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Abstract: The lithospheric mantle underneath the North China Craton changed completely from
the Palaeozoic to the Cenozoic. This study reviews geochemical data from Mesozoic mantle-
derived mafic rocks from the North China Craton to investigate the role of mafic lower continental
crust in lithosphere replacement. Samples from the North China Craton have typical ‘continental’
geochemical signatures, including depletion of high field strength elements, enrichment of large
ion lithophile elements and Pb, unradiogenic Pb isotopes, and enriched Sr–Nd isotopic ratios.
Positive correlation between initial 87Sr/86Sr and 206Pb/204Pb, low Ce/Pb and Nb/U, high Ba/
Nb and La/Nb, and unradiogenic Pb isotopes of Mesozoic mafic rocks cannot simply be explained
by derivation from a lithospheric mantle enriched by ancient (Archaean or Mesoproterozoic) fluid
or melt metasomatism. Instead, they more probably result from a lithospheric mantle or upwelling
asthenosphere underneath the North China Craton that was modified by the lower continental crust
in the Mesozoic. Because oceanic plate subduction zones surrounded the North China Craton
during the late Palaeozoic, the lithospheric mantle underneath the North China Craton was
weakened by fluids derived from subducted slabs, and thus shortened and thickened by
continent–continent collisions of the North China Block with the South China Block and the
Siberian plate. Metamorphic reactions occurred in the mafic lower continental crust beneath
the North China Craton, creating garnet-bearing assemblages (eclogite and garnet pyroxenite)
with densities of up to 3.8 g cm23, which led to negative buoyancy in the over-thickened litho-
sphere. The unstable lithosphere was delaminated and subsided into the uppermost mantle. The
delaminated lower crust partially melted, producing SiO2-rich melts that metasomatized surround-
ing asthenospheric mantle, which upwelled and replaced the volume formerly occupied by the
delaminated lithospheric mantle, resulting in the ‘continental’ geochemical signatures widely
observed in Mesozoic mantle-derived mafic rocks from the North China Craton. The ‘continental’
geochemical signatures of Mesozoic mantle-derived mafic rocks suggest that lithospheric delami-
nation could have occurred by the time of volcanic eruption in the northern margin of the North
China Craton in the mid-Jurassic and later in the southern margin and Dabie–Sulu Orogen in the
early Cretaceous.

The lithospheric thinning of the North China Craton
during the Mesozoic has attracted considerable
attention over the last two decades (e.g. Griffin
et al. 1998; Guo F. et al. 2001; Zhang et al. 2002,
2003, 2004; Chen B. et al. 2003; Xu Y. et al.
2004a; Zhang 2005). Diamond-bearing kimberlites
and mantle xenoliths demonstrate that a thick
(c. 200 km) cold (c. 40 mW m22) lithosphere
existed in the North China Craton in the Palaeozoic,
but a thin (c. 80 km) and hot (c. 60 mW m22) litho-
sphere was present in the Cenozoic in the eastern
part of the North China Craton (Eastern Block in
Fig. 1; Griffin et al. 1998; Zheng et al. 2003).
This indicates that about 120 km of lithosphere
has been removed since the early Palaeozoic.

Also, the geochemical characteristics of the Palaeo-
zoic and Cenozoic lithosphere mantle are very
different (Table 1). The Palaeozoic lithospheric
mantle underneath the North China Craton is
characterized by EMII features, such as high
206Pb/204Pb (c. 20.2), a significant variation of
87Sr/86Sr, and negative 1Nd (c. 25) (Zheng & Lu
1999; Zhang et al. 2002), distinct from the Ceno-
zoic lithospheric mantle below the Eastern Block
of the North China Craton, which has Sr–Nd–Pb
isotopic compositions similar to those of mid-ocean
ridge basalt (MORB) and ocean island basalt (OIB)
(Peng et al. 1986; Song et al. 1990; Basu et al.
1991). Apparently, the lithospheric mantle of the
Eastern Block of the North China Craton was

From: ZHAI, M.-G., WINDLEY, B. F., KUSKY, T. M. & MENG, Q. R. (eds) Mesozoic Sub-Continental Lithospheric
Thinning Under Eastern Asia. Geological Society, London, Special Publications, 280, 55–75. DOI: 10.1144/SP280.3
0305-8719/07/$15 # The Geological Society of London 2007.
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replaced between the Palaeozoic and Cenozoic
(Zheng et al. 2003).

The reason for the removal and replacement of
the Palaeozoic lithospheric mantle is still not well
known. Possible mechanisms include destabilization
of the North China Craton as a result of the
Indo-Eurasian collision (Menzies et al. 1993), repla-
cement by asthenosphere upwelling (Xu Y. et al.
2004a), and destruction of the lithosphere as a
result of the subduction of oceanic crust in the
Palaeozoic and continental crust in the Mesozoic
beneath both the northern and southern margins of
the North China Craton (Zhang et al. 2003).

