高温下非传统稳定同位素分馏

黄方1,2

HUANG Fang¹

1. Institute of Geochem istry and Petrology, ETH Zentrum, Zurich CH 8092

2. 中国科学院壳幔物质与环境重点实验室,中国科学技术大学地球和空间科学学院,合肥 230026

1. In stitute of Geochemistry and Petrology, ETH Zentrum, Zurich CH 8092 Switzerland

2. CAS K ey Laboratory of Crust-M antle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 China

2010-09-01收稿, 2011-01-11改回.

H uang F. 2011. Non-traditional stable isotope fractionation at high temperatures A cta P etrologica Sinica, 27(2): 365-382

Abstract The last ten years have seen big progress and wile applications of a novel field non-traditional stable isotope (NTSI) geochemistry, to high temperature geo-science studies. Invention of multi-collector-inductively coupled plasma-mass spectrom etry (MC-ICP-MS) led to the big breakthrough of analytical methods for heavy stable isotopes. This contribution summarizes Li Fe, and Mg isotope studies on igneous rocks and minerals as representative of NTSI geochemistry. Li isotopes have been widely applied to the studies of mantle geochemistry, recycling of subducted materials, and metam orphism to constrain the source of magn a and kinetic diffusion process. Fe isotope fractionation is related to partitioning of multi-valent Fe between Fe-bearing phases, which can occur in the course of mantle metasomatism, partial melting and fractional crystallization. Mg isotopic compositions of igneous rocks most likely reflect the source signatures Variation of Mg isotopic ratios of mantle peridotites is trivial and this provides a homogenous background for Mg isotope fractionation in low temperature processes.

Experimental studies and heoretical simulation for the mechanisms of isotope fractionation provide important guidances for understanding the NT IS data. Experimental studies show that light and heavy isotopes have different migration vebcity at high temperature processes such as chemical diffusion, evaporation, and desublination, which could produce significant kinetic isotope fractionation. Equilibrium isotopic fractionation could occur among mineral, melt, and fluid when chemical environment of the isotopes are differentiation and isotope fractionation. A long a temperature gradient in silicate magina, large elemental variation and isotopic fractionation can occur by which a wet andesite can even be differentiated to granite. This suggests that themal migration could be in portant for continental crustal formation and evolution. If temperature gradient exists long enough during magina differentiation, thermal diffusion can produce significant stable isotope fractionation, which is contrast to the mechanism of traditional kinetic and equilibrium isotopic fractionations. Such process can be fingerprinted by positive correlations among multi-stable isotopic systems. Due to thermal diffusion, concentration of material baded or dissolved in the fluid is a function of Soret coefficient (S_T). However, because S_T is highly variable and sensitive to lots of factors, the basic physics of thermal diffusion is still poorly understood. As shown by Mig Ca and Fe isotope measurement of the system, suggesting that the difference of S_T between two isotopes of the same element can be considered as a constant. This can simplify and help the studies on thermal diffusion and S_p .

Key words Non-traditional stable isotopes; MC-LCP-MS; Magnatism; Isotope fractionation; Thermal diffusion; Thermal migration; Soret coefficient

摘 要 过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离

^{*} 本文受中国科学院百人计划项目和中国科学院壳幔物质与环境重点实验室经费联合资助.

作者简介: 黄方.男, 1978年生,博士,教授,从事同位素地球化学和实验岩石学研究, Ermail, huangfang426@ homail.com © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

子质谱 (MC-CPA S)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总 结了以 L; Fe和 Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目 前被广泛地用于地幔地 球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的 Fe在矿物 熔体相之间的分配可以产生 Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的 Mg同位素则大 致反映其源区的特征,地幔的 Mg同位素组成比较均一,这为研究低温地球化学过程中 Mg同位素的分馏提供 一个均一的背 景。此外、Cl Si Cu Ca U等等同位素体系也具有广阔的应用前景。

对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位 素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移 实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的 安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作 用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。而多个稳定同位 素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这 係数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测 量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多 端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究。 关键词 非传统稳定同位素;多接收诱导耦合等离子体质谱;岩浆作用;同位素分馏;热扩散;热迁移;索瑞系数 中图法分类号 P597

