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Recall Fisher’s Inequality:Let A1, · · · , Am be subsets of X such
that |Ai ∩ Aj| = k for all i 6= j ∈ [m], then m ≤ n.

Def: Let F ⊂ 2X , and L ⊂ {0, 1, · · · } be a finite set of integers.
say F is L−intersecting if |A ∩ B| ∈ L for all A 6= B ∈ F . Note
that Fisher’s inequality tells that |F | ≤ n, if |L| = 1.

Thm1:(Frankl-Wilson) If F is an L−intersecting family of sub-

sets of an n−elements set.then |F | ≤
|L|∑
i=0

(
n

i

)
. [Ex:Show the bound

is best possible.]

Def:A function space is the set of all functions from Ω → F. A set
of functions f1, f2, · · · , fm is linearly independence if ∃λi s.t.λ1f1 +
λ2f2 + · · ·+ λmfm = 0, then λi = 0, i ∈ [m].

Lemma1:(Independence criterion) If i ∈ [m], Let fi : Ω →
F,(where F is a field) be functions and vi ∈ Ω. such that

(i) fi(vi) 6= 0,∀i ∈ [m].

(ii) fi(vj) = 0, ∀1 ≤ j < i ≤ m.

Then f1, · · · , fm are linearly independent in the function space FΩ.

proof: If there is a nontrivial linear relation

λ1f1 + λ2f2 + · · ·+ λmfm = 0
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Suppose i is the smallest index such that λi 6= 0. then

0 = λi+1fi+1(vi) + λi+2fi+2(vi) + · · ·+ λnfn(vi) = −λifi(vi) 6= 0

�

proof of Thm1: Consider {f(x1, · · · , xn) polynomials with degree

≤ d },then each of f is combination of xt11 · · ·xtnn , with t1 + · · · +
tn ≤ d. Suppose F = {A1, · · · , Am},with |A1| ≤ · · · ≤ |Am|,and
L = {l1, · · · ls}. That is,∀i 6= j,∃k ∈ [s], s.t.|Ai ∩ Aj| = lk, Let vi be
the indicator vector of Ai, i ∈ [m], then < vi, vj >= |Ai ∩ Aj|. For
i = 1, · · · ,m. define fi with n variables by

fi : Rn → R.

fi(x) =
∏

k:lk<|Ai|

(< vi, x > −lk).

if j < i, then fi(vj) = 0 and fi(vi) 6= 0, i ∈ [m]. Then f1, · · · , fm are
linearly independent over R.
fi are polynomials of degree at most s. so xr11 · · · xrnn with r1 + · · ·+

rn ≤ s are basic monomials,which has in total
s∑
i=0

(
i+ n− 1

i

)
=(

s+ n

s

)
, but we can do it better! define new polynomials f̄i form

fi by replacing all term xki by xi since vi are 0 − 1 vectors.we have
f̄i(vi) = fi(vj), ∀i, j so f̄i, · · · , f̄m are linearly independent.who lie in
a space with basis xr11 · · ·xrnn with r1 + · · ·+ rn ≤ s and ri ∈ {0, 1}.

so m ≤
s∑
i=0

(
n

i

)
. �

Thm2:Let p be a prime and L ⊂ Zp = {0, 1, · · · , p − 1}.Assume
F = {A1, · · ·Am} ⊂ 2[n] such that

(a) |Ai| /∈ L (mod p), ∀i ∈ [m].

(b) |Ai ∩ Aj| ∈ L (mod p), ∀i 6= j.

Then |F | ≤
|L|∑
i=0

(
n

i

)
[Hint:define fi(x) =

∏
l∈L

(< vi, x > −l) (mod p), i ∈ [m].]
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Recall Ramsey numberR(s, t)

1. R(t, t) > (t− 1)2.

2. R(s, t) > Ω(t3) 1972,Zsigmond Nagy

3. R(t, t) > Ω(2
t
2 ).

4. R(t, t) > tΩ(ln t/ ln ln t). 1977,Frankl, 1981 F&Wlison.

A graph is Ramsey graph with respect t, if it has no clique of size t
and no independent set of size t.

Thm3:For any prime p,there is a graph G on n =

(
p3

p2 − 1

)
ver-

tices s.t. the size of maximum clique or maximum independent set

is ≤
p−1∑
i=0

(
p3

i

)
.

proof:Let G = (V,E) be as follows

• V =

(
[p3]

p2 − 1

)
• for A,B ∈ V,A ∼ B iff |A ∩B| 6= p− 1 (mod p).

consider the clique A1, · · · , Am ∈ V, |Ai| = p2 − 1 = p− 1 (mod p),
|A ∩ B| 6= p − 1 (mod p) means |A ∩ B| ∈ L (mod p). where
L = {0, 1, · · · p− 2} ⊂ Zp.

By Thm2,we have m ≤
p−1∑
i=0

(
p3

i

)
.

