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A system of distinct representatives(SDR) for a sequence of set S1, S2, · · · , Sm(are not neces-

sarily distinct) is a sequence of distinct elements x1, · · · , xm, s.t. xi ∈ Si, i ∈ [m].

Theorem1(Hall’s marriage Theorem) The sets of S1, S2, · · · , Sm has a SDR iff |∪i∈ISi| ≥
|I| for I ⊂ [m](Hall’s condition) i.e. for ∀k ∈ [m], the union of any k sets has at least k elements.

Proof: ”=⇒” If S1, S2, · · · , Sm have a SDR x1, · · · , xm, then ∀I ⊂ [m], | ∪i∈I Si| ≥ |{xi, i ∈
I}| = |I|.
⇐= Prove by induction on m. The case m = 1 is clear. Assume the claim holds for any

collection with < m sets.

• if for all I ⊂ [m], | ∪i∈I Si| > |I|, take x ∈ S1 as its representative, let S ′i = Si\{x}, i =

2, · · · ,m. then for all I ⊂ [2,m], | ∪i∈I S ′i| ≥ |I|. by assumption S ′2, · · · , S ′m have a SDR

x2, · · · , xm. then x1, · · · , xm is a SDR of S1, · · · , Sm.

• if for some I ⊂ [m], | ∪i∈I Si| = |I| = k for some k. by recording Si, i ∈ [m], we may assume

|∪ki=1Si| = k. by assumption, S1, · · · , Sk have a SDR x1, · · · , xk. Let S ′i = Si\{x1, · · · , xk}, i ∈
[k + 1,m]. then for all I ⊂ [k + 1,m], | ∪i∈I S ′i| ≥ |I|, if not, |(∪i∈ISi) ∪ (∪kj=1Sj)| <
|I| + k, a contradiction. So by assumption S ′k+1, S

′
k+2, · · · , S ′m have a SDR xk+1, · · · , xm,,

then x1, x2, · · · , xm is a SDR of s1, s2, · · · , sm.

Corollary2:X is a set of size n,|Si| = r, Si ⊂ X, i ∈ [m].s.t.|{i : x ∈ Si}| = d for all x ∈ X. If

m ≤ n, then S1, · · · , Sm have a SDR.

Proof : Consider the incidence matrix M = (mx,i) of Si, i ∈ [m]. That is M is a 0-1 matrix

with |X| rows labeled by elements x ∈ X, and with m colors labeled by i ∈ [m], such that mx,i = 1

iff x ∈ Si, count the number of 1 in M. we have dn = mr, then m ≤ n implies d ≤ r. Suppose

1



S1, · · · , Sm don’t have a SDR, by Hall’s Theorem, ∃k sets Si1 , · · · , Sik for some k ∈ [m],

|Y | = |Si1 ∪ · · · ∪ Sik | < k

∀x ∈ Y, let dx = |{i ∈ [k] : x ∈ Sij}| ≤ d. count the number of 1 in rows labeled by x ∈ Y and

columns ij, j ∈ [k].

rk =
k∑
j=1

|Sij| =
∑
x∈Y

dx ≤ d|Y | < dk.

a contradiction. �

Theorem3: Suppose elements in X are colored either in red or in blue. Si ⊂ X, i ∈ [m], Then

S1, · · · , Sm have a SDR with ≤ t red elements iff S1, · · · , Sm have a SDR and ∀I ⊂ [m],∪i∈ISi
has ≥ t blue elements.

Proof : ”=⇒” Let x1, · · · , xm be a SDR of S1, · · · , Sm with ≤ t red elements. then ∀I ⊂
[m], {xi, i ∈ I} ⊂ ∪i∈ISi has at least |I| − t blue elements.

”⇐=” Let R be the set of red elements in X. If |R| ≤ t, trivial. Assume |R| > t, let

Sm+1 = Sm+2 = · · · = Sm+r = R, where r = |R| − t. then S1, · · · , Sm have a SDR with ≤ t

red elements ⇐⇒ S1, · · · , Sm, Sm+1, · · · , Sm+r have a SDR. So we need to check Hall’s condition

for S1, · · · , Sm+r, let Y = ∪i∈ISi, if I ⊂ [m], then |Y | ≥ |I| since S1, · · · , Sm have a SDR. if

I = J1 ∪ J2, where J1 ⊂ [m], J2 ⊂ [m+ 1,m+ r], then |J2| ≤ |R| − t, |Y | = | ∪i∈J1 (Si\R)|+ |R| ≥
|J1| − t+ |R| = |J1|+ (|R| − t) ≥ |J1|+ |J2| = |I|. �

Application

Definition: A r × n(r ≤ n) Latin rectangle is r × n matrix over [n] s.t.numbers 1, 2, · · · , n
occurs once in each row and ≤once in each column. A Latin square is an n× n Latin rectangle.

Evans conjecture: If fewer than n cells of an n × n matrix are filled, then one can always

complete it into a Latin square.

Theorem4: If r < n, then any given r×n Latin rectangle can be extended to an (r+ 1)×n
Latin rectangle.

Proof: Let R be r × n LR, For j ∈ [n], let Sj be the set of integers in [n] which don’t occur

in the j-th column. Then it suffices to prove S1, · · · , Sn have a SDR. Since |Sj| = n− r, and each

i ∈ [n], i occurs in n− r sets Sj, by Corollary2, S1, · · · , Sn have a SDR. �

Definition: An n×n matrix A = {Aij} with aij ≥ 0 is called doubly stochastic if
∑n

j=1 aij =∑n
i=1 aij = 1 for ∀i, j ∈ [n]. If aij = 0 or 1, then it is a permutation matrix.

Thoeorem5: Every doubly stochastic matrix A is a convex combination of permutation

matrixes, that is, ∃ permutation matrixes P1, · · · , Ps and non-negative reals λ1, · · · , λs s.t.A =∑s
i=1 λiPi and

∑s
i=1 λi = 1.

Proof : Let A be an n×n doubly stochastic matrix, let m be the number of non-zero entries

in A, then m ≥ n. prove by induction on m. If m = n, then each non-zero entry is 1, so A itself

is a permutation matrix. If m > n and the results holds for matrices with < m non-zero entries.
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Define Si = {j : aij > 0}, i ∈ [n]. If for some of the sets Si1 , Si2 , · · · , Sik , | ∪ki=1 Sik| ≤ k − 1.

that is all non-zero entries in rows i1, · · · , ik occupy at most k − 1 columns of, say columns

j1, · · · , jk−1, if count by rows, we have the sum is k, but if count by columns, the sum is at most

k − 1,a contradiction. By Hall’s Theorem, there is a SDR j1 ∈ S1, j2 ∈ S2, · · · , jn ∈ Sn. Take a

permutation matrix P1 = (Pij) with entries pij = 1 iff j = j1. Let λ1 = min{a1j1 , · · · , anjn}. and

consider B1 = A−λ1P1. By definition of Si, we have λ1 > 0, matrix B1 has at most m−1 non-zero

entries, and the row sum and column sum of B1 is 1− λ1. Let A1 = 1
1−λ1B1, then A1 is a doubly

stochastic matrix with less than m non-zero entries. By assumption A1 = µ2P2 + · · · + µsPs a

convex combination. Hence, A = λ1P1 + (1− λ1)A1 = λ1P1 + (1− λ1)µ2P2 + · · ·+ (1− λ1)µsPs.
Since

∑s
i=2 µi = 1, we have λ1 + (1− λ1)(

∑
µi) = 1. �
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