1 引言

稳定同位素指没有放射性或者半衰期极长 $(> 10^9 \oplus)$ 的同位素。按照这个定义,从H到U,大约有59个元素拥有 两个或者两个以上的稳定同位素(表 1)。在各种地球化学 过程中,稳定同位素可能会发生平衡或者动力学分馏。因此 稳定同位素地球化学成为地球科学最重要的分支之一,是我 们了解行星和地球的各圈层(地核、地幔、地壳和大气层)的 形成和演化、地表环境变化、生命演化等等过程的重要工具。 由于同位素平衡质量分馏的大小随同位素质量的增加和温 度的升高而快速减小 (Urey, 1947), 传统的质谱不能精确测 量重元素的同位素在自然样品特别是高温岩石矿物样品中 的分馏。因此,在稳定同位素地球化学诞生后的将近 50年 内,人们只能精确测量 H, C, N, O和 S等有限几个轻元素的 同位素组成。从 20世纪末期开始,随着高分辨率的多接收 诱导耦合等离子体质谱 (MC-ICP-MS)和 TR IFON 热电离固 体质谱仪的诞生,同位素测量方法产生了革命性的进步。新 的方法只需要对极少量的样品,就能够对元素周期表上大量 的重元素的同位素组成进行精准地测量,并由此引发了稳定 同位素地球化学的重大突破 (Halliday et al, 1998)。人们把 MC-ICP-MS和 TRIFON能够精确测量的新的稳定同位素称为 非传统稳定同位素,例如 LiMg CaFe Cu Si等等 (Johnson et al, 2004), 而 H, C, N, O 和 S称为传统稳定同位素。

在过去 10年中,非传统稳定同位素地球化学是地球科 学中最活跃的分支,在从高温岩浆作用到低温生物作用等一 系列领域得到广泛而深入的应用。虽然岩浆作用中重元素 的同位素质量分馏相对表生地球化学过程较小,但是最近分 析方法的进步使得岩石矿物样品的非传统稳定同位素测量 成为可能,为地幔的演化、岩浆的产生和分异、地壳的形成、 俯冲物质再循环等等重大问题的研究提供了新的手段。本 文简要总结了过去 10年间非传统稳定同位素在高温地质过 程研究中的进展,以 Li Fe和 Mg同位素为代表,着重介绍分 析方法,目前的观测结果和应用,同位素分馏的理论和实验 进展特别是热扩散的同位素效应,最后简述非传统稳定同位 素地球化学目前亟待解决的问题。希望这篇综述文章能够 引起我国地球化学家的重视,吸引更多的感兴趣的科学家加 入到这一前景光明的领域中来。

2 分析方法

文献中 很少 报 道稳 定 同位 素 的绝 对 比值, 一 般 用 样品和标 准 的 相 对 差 异 (δ) 来 表 示: δ^x M = 1000 ×

$$\begin{array}{c} \frac{\underline{C^{\mathsf{Y}}M}}{C^{\mathsf{Y}}M} \\ \underline{C^{\mathsf{Y}}M} \\ \underline{C^{\mathsf{Y}}M} \\ \overline{K_{\mathsf{W}}} \end{array} = 1 \quad (\%) .$$

在这里, $\frac{C^{N}M}{C^{N}M}$ 指的是某元素 *M* 的质量数为 *X* 的同位素 (^{*X*}*M*)对另一质量数为 *Y*的同位素 ^{*Y*}*M* 的浓度比值, 一般 *X* > *X*。非传统稳定同位素的误差多用 2倍的标准偏差 (2SD)或 者标准误差 (2SE)来表示, 如果对同一样品重复测量次数为 n,则 2SE= 2SD× n⁻¹²。由于样品的分析次数有限, 有的文 献还 考虑测量的 代表性问题, 2SE 定义为 2SD× n^{-1/2}× Student's T (Weyer and Ionox 2007; Huang *et al.*, 2009a)。 本文中提到的误差均指 2SD。

" CH994-2012"China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 1 稳定同位素丰度表