Because the Mesozoic lithospheric mantle of the
North China Craton is transitional, it can provide

critical constraints on understanding the lithospheric
evolution during the Phanerozoic. Widespread
Mesozoic mantle-derived mafic magmatism within
the North China Craton provides important insights
into the Mesozoic lithospheric mantle (Fig. 1 and
Table 2). It is well known that Mesozoic mantle-
derived mafic igneous rocks are characterized by
typical ‘continental’ geochemical signatures,
including depletion of high field strength elements
(HFSE), enrichment of large ion lithophile elements
(LILE), negative 1Nd (most ranging from 210 to
220), variable 87Sr/86Sr (EMI-type with lower
87Sr/86Sr and EMII-type with higher 87Sr/86Sr),
and unradiogenic Pb isotope ratios (Qiu et al.
2000; Guo F. et al. 2001, 2003; Qiou et al. 2002;

Fig. 1. Simplified map showing major locations of Mesozoic mantle-derived mafic rocks in Eastern China.
Mesozoic lithospheric mantle provinces and locations of Mesozoic mantle-derived mafic rocks are modified from
Li & Yang (2003) and Zhang et al. (2004). I, North margin (Liaoning region); II, Taihang; III, Luzhong; IV, Luxi;
V, Jiaodong. Localities of Mesozoic mantle-derived mafic rocks from Eastern China are from Table 2. UHPM zone,
ultrahigh-pressure metamorphic zone; WB, Western Block; TNCO, Trans-North China Orogen; EB, Eastern Block.
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Zhang & Sun 2002; Zhang et al. 2002, 2003, 2004;
Chen B. et al. 2003; Li & Yang 2003; Xu Y. et al.
2004a, b; Yang et al. 2004a; Ying et al. 2004;
Zhang et al. 2005). These signatures are not
consistent with either the Palaeozoic or Cenozoic
lithospheric mantle (Peng et al. 1986; Song et al.
1990; Basu et al. 1991; Chung 1999; Zhang et al.
2002; Table 1).

It is widely considered that such ‘continental’
geochemical signatures of Mesozoic mantle-
derived mafic rocks from the North China Craton
were derived from an enriched subcontinental litho-
spheric mantle (e.g. Guo et al. 2003; Yang et al.
2004a); two main models have been proposed.
The first is that the subcontinental lithospheric
mantle is an EMI-type resulting from multiple
metasomatism related to subduction-related pro-
cesses in the Archaean and Mesoproterozoic in
the course of accretion of the North China Craton
(e.g. Yang et al. 2004a); partial melting of the
ancient subcontinental lithospheric mantle at differ-
ent depths can explain the variation of geochemical
features of Mesozoic mantle-derived mafic magmas
(Guo et al. 2003). However, there is no evidence for
the existence of an EMI-like enriched sub-
continental lithospheric mantle with low 1Nd (up
to 221) before the Mesozoic because the Palaeo-
zoic kimberlites and peridotites have EMII-type
isotopic features with a limited range of 1Nd from
25 to 27, high 206Pb/204Pb, and a large variation
of 87Sr/86Sr from 0.705 to 0.712 (Zheng & Lu
1999; Zhang et al. 2002).

The second model suggests that the Mesozoic
subcontinental lithospheric mantle of the North
China Craton was severely modified by a Si–
Al-rich melt by partial melting of deeply subducted
materials from the South China Block or Palaeo-
Pacific plate (Zhang et al. 2002, 2003; Chen &
Zhou 2005). This model is supported by mantle–
melt reactions observed in olivine xenocrysts from
Fangcheng basalts (Zhang 2005) and from compo-
site dunite–orthopyroxene xenoliths captured in
Laiwu high-Mg diorites (Chen & Zhou 2005).
This model can explain the EMII-type signatures
of mafic rocks and carbonatites from Western Shan-
dong (Luxi) and Jiaodong peninsula (the Luxi–
Jiaodong region hereafter), but it cannot explain
EMI-type signatures in Mesozoic mafic rocks
from the centre of the North China Craton
(Taihang and Luzhong regions) where the effect
of the subducted South China Block or Palaeo-
Pacific plate is insignificant. Thus, the origin of
the enriched signatures in Mesozoic mantle-derived
mafic rocks remains controversial.

This paper compiles recently published geo-
chemical data from Mesozoic mantle-derived
mafic igneous rocks to constrain the origin of
their enriched signatures and understand the

transformation of the subcontinental lithospheric
mantle of the North China Craton from the Palaeo-
zoic to Cenozoic. The purpose of this study is (1) to
reveal that geochemical signatures of Mesozoic
mantle-derived mafic igneous rocks are consistent
with the contribution of lower crust to the Mesozoic
uppermost mantle of the North China Craton, but do
not support derivation from a lithospheric mantle
enriched by ancient fluid or melt metasomatism,
and (2) to provide a delamination model to
explain the lithospheric thinning process of the
North China Craton during the Mesozoic.

Geological background

Archaean rocks with ages of 3.6–3.8 Ga occur in
the north to centre of the North China Craton, indi-
cating that this is one of the oldest cratons in the
world (e.g. Zheng et al. 2004, and references
therein). However, the North China Craton is differ-
ent from other old cratons in many respects, includ-
ing high heat flow, thinned lithosphere, presence of
earthquakes, unusually evolved bulk chemical
crustal composition, and widespread magmatism
from the late Mesozoic to Cenozoic (Gao et al.
2004). The North China Craton can be divided
into the Western Block and Eastern Block, which
are separated by the Trans-North China Orogen
(Fig. 1). The North China Craton was stabilized
when the Western and Eastern blocks collided
along the Trans-North China Orogen at 1.8 Ga
(Zhao et al. 2000). The North China Craton collided
with the South China Block to the south along the
Qinling–Dabie–Sulu Orogen in the early Triassic
(Li et al. 1993) and to the north with the Centre
Asian Orogen at the Solonker suture in the end-
Permian (Xiao et al. 2003). The North China
Craton and attached southern Central Asian
Orogen collided with northern Central Asian
Orogen along the Mongol–Okhotsk suture in the
Jurassic (Tomurtugoo et al. 2005).

