
Combinatorics, 2017 Fall, USTC

Week 3 Note 3

2017.9.30, Saturday

Definition 1. A partially ordered set(poset) P = (X,≤) is a set X with a
relation ”≤” on X, s.t.

(1) Reflectivity: x ≤ x;

(2) Antisymmetry: If x ≤ y and y ≤ x, then x = y;

(3) Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

E.g.

(1) (Z≥0, <), ”less than” relation.

(2) (Z>0,≤), divisor poset, a ≤ b ⇔ a | b.

(3) (2X ,≤), inclusion relation, A ≤ B ⇔ A ⊆ B.

Definition 2. P = (X,≥), the incidence algebra of P is

A(P ) = {f : P 2 → R|f(x, y) = 0, whenever x � y}

E.g.

(1) 0(x, y) = 0.

(2) Kronecker delta function: δ(x, y) =

{
1, x = y
0, x 6= y

.

(3) Zeta function: ζ(x, y) =

{
1, x ≤ y
0, x � y

.

Facts:

(1) f, g ∈ A(P ) ⇒ f + g ∈ A(P ).

(2) f ∈ A(P ) ⇒ cf ∈ A(P ),∀c ∈ R.
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Definition 3. Let f, g ∈ A(P ), the Dedekind convolution of f and g is f ∗ g ∈
A(P ), where (f ∗ g)(x, y) =

∑
z : x ≤ z ≤ y

f(x, z)g(z, y).

E.g.

(1) (f ∗ 0)(x, y) = 0.

(2) (f ∗ δ)(x, y) = f(x, y)δ(y, y) = f(x, y) = (δ ∗ f)(x, y), so δ is the identity.

(3) (f ∗ ζ)(x, y) =
∑

z : x ≤ z ≤ y

f(x, z)

Exercise: ∗ is commutative?(N) associative?(Y) distributive?(Y)

Definition 4. If f ∗ g = δ, we say f, g is invertible.

f ∗ g1 = g2 ∗ f = δ ⇒ g1 = g2.

Theorem 1. f ∈ A(P ), then f is invertible ⇐⇒ f(x, x) 6= 0, ∀x ∈ P .

Proof. ”⇒” ∃g ∈ A(P ), s.t. f ∗ g = δ. 0 6= 1 = δ(x, x) = (f ∗ g)(x, x) =
f(x, x)g(x, x).

”⇐” Find g ∈ A(P ), s.t. f ∗ g = δ.
f(x, x)g(x, x) = δ(x, x) = 1 =⇒ g(x, x) = 1

f(x,x) ,∀x∑
z

x ≤ z ≤ y

f(x, z)g(z, y) = δ(x, y) = 0 x 6= y
.

Then
f(x, x)g(x, y) +

∑
z

x < z ≤ y

f(x, z)g(z, y) = 0,

i.e. g(x, y) = − 1
f(x,x)

 ∑
z

x < z ≤ y

f(x, z)g(z, y)

 = 0, by recursion.

Note: If use g ∗ f = δ, then g(x, y) = − 1
f(y,y)

 ∑
z

x ≤ z < y

g(x, z)f(z, y)

 .

Definition 5. Möbius Function over P is µP = ζ−1, where

µP (x, y) =


1, x = y
−

∑
x < z ≤ y

µP (z, y) = −
∑

x ≤ z < y

µP (x, z), x < y

0, else

.
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Theorem 2. (Inverse Formula I) Suppose P has a unique minimal element.
Let e : P → R be a function. If we have n : P → R s.t.

n(y) =
∑
z ≤ y

e(z), ∀y ∈ P,

then
e(y) =

∑
z ≤ y

n(z)µP (z, y).

The converse is also true.

Proof. Let m be the minimal element of P . Define f, g ∈ A(P ) as the following:

f(x, y) =

{
e(y), x = m
0, x 6= m

, g(x, y) =

{
n(y), x = m
0, x 6= m

.

