

k

)
21−
(
k
2

)
.

Then there exists a 2−edge-coloring of Kn, s.t. X ≤ E[X] =(
n

k

)
21−
(
k
2

)
. Fix such a coloring, remove one vertex from each

monochromatic k−subset. This will delete X ≤
(
n

k

)
21−
(
k
2

)
ver-

tices, which has No monochromaticKk. SoR(k, k) > n−
(
n

k

)
21−
(
k
2

)
.�
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