The Western Block of the North China Craton
did not undergo lithospheric thinning or experience
significant magmatism after the stabilization of the
North China Craton at 1.8 Ga (Zhao et al. 2000;
Zhang et al. 2003). However, magmatism occurred
widely in the Eastern Block of the North China
Craton after the Palaeozoic. The presence of Ordo-
vician diamond-bearing kimberlites in the Eastern
Block (e.g. in Mengyin and Fuxian) indicates that
the lithosphere was cold and thick at that time
(e.g. Griffin et al. 1998). Mesozoic magmatic
rocks ranging from basalts to andesites and granites
are widespread in Eastern China. Figure 1 and
Table 2 show localities, rock types and ages of
mafic intrusions in Eastern China. Mesozoic
igneous carbonatites occur in the Luxi region
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(Ying et al. 2004). Mesozoic mantle-derived mafic
rocks show distinct regional heterogeneity (Zhang
et al. 2004). On the basis of geochemical differ-
ences of Mesozoic mantle-derived mafic rocks,
the North China Craton is divided into five major
units following a slightly modified scheme pro-
posed by Zhang et al. (2004) (Fig. 1): Liaoning
(province I); Tainang (province II); Luzhong (pro-
vince III); Luxi (province VI); Jiaodong (province
V). The geochemical features of these provinces
are discussed below.

Geochemical database of Mesozoic

mantle-derived mafic rocks from

Eastern China

The main purpose of this study is to understand the
evolution of the lithospheric mantle of the North
China Craton from the Palaeozoic to Cenozoic. There-
fore, to avoid crustal-derived rocks, we have selected
only basalts and basaltic andesites with a SiO2 content
,56 wt% and MgO content .4 wt% (most .5 wt%)
from the data pool of Mesozoic magmatic rocks; the
data sources are listed in Table 1. Some samples are
mafic enclaves from Mesozoic granitoids, which
Yang et al. (2004a, 2005a, b) suggested have mantle
characteristics. Igneous carbonatites are from the
Luxi region (Western Shandong) (Ying et al. 2004).
For the northern margin of the North China Craton
only samples older than 110 Ma were used because
basalts later than 110 Ma in this area were produced
by partial melting of asthenosphere in an extensional
tectonic environment in the continental margin of
Eastern Asia (Zhang et al. 2004). Coeval mantle-
derived mafic rocks from the South China Block and
Dabie–Sulu Orogen were also studied for
comparison.

Trace element contents of most samples were
analysed by inductively coupled plasma-mass spec-
trometry (ICP-MS) with precision better than +5%
shown by more than two rock standards (e.g. Zhang
et al. 2002; Yang et al. 2005a, b) or reproducibility
of duplicated analyses (e.g. Guo F. et al. 2001). A
few samples were measured by isotope dilution
(ID) methods and X-ray fluorescence (XRF) spec-
trometry, including those of Jahn et al. (1999),
which were useful to check for the consistency of
Rb–Sr contents between the XRF and ID methods
as a means of demonstrating the quality of trace
element compositions. Because Sr–Nd–Pb isotopic
compositions of the mantle-derived mafic rocks
were measured in different laboratories, we cor-
rected the isotopic ratios based on the same standard
values: NBS-987 87Sr/86Sr ¼ 0.71025; BCR-1
143Nd/144Nd ¼ 0.512630; NBS981 207Pb/204Pb ¼
0.9142 + 0.0015. All initial isotopic ratios were
calculated to 130 Ma.

Geochemistry of Mesozoic mantle-derived

mafic rocks from the North China Craton

Mesozoic mantle-derived mafic rocks share some
common trace element compositions. Their trace
element patterns are similar to those of continental
crust (Rudnick & Gao 2003). They are enriched in
light rare earth elements (LREE) relative to heavy
rare earth elements (HREE) (Fig. 2a). Furthermore,
mafic rocks from the North China Craton are
enriched in LILE (Cs, Ba, U) and Pb, and depleted
in HFSE (Nb, Zr, Ti) relative to N-MORB and
OIB (Fig. 2b). Rb is also depleted relative to Ba,
distinct from the upper crust but similar to the
lower crust (Fig. 2b).

Mafic rocks
from NCC

(a)

(b)

N-MORB

OIB

LC

 UC
MC

N-MORB

 OIB

 LC

UC
MC

Mafic rocks
from NCC

Fig. 2. Chondrite-normalized REE patterns (a) and
primitive mantle-normalized trace element spidergrams
(b) of Mesozoic mafic rocks from the North China
Craton (NCC). Chondrite and primitive mantle values
are from Sun & McDonough (1989). Data sources of
Mesozoic mafic rocks from the North China Craton are
listed in Table 1. Data for Mesozoic mafic rocks from the
South China Block are from Yu et al. (1993), Zhou et al.
(1993), Xing (1996), Liao et al. (1999), Yang et al.
(1999), Li et al. (2000), Guo X-S. et al. (2001), Yan
et al. (2003) and Yu et al. (2004). OIB and MORB are
from Sun & McDonough (1989); upper crust (UC),
middle crust (MC), and lower crust (LC) are from
Rudnick & Gao (2003).
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In the 1Nd (130 Ma)–87Sr/86Sr (130 Ma) diagram
(Fig. 3), Mesozoic mantle-derived mafic rocks and
carbonatites from the North China Craton show
regional variations and are distinct from mafic
rocks in the South China Block (Zhang & Sun
2002; Zhang et al. 2002, 2003, 2004, 2005; Guo
et al. 2003, 2004; Xu Y. et al. 2004a; Yang et al.
2004a, 2005a; Ying et al. 2004; Wang et al. 2006).
Sr–Nd–Pb isotopic ratios of mafic rocks from the
North China Craton are summarized in Table 1.
87Sr/86Sr (130 Ma) increases gradually from the
Taihang (province II) and Luzhong regions (province
III) (87Sr/86Sr (130 Ma) ¼ 0.705–0.708) to the
eastern North China Craton (Luxi–Jiaodong region,
provinces IV and V with 87Sr/86Sr (130 Ma)¼
0.709–0.711), and the ranges of 1Nd (130 Ma)
values are similar. The 1Nd (130 Ma) values of
samples from the Luzhong range from 24.0 to
221 (Guo F. et al. 2001, 2003; Xu Y. et al.
2004a), Taihang from 29.3 to 216.7 (Chen B.
et al. 2003; Zhang et al. 2004; Wang et al. 2006),

