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Theorem1 Let G be a graph on n vertices such that every vertex has at least one neighbor

and at most d non-neighbors. Then cc(G) = O(d2 lnn).

Proof: consider the following way for choosing a clique of G(V,E). First, pick every vertex

v ∈ V independently with probability p = 1
d+1

, to get a set W ⊂ V . Then remove from W all

vertices having at least one non-neighbors in W . Then we get a clique of G. Applying this way

independently t times to get t cliques H1, · · · , Ht of G, where t is to be determined later. Let X

be the number of edges of G not covered by any Hi, and for ∀ edge u w ∈ E(G), let Xuw be the

indicator random variable of the event ”none of Hi covers uw”. Then X =
∑

u wXuw. Note that

if Hi covers uw, if both uw are chosen and none of their≤neighbors are chosen. Hence

Pr[Hi cover uw] ≥ p2(1− p)2d =
1

(1 + d)2
(1− 1

1 + d
)2d

≥ 1

(1 + d)2
[e
− 1

1+d
− 1

2(1+d)2 ]2d ≥ 1

e2(1 + d)2

Since Hi are chosen independently.

Pr[none of Hi cover uw] =
∏
i∈[t]

Pr[Hi does not cover uw] ≤ (1− 1

e2(1 + d)2
)t ≤ e

− t
e2(1+d)2

Then by linearity of expectation.

E[X] =
∑
u w

E[Xuw] =
∑
u w

Pr[none of Hi cover uw] ≤
(
n

2

)
e
− t

e2(1+d)2

Take t = bcd2 lnnc for sufficiently large constant c, we have E[X] < 1. Hence, there is at least

one choice of t cliques that form a covering of G and cc(G) ≤ t. �
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Markov’s Inequality

Let X ≥ 0 be a random variable and t > 0, then p(X ≥ t) ≤ E[X]
t
.

Proof:Let I{X≥a} be the indicator random variable which have value 1 if X ≥ a and 0

otherwise. Then aI{X≥a} ≤ X. In fact if X < a, I{X≥a} = 0 and so aI{X≥a} = 0 ≤ X. If

X ≥ a, I{X≥a} = 1 and so aI{X≥a} = a ≤ X. Since E is a monotonically increasing function,

taking expectation of both sides, we have E[aI{X≥a}] ≤ E[X]. Since E[aI{X≥a}] = aE[I{X≥a}] =

aPr[X ≥ a] ≤ E[X]. �

Definition: The random graph G(n, p) for 0 ≤ p ≤ 1 is a graph with vertex set [n], where

each of potential

(
n

2

)
edges appears with probability p independent of other edges.

Corollary: Let Xn ≥ 0 be integer value random variable in (Ωn, Pn), n ∈ Z≥0. If E[Xn] −→ 0

as n −→ +∞, then Pr[Xn = 0] −→ 1 as n −→ +∞, we say Xn = 0 almost surely occur.

Proof:Let t = 1, P r[Xn ≥ 1] ≤ E[Xn]
1
−→ 0 as n −→ +∞. �

Theorem For a random graph G(n, p) for some fixed p ∈ (0, 1). then Pr[α(G) ≤
⌈
2 lnn
p

⌉
] −→

1 as n −→∞.

Proof: Let k =
⌈
2 lnn
p

⌉
. For ∀S ∈

(
[n]

k + 1

)
, Let AS be the event that S is an independent

set, Let Xn =
∑

S∈

(
[n]

k + 1

) IAS
be the number of independent set of size k + 1, here IAS

be the

indicator random variable of the event ”AS occurs”. Then

E[Xn] =
∑

S∈

(
[n]

k + 1

)E[IAS
] =

∑
S∈

(
[n]

k + 1

)Pr[AS]

=

(
n

k + 1

)
(1− p)

(
k + 1

2

)
≤ nk+1

(k + 1)!
e
−p

(
k + 1

2

)

=
1

(k + 1)!
(ne−p

k
2 )k+1 ≤ 1

(k + 1)!
−→ 0

Then Pr[Xn = 0] −→ 1 as n −→∞ =⇒ Pr[α(G) ≤
⌈
2 lnn
p

⌉
] −→ 1. �

Definition: The girth of G denoted by g(G) is the length of a shortest cycle of G.

Recall: χ(G)α(G) ≥ n = V (G).

Theorem For any k ∈ N+, there exists a graph G with χ(G) ≥ k and g(G) ≥ k.

