
Combinatorics, 2017 Fall, USTC

Week 7 Note

2017.11.3, Friday

Pigeonhole Principle(P-P) and Graphs

Note: here we only consider finite simple graphs: no loop, no multiple edge.

Theorem 1 (Handshaking Lemma). In any finite graph, #vertices which have
odd degrees is even.

Proof. Double counting. G = (V,E). Count #ordered pairs (x, y) ∈ E,

2|E| =
∑
x ∈ V

deg(x) =
∑
x ∈ V

deg(x) is odd

deg(x) +
∑
x ∈ V

deg(x) is even

deg(x).

If we have odd #vertices of odd degree, then the first item is odd and the second
item is even, a contradiction.

Definition 1. G is a graph. Independent number α(G) is the maximum
number of pairwise nonadjacent vertices of G. Such a set of vertices is called
an independent set. Chromatic number χ(G) is the minimum number of
colors in a coloring of V (G) s.t. no two adjacent vertices have the same color.
Such a coloring is called a proper coloring.

Propositon 2. In any graph G with n vertices, n ≤ α(G)χ(G).

Proof. Given a proper coloring of G with χ(G) colors and partition V (G) into
χ(G) color classes. By P-P, one of the classes has size≥ n

χ(G) and these vertices

are pairwise nonadjacent. Hence α(G) ≥ n
χ(G) .

Definition 2. A graph G is connected if there is a path between any two
vertices, where a path is v1 ∼ v2 ∼ · · · ∼ vs and vi 6= vj , i, j ∈ [s], i 6= j. If
v1 ∼ vs, we say it is a cycle.

Propositon 3. |V (G)| = n. If for any x ∈ V (G), deg(x) ≥ n−1
2 , then G is

connected.

Proof. Take any different x, y ∈ V (G). If x ∼ y, then done.
If x � y, since deg(x),deg(y) ≥ n−1

2 , there are at least n − 1 edges joining
x, y to V (G) \ {x, y}. Since |V (G) \ {x, y}| = n− 2, by P-P, ∃z ∈ V (G) \ {x, y},
z ∼ x, z ∼ y.
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Remark:

(1) The condition in Proposition 3 is best possible: e.g. n even, G is the
union of two vertex disjoint complete graphs of n

2 vertices, each vertex
has degree n−2

2 , but G is disconnected.

(2) Define the diameter of G is the smallest number k, s.t. every two vertices
are connected by a path with at most k edges. Then Proposition 3 says
G has diameter at most two.

Ramsey’s Theorem

Fact(A party of six): Suppose a party has 6 participants. Participants may
know each other or not. Then there must be 3 people such that any 2 know
each other or any 2 don’t know each other.

Proof. Construct a graph with vertices [6], where i ∼ j iff i and j know each
other. Then we need to show that there are 3 vertices in G which form a triangle
or an independent set of size 3.

Consider vertex 1, by P-P, 1 is either adjacent to ≥ 3 vertices or nonadjacent
to ≥ 3 vertices.

1© Suppose 1 is adjacent to 2, 3, 4. If one of the pairs {2, 3}, {2, 4}, {3, 4} is
adjacent, then we have a K3. If not, {2, 3, 4} is an independent set of size
3.

2© Suppose 1 is nonadjacent to 2, 3, 4. Similar arguments.

Definition 3. ∀s, t ≥ 1, let R(s, t) denote the smallest integer n, s.t. in any
graph with n or more vertices, there exists either a clique(a complete subgraph)
with s vertices or an independent set with t vertices It.

Remark:

1© R(s, t) ≤ L ⇐⇒ any graph with L vertices has either a Ks or an It.

2© R(s, t) > M ⇐⇒ ∃ a graph with M vertices has neither Ks nor It.

Fact:

1© R(s, t) = R(t, s).

2© R(2, t) = t and R(s, 2) = s.

3© R(3, 3) = 6.

Propositon 4. For s ≥ 2, t ≥ 2, R(s, t) ≤ R(s, t− 1) +R(s− 1, t).
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Proof. Let G be a graph on n = R(s, t − 1) + R(s − 1, t) vertices. Take an
arbitrary vertex x ∈ V (G). Let T = {y ∈ V (G) : x � y} and S = {y ∈ V (G) :
x ∼ y}. Then V (G) \ {x} = S ∪T , i.e. R(s, t− 1) +R(s− 1, t) = |S|+ |T |+ 1.

By P-P, we have either |T | ≥ R(s, t− 1) or |S| ≥ R(s− 1, t).

1© |T | ≥ R(s, t − 1). Consider the induced subgraph G[T ]: a graph on T , in
which v ∼ w iff v ∼ w in G. Since G[T ] has at least R(s, t − 1) vertices,
G[T ] has either a Ks or an It−1. Therefore G[T ∪ {x}] has either a Ks

or an It.

2© |S| ≥ R(s− 1, t). Similar.

Theorem 5. R(s, t) ≤
(
s+t−2
s−1

)
=
(
s+t−2
t−1

)
.

Proof. By induction on s+ t. R(2, t) = t, R(s, 2) = s, true.
Assume the claim holds for R(k, l) with k + l < s + t. Then R(s, t) ≤

R(s, t− 1) +R(s− 1, t) ≤
(
s+t−3
s−1

)
+
(
s+t−3
s−2

)
=
(
s+t−2
s−1

)
.

Theorem 6. If R(s, t − 1), R(s − 1, t) are even, then R(s, t) ≤ R(s, t − 1) +
R(s− 1, t)− 1.

Proof. Homework!

Corollary 7. R(3, 4) = 9.

Proof. Homework!

Remark: 2-coloring version of Ramsey’s theorem. Define a r-edge-coloring of
Kn to be a coloring of edges of Kn by r colors. Then R(s, t) denotes the smallest
integer N s.t. any 2-edge-coloring of KN has either a blue Ks or a red Kt.

Generalized Ramsey number Rk(s1, s2, . . . , sk) is the smallest integer N such
that any k-edge-coloring of KN has a Ksi in color i for some i ∈ [k].
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