and Luxi–Jiaodong from 29.8 to 217.8 (Qiou
et al. 1997, 2002; Xu Y. et al. 2004a; Yang et al.
2004a; Ying et al. 2004). Accordingly, the mantle-
derived mafic rocks from the North China Craton
are divisible into two groups based on 87Sr/86Sr
(130 Ma): the Liaoning (province I), Taihang (pro-
vince II) and Luzhong regions (province III), which
are characterized by EMI-like isotopic features (Lus-
trino & Dallai 2003), and the Luxi–Jiaodong region
(provinces IV and V), which is characterized by its
EMII-like isotopic character. Zhang et al. (2004)
interpreted these features as evidence for the exist-
ence of a highly heterogeneous lithospheric mantle
underneath Eastern China in the Mesozoic. The
highest 1Nd (130 Ma) values of Mesozoic mantle-
derived mafic rocks are roughly in agreement with
those of Palaeozoic kimberlites and peridotites,
which have 1Nd (130 Ma) c. 25 (Zheng & Lu
1999; Zhang et al. 2002).

Mesozoic mantle-derived mafic rocks from the
North China Craton have Pb isotopic ratios with

SCB
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Fig. 3. Comparison of Sr–Nd isotopic ratios at 130 Ma of Mesozoic mantle-derived mafic samples from Eastern
China. Data sources: North China Craton, Table 1; South China Block, Table 2; Dabie–Sulu Orogen, Ma et al. (1998),
Jahn et al. (1999), Yang et al. (2004a, 2005a) Wang et al. (2005), Zhao et al. (2005) and Huang et al. (2007);
MORB, Sun & McDonough (1989); Palaeozoic kimberlites and peridotites, Zheng & Lu (1999) and Zhang et al.
(2002); lower crust, Zhang et al. (1998) and Liu et al. (2004b); upper crust, Jahn et al. (1999).
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significant regional variations (Fig. 4). Their Pb iso-
topic ratios recalculated at 130 Ma are lower than
those of contemporary mafic rocks from the South
China Block, and they are located to the left side
of the 4.55 Ga geochron. Samples from the Luxi–
Jiaodong region have higher 207Pb/204Pb (130 Ma)
ratios than those from the Liaoning, Luzhong and
Taihang regions. Compared with Mesozoic mantle-
derived mafic rocks from the Dabie Orogen (Wang
et al. 2005; Huang et al. 2007), the mantle-derived
mafic rocks from the North China Craton have
similar uranogenic Pb isotopes (206Pb/204Pb and
207Pb/204Pb) but lower thorogenic Pb isotopes
(208Pb/204Pb) (Fig. 4). The Palaeozoic kimberlites
and peridotites from the North China Craton are
characterized by high radiogenic Pb isotopic ratios
(Fig. 4), which suggest that the contribution of Pb
from the Palaeozoic enriched lithospheric mantle
to the sources of Mesozoic mantle-derived mafic
rocks in the North China Craton is insignificant.

The geochemical signatures of the mafic igneous
rocks could reflect the characteristics of the mantle
source or result from crustal contamination by
assimilation and fractional crystallization (AFC)
during the magma ascent. Many workers have
argued against significant crustal contamination
based on lack of correlation between the Sr–Nd–
Pb isotopic ratios and other geochemical features
sensitive to the assimilation and fractional crystalli-
zation process (such as SiO2 content and
Mg-number) (e.g. Zhang et al. 2004; Wang et al.
2005, 2006; Yang et al. 2005a; Zhao et al. 2005).
However, with a limited range of SiO2 in this
study (46–56 wt%), the AFC process might not
be shown clearly by the correlation between SiO2

and Sr–Nd–Pb isotopes. Instead, Nb/U of Meso-
zoic mafic rocks from the North China Craton
shows a large variation from 4.4 to 19, providing
critical information on crustal contamination. The
Nb/U of the bulk continental crust is c. 6.2
(Rudnick & Gao 2003), much lower than that of
N-MORB and OIB (c. 47) (Hofmann et al. 1986).
Thus crustal contamination during magma ascent
can decrease Nb/U and change the Sr–Nd–Pb iso-
topic ratios of an evolved magma simultaneously,
but fractional crystallization alone cannot change
Nb/U and Sr–Nd–Pb isotopic ratios. The Nb/U
ratio of Mesozoic mantle-derived mafic rocks for
each individual province shows no obvious
relationship with Sr–Nd–Pb isotopic ratios
between the mantle and crust end-members in
Figure 5. This precludes significant crustal contami-
nation during the magma transport. However, it
does not preclude the source mixing of three or
more components. Samples from the Luxi–Jiao-
dong region have higher 87Sr/86Sr and lower Nb/
U than those from the Liaoning, Taihang and
Luzhong regions (Fig. 5a). This may suggest that

a greater contribution of upper crustal material to
the mantle source of the Luxi–Jiaodong samples
compared with samples from other regions.