Now consider an independent set B1, · · · , Bs, |Bi ∩ Bj| = p − 1
(mod p),
so |Bi ∩ Bj| ∈ {p − 1, 2p − 1, · · · , p(p − 1) − 1} = L∗ ⊂ Z≥0. and

|L∗| = p− 1, By Thm1, we have s ≤
p−1∑
i=0

(
p3

i

)
. �

Colloary4:R(t+ 1, t+ 1) > tΘ(ln t/ ln ln t).

proof:Let t =
p−1∑
i=0

(
p3

i

)
, V =

(
p3

p2 − 1

)
.
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Recall (n
k
)k ≤

(
n

k

)
≤ ( en

k
)k

t ≈
(
p3

p

)
≈ (p2)p = p2p, V ≈

(
p3

p2

)
≈ pp

2
,

ln t ≈ 2p ln p = O(p ln p), ln ln t ≈ ln p.
⇒ p = Θ( ln t

ln ln t
), V ≈ (p2p)p/2 ≈ tθ(ln t/ ln ln t). �

Recall a vector space over a field(C,R,Q,Fq)

Thm5:(Odd/Even Town)Let F ⊂ 2[n], s.t.|A| is odd for all A ∈
F , and |A ∩B| is even for A 6= B ∈ F , Then |F | ≤ n.

proof:∀A ∈ F , let eA be the indictor vector of A,consider eA as
a vector in Fn2 , Then

< eA, eA >= 1, ∀A ∈ F

< eA, eB >= 0, ∀A 6= B ∈ F

Let F = m,we will show vectors eAA ∈ F are linearly independent
in Fn2 . If αA ∈ {0, 1}, s.t.

∑
A∈F αAeA = 0

⇒< eA,
∑

A∈F αAeA >= 0 ⇒ αA = 0
This shows eA, A ∈ F are linearly independent,so |F | ≤ n. �

Colloary6:R(t+ 1, t+ 1) >

(
t

3

)
.

proof:Let G = (V,E) be as follows

V =

(
[t]

3

)
, A ∼ B, iff |A ∩B| = 1,

Consider a clique A1, · · · , Am.|Ai ∩ Aj| = 1 by Fisher’s inequality,
m ≤ t.
Condsider an independent set B1, · · ·Bs

|Bi| = 3 Odd, |Bi ∩Bj| = 0 or 2 Even.
By Odd/Even Thm,s ≤ t �
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2017.12.1

Graham-Pollak Thm:
Biclique:i.e. a complete bipartite graph KA,B with vertex set A∪B,
and edge set A×B.
Def:LetG be a graph andG1, · · · , Gt be subgraph ofG,sayG1, · · · , Gt

is an edge-decomposition of G if each edge of G occurs in exactly
one subgraph of Gi.

Thm1:(Graham-Pollak Thm) The edges of Kn can not be de-
composed into fewer than n− 1 edge-disjoint bicliques.
[Best possible:define KAi,Bi

with Ai = {i}, Bi = {i + 1, · · · , n}, i =
1, · · · , n− 1, then KAi,Bi

, i ∈ [n− 1] form a decomposition].

proof:Associate each vertex i of Kn with an indeterminate xi and
each edges i ∼ j with xixj, Let S(x) =

∑
1≤i<j≤n

xixj. supposeKAi,Bi
, i ∈

[t] is an edge decomposition ofKn.∀i ∈ [t], Let Li(x) =
∑
j∈Ai

xj, Ri(x) =∑
j∈Bi

xj, then Li(x) · Ri(x) = (
∑
j∈Ai

xj)(
∑
j∈Bi

xj) =
∑

{i,j}∈KAi,Bi

xixj. and

S(x) =
t∑
i=1

Li(x) ·Ri(x).

Let T (x) = (
n∑
i=1

xi)
2 − 2

∑
i<j

xixj = (
n∑
i=1

xi)
2 − 2S(x) = (

n∑
i=1

xi)
2 −

2
t∑
i=1

Li(x) ·Ri(x).

consider t+ 1 linear equations over R.Li(x) = 0, i ∈ [t],
n∑
i=1

xi = 0,If

t ≤ n − 2, then it has a nonzero solution x ∈ Rn, Put this vec-

tor into equation T (x) = (
n∑
i=1

xi)
2 − 2

t∑
i=1

Li(x) · Ri(x), we have

LRH = T (x) 6= 0. Contradiction! �

Fix a field F, Let F [x1, · · ·xn] ={multivariate polynomial f : F n →
F}.
A polynomial f vanishes on E ⊂ F n if f(x1, · · · , xn) = 0,∀(x1, · · · , xn) ∈
E.
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A point (x1, · · · , xn) ∈ F n with f(x1, · · · xn) = 0 is a root of f .

A polynomial f is a zero polynomial if all coefficients are 0.

