Combinatorics, 2017 Fall, USTC
Week 13 Note 1

2017.12.12, Tuesday

1 Reed-Muller codes(RM codes)

m > 0, g is a prime power, 0 <t < q, k = (m:rt), n =q™. Let ay,---,a, be
distinct points in F".
Messages: w = (w1,...,wg) € F’;. List and order all monomials 2tz - - - xtm

with 1 +to + -+ + ¢, <t. We have (m:'t) such monomials.

Then associate message w with a multivariable polynomial P, (z1, z2, . . . Z,) =sum
of monomials of degree at most ¢ and coefficients w;.

Let X, = (Pu(o), ..., Pu(oy)), and C = {X, : w € Fi}.

Note: If we let

B={z{'z?--x;m: e1+ ...+ ey <t}

then it’s easy to see that C is spanned by {(f(a1),..., f(an)) : f € B}. And for
any f # f' € B, we can check (f(a1),..., f(an)) # (f'(a1),...,f (an)), and
{(f(a1),..., f(an)) : f € B} is linearly independent over F,(see GTM84,

p.143, lemma 1)
Therefore, C is a g-ary code of length n = ¢ and size ¢* = q(mtﬂ)

Since a multivariable polynomial of degree ¢ can have at most tq

. , : , -1 _ ¢
in Fy', we have dist(C) = ¢™ —tq" ™" =n(1— ).

m=1 roots

e Binary RM codes
q=2,t=1,n=2m C=2m" dist(C) = 5. It’s a Hadamard code from
H-matrix of order 2™.

2 Some bounds of the size of a code C

Question: Given minimum distance d, how large can |C| be?



Let |A| = g, we have |By(z)| = |B;(y)| for any x # y € A™. In fact

|Bi()| = io (?) (g —1)%.

J
Denote V(n,t) = |B(x)|.

Theorem 1 (Gilbert-Varshmov Bound). Let A,(n,d) be the mazimum pos-
sible size of a q-ary code C with length n and dist(C) = d. Then

q'ﬂ/
A d)y> —"— .
a(nd) 2 V(n,d—1)
Proof. Let C be a code having mazimum size Ag(n,d). Then Vz € A", 3 at
least one codeword C, € C such that dg(x,Cy) < d — 1, since otherwise we can
add x to C, i.e. {x}UC is also a code of minimum distance d, which contradicts
to the mazimality of C. Hence A" = U Bg_1(c), then
cecC

n

q
" =|A" < By =|C|-V(n,d—1) = |C| > ——. O
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Theorem 2 (Hamming Bound). A,(n,d) < #"_t), where 2t + 1 < d.
Proof. By the fact that Bi(x) N By(y) =0 for all x £y € C. O
Lemma 3. If x1,...,2, € R" are nonzero and satisfy < x;,x; >< 0 for all

i # 7, then m < 2n.
Proof. See the reference book. O

Theorem 4 (Plotkin Bound). IfC C {0,1}", dist(C) = d, and 2d < n, then
|C| S d2n_2d+2.

Proof. Firstly, consider the case 2d = n. Let C4,...,C,, be the codewords of
C. For each i € [m], let x; be the vector in R™ obtained from C; by changing
0—=+1and 1 — —1. Then < z;,z; ><n—2d =0, Vi # j. By Lemma 3, we
have |C| = m < 2n = 4d = d2"~24+2,

Secondly, consider the case n > 2d. Write n = 2d + k. Consider the first k
coordinates of C, and group the codewords together if their first k coordinates are
the same. By average principle, there exists a group of codewords of size> g
By deleting the first k coordinates of this group, we obtain a set C' C {0,1}2? of

size |C'| > %, and minimum distance d. By the first case, |C'| < 4d, we have
IC| < |C|- 2% < 4d - 2n—2d = gon—2d+2, -

Note: For the case 2d > n, see Fundamentals of Error-Correcting
Codes(p.58).



3 Binary Linear Codes

If C C {0,1}™ forms a subspace of F4 over Fay(i.e. if 2,y € C, then z + y € C),
then C is called a linear code.

Note:
(1) Reed-Solomon codes and Reed-Muller codes are linear codes over F,.

(2) Linear codes that achieve Singleton’s Bound are called MDS(maximum
distance separable) codes.

Suppose dimC = k, |C| = 2*. k basis vectors (regard them as row vectors) of C
form a k x n matrix G, which is called the generating matrix of C, i.e.

C={2TG cFy: z T

The dual code C+ = {y € Fy : < z,y >=0, for all x € C}.
Let H be the (n — k) x n generating matrix of C*, then H is called the parity
check matrix of C. It’s easy to see C = {x € F} : Hz = 0}.

e Syndrome decoding: send a message u € F5, first encode u to z = uTG
and send x. Suppose z’ is received, and dy (z,z’") < t. How to find this z with
Hx = 07 It is equivalent to finding a unique vector a € B;(0) C F3 for which
Ha = Hz', then x = 2’ + a since H(z' +a) = 0.

The weight w(x) of a vector x is #of nonzero coordinates of . For a code C,
let w(C) = min{w(x) : = € C,z # 0}.

Fact: If C is a binary linear code, then dist(C) = w(C).

Proof. Vo # y € C, dy(z,y) = w(z + y) > w(C). = dist(C) > w(C). Let
0#z€C, s.t. w(z) =w(C), then w(C) = w(z) = du(z,0) > dist(C). O

Theorem 5. Let C be a binary linear code with parity check matrix H. Then
dist(C) = d if and only if every set of d—1 columns of H are linearly independent,
but some d columns are linearly dependent.

Proof. dist(C) = w(C).

Since x € C if and only if Hx = 0, if x # 0, this means the columns of H
corresponding to the 1-positions of x are linearly dependent. So if dist(C) = d,
then exists d columns of H are linearly dependent, since C has a codeword of
weight d. But all d — 1 columns of H are linearly independent since C doesn’t
have a codeword of weight d — 1. [

Theorem 6. A binary linear code C C {0,1}" of dimension k and minimum
distance d exists provided that

d—2 _1
> (n . ) < onk,



Proof. Construct an (n — k) x n matrizx H s.t no d — 1 columns are linearly
dependent.

Choose successive columns so that each new columns is not a linear combina-
tion of any d —2 or fewer previous columns. If we try to choose the it" column,

then vectors of length n—k which can’t be chosen is at most N(i) = > (151) So
§=0

if N(i) < 2"k, then an i*" can be added to the matriz. Thus if N(n) < 2"~F,

then we can obtain a matrix having n columns. O