The possible contribution of lower crust

to the subcontinental lithospheric mantle

of the North China Craton

Enrichment of LREE relative to HREE, high LILE/
HFSE, and a positive Pb anomaly are widely
observed in arc magmas (e.g. Regelous et al.
1997). Arc magmas are produced as a result of
partial melting of the overlying mantle wedge meta-
somatized by slab-derived fluids derived from sub-
ducted oceanic crust and sediments with high
LREE/HREE and LILE/HFSE ratios as well as a
positive Pb anomaly (Brenan et al. 1995; Keppler
1996; Kogiso et al. 1997; Peate et al. 2001;
Manning 2004). Such fluids also have EMII-type
radiogenic Sr and Pb isotopic ratios (e.g. Regelous
et al. 1997). Accordingly, mantle-derived mafic
rocks form the Luxi–Jiaodong region (provinces
IV and V) could be derived from enriched litho-
spheric mantle metasomatized by fluid derived
from ancient continental sediments during
subduction-related processes (Zhang et al. 2002)
based on their high 87Sr/86Sr (130 Ma) and
207Pb/204Pb (130 Ma) as well as low Nb/U ratio.
However, the subduction-related, fluid-addition
model cannot explain the EMI-type Sr–Nd–Pb iso-
topic ratios in Mesozoic mantle-derived mafic rocks
from the Liaoning, Taihang and Luzhong regions.

Alternatively, the EMI-type isotopic signatures
of Mesozoic mantle-derived mafic rocks could
reflect the characteristics of the subcontinental
lithospheric mantle of the North China Craton,
caused by former metasomatism that formed
phlogopite-bearing lithospheric mantle (Guo et al.
2003; Yang et al. 2004a). The EMI-type subconti-
nental lithospheric mantle with its extremely low
1Nd(t) values and unradiogenic Sr and Pb isotopes,
similar to that which gave rise to the Smoky Butte
lamproites (Fraser et al. 1985), is a possible
source. However, the lower Rb/Ba and much
higher Ce/Pb ratios of the Smoky Butte lamproites
than the mantle-derived mafic rocks in the North
China Craton argue against a major contribution
from an EMI-like subcontinental lithospheric
mantle to Mesozoic mantle-derived mafic rocks
from the North China Craton (Fig. 6a). As shown
in Figure 6, the high Ba/Nb and La/Nb, and low
Ce/Pb and Nb/U ratios of Mesozoic mantle-
derived mafic rocks from the North China Craton
share for more affinities with the crustal estimates,
but are clearly different from those of the OIB,
N-MORB (Hofmann et al. 1986), and primitive
mantle (Sun & McDonough 1989). EMI-type
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lithospheric mantle recently discovered in Taihang
region has 1Nd (130 Ma) ranging from 26.9 to
210.6 with Ce/Pb ratios from 41.5 to 72.0 (Ma
& Xu 2006), higher than most Mesozoic mantle-
derived mafic rocks from the North China Craton.
This reinforces the involvement of crustal materials
in the source of Mesozoic mantle-derived mafic
rocks from the North China Craton.

Moreover, fluid-related metasomatism can
increase Rb/Sr, Pb/U and Nd/Sm ratios of the litho-
spheric mantle, which will generate high 87Sr/86Sr,
and low 206Pb/204Pb and 143Nd/144Nd with time,
and a negative correlation between the Sr and Pb iso-
topic ratios (Hawkesworth et al. 1990a, b). This is
supported by the negative correlation between the
Sr and Pb isotopic ratios of the peridotite xenoliths
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from Kimberley, South Africa and that of lamproites
from Western Australia (Fraser et al. 1985; Hawkes-
worth et al. 1990a, b). However, as Figure 7 shows,
the 87Sr/86Sr (130 Ma) values of the samples from
the Luxi–Jiaodong region show a slightly positive

correlation with 206Pb/204Pb (130 Ma) as well as
the samples from the Taihang and Liaoning regions,
which is not consistent with the possible predicted
scenario of an ancient fluid metasomatism. Wang
et al. (2006) suggested that the low 87Sr/86Sr
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(130 Ma), 1Nd (130 Ma) and Pb isotopic ratios
observed in basaltic rocks from the Taihang region
might result from an ancient metasomatism caused
by an SiO2-rich melt derived from subducting
plate during the collision between the Western
and Eastern Blocks of the North China Craton.
However, high polymerization of the SiO2-rich melt
can enhance the partition coefficient of Sr more than
Rb because Sr2þ has a larger charge/radius radio
than Rbþ (Ryerson & Hess 1978; Huang et al.
2006). Such a SiO2-rich melt could also have high
Rb/Sr. For instance, Wulff-Pedersen et al. (1999)
reported that SiO2-rich glasses in mantle xenoliths
(sample PAT2-4, PAT2-68 and PAT2-41) have a
high Rb content (up to 274 ppm) and Rb/Sr (up to
0.6). The metasomatized lithospheric mantle will
produce a high 87Sr/86Sr with time, not consistent
with the observations on the Taihang samples. Actu-
ally, the positive correlation between 87Sr/86Sr
(130 Ma) and 206Pb/204Pb (130 Ma) is a typical
feature of continental crustal rocks. Ancient lower
crustal rocks have lower 87Sr/86Sr and much lower
206Pb/204Pb, whereas upper crustal rocks have
higher 87Sr/86Sr and 206Pb/204Pb. Therefore, the
positive correlation between 87Sr/86Sr (130 Ma) and
206Pb/204Pb (130 Ma) of the mantle-derived mafic
rocks may suggest the involvement of continent
crustal materials in their source (Lustrino et al.
2007). A source-mixing modelling reveals that the
contribution of lower continental crust (or with a
few percent of upper continental crust) to the depleted
MORB mantle can produce the Sr–Nd–Pb isotopic
features of Mesozoic mantle-derived mafic rocks
in the North China Craton (Fig. 7, Table 3). The
samples from the Luxi–Jiaodong region (provinces
IV and V) require a higher proportion of upper crust
in their mantle source than those from the centre of
the North China Craton far away from the Phanero-
zoic subduction zones, which might be due to the
metasomatism of SiO2-rich melts related to the
subduction of the South China Block (Zhang et al.
2002; Zhang 2005) or Palaeo-Pacific Ocean to the
North China Craton (Chen & Zhou 2005).

