
Combinatorics, 2017 Fall, USTC

Week 13 Note 1

2017.12.12, Tuesday

1 Reed-Muller codes(RM codes)

m > 0, q is a prime power, 0 ≤ t < q, k =
(
m+t
t

)
, n = qm. Let α1, · · · , αn be

distinct points in Fm
q .

Messages: ω = (ω1, . . . , ωk) ∈ Fk
q . List and order all monomials xt11 x

t2
2 · · ·xtmm

with t1 + t2 + · · ·+ tm ≤ t. We have
(
m+t
t

)
such monomials.

Then associate message ω with a multivariable polynomial Pω(x1, x2, . . . xm) =sum
of monomials of degree at most t and coefficients ωi.

Let Xω = (Pω(α1), . . . , Pω(αn)), and C = {Xω : ω ∈ Fk
q}.

Note: If we let

B = {xe11 x
e2
2 · · ·xemm : e1 + . . .+ em ≤ t},

then it’s easy to see that C is spanned by {(f(α1), . . . , f(αn)) : f ∈ B}. And for
any f 6= f ′ ∈ B, we can check (f(α1), . . . , f(αn)) 6= (f ′(α1), . . . , f ′(αn)), and
{(f(α1), . . . , f(αn)) : f ∈ B} is linearly independent over Fq(see GTM84,
p.143, lemma 1)

Therefore, C is a q-ary code of length n = qm and size qk = q(
m+t

t ).
Since a multivariable polynomial of degree t can have at most tqm−1 roots

in Fm
q , we have dist(C) ≥ qm − tqm−1 = n(1− t

q ).

• Binary RM codes
q = 2, t = 1, n = 2m, C = 2m+1, dist(C) = n

2 . It’s a Hadamard code from
H-matrix of order 2m.

2 Some bounds of the size of a code C

Question: Given minimum distance d, how large can |C| be?
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Let |A| = q, we have |Bt(x)| = |Bt(y)| for any x 6= y ∈ An. In fact

|Bt(x)| =
t∑

j=0

(
n

j

)
(q − 1)j .

Denote V (n, t) = |Bt(x)|.

Theorem 1 (Gilbert-Varshmov Bound). Let Aq(n, d) be the maximum pos-
sible size of a q-ary code C with length n and dist(C) = d. Then

Aq(n, d) ≥ qn

V (n, d− 1)
.

Proof. Let C be a code having maximum size Aq(n, d). Then ∀x ∈ An, ∃ at
least one codeword Cx ∈ C such that dH(x,Cx) ≤ d− 1, since otherwise we can
add x to C, i.e. {x}∪C is also a code of minimum distance d, which contradicts
to the maximality of C. Hence An = ∪

c ∈ C
Bd−1(c), then

qn = |An| ≤
∑
c∈C
|Bd−1(c)| = |C| · V (n, d− 1) =⇒ |C| ≥ qn

V (n, d− 1)
.

Theorem 2 (Hamming Bound). Aq(n, d) ≤ qn

V (n,t) , where 2t+ 1 ≤ d.

Proof. By the fact that Bt(x) ∩Bt(y) = ∅ for all x 6= y ∈ C.

Lemma 3. If x1, . . . , xm ∈ Rn are nonzero and satisfy < xi, xj >≤ 0 for all
i 6= j, then m ≤ 2n.

Proof. See the reference book.

Theorem 4 (Plotkin Bound). If C ⊆ {0, 1}n, dist(C) = d, and 2d ≤ n, then
|C| ≤ d2n−2d+2.

Proof. Firstly, consider the case 2d = n. Let C1, . . . , Cm be the codewords of
C. For each i ∈ [m], let xi be the vector in Rn obtained from Ci by changing
0 → 1 and 1 → −1. Then < xi, xj >≤ n − 2d = 0, ∀i 6= j. By Lemma 3, we
have |C| = m ≤ 2n = 4d = d2n−2d+2.

Secondly, consider the case n > 2d. Write n = 2d+ k. Consider the first k
coordinates of C, and group the codewords together if their first k coordinates are

the same. By average principle, there exists a group of codewords of size≥ |C|
2k

.

By deleting the first k coordinates of this group, we obtain a set C′ ⊆ {0, 1}2d of

size |C′| ≥ |C|
2k

, and minimum distance d. By the first case, |C′| ≤ 4d, we have

|C| ≤ |C′| · 2k ≤ 4d · 2n−2d = d2n−2d+2.

Note: For the case 2d > n, see Fundamentals of Error-Correcting
Codes(p.58).
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3 Binary Linear Codes

If C ⊆ {0, 1}n forms a subspace of Fn
2 over F2(i.e. if x, y ∈ C, then x + y ∈ C),

then C is called a linear code.

Note:

(1) Reed-Solomon codes and Reed-Muller codes are linear codes over Fq.

(2) Linear codes that achieve Singleton’s Bound are called MDS(maximum
distance separable) codes.

Suppose dim C = k, |C| = 2k. k basis vectors (regard them as row vectors) of C
form a k × n matrix G, which is called the generating matrix of C, i.e.

C = {xTG ∈ Fn
2 : x ∈ Fk

2}.

The dual code C⊥ = {y ∈ Fn
2 : < x, y >= 0, for all x ∈ C}.

Let H be the (n− k)× n generating matrix of C⊥, then H is called the parity
check matrix of C. It’s easy to see C = {x ∈ Fn

2 : Hx = 0}.

• Syndrome decoding: send a message u ∈ Fk
2 , first encode u to x = uTG

and send x. Suppose x′ is received, and dH(x, x′) ≤ t. How to find this x with
Hx = 0? It is equivalent to finding a unique vector a ∈ Bt(0) ⊂ Fn

2 for which
Ha = Hx′, then x = x′ + a since H(x′ + a) = 0.

The weight w(x) of a vector x is #of nonzero coordinates of x. For a code C,
let w(C) = min{w(x) : x ∈ C, x 6= 0}.

Fact: If C is a binary linear code, then dist(C) = w(C).
Proof. ∀x 6= y ∈ C, dH(x, y) = w(x + y) ≥ w(C). =⇒ dist(C) ≥ w(C). Let
0 6= z ∈ C, s.t. w(z) = w(C), then w(C) = w(z) = dH(z, 0) ≥ dist(C).
Theorem 5. Let C be a binary linear code with parity check matrix H. Then
dist(C) = d if and only if every set of d−1 columns of H are linearly independent,
but some d columns are linearly dependent.

Proof. dist(C) = w(C).
Since x ∈ C if and only if Hx = 0, if x 6= 0, this means the columns of H

corresponding to the 1-positions of x are linearly dependent. So if dist(C) = d,
then exists d columns of H are linearly dependent, since C has a codeword of
weight d. But all d − 1 columns of H are linearly independent since C doesn’t
have a codeword of weight d− 1.

Theorem 6. A binary linear code C ⊆ {0, 1}n of dimension k and minimum
distance d exists provided that

d−2∑
i=0

(
n− 1

i

)
< 2n−k.
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Proof. Construct an (n − k) × n matrix H s.t no d − 1 columns are linearly
dependent.

Choose successive columns so that each new columns is not a linear combina-
tion of any d− 2 or fewer previous columns. If we try to choose the ith column,

then vectors of length n−k which can’t be chosen is at most N(i) =
d−2∑
j=0

(
i−1
j

)
. So

if N(i) < 2n−k, then an ith can be added to the matrix. Thus if N(n) < 2n−k,
then we can obtain a matrix having n columns.
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