Proof: Consider G(n, p) where p will be determined later. let X = be the number cycles of

length less than k in G, and Xi be the number of cycles of length i, i ∈ [k − 1]. Then

E[X] =
k−1∑
i=3

E[Xi] =
k−1∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
pi.

where n(n−1)···(n−i+1)
2i

is the number of of cycles of length i in Kn. Then E[X] ≤
∑k−1

i=3
nipi

2i
≤
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∑k−1
i=0 (np)i = (np)k−1

np−1 . By Markov’s Inequality

Pr[X ≥ n

2
] ≤ E[X]

n/2
≤ 2[(np)k − 1]

n(np− 1)
.

Let p = n−
k−1
k ,=⇒ Pr[X ≥ n

2
] ≤ 2(n−1)

n(n
1
k−1)

−→ 0 as n −→ +∞. Let t =
⌈
2 lnn
p

⌉
≤ 3 lnn · n k−1

k ,

recall α(G) ≤ t almost surely. Then ∃G on n vertices, α(G) ≤ t and with≤ n
2

cycles of length

less than k. By deleting from each cycle of length less than k, we have a graph G′ ⊂ G, with

No cycles of length less than k, and |V (G′)| ≥ n − n
2

= n
2
.α(G′) ≤ α(G) ≤ 3 lnn · n k−1

k . So

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2

3 lnn·n
k−1
k

= n
1
k

6 lnn
>> k, where n is sufficiently large. �
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The Lovasz Sieve

Recall union bound Pr[A ∪ B] ≤ Pr[A] + Pr[B]. Let B1, · · · , Bm be bad events, and A =

B1 ∩ · · · ∩Bm, then

Pr[A] = Pr[B1 ∩ · · · ∩Bm] = Pr[B1 ∪ · · · ∪Bm] = 1− Pr[B1 ∪ · · · ∪Bm] ≥ 1−
m∑
i=1

Pr[Bi].

• If
∑m

i=1 Pr[Bi] < 1, then Pr[A] > 0.

• If B1, · · · , Bm are independent, then

Pr[A] = Pr[B1 ∩ · · · ∩Bm] =
m∏
i=1

Pr[Bi] =
m∏
i=1

(1− Pr[Bi])

So if Pr[Bi] < 1, i ∈ [m], then Pr[A] > 0.

• What if some Bi, Bj are not independent?

Conditional probability: Pr[A|B] = Pr[A ∩B]/Pr[B].

A and B are independent iff Pr[A ∩B] = Pr[A]Pr[B]⇐⇒ Pr[A|B] = Pr[A].

P r[A|(B ∩ C)] =
Pr[A ∩B ∩ C]

Pr[B ∩ C]
=
Pr[A ∩B ∩ C]

Pr[C]
/
Pr[B ∩ C]

Pr[C]
= Pr[(A ∩B)|C]/Pr[B|C].

P r[A|(B ∩ C)] · Pr[B|C] · Pr[C] =
Pr[A ∩B ∩ C]

Pr[B ∩ C]
· Pr[B ∩ C]

Pr[C]
· Pr[C] = Pr[A ∩B ∩ C].

Definition: An event A is mutually independent of events B1, · · · , Bm if Pr[A|(C1 ∩ · · · ∩
Cm)] = Pr[A], Ci ∈ {Bi, Bi}, i ∈ [m].

Note: The fact A is mutually independent with each of B1, · · · , Bm does not mean that A is

mutually independent of B1, · · · , Bm.

Eg:consider flipping a fair coin twice, let Bi, i = 1, 2 be the event that the i-th flip is a head,
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and let A be the event that both flips are the same. Then A is independent with each Bi. But

Pr[A|B1 ∩B2] = 1.

Definition: Let A1, · · · , An be events, G = ([n], E) is called a dependency graph if ∀i, Ai is

mutually independent of all events Aj with j ∈ [n]\{i} and {i, j} /∈ E. The smallest degree of

among all such graphs G is called the degree of dependency of A1, · · · , An.

Lemma:Let A1, · · · , An be events with Pr[Ai] ≤ p < 1,∀i, and let d be the degree of

dependency. If 4pd ≤ 1, then Pr[A1 ∩ · · · ∩ An] > 0.

Proof: Fix a dependency graph G of A1, · · · , An of degree d. Prove by induction on m

orS, S ⊂ [n], |S| = s < n,∀i /∈ S, Pr[Ai|∩i∈SAj] ≤ 2p that (Claim)for any m events of A1, · · · , An,

say A1, · · · , Am for convenience, Pr[A1|A2 ∩ · · · ∩ Am] ≤ 2p. m = 1 is true. Let 2, · · · , k ∈ [2,m]

which are adjacent to 1 in G. Then Pr[A1|A2 ∩ · · · ∩ Am] = Pr[(A1∩A2∩···∩Ak)|(Ak+1∩···∩Am)]

Pr[(A2∩···∩Ak)|(Ak+1∩···∩Am)]
. Since

A1 is mutually independent of Ak+1, · · · , Am, the numerator

Pr[(A1 ∩ A2 ∩ · · · ∩ Ak)|(Ak+1 ∩ · · · ∩ Am)] ≤ Pr[A1|(Ak+1 ∩ · · · ∩ Am)] = Pr[A1] ≤ p.