Table 1 Abundances of stable isotopes

元素	同位素	丰度(%)	元素	同位素	丰度(%)	元素	同位素	丰度(%)
	$^{1}\mathrm{H}$	99 985		⁴⁶ T i	8. 0		⁷⁸ K r	0. 35
п	$^{2}\mathrm{H}$	0 015		⁴⁷ T i	7. 3		⁸⁰ K r	2. 25
П.	$^{3}\mathrm{H}\mathrm{e}$	0 000137	Тi	⁴⁸ T i	73. 8	V	⁸² K r	11 6
пе	$^{4}\mathrm{H}\mathrm{e}$	99 999863		⁴⁹ T i	5. 5	Kr	⁸³ K r	11 5
т:	⁶ Li	7.5		⁵⁰ T i	5. 4		⁸⁴ K r	57
L1	⁷ Li	92 5	V	⁵⁰ V*	0. 25		⁸⁶ K r	17.3
D	10 B	19 9	<u> </u>	⁵¹ V	99. 75	DI	$^{85}\mathrm{Rb}$	72. 168
D	¹¹ B	80 1		⁵⁰ C r [*]	4. 345		$^{87}\mathrm{Rb}$	27. 835
C	¹² C	98 9		⁵² C r	83. 789		$^{84} m Sr$	0. 56
L	13C	1 1	Cr	⁵³ C r	9. 501	S	$^{86}\mathrm{Sr}$	9.86
N	^{14}N	99 634		⁵⁴ C r	2 365		$^{87} m Sr$	7. 0
IN	¹⁵ N	0 366		$^{54}\mathrm{F}\mathrm{e}^{*}$	5. 8		88 Sr	82. 58
	¹⁶ 0	99 76		⁵⁶ F e	91. 72		⁹² M o	14.84
0	¹⁷ O	0 039	ге	⁵⁷ F e	2. 2		⁹⁴ M o	9. 25
	¹⁸ O	0 201		⁵⁸ F e	0. 28		⁹⁵ M o	15. 92
	²⁰ N e	90 48		⁵⁸ N i	68. 077	M o	⁹⁶ M o	16.68
Ne	²¹ N e	0 27		⁶⁰ N i	26. 223		⁹⁷ M o	9. 55
	²² N e	9 25	N i	⁶¹ N i	1. 14		⁹⁸ M o	24. 13
	²⁴ M g	78 99		⁶² N i	3. 634		¹⁰⁰ M o [*]	9. 63
Мg	²⁵ M g	10 00		⁶⁴ N i	0. 926		⁹⁶ R u	5. 52
	²⁶ M g	11 01		⁶³ Cu	69. 15	1	⁹⁸ R u	1. 88
	²⁸ S i	92 23		⁶⁵ Cu	30. 85		⁹⁹ R u	12 7
Si	²⁹ S i	4 67		⁶⁴ Zn	48. 6	Ku	¹⁰⁰ Ru	12 6
	³⁰ S i	3 1		⁶⁶ Zn	27. 9		101 Ru	31 6
	³² S	95 02	Zn	⁶⁷ Zn	4. 1		$^{104}\mathrm{Ru}$	18 7
C	³³ S	0 75		⁶⁸ Zn	18.8	-	¹⁰² P d	1. 02
5	³⁴ S	4 21		⁷⁰ Zn	0. 6		¹⁰⁴ Pd	11.14
	³⁶ S	0 02		⁶⁹ Ga	60. 11		¹⁰⁵ Pd	22. 33
	³⁵ C 1	75 77	Ga	⁷¹ Ga	39.89	Pd	¹⁰⁶ P d	27. 33
CI	³⁷ C 1	24 23		⁷⁰ G e	21. 23		¹⁰⁸ P d	26.46
	³⁶ A r	0 337		⁷² G e	27.66		$^{110}{ m Pd}$	11. 72
A r	³⁸ A r	0 063	Ge	⁷³ G e	7. 73		$^{107}\mathrm{Ag}$	51. 839
	$^{40}\mathrm{Ar}$	99 600		⁷⁴ G e	35. 94	Ag	$^{109}\mathrm{Ag}$	48. 161
	³⁹ K	93 26		$^{76}\mathrm{Ge}^{*}$	7.44	-	¹⁰⁶ C đ	1. 25
Κ	$^{40}K^{*}$	0 012		$^{74}\mathrm{Se}$	0. 87	1	$^{108}\mathrm{C}\mathrm{d}^{\!\!7}$	0. 89
	⁴¹ K	6 73		$^{76}\mathrm{Se}$	9. 36		¹¹⁰ C d	12. 49
	⁴⁰ C a	96 941		$^{77}\mathrm{Se}$	7. 63		^{11 1} C d	12 8
	⁴² C a	0 647	Se	$^{78}\mathrm{Se}$	23. 78	Cd	¹¹² C d	24. 13
C	⁴³ C a	0 135		80 Se	49. 61		¹¹³ C đ	12. 22
Ca	⁴⁴ C a	2 086		⁸² S e [*]	8. 73		$^{114}\mathrm{C}\mathrm{d}^{\mathrm{f}}$	28. 73
	⁴⁶ Ca [*]	0 004	P	⁷⁹ B r	50. 69	1	¹¹⁶ C đ [*]	7.49
	⁴⁸ Ca [*]	0 187	Br	⁸¹ B r	49. 31			