In summary, Mesozoic mafic rocks from the
North China Craton cannot simply result from

partial melting of the subcontinental lithospheric
mantle enriched by a subduction-related fluid or
ancient fluid or melt metasomatism, but are due
to involvement of continent crustal materials
(mostly lower crust). Notably, the contribution of
the lower continental crust has been recognized
in the genesis of Plio-Pleistocene tholeiitic and
alkaline volcanic rocks in Sardinia (Italy)
(Lustrino et al. 2000, 2007). In this case, low Nb/
U, Ce/Pb and 206Pb/204Pb values have been used
as evidence for involvement of the lower crust in
the volcanic rocks that have low radiogenic Pb
isotopic ratios.

How was the lower crust incorporated

into the uppermost mantle?

Lower continental crust can be recycled and modify
geochemical features of the upper mantle in sub-
duction and continental collision zones as a result
of deep subduction (Huang et al. 2007) or litho-
spheric delamination (e.g. England 1993; Kay &
Kay 1993; Lee et al. 2000; Gao et al. 2004; Lustrino
2005). Because the North China Craton has been
stable for 1.8 Ga (Zhao et al. 2000), and the sub-
ducted South China Block has different Pb isotopic
ratios compared with the lower crust and Mesozoic
lithospheric mantle of the North China Craton
(Huang et al. 2007), we propose that the lower
crust of the North China Craton was incorporated
into the upper mantle by lithospheric delamination.
Briefly, underneath over-thickened lithosphere
caused by oceanic subduction or continental col-
lision, high-pressure metamorphism can lead to
the formation of eclogite or garnet pyroxenite in
the lower continental crust (e.g. Kay & Kay 1993;
Gao et al. 2004). The density of the garnet-bearing
metamorphic rocks can be as high as 3.8 g cm23

depending on the quantity of garnet, which has a
density higher than that of lithospheric and astheno-
spheric mantle (c. 3.3 g cm23) (Lustrino 2005, and
references therein). Therefore, eclogitic lower crust
and lithospheric mantle might sink into warmer
mantle because of its negative buoyancy.

Table 3. Parameters for source mixing between lower crust and mantle components

87Sr/86Sr Sr (ppm) 1Nd Nd (ppm) 206Pb/204Pb Pb (ppm)

DMM* 0.703 20 8 1.2 18 0.2
Lower crust† 0.709 348 233 11 16.2 4
Upper crust† 0.718 320 225 27 20 17

*Sr–Nd data for the depleted MORB mantle (DMM) are from Jahn et al. (1999); Pb data are from Sun & McDonough (1989).
†Sr–Nd–Pb contents of the lower and upper crust from Rudnick & Gao (2003). Isotope data: lower crust, lower crustal xenoliths from Liu
et al. (2004b); upper crust from Xu Y. et al. (2004b).
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Many geological data from of the North China
Craton are remarkably consistent with the proposed
scenarios of the lithospheric delamination model.

1. An over-thickened lithosphere could have
been present in the Mesozoic as a result of the col-
lision of the North China Craton with the South
China Block in the south and with the Central
Asian Orogenic Belt in the north in the Permian–
Triassic (Li et al. 1993; Zhang et al. 2003). Discov-
ery of eclogite xenoliths in Mesozoic diorite
intrusions in the Xu–Su region with an inherited
zircon U–Pb age of 2.4–2.5 Ga and a metamorphic
zircon U–Pb age of c. 206 + 15 Ma as well as a
Sm–Nd age of 219.4 Ma indicates that an
over-thickened mafic lower crust with eclogite
facies existed in the North China Craton in the
late Triassic (Gao et al. 2004; Xu Y. et al. 2004).

2. Petrological and geochemical evidence
from Late Jurassic high-magnesium andesites,
dacites and adakites in the North China Craton
demonstrates that foundering of mafic lower conti-
nental crust into convecting upper mantle occurred
in the North China Craton (Gao et al. 2004).

3. Granulite xenoliths entrained in the Han-
nuoba basalts indicate that the Precambrian lower
crust of the North China Craton has unradiogenic
Pb, low 1Nd(t), and variable radiogenic Sr (Zhang
et al. 1998; Liu et al. 2004b), in agreement with
the isotopic signatures of Mesozoic mantle-derived
mafic rocks from the North China Craton.

4. Study of Mesozoic lower crustal xenoliths
also indicates that up to 10 km of Mesozoic
mostly lower crust was delaminated into the upper
mantle before Cenozoic basaltic magmatism
(Zheng et al. 2003).

5. Widespread coeval granitic rocks coexist
with the mantle-derived rocks in the North China
Craton, which was a thermal high corresponding to
the lithospheric delamination (Wu et al. 2003a, b).

Following lithospheric delamination, a hot asthe-
nospheric mantle rises to replace the volume pre-
viously occupied by detached mafic lower crust and
lithospheric mantle. Consequently, decompression
melting of the rising asthenospheric mantle took
place, creating a basaltic melt with a depleted isoto-
pic signature. Thus, the geochemical signature
of the mantle-derived mafic rocks should change
abruptly shortly after the delamination. Therefore,
the temporal variation of the geochemical signatures
of the mantle-derived mafic rocks could have pro-
vided the critical temporal constraint on the
lithospheric thinning (e.g. Xu Y. et al. 2004a).
However, the abrupt variation in geochemical fea-
tures of the mantle-derived mafic magma from the
North China Craton developed more than 40 Ma
after the lithospheric delamination. For instance, vol-
canic eruptions occurred several times in Western
Liaoning from the mid-Jurassic to Cenozoic,

providing a good opportunity to test the geochemical
correspondence to the lithospheric delamination
and the mantle-derived mafic magmas (Zhang et al.
2003; Gao et al. 2004). Gao et al. (2004) suggested
that the delamination was initiated at 159 Ma. As
Figure 8 shows, there is no significant variation in
1Nd(t) of Mesozoic basaltic rocks from Western
Liaoning from 166 Ma (the Lanqi Formation) to
125 Ma (the Yixian Formation) until the Zhanglao-
gongtun (ZLGT) Formation at 106–90 Ma. Thus
the 1Nd(t) values of the mantle-derived mafic
magma were constant for a long period after the
start of delamination. This is not in agreement with
the abrupt geochemical variation as suggested
in the previous delamination model. Therefore,
although the delamination model can explain the
aspects mentioned above, there is still a contradiction
between the model and the data.