The denominator

Pr[(A2 ∩ · · · ∩ Ak)|(Ak+1 ∩ · · · ∩ Am)]

=1− Pr[(A2 ∪ · · · ∪ Ak)|(Ak+1 ∩ · · · ∩ Am)]

≥1−
k∑
i=2

Pr[Ai|(Ak+1 ∩ · · · ∩ Am)]

≥1− (k − 1)2p ≥ 1

2

(since k − 1 ≤ d, 2pd ≤ 1
2
)

Then Pr[A1|A2 ∩ · · · ∩ Am] ≤ p/(1
2
) = 2p. Finally,

Pr[A1∩· · ·∩An] =
n∏
i=1

Pr[Ai|(Ai+1∩· · ·∩An)] =
n∏
i=1

(1−Pr[Ai|(Ai+1∩· · ·∩An)]) ≥ (1−2p)n > 0,

when A′is probability are very different. �

Lemma: Let G = (V,E) be a dependency graph of event A1, · · · , An. Suppose there exist

real numbers x1, · · · , xn, 0 ≤ xi ≤ 1, so that for all i, Pr[Ai] = xi ·
∏
{i,j}∈E(1 − xj). Then

Pr[A1 ∩ · · · ∩ An] ≥
∏n

i=1(1− xi) > 0.

Proof: Similar to the above lemma. Replace the claim by for any m events Pr[A1|A2 ∩ · · · ∩
Am] ≤ x1, we also prove it by induction on m. Using same notations, we have

Pr[A1|A2 ∩ · · · ∩ Am] =
Pr[(A1 ∩ A2 ∩ · · · ∩ Ak)|(Ak+1 ∩ · · · ∩ Am)]∏k

j=2 Pr[Aj|(Aj+1 ∩ · · · ∩ Am)]

the numerator Pr[(A1 ∩ A2 ∩ · · · ∩ Ak)|(Ak+1 ∩ · · · ∩ Am)] ≤ Pr[A1] ≤ x1 ·
∏
{1,j}∈E(1− xj).
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the denominator

k∏
j=2

Pr[Aj|(Aj+1 ∩ · · · ∩ Am)] =
k∏
j=2

(1− Pr[Aj|(Aj+1 ∩ · · · ∩ Am)]) ≥
k∏
j=2

(1− xj) ≥
∏
{1,j}∈E

(1− xj)

=⇒ Pr[A1|(A2 ∩ · · · ∩ Am)] ≤ x1. Then Pr[A1 ∩ · · · ∩ Am] ≥
∏n

i=1(1− xi). �

Corollary: Let A1, · · · , An be events with Pr[Ai] ≤ p, degree of dependency is d. If ep(d+

1) ≤ 1, then Pr[A1 ∩ · · · ∩ An] > 0.

Proof: Let xi = 1
d+1

, then

xi(1− xi)d =
1

d+ 1
(1− 1

d+ 1
)d >

1

d+ 1

1

e
≥ p ≥ Pr[Ai].

Since ln(1 + t) = t− t2

2
+ t3

3
− · · · ,−1 < t ≤ 1. we have 1− t > e−t−

t2

2 , if 0 < t < 1;

1− t < e−t−
t2

2 , if − 1 < t < 0.

Then (1− 1
d+1

)d > e
−d( 1

d+1
+ 1

2(d+1)2
)
> e−1. Or since (1− 1

d+1
)d = ( d

d+1
)d = 1

(1+|frac1d)d >
1
e
. �

Recall: Let A1, · · · , An be events, Pr[Ai] = p, i ∈ [n]. If all events are mutually independent,

then Pr[∪ni=1Ai] = 1− Pr[∩ni=1Ai] = 1− (1− p)n ≥ 1− e−pn. But if not, we have two more cases.

(1) k-wise independent, i.e. Pr[∩i∈IAi] = p|I| for all |I| ≤ k.

(2) k-wise independent, i.e. let δ < 1. |Pr[∩i∈IAi]− p|I|| ≤ δ for all |I| ≤ k.

Recall Inclusion-Exclusion Principle: |A1 ∪ A2 ∪ · · · ∪ An| =
∑
∅6=I⊂[n](−1)|I|+1|AI |.

Lemma Bonferroni inequality, for each even k ≥ 2,

k∑
v=1

(−1)v+1
∑
|I|=v

AI ≤ | ∪ni=1 Ai| ≤
k+1∑
v=1

(−1)v+1
∑
|I|=v

AI .

Proof: By induction on n, EX.
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