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Definition 1. Let S1, · · · , Sm ⊆ X = {x1, · · · , xn}, and M = (aij) be the
corresponding incidence matrix. The permanent of M is

Per(M) =
∑

(i1, · · · , im) ∈ Sn(m)

ai11ai22 · · · aimm,

where Sn(m) is the set of all vectors of length m over [n] without repetition.

Fact: Per(M) = ]different SDR’s of S1, · · · , Sm.

Definition 2. Let A be a 0-1 matrix. Two 1’s are dependent if they are in the
same row or the same column, otherwise, they are independent.

Theorem 1 (König). Let A be an m×n 0-1 matrix, then the maximum number
of independent 1’s r = the minimum number of rows and columns R required to
cover all 1’s in A. (⇐⇒ A doesn’t have a zero-submatrix of size c× d such that
c+ d = 2m− r + 1)

Proof. Clearly, R ≥ r, since we can find r independent 1’s and every row or
column covers at most one of them.

Now we show r ≥ R. Assume that some a rows and b columns cover all 1’s
and a + b = R. We may assume the first a rows and the first b columns cover
all the 1’s. Write A as the form

A =

(
Ba×b Ca×(n−b)

D(m−a)×b E(m−a)×(n−b)

)
,

with no 1 in E(m−a)×(n−b). If we can show that there are a independent 1’s in
C and b independent 1’s in D, then we find at least a + b independent 1’s, so
we have r ≥ a+ b = R.

For each 1 ≤ i ≤ a, let Si = {j : cij = 1} ⊆ [n − b]. If S1, · · · , Sa have an
SDR, then we find a independent 1’s in C If not, by Hall’s theorem, there are

some k ∈ [a] sets, say Si1 , · · · , Sik , such that

∣∣∣∣ k∪j=1
Sij

∣∣∣∣ < k, i.e. the 1’s in these

k rows occupy at most k − 1 columns of C,say j1, · · · , jk−1. Then the first b
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columns of A, the columns j1, · · · , jk−1 of C and the first a rows of A deleting
the rows i1, · · · , ik will cover all 1’s in A. So we find b+(k−1)+a−k = a+b−1
rows and columns cover all 1’s in A, Contradiction!

Definition 3. A system of common representatives(SCR) of two sequences of
sets A1, · · · , Am and B1, · · · , Bm is a sequence x1, · · · , xm(not necessarily dis-
tinct) such that xi ∈ Ai ∩Bπ(i), i ∈ [m] for some π ∈ Sm.

Theorem 2. Suppose X has two partitions X = A1∪· · ·∪Am = B1∪· · ·∪Bm.
Then they have an SCR if and only if for any I ⊂ [n], ∪

i∈I
Ai contains at most

|I| sets of Bj , j ∈ [m].

Proof. Consider the intersection matrix of the two partitions C = (cij):

cij =

{
1 if Ai ∩Bj 6= ∅
0 else

.

Then ∃ SCR ⇐⇒ C has m independent 1’s.
By the proof of König theorem, ⇐⇒ C doesn’t has an (m− k)× (k+ 1) zero

submatrix for any 0 ≤ k ≤ m− 1 ⇐⇒ @ m− k sets Ai, whose union is disjoint
with k + 1 sets Bj ⇐⇒ @ k sets Ai, whose union contains k + 1 sets Bj ⇐⇒
the union of any k sets Ai contains at most k sets Bj.

Definition 4. Bipartite graph G = (V,E), V = A ∪ B, i ∼ j only if i, j are
in different sets. Two edges are disjoint if they have no common vertex. A
matching is a set of pairwise disjoint edges. A vertex is matched (or satu-
rated) if it is an endpoint of one of the edges in the matching. Otherwise the
vertex is free(or unmatched). If a matching matches all vertices in A, say it’s
a matching of A into B. A perfect matching is a matching of A into B when
|A| = |B|. A vertex x ∈ A is a neighbor of a vertex y ∈ B if {x, y} ∈ E. Let
Sx be the set of all neighbors of x, then deg(x) = |Sx|.

Fact: ∃ a matching of A into B if and only if Sx, x ∈ A has an SDR.

Theorem 3. If G is a bipartite graph with bipartitions A,B, then G has a
matching of A into B iff ∀k ∈ [|A|], every subset of k vertices from A has at
least k neighbors.

Definition 5. A vertex cover in G = (A∪B,E) is a set of vertices S ⊆ A∪B
such that every edge in E is incident to at least one vertex in S.

Theorem 4. The maximum size of a matching in a bipartite graph equals to
the minimum size of a vertex cover.

Propositon 1. |X| = n. For any k ≤ n−1
2 , it is possible to extend every k-

element subset of X to a (k + 1)-subset such that the extensions of no two sets
coincide.
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Proof. Consider the bipartite graph G = (A ∪B,E),

A = {all k-subsets of X}, B = {all (k + 1)-subsets of X}.

For any x ∈ A and y ∈ B, x ∼ y iff x ⊂ y. Then we only need to prove G has
a matching of A into B. For each x ∈ A, deg(x) = n − k, and for any y ∈ B,
deg(y) = k + 1. For I ⊆ A, let S(I) = ∪

x∈I
Sx, then

|I|(n− k) ≤ |S(I)|(k + 1) =⇒ |S(I)| ≥ |I|n− k
k + 1

≥ |I|.
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