The new delamination model of Lustrino (2005)
might solve the contradiction by assuming that the
asthenosphere was modified by delaminated lower
crust before partial melting. Delaminated mafic
lower crust can undergo partially melting to prod-
uce a tonalite–trondhjemite–granodiorite magma
with a crustal geochemical signature. SiO2-rich
melts tend to percolate upwards and erupt as adaki-
tic magma (e.g. Xu et al. 2002; Gao et al. 2004) or
they metasomatize the uprising asthenospheric
mantle, leading to continental geochemical charac-
teristics (Lustrino 2005). After the lithospheric
delamination and detachment, new lithospheric
mantle with a strong crustal signature forms by
cooling of the asthenospheric mantle, which repla-
ces the volume formerly occupied by the sunken
lithospheric mantle and lower crust. Such metaso-
matized mantle may be reactivated by regional exten-
sion tectonics, producing a mantle-derived mafic
magma with a similar ‘continental’ geochemical
signature (Lustrino 2005).

Alternatively, the ‘continental’ geochemical
signatures of the Yixian Formation basalts
(124 Ma) could be due to a second delamination
occurring in the Early Cretaceous in the Liaoxi
region. Because it is highly unlikely that the litho-
spheric delamination can occur in the same area
several times, the distribution of the Lanqi and
Yixian Formations should be spatially separated
in different areas. However, this is not consistent
with the geographical observation in the western
Liaoning region, where the Lanqi and Yixian
Formations are developed in the almost the same
area (e.g. Beipiao).

A lithospheric thinning model

As discussed above, lithospheric delamination
played an important role in lithospheric thinning
below the North China Craton. Here, we propose a
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geodynamic model (Fig. 9) showing that Palaeozoic
subduction zones around the North China Craton
were critical to the over-thickening and later thinning
of the lithosphere, and that interaction between the
delaminated lower crust and upwelling astheno-
sphere was responsible for the ‘continental’ signature
of Mesozoic mantle-derived mafic rocks.

It has been suggested that the lithospheric
thickening of the North China Craton was caused
by continental collision between the North China
Craton and South China Block (Gao et al. 2004;
Zhang 2005), subduction of the Palaeo-Pacific
slab (Tatsumoto et al. 1992; Wu et al. 2005), or col-
lision of the North China Craton–Mongolia with
the Siberian plate during closure of the Mongol–
Okhotsk Ocean. Although the mechanism of the
lithospheric thickening is still an open question,
the subduction-related events surrounding the
North China Craton from the late Palaeozoic to
early Jurassic are important because they may be
responsible for the condition of hydrous fluids to
weaken the lithospheric mantle (Fig. 9a), resulting
in an over-thickened lithosphere during the conti-
nental collisions (Fig. 9b) (B. F. Windley, talk in
Symposium on Mesozoic Lithospheric Evolution
of North China and Adjacent Regions, 2005). Meta-
morphic reactions occurred in the lower mafic con-
tinental crust with the formation of eclogite and
garnet pyroxenite beneath the North China Craton
leading to negative buoyancy in over-thickened

lithosphere in the early Mesozoic. The unstable
lithosphere may then have delaminated from
the overlying lithosphere above and subsided into
the upper mantle (Lustrino 2005; Fig. 9c).