We want to prove g = f ∗ ζ.
g(m, y) = n(y) =

∑
z ≤ y

e(z) =
∑

z ≤ y

f(m, z) =
∑

m ≤ z ≤ y

f(m, z)ζ(z, y) =

(f ∗ ζ)(m, y). ∀x 6= m, g(x, y) = 0 = (f ∗ ζ)(x, y) =⇒ g = f ∗ ζ =⇒ f = g ∗ µP

=⇒ e(y) = f(m, y) =
∑

m ≤ z ≤ y

g(m, z)µP (z, y) =
∑

z ≤ y

n(z)µP (z, y).

Theorem 3. Ω = (Z>0,≤) is the divisor poset, then µΩ(x, y) = µ( y
x ) if x | y.

Proof. (1) Show µΩ(x, y) = µΩ(1, yx ) if x | y. Prove by induction on the ]prime
factors of y

x .
If y

x = 1, µΩ(x, y) = µΩ(1, 1) = 1. Assume µΩ(x, y) = µΩ(1, yx ) if y
x has ≤ k

prime factors. Take x | y and y
x has k + 1 prime factors.

µΩ(x, y) = −
∑

x ≤ z < y

µΩ(x, z) = −
∑

x ≤ z < y

µΩ(1,
z

x
),

µΩ(1,
y

x
) = −

∑
1 ≤ z <

y
x

µΩ(1, z) = −
∑

x ≤ zx < y

µΩ(1, z).

(2) Show µΩ(1, d) = µ(d). Prove by induction on the ]prime factors of d.

µΩ(1, 1) = µ(1),

µΩ(1, p) = −
∑

1 ≤ z < p

µΩ(1, z) = −1 = µ(p),

µΩ(1, p1p2) = −(µΩ(1, 1) + µΩ(1, p1) + µΩ(1, p2)) = 1 = µ(p1p2),

µΩ(1, p2) = 0 = µ(p2).

Assume µΩ(1, d) = µ(d) if d has ≤ k prime factors.

Case 1: d = p1 · · · pk+1

µΩ(1, d) = −
∑

1 ≤ z < d

µΩ(1, z) = −
k∑

i=0

(
k+1
i

)
(−1)i = (−1)k+1 = µ(d).
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Case 2: d = pk1
1 · · · pkr

r , k1 + · · · kr = k + 1 and ki ≥ 2 for some i ∈ [r]

µΩ(1, d) = −
∑

1 ≤ z < d

µΩ(1, z)
by induction

========== −
∑

1 ≤ z ≤ p1 · · · pr

µΩ(1, z) = 0 =

µ(d).

Corollary 1. g(n) =
∑
d|n

f(d)⇐⇒ f(n) =
∑
d|n

µ(n
d )g(d).

Theorem 4. (Inverse Formula II) Suppose P has a unique maximal ele-
ment. Let e : P → R be a function. If we have n : P → R s.t.

n(x) =
∑
x ≤ z

e(z),

then
e(x) =

∑
x ≤ z

µP (x, z)n(z).

Proof. Exercise!

Theorem 5. |X| = n Pn = (2X ,≤) with ”⊆” relation. Then

µPn
(A,B) = (−1)|B\A|, if A ⊆ B.

Proof. Prove by induction on |B \A|(Exercise!)

Corollary 2. (IEP) |Ac
1 ∩ · · · ∩Ac

n| =
∑

I ⊆ [n]

(−1)|I||AI |.

Proof. Let X = [n], Pn = (2X ,≤) with ”⊆” relation.
Define

n : Pn → R as n(|I|) = |AI | = | ∩
i∈I

Ai|,

e : Pn → R as n(|I|) = |AI ∩ ( ∩
j /∈I

Ac
j)|.

Then n(J) =
∑

J ⊆ I ⊆ [n]

e(I). Since Pn has a unique maximal element [n], by

Theorem 4

e(J) =
∑

J ⊆ I ⊆ [n]

µPn
(J, I)n(I) =

∑
J ⊆ I ⊆ [n]

(−1)|I\J||AI |.

Particularly, e(∅) = |Ac
1 ∩ · · · ∩Ac

n| =
∑

I ⊆ [n]

(−1)|I||AI |.
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