Combinatorics, 2017 Fall, USTC
Week 10 Note 1

2017.11.21, Tuesday

Difference Sets(DS)

Note: Recall that a (v, k, A) design implies r(k—1) = A(v —1) and bk = vr.
= ANv—-1)=0(k—1) and Mv(v—1) =0 (k(k — 1)).
Let Z, = {0,1,2,...,v—1}.

Definition 1. 2 < k < v, A > 1. A (v,k,\) difference set is a k-subset
D ={di,do,...,dr} CZ, such that the collection of differences d; — d; (i # j)
contains every element in Z, \ {0} exactly \ times.

Fact:

D Mv—=1)=k(k-1).

@ A translateof Disa+D = {a+dy,a+ds,...,a+d;} for some a in Z,.
Then a+ D # D if a # 0.

Proof. (@ Count # of differences in D.

@ Ifa+ D = D for some a # 0, then 3 a permutation © of [k] satisfies
that w(i) # i and d; + a = d(; for all i € [k]. Then a is expressed as a
difference dr;y — d; in k ways. But k > X, contradiction.

O

Theorem 1. If D is a (v, k, \) difference set, then D,1+ D,...,(v—1)+ D
are blocks of a symmetric (v, k,\) design.

Proof. (@ wv blocks, v points = symmetric.

@ |i+ D| =k, Vi.



® Show any pair of points is contained in exactly X blocks. Yx # y € Z,,
then z,y € a+ D <= 3d; # d;, st. v = a+d;,y = a+d; <
r—y=d;—d; £ d. Since there are exactly \ pairs d;, d; s.t. d; —d; =d,
and for each such pair, there are exactly one a = x —d; = y — d; s.t.
s,y €a+D. O

Theorem 2. Ifv is a prime and v = 3 (4), then all nonzero squares in Z, form

a (v,k,\) DS with k = *5% and A = *3°.

[The condition v = 3 (4) is to ensure —1 is a nonsquare in Z,.]

Proof. Since v is odd, then a # —a in Z, when a # 0. Therefore for Ya €
Zy \ {0}, 22 = a? has two different solutions +a € Z, and +a gives one square
a? € Z,. We have |D| = 251,

Since —1 ¢ D, then —D is the set of all nonsquares. Vs € D, 3x,y € D
and x —y = 1 < dsx,sy € D and sr — sy = s < Isz,sy € D and

sy — st = —s. This means all nonzero squares and nonsquares have the same
# of representatives as a difference of two elements in D.
k(k—1 v—1 v—3 _
Hence N =*E-D — 5 5~ _ »=3 O
v—1 v—1 4

Projective Planes(PG(q))

Consider a linear space £ C 2%, |L| = b, | X| = v, then b > v.

We want b = v and each line has ¢ + 1 points, then any two lines share
exactly one point. That is, all lines form a symmetric (v,k, A) design with
A=1,k=q+1,then b=v=¢?+ g+ 1. (Consider the dual design.)

Definition 2. A projective plane of order q consists of a set X with ¢*>+q+1
points, and a family of lines satisfying

@ each line has g+ 1 points.
@ any two points lie on a unique line.

Note: A PG(q) is a (¢> +¢q+1,q+1,1) design.

Example:

1) ¢=1:

/\

(2) ¢ =2, Fano plane:

A



Propositon 3. In a projective plane of order q
@ Any point lies in g+ 1 lines.
@ There are ¢> + q + 1 lines.
3 Any two lines meet in a unique point.

Proof. (D Vz € X, there are ¢*> + q points different from it. Each line con-
taining x contains q further points, and no other overlaps between them.
So there must be q + 1 lines through x.

® Double count (z,L), x € L, L € L.
(@ +aq+1)(g+1)=|L[(g+1) = [L]=¢" +q+1.

® IfLiNLy =0, x € Ly, then the g+ 1 points of Ly gives q+1 different lines
containing x. Thus we get q+2 different lines through x, contradiction. [

Construction of PG(q), ¢ > 2 prime

Recall Z, and Z; = Z, \ {0} are cyclic groups.

V{(o,x1,22) € Z} = (0,21, 72) # (0,0,0)}, [V]=¢* - 1.
1

points: [zg, 21, x2] = {(cxo,cx1,0c22) : ¢ € ZZ}. So there are q:%l =¢>+q+1
points.
lines: L(ag, a1, az2) ((ag,a1,a2) € V) is defined to be the set of points [z, x1, 23]
for which agzg + a121 + asxs = 0. There are g> — 1 solutions to this equation,
thus there are q;_—_ll points in line L(ag, a1, az).
check any two points lie on a unique line: i.e. V[xg,z1,z2] # [Y0, Y1, Y2],
3! L(ag, a1, az), s.t.

{ apxo + a1x1 + asrs =0

aopyo + aryi + azys =0

Since { To *1 T2
Yo Y1 Y2
line L(ag, a1,as) contains both [z, z1, 23], [yo, y1, y2]-

} has rank 2, the solution space has dimension 1, i.e. 3!

Bruen’s Theorem

A blocking set in a PG(q) is a set of points which intersects with every line.
E.g. the lines. A blocking set containing a line is called trivial.
Homework: the smallest blocking sets are just lines.

Question: what can be said about the size of non-trivial blocking sets?



Theorem 4 (Bruen’s Theorem). Let B be a non-trivial blocking set in a PG(q).
Then |B| > q+ /g + 1.

[Note: Bruen’s theorem means that any set of at most ¢ + /g points either
contains a line or avoids a line.]

Proof. If ¢ = 1, the claim is true. Let ¢ > 2. Let |B| = q+m, m < \/q+1,
and B is a blocking set.

Let 1;=#{lines containing exactly i points inB}.(Homework: check when
t>m, l; = 0)

Double count lines, LNV # 0, point-line (z,L), x € LN B, and triples
(z,y,L) with x #y in BN L, then

dli=¢+q+1,
i=1

m

Zili = |Bl(qg+ 1), every point lies on q+ 1 lines,

i=1
m
Zz (i —1)l; = |B|(|B| — 1), two points lie on exactly one line.
i=1

Since m < \/q+1,i—/g—1<0,ic[m], so

0 237 6E=Di—-yg—1)

=i =Dl — (Va+ 1) 3l il + (Va+1) 3L,
=[B[(IB|-1) = (va+ 1IBl(¢+ 1) + (va+ 1)(¢* +q+1)
(1Bl = (¢ + va+ DBl = (¢y/g+1)] > 0

Contradiction.