Timing of the delamination event in the North
China Craton is still controversial. Because the
ages of most Mesozoic igneous rocks in the North
China Craton cluster around 130 Ma (Wilde et al.
2003; Gao et al. 2004; Xu Y. et al. 2004a; Wu
et al. 2005), Wu et al. (2005) suggested that the
lithospheric delamination in Eastern China
occurred in the early Cretaceous, resulting from
Kula–Pacific plate subduction, possibly aided by
a superplume associated with global-scale mantle
upwelling. However, because a high-Mg adakite
in Western Liaoning region has an age of 159 Ma,
the delamination should have begun in the middle
Jurassic (Gao et al. 2004). As discussed above,
because the ‘continental’ geochemical signature of
the mantle-derived mafic rocks from the North
China Craton is due to the contribution of lower
continental crust to the mantle source, the first
magma event producing mafic rocks with these sig-
natures should be a sharp response to lithospheric
delamination. The negative 1Nd(t) of the Lanqi For-
mation basalts (166 Ma) indicates that the upper
mantle beneath Western Liaoning had already
been modified by delaminated lower crust. Thus
lithospheric delamination should have occurred in
Western Liaoning in the mid-Jurassic (Fig. 9c).
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(a) Palaeozoic (~460 Ma)S N
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Fig. 9. Schematic illustration of the stages of evolution of the lithosphere of the North China Craton (NCC) from the
Palaeozoic to Cenozoic. (a) Palaeozoic (c. 460 Ma): the Palaeo-Tethyan Ocean and Mongolian Ocean subducted
towards the North China Craton from the south and north, respectively; hydrous fluids were released from the
subducted oceanic slabs and metasomatized the overlying mantle wedge; kimberlite with peridotite xenoliths was
developed in the North China Craton. (b) Triassic to Early Jurassic (220–190 Ma): collision of the North China Craton
with South China Block (SCB) along the Dabie–Sulu Orogen and with the Mongolian Block (MB) along the Yanshan
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Partial melts from the delaminated lower crust
metasomatized the upwelling asthenospheric
mantle that replaced the volume formerly occupied
by the sunken lithospheric mantle and the lower
crust (Fig. 9c and d). Regional extension in the
early Cretaceous led to partial melting of the new
metasomatized mantle and crust in Western Liaon-
ing, producing igneous rocks with variable chemi-
cal compositions from basalts to andesites and
granites (Fig. 9d). Because no mid-Jurassic
high-Mg adakitic rocks have yet been observed in
the southern margin of the North China Craton
and Dabie–Sulu Orogen, where all reported adaki-
tic rocks formed in the early Cretaceous (Xu
J. F. et al. 2002; Xu W. L. et al. 2006), the litho-
spheric delamination in the southern margin of the
North China Craton and Dabie–Sulu Orogen prob-
ably occurred in the early Cretaceous (Fig. 9d).
Thus the delamination of lithosphere of the North
China Craton took place earlier in the northern
margin than the southern margin and the Dabie–
Sulu Orogen. It is possible that the delamination
in the northern margin could be related to the
closure of the Okhotsk Sea in the late Jurassic,
which formed large-scale thrust faults in the
Yanshan belt in Northern China (the northern
margin) but had no significant effect on the southern
margin (Davis et al. 1998). The delamination of
the southern margin of the North China Carton
and Dabie–Sulu Orogen could be triggered by
oblique westward subduction of the Palaeo-Pacific
plate at c. 130 Ma (Tatsumoto et al. 1992; Wu
et al. 2005). Further studies focusing on the tectonic
relationship between the North China Craton and its
adjacent regions will help resolve the time variation
of delamination.

We emphasize that the entire lithospheric thin-
ning in the North China Craton was unlikely to
have been caused by any single event. Lithospheric
delamination could have reduced the lithosphere
thickness to a normal level (c. 110 km). In the
late Cretaceous–Cenozoic, the lithosphere of
the North China Craton was thinned further by

NNE–SSW extension in Eastern Asia, which
resulted in partial melting of upwelling astheno-
sphere mantle with depleted isotopic signatures
(Zhang et al. 2003) (Fig. 9e).

Conclusions

Mesozoic mantle-derived mafic rocks from the
North China Craton have geochemical signatures
similar to those of ancient lower continental crust
in trace element and Sr–Nd–Pb isotopic compo-
sitions. 87Sr/86Sr (130 Ma) of Mesozoic mantle-
derived mafic rocks from the North China Craton
correlate positively with 206Pb/204Pb (130 Ma).
Because an enriched mantle metasomatized by
ancient fluids or melts produces a negative corre-
lation between 87Sr/86Sr (130 Ma) and 206Pb/
204Pb (130 Ma), and because of the low Ce/Pb
and Nb/U, and high Ba/Nb and La/Nb of Meso-
zoic mafic rocks from the North China Craton, the
geochemical features mentioned above argue
against derivation from an old enriched subconti-
nental lithospheric mantle. Instead, the typical ‘con-
tinental’ signatures in Mesozoic mantle-derived
mafic rocks from the North China Craton mainly
reflect the contribution of lower mafic continental
crust to the uppermost mantle.

Much geochemical and petrological evidence
indicates that the continental lower crust and litho-
spheric mantle of the North China Craton could
have been delaminated and sunk into the upper
mantle in the Mesozoic. Melting of the delaminated
continental lower crust would have created
SiO2-rich melts, which metasomatized the upper
mantle and resulted in the ‘continental’ geochem-
ical signatures of Mesozoic upper mantle of
the North China Craton. Thus, magma events,
producing the mantle-derived mafic rocks with
these ‘continental’ geochemical features, provide
critical constraints on the timing of lithospheric
delamination. According to the temporal variation
of geochemical features of the Mesozoic mafic

Fig. 9. (Continued) belt resulted in an over-thickened lithosphere. (c) Mid-Jurassic (160 Ma): the Mongol–Okhotsk
Ocean was closed and the Siberian plate collided with the North China Craton–Mongolia plate; the eclogitic mafic
lower crust underneath the northern margin of the North China Craton was delaminated together with the lithospheric
mantle as a result of negative buoyancy; SiO2-rich melts from the lower crust metasomatized the asthenospheric
mantle, filling the vacancy of the delaminated lithosphere; volcanic rocks were developed in the Lanqi Formation
(Lanqi FM). (d) Early Cretaceous (130 Ma): lithosphere underneath the southern margin of the North China Craton and
Dabie Orogen was delaminated; partial melting of the metasomatized lithospheric mantle took place widely in an
extensional tectonic environment, producing Mesozoic mantle-derived mafic rocks; crustal melting produced granitic
intrusions; basaltic magmas were underplated beneath the crust; post-collisional magmatism also occurred in the
Dabie–Sulu and Yanshan belts. (e) Cenozoic (c. 90 Ma to present): NNE–SSW extension along the continental margin
of Eastern Asia thinned the lithosphere further; the lithospheric mantle of the North China Craton was completely
replaced by newly accreted lithospheric mantle; Cenozoic basaltic magmas with depleted Sr–Nd–Pb isotopic ratios
were developed in some extensional basins.
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rocks, the lithospheric thinning might have hap-
pened by the time of volcanic eruptions in
Western Liaoning in the mid-Jurassic and in the
southern margin of the North China Craton and
Dabie–Sulu Orogen in the early Cretaceous. With
further delamination and extension, the Palaeozoic
lithosphere of the North China Craton was comple-
tely replaced by fertile lithospheric mantle in the
Cenozoic.
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