Reacll:univeriate case f(x) 6= 0, deg(f) = d,then f has ≤ d root-
s.

1. If 0 6= f vanishes on a subset S,then |S| ≤ deg(f).

2. If @f 6= 0 that vanishes on S,then |S| > deg(f).

Lemma1:Given E ⊂ F n of size |E| <
(
n+ d

d

)
,there exists a

0 6= f ∈ F [x1, · · · , xn] with deg(f) ≤ d that vanishes on E.

proof: Let Vd = {f ∈ F [x1, · · · , xn], deg(f) ≤ d}, then dimen-

sion of Vd is

(
n+ d

d

)
.

Let FE be the set of vectors of length |E|,where each component
of a vector u ∈ FE has value in F and is indexed by an element in
E,that is u = (ux)x∈E, and ux ∈ F .
Consider the evaluation map Vd → FE, f 7→ (f(a))a∈E. since dimen-

sion of FE is |E| <
(
n+ d

d

)
= dim(Vd).

We have the map is non-injective.i.e.∃f1 6= f2, such that (f1(a))a∈E =
(f2(a))a∈E,then f = f1 − f2 vanishes on E �

Lemma2:∀0 6= f(x1, · · · , xn) ∈ Fq[x1, · · · , xn] with deg(f) = d,has
at most dqn−1 roots.(d ≤ q,if d > q trivial.)

proof:Assume n ≥ 2, Write f = g+h,where g is homogenous of de-
gree d,and deg(h) ≤ d− 1. Since f 6= 0, g 6= 0,∃ω ∈ Fnq \{0}, g(ω) 6=
0.
∀u ∈ Fnq , Let Lu = {u+ tω : t ∈ Fq}, |Lu| = q

If v /∈ Lu then Lu∩Lv = φ. Hence Fnq is partitioned into qn/q = qn−1

lines.It remains to show that the number of roots of f on each line
is at most d.
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∀u ∈ Fnq ,define a univariate polynomial pu(t) = f(u + tω) ,then

deg(pu) ≤ d. since the coefficient td in pu(t) is g(ω) 6= 0, pu(t) 6= 0.
so pu(t) has at most d roots in Lu, implying that f has at most root
in Lu. since we have qn−1 lines,f has at most dqn−1 roots in Fnq �

Lemma3:∀S ⊂ F, |S| ≥ d,∀0 6= f ∈ F [x1, · · · , xn] of degree d
can have at most d|S|n−1 roots in Sn.

proof: Induction on n, the number of variables in f .
n = 1 is true,let n ≥ 2. write f according to the powers of xn.f =
f0 + f1xn + · · · + ftx

t
n, t ≤ d.ft 6= 0. and fi, i = 0, 1, · · · , t are poly-

nomials in F [x1, · · · , xn−1].
Now estimate the number of points (a, b) ∈ Sn−1×S, s.t.f(a, b) = 1.

1. ft(a) = 0.deg(ft) ≤ d−t,by assumption, ft at most (d−t)|S|n−2

roots in |S|n−1,so there are at most (d− t)|S|n−1 points (a, b) ∈
Sn−1 × S,for which f(a, b) = 0 and ft(a) = 0.

2. ft(a) 6= 0 Fix a point a ∈ Sn−1 satisfying ft(a) 6= 0.then
ga(xn) = f(a, xn) is of degree t ,So ga(xn) has at most t root-
s,since there are at most |S|n−1 such points a,the number of
points (a, b) ∈ Sn−1 × S,for which f(a, b) = 0 and ft(a) 6= 0. is
at most t|S|n−1.

Together, there are ≤ d|S|n−1 points (a, b) ∈ Sn−1 × S,for which
f(a, b) = 0 �

Combinatorial Nullstellensatz

Lemma4:Let f ∈ F [x1, · · · , xn] be a polynomial,and let ti be the
maximum degree of xi in f .Let Si ⊂ F with |Si| ≥ ti + 1. If
f(x) = 0,∀x ∈ S1 × · · · × Sn, then f is zero polynomial.

proof:By induction.n = 1 is true,Assume that the lemma hold-
s for n − 1,we prove it for n(n ≥ 2). Write f as a polynomial in

xn, f =
tn∑
i=0

fi(x1, · · · , xn−1)xin. where in each fi,the maximum de-

gree of xi is tj, j ∈ [n− 1].
For each fixed (n − 1)−tuple (x1, · · · , xn−1) ∈ S1 × · · · × Sn−1,Let
g(xn) = f(x1, · · · , xn−1, xn) vanishes on Sn,Hence g(xn) ≡ 0 That is
all coefficients fi(x1, · · · , xn−1) of g(xn) is zero, for all (x1, · · · , xn−1) ∈
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S1×· · ·×Sn−1, Hence by induction hypothesis,fi ≡ 0,∀i, which im-
plies that f ≡ 0. �
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