Combinatorics, 2017 Fall, USTC
Week 10 Note 2

2017.11.24, Friday

Resolvable Designs

Definition 1. D is a (v, k, \) design over X. A parallel class in D is a subset

of disjoint blocks from D whose union is X. FEach parallel class has 1 blocks.

|ID| _ Mv(v—1) ko A(v—1)
k—1

So we have 5 = R=D) v
k

number. A partition of D into r parallel classes is called a resolution, and a

design is said to be resolvable if it has at least one resolution.

such classes, which equals the replication

Problem: A football league of 2n teams,each team plays exactly once a-
gainst every other team. Is it possible to arrange a schedule so that all matches
are played in 2n — 1 days, and on each day every team plays one match?

The answer is a resolvable (2n,2,1) design, r = % =2n— 1.

Let our ground set be X{x,1,...,2n—1}, D = ()2() Define D1, ..., Day_1,
for i € [2n — 1] as follows:

D; = {{i,*}}U{{a,b} : a+b=2imod 2n —1}.

@O Va#be X\ {x},Nie2n—1]st. a+b=2i mod (2n—1). Then 3! D;
s.t. {a,b} C D;. = D=D;UDyU---UDs,_; is a partition.

@ Vi € [2n — 1], show D; is a parallel class. If a ¢ {i, %}, the unique block in
D; containing a is {a, b} with b = 2i — a(mod 2n — 1).

Definition 2 (Affine Plane). An affine plane AG(q) is a (¢*> +q,q,1) design.

—1

For AG(q), we have r = 7‘1:_1 =q+1,b=% = @ +q.
Parallel lines: lines that don’t meet each other.

Construction 1: Let (X, L) be a PG(q). Fix one line Ly € L. Let X' =
X\{Lo}, £L'={L\Lo: L€ L,L+# Lo}. Then (X', L) is an AG(q). Further,
(X', L) is a resolvable (g2, ¢, 1) design.

Proof. |X'|=¢* b=|L'|=q¢*+q, k=|L\ Lo| = q. By definition of PG(q),
any two points lies on a unique line. So it is an AG(q). Next, show resolvability.



Vo € Lo, let Ly = {L\{z}: L€ L,L # Lo,z € L} C L'. Then L, is a
partition of X', i.e. a parallel class. Since in PG(q), every line intersects Ly
in exactly one point, we have L,(x € Lg) is a partition of L. O

Construction 2: ¢ prime, Z, is a cyclic additive group and Zj is a cyclic
multiplicative group.(F, is a finite field.)
Let X =7Z4 x Zq. Let L be the set of all lines of the form

L(a,b) = {(z,y) € X : y=azx+0b}, a,b€Z,,

and

L(c) ={(c,y) € y € Zy}, ¢ € Z,.
Then (X, L) is an AG(q), and further resolvable.
Proof. |X|=¢? k=|L| =q. Y(z1,y1) # (z2,92) € X,

@ if x1 = x2, then the unique line containing them is L(x1).

@ if x1 # x2, then
y1=ary+b
Yo = ars + b

has a unique solution (a,b). Then the unique line is L(a,b).

{L(a,b): beZ;}(a€Zy), {L(c): c€Zy} is a resolution. O

Homework: Any AG(q) is resolvable.

Definition 3 (Hadamard Matrices). A Hadamard matriz is a square n X n
matriz H with entries £1, such that HHT = nl.

E.g.
1 1 1 1
11 1 -1 1 -1
Hl:m’H?:L 1}’H4_ 1 1 -1 -1
1 -1 -1 1
Fact:

@ H is invertible.
@ All rows(columns) are mutually orthogonal.

® If H is a Hadamard matrix, then exchanging two rows(or columns), mul-
tiplying (—1) to any row(columns) also gives a Hadamard matrix.

If a Hadamard matrix(H-matrix) has all 1’s in the first row and the first
column, we say it is normalized.
Fact: An n x n H-matrix exists <= an n X n normalized H-matrix exists.



Theorem 1. If H is an n X n normalized H-matriz, then every except the first
row has § positive and 5 negative entries. If n > 2, then any two rows other

than the first row have evactly % 1’s in common. (Same for columns.)

Proof. The first statement is clear.

Let u,v be any two rows other than the first row. Let a(resp. b) be the
number of places where they both have 1’s(resp. —1’s). Since v has § positives
and 5 negatives, then (3 —a) +b= 5. Hence a =b. Since (u,v) =0, we have
a+b—(5—a+45—-0)=0=a= O
Definition 4 (Hadamard Code C,,). H is an n x n H-matriz, take all rows
of H and —H, and change —1 to 0. Let C,, be the set of all the resulting 1 X n
vectors, then C,, is the set of 2n binary vectors. Vx,y € C,, the Hamming
distance of x,y, dg(x,y) is the number of positions they differ.

Theorem 2. Vx # y € Cy, dy(z,y) > 5.

Proof. () If z is obtained from the it" row of H, y is obtained from the i*"
row of —H, then dy(z,y) = n.

®@ Otherwise, 3 two rows u,v of H, such that x is obtained from u or —u,

and y is obtained from v or —v. In any case, dg(x,y) = 5. O

Theorem 3. FEvery H-matriz of size 4n x 4dn gives an symmetric (dn —1,2n —
1,n — 1) design.(This design is called Hadamard Design.)

Proof. Let H be a normalized H-matriz of size 4n x 4n. After deleting the first
row and the first column, we have a (dn—1) x (4n—1) matriz. Then change —1
to 0. Denote it by M. Then each row of M has (2n —1) 1’s, which corresponds
to a block of size 2n — 1. Ewvery two columns have (n — 1) 1’s in common. [

Hadamard Conjecture: Hadamard matrix exists for all orders divisible by 4.

H

Theorem 4. If H is an n xn H-matrix, then [ % _g

} is also an H-matriz

of order 2n.



