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Theorem1 (Nullstellensatz) Let f € Flxy,--- ,x,], and let Sy,---, S, be nonempty subsets
of F. If f(x) = 0,Yx € S; x ---S,, then dpolynomials hy, he, -+, h, € Flxy,--- ,x,] such that
deg(he) < deg(f) — |Si| and f = X0 hi [Loes, (#1 — ).

Proof:Let t; = |S;| — 1, define g;(7;) = [[,egq, (i — 5) = zhtt Z?:o a;z). Replace each
occurrence of 24 by g;(z;) + Z;i:o agxl. f=higi(x1)+ fi,deghy < degf —|S;| and max deg of
21 < t;. Repeat this procedure for all 2/ we get f = S higi + f, with degh; < degf — ||
and maximum degree of z; in f is < t;,4 € [n]. Since f = f =0 for all z € S; x --- S, we have
f=0. Hence f = hig;. O

Theorem2(Combinatorial Nullstellensatz)Let f € F|xy,--- , 2, be a polynomial of degree d.
Suppose [zi}ak? -+ al]f #0and Y t; = d. If S; C F with |S;| > ¢;+1,i € [n], then 3z € Sy x-S,
for which f(x) # 0.

Proof: Assume |S;| =t;+1,i € [n], Suppose f(z) =0 for all z € Sy x --- 5, define ¢;(x;) =
[Les, (i — s) and hi(z;, 29, - -+, x,) guaranteed by Nullstellensatz. Hence degh; < degf — |Si| =
degf — (t; +1). Since f(x) = S°r, hi()gi(z), that is f(z) = S0, x4 hi(z)+(terms of degree
<degf). By assumption, the [z{'2% - .- zf]f on LHS is nonzero, but it is impossible to have such

a monomial on RHS. O

Application of Combinatorial Nullstellensatz
Theorem3(Chevalley-Warning)Let p be a prime and f1, - -+, fo, € Flay, -+, x,). Y17 degfi <
n, and f1,---, f have a common root (¢q, -+, ¢,), then they have another common root.

Proof: Suppose (c1,--- ,¢,) is the only common root of fi,--- , f,,. Define f(xy,--- ,x,) =
[T, (= filzr, - 2P ) =0 [T}, [L.cr, cze;(x;—c), where § is chosen so that f(c1, -+, ¢,) = 0.



Hence 6 = i HceFi,C¢cj(Cj—0) # 0. Given (s1,---,8,) € FJ} and (s1,- -+ ,8,) # (c1,°++ ,¢p), then
Ji € [m], fi(s1,-++ ,8,) # 0in F,. By Fermat’s little Theorem, f;(sq,- -, $,)?~! = 1(modp),i.e.the
first product on RHS is zero. It is easy to check that the second term is also zero. so f;(xy,--+ ,x,) =
0 for all (x1,--- ,2,) € FJ'. Now check the degree of f. In the first product,the degree< Y ™", deg f;-
(p—1) <n(p—1). , and the monomial 2 "z5~" ... 22~" has coefficient § # 0. Let S; = F},, then
apply Combinatorial Nullstellensatz, v € F}, s.t. f (x) # 0, a contradiction. [l

Recall: A = (a;j)nxn,per(A) = Z(il7m7in) a1,i,A24, - * Gy, , Where (i1,--- ,4,) runs over all
permutations of [n].

Theorem4(Permanent Lemma)Let b € F™ and s1, - - - , S, be subsets of F, each of cardinality
at least 2. If the per(A) # 0, then there 3z € S; x ---S, such that Ax differs from b in all
coordinates.

Proof: Define f =[] (a;jz; — b;), need to show 3z, s.t.f(zx) # 0,degf = n.[z1---z,]f =
per(A) # 0. Since |S;| > 2,4 € [n]. then apply Combinatorial Nullstellensatz. O

Corollary5: If per(A) # 0, then for any b € F™, there is a subset of columns of A whose
sum differs from b in all coordinates.

Theorem6 Let G = (V| E), no loops but multiple edges allowed. p is a prime, if average
degree > 2p — 2, max degree < 2p — 1. then G contains a p-regular subgraph.

Proof: Associate each edge e with z.. define f =[], o [1 = (X ocp twete)’ ] = [Tocp(l —z.)
over Fp, where a, . = 1,ifv € eand a, . = 0if v ¢ e. In the first product, the degree< (p—1)|V| <
|E|. Since ), . d(v) = 2|E|, averge degree is ‘|V|‘ >2p—2= (p—1)|V]| < |E|. So degf=|E|, and
Mlecp el f = (—1)FIF1 £ 0. Now apply Combinatorial Nullstellensatz with S; = {0,1},t, = 1,e €
E. then we get a 0-1 vector x = (z. : e € F)s.t.f(z) # 0. Now consider the spanning subgraph H
consisting of all edges e € E with z, = 1. Since f(0) = 0,z # 0, H is non-empty. So the second
terms [ [, (1 —z.) = 0, which means the first term [, .,[1 = (3 ,cp avexe)’ '] # 0. By Fermat’s
little Theorem, ) . @y 7. = 0(modp), Vv € V. Therefore, Vv € V, in H deg(v) = 0(modp). Since

the maximum degree is smaller than 2p, all positive degrees are precisely p. [l
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Sum-set::A+ B=a+b,a € A, b€ B, simple set.