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

续	表	1

Continued Table 1

元素	同位素	丰度(%)	元素	同位素	丰度(%)	元素	同位素	丰度(%)
	¹¹² Sn	0 97	-	$^{145}\mathrm{N}\mathrm{d}$	8. 3	11.6	¹⁷⁹ H f	13. 629
	¹¹⁴ Sn	0 66	NT 1	$^{146}\mathrm{N}\mathrm{d}$	17. 2	н	¹⁸⁰ H f	35 1
	¹¹⁵ Sn	0 34	Νd	$^{148}\mathrm{N}\mathrm{d}$	5. 7	T	¹⁷⁵ Lu	97. 41
	¹¹⁶ Sn	14 54		$^{150}{\rm Nd}^{*}$	5. 6	Lu	¹⁷⁶ Lu [*]	2.59
Sn	¹¹⁷ Sn	7.68		¹⁴⁴ Sm	3. 07	Т.	¹⁸⁰ T a [*]	0. 012
Sn	¹¹⁸ Sn	24 22		$^{147}\mathrm{Sm}^*$	14. 99	1 a	¹⁸¹ Ta	99. 988
	¹¹⁹ Sn	8 59		¹⁴⁸ Sm	11. 24		$^{180}W^{*}$	0. 12
	¹²⁰ Sn	32 58	Sm	¹⁴⁹ Sm*	13. 82		^{182}W	26. 50
	122 Sn	4 63		¹⁵⁰ Sm	7. 38	W	$^{18}{}^{3}W$	14. 31
	¹²⁴ Sn	5 79		$^{152}\mathrm{Sm}$	26. 75		^{184}W	30. 64
Sh	$^{121}\mathrm{Sb}$	57.36		¹⁵⁴ Sm	22. 75		^{186}W	28. 43
50	$^{123}\mathrm{Sb}$	42 64		$^{152}Gd^{*}$	0. 20	R o	$^{185}\mathrm{R}~\mathrm{e}$	37. 4
	$^{120}{ m Te}^{*}$	0 09		$^{154}\mathrm{Gd}$	2. 18	I ne	$^{187}\mathrm{R}~\mathrm{e}$	62 6
	$^{122}\mathrm{T}\mathrm{e}$	2 55		$^{155}\mathrm{Gd}$	14. 80		¹⁸⁴ O *	0. 02
	$^{123}{ m Te}^{*}$	0 89	Gd	$^{156}\mathrm{Gd}$	20. 47		¹⁸⁶ O *	1. 59
т	$^{124}\mathrm{T}~\mathrm{e}$	4 74		$^{157}\mathrm{Gd}$	15. 65		¹⁸⁷ O s	1. 96
1 e	¹²⁵ T e	7.07		$^{158}\mathrm{Gd}$	24.84	Os	$^{188}O s$	13. 24
	$^{126}\mathrm{T}~\mathrm{e}$	18 84		${}^{160}\mathrm{G}\mathrm{d