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Intersecting Family
Definition: F C 2%, if A, B € F,AN B # 0.

Example

efixae X, F={ACX:a€ A}|F|=2""1.

e |[X|=n,nisodd. F={AC X :|A] >%},|}"\:Z?:n7+1 (n>

i
Fact: For any intersecting family F C 2% |F| < 2n7L,

k-uniform: F C (X

) ), intersecting family.

Example

—1
o F={AC X:a€A|A =k}.|F| = (Z_l).
o n <2k |F|= ()l:)

X
Theorem1(Erdés-Ko-Rado EKR) If n > 2k.F C ( k:) is intersecting family, then |F| <
n—1
k—1)
Proof: consider a cyclic permutation 7 = (ay, ag, - ,a,). in total (n—1)! cyclic permutation.
say 7w contain a subset A if A appears as consecutive elements in m. Suppose A € F and A is

contained in 7. 32(k — 1) subsets B contain in m. B # A, BN A # (). These 2(k-1) subsets can

be partitioned into k-1 pairs of disjoint subsets and F contains at most one subset from each



pair. N = #(m, A),st. A€ F. Fix A, #{m contain A} = kl(n —k)l. N =3, -kl(n—k)! =

| FlE(n — k)N <> k= (n—Fk)k. O
Theorem2(EKR) If n > 2k., the intersecting family F C ()k() with |F| = (Z : 1) must
be a star.
Proof:

e (1) Vr contain exactly k subsets of F.

e (2) if 7 = (a1,aq, -+ ,a,).m contains A; € F. where A; = (a;, - ,aj44-1). Fix m, let
AjUA
AyN Ay 0 Ay = {ag}. TE Ag € Fray € Ay, Aim: F = ( HA

and a; € B, then B € F.

Claim1:VB ¢ (Al Y A’“)

Proof: BN A1 = {ar b, b}, BN Ay = {agcr-o bibys +t+1 = ko = (Ag\
B,bl,"',bS,Cl,'-',bt,Ak\B"'). By(?),BG./—" U

Claim2:A0 g (Al U Ak) \ {ak}
Proof: If Ay & A; U Ay, |AgN (AyUAL)| < k—1.3B € Ay U Ay, |B| = k, aj, € B. By Claiml,

B € F. But Ay N B = (). contradiction. dJ
Claim3:(A1 :A’“) C F.

ATUA
Proof: VO € ( “Ij k),ak ¢ C,CNAy={bi,bay - by.m= (b, by--),C€F.0O
Claim4: F = (Al ;JA’“).
Proof:3B € F.B ¢ Ay UA;.|BN(A1UAL)| <k—1.Then 3C C AjUA;, |C| =k, CUB = 0.
But by Claim3, C € F. contradiction. O

Fisher Inequality: Let Aj,---, A, € 2%. be distinct subsets. if |4; N A;| = k.3i # j. then

m < |X| =n.
Proof: V vectors z,y € R. Let (z,y) = x1y1 + -+ + xpYn. let vy, - -+ v, be columns of the
incidence matrix of Ay, --- , A,,, then it suffices to show that vq,--- ,v,, are linearly independent

over the reals. Assume the contrary,i.e.3y ", A\;v; = 0 with not all coefficients being zero. Since

Ai ) =]
(vi,vj) = A i = then
ki # j.

0= <Z )\i'l}i,Z)\jUj> = ZAf(UHUZ) + Z Ai}‘j<vi7vj>
i=1 j=1 i=1

1<iZj<m
=D ONAL+ D> ANAl =R+ EO A
i=1 1<ij<m i1



Note that |A;| > k& for all i and |A;| = k for at most one i. since otherwise the intersection condition
would not be satisfied.i.e if 3|A4;| > k,|A;| = k, then |A; N A;| < k. contradiction. If only one
Ai # 0, then k(327" A2)? > 0. Here RHS> 0. IF> 2, \; # 0, then (3_7", A?)%(|A;| — k) > 0. Both
cases we have RHS> 0. a contradiction. O
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Preliminaries A real symmetric matrix of order n.

A1 # A different eigenvalues, Au = A\ju, Av = A\, then (u,v) = 0.

if A is an eigenvalue of A, then A is a real number.

if U is A-invariant subspace of R", then U~ is also A-invariant.

if 0 # U is A-invariant subspace of R", then U contains a real eigenvalue of A.

R™ has an orthogonal basis consisting of eigen vectors of A.

Definition: Kneser graph KG(nk) for n > 2k is a graph with vertex set ([Z])s.t.A, B €

k
Fact: an intersecting family F C ([Z]) is an independent set in KG(n,k). So EKR Theorem

([n]),ANBiffAﬂB:Q).

& a(KG(n,k)) < (Z - D

Definition: adjacency matrix Ag = (@;j)mxn of an n-vertex graph G is defined by a;; =

Lifi~jinG

{ 0, oterwise.

Definition: The eigenvalues \; > Ay > --- > ), of Ag is called the eigenvalues of the graph
G, The eigenvalues vy, v, - -+ ,v, of Ags.t.Agv; = \uv;, ||vi|| = 1,v; L v; are called orthogonal
eigenvectors of G.

Definition: A graph G is regular if all vertices have the same degree.

Theorem1(Hoffman’s Theorem) If an n-vertex graph G is regular with eigenvalues A\; >
Ay >+ >\, then a(G) < n/\l’_AKH.

Proof: Let vy,---,v, be the corresponding to orthogonal eigenvectors of Ay, -+, \,. let I

be an independent set od G with |I| = «(G), let e; be the column indicator vector of I, write

er =y i, o, Then [I| = (er,er) = > af. and o; = {(eg,v;). since G is regular(all degree d),

I . ) .
we have A\ = d and v; = (\/iﬁ, .o ,\/LE)T. so a; = (er,v1) = l/_‘ﬁ since I is an independent set of
T, _ _ _ T
G, ejer = Z” zia;;x; = 0. where ef = (2, ,2,)" .
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Lemma?2: The eigenvalues of Kg(nk) are u; = (—1)’ (n e j> of multiplicity <n) -
—J J

(.nl) for every 0 < j < k.
J R
Recall: Any intersecting family F is an independent set of KG(n,k). Let a(G) = max|I|

-1
over all independent set I of G. Thus, EKR Theorem <= a(KG(n,k)) < Z 1) The second
proof of EKR Theorem: consider the eigenvalues of KG(nk), say \y > Ay > -+ > )‘(n ,
y

—k —k—1
where \; = (n i > = uO,A(n) = _<n b1 ) = wu;. By Hoffman’s bound, o(KG(n,k)) <

NE O e T
By Oy )

Let X = [v] be a set of points.
Definition: A (v, k, \) design over X is a collection D of distinct subsets of X(called blocks)

such that:

e (1) VB € D,|B| =k.

e (2) V pair of distinct points is contained in exactly A blocks. Denote b = |D|, if we replace

(2) by



e (2') every t-subset of X is contained in exactly A blocks.

then D is called a t — (v, k, A) design. If A =1, at — (v, k, \) design is called a Steiner system
S(t,k,v). If b = v, then a t — (v, k, \) design is called symmetric. A family of sets F is called
r-regular if every point lies in exactly r sets, r is the replication number of F.

Theorem3: D is a (v, k, ) design with b blocks, then D is r-regular satisfying r(k — 1) =
Av —1) and bv = or.

Proof: For any fixed a € X, assume a occurs in r, blocks, double count the cordinality of

S={(x,B): B€ D;a,x € B;x #a}

e there are v-1 possibilities of z(x # a), and for each x there are exactly A blocks B containing
both x and a, Hence |S| = (v — 1)A.

e for each of the r, blocks B containing a, there are k-1 ways to choose an element z € B \ a.
so |S| =r.(k—1).

Hence r,(k — 1) = (v — 1)\, r, is independent of a i.e. D is regular. To prove bv = vr, double
count T'={(X,B): B€ D,z € B}.

e Vz € X, B can be chosen in r ways, so |T'| = vr.

e VB € D,z can be chosen in k ways, so |T| = nk.

A finite linear space over a set X is a family £ of its subsets, called lines, such that:
e every line contains at least two points.
e any two points are on exactly one line.

Theoremd: If £ is a linear space over X, then |£| > |X|, with equality holds iff any two
lines share exactly one point. Proof:(Conway) Let b = |[£]| > 2, and v = |X|,Vz € X, let r, be
the replication number,i.e. the number of lines in £ containing x. If x ¢ L, then r, > |L| since
there are |L| lines joining x to the points on L, suppose b < v, for x ¢ L, we have b(V — |L|) =
bv —b|L| > bv —v|L| > v(b— r,). Hence

=YY Y Y Y

LeLl LeLl z:x¢L LeLl z:z¢L
b 1 b
= — = - 1=0b.
DD et B
zx¢L LeL zeX

This implies all inequalities are equalities so that b=v. and v, = |L| whenever z ¢ Li.e. any line

containing x share one point with L. 0