Theoremb5(Cauchy-Davenport)If p is a prime, and A, B are two non-empty subsets of F,,
then |A + B| > min{p, |A| + |B| — 1}.

Proof:

(1) If |A|+|B| > p+1, thenVx € Z,, AN(x—B) # 0.i.eNVx € Z,,3a € A,b € B,a=x—b,i.ex =
a + b, which means A+ B = Z,. So |A+ B| > p.

(2) |A| + |B| < p. Suppose |A + B| < |A| + |B| = 2,3C C Z,,st.A+ B C C and |C| =
|A|+|B| = 2. Define f(x1,22) = [[cc(x1+22—c), then f(z1,22) = 0if (21,22) € Ax B. Let



t t A B| -2
t; = |A| = 1,ty = |B| — 1. degf=t| +t, = |C]. [2!' 2] f = ( L 2) = (| |+ |B] ) Since

ty |A] —1
Al+|B|—2
|A|+|B|—2 < p, we have p 1 (| ||Z|| |1

n=2.5 =A,Sy = B, we have a pair (1, 23) € S X Sy, s.t.f(z1,x2) # 0, a contradiction.[]

) . Now apply Combinatorial Nullstellensatz with

Zero-sum-sets

Q1 Any sequence aq, - - - , a, of n integers contains a non-empty consecutive subsequence a;, @; 1, , Gitm

whose sum is divisible by n.

Proof: By pigeonhole, n holes labeled from 0 to n—1, consider the n sequence (a), (a1, az), - - -
(ay,ag, -+ ,a,). If the sum of a sequence is i(modn), then put the sequence in the i-th holes,
if 4 a sequence put in the 0-th hole,then done. If not, by P-P, we have two sequences in the
same hole, say (a1, as, -+ ,a;—1) and (a1,as, - ,a;, "+ ,Gitm), then (a;, -+, aj1y,) with sum

divisible by n.

Q2 Given n > 0, what is the smallest N,s.t.any sequence of N integers contains a not necessarily

consecutive subsequence of n integers whose sum is divisible by n?

eg. 0,---,0,1,---,1, N <2n—1.

Theorem6 p is a prime, any sequence of 2p-1 integers contains a subsequence of p integers,
whose sum is divisible by p(By Cauchy-Davenport Theorem or by Chevalley-Warning Theorem).

Proof: Let a1 < ay < --- < agyy. If 3 € [p—1],st.a; = ajsp_1, then a; + ;41 + - +
Qitp—1 = pa; = 0, done. If not, let A; = {a;,a;1p_1},i € [p— 1], then |[A) + As+---+ A, 4| >
min{p, |As+ -+ Ap_1| + 1} > min{p, As+-- -+ Ap_1| +2} > - > min{p, |Ap—1| +p— 2} = p.
Hence Ay + Ay +--- + Ayp_1 = Z,, then —ay,_1 can be written at a sum of precisely p — 1 of the
first 2p — 2 elements of the sequence. O

Error-correcting codes

Let A be an alphabet, C' C A" is called a code, x € C'is called a codeword. The minimum
distance, dist(C) = min{dg(z,y) : v # y € C}. Vo € C, the Hamming ball of the radius t
centered at x is By(z) = {y € A" : dy(x,y) < t}.

Fact: The code C can correct up to t errors <= V, 2’ € C, Bi(x) N By(2') = 0. <= Vu, 2’ €
C,dy(x,z') > 2t + 1,i.e.dist(C) > 2t + 1.
Reason: Suppose x € (' is transmitted and y € A™ is received. If at most t errors occurred, then
dy(z,y) < t. If dist(C') > 2t + 1, then the only codeword in C with distance < ¢ from y is x. So
we can correct y to x.

Main problem in coding theory: find large code with large distance.

Theorem (Singleton bound) If C C A" and d = dist(C) > 0, then |C| < |A|"~4FL.



Proof: Deleting the first d — 1 letters of each codeword, the resulting codewords of length
n — d + 1 must be distinct, since dist(C') = d. So |C| < |A[*74+L. O

Reed-Solomon code:

k <n < q,q is a prime power. Let A = I, |A| = ¢. Fix n distinct elements oy, --- , @, of
Fo(n < q). Messages: w = (wy,--- ,wi) € Fi. For each w € F}, let Py(2) = wi+waoz4- - -+wpz" .
degP, < k — 1. The codeword of w is the string z, = (Py(1), Pu(a2), -+, Pu(an)) € Fy. Let
C = {x, : w € A*} be the resulting g-ary code. Since no two polynomial of degree at most
k — 1 can agree on k or more points, we have dist(C) > n — k + 1. So we have a code C C A" of
minimum distance d = n — k + 1 and size |C| = |AlF = |A|"~4+1

In RS code, we need ¢ > n. How to reduce the alphabet size.

Binary-Red-Solomon code: replace each element of F, by a binary string of length [log, ¢],

let n’ = n [log,q]. Then we obtain a binary code C' C {0,1}" with length n’ = n [log, q], size
|C| = ¢* and dist(C) > n —k+ 1.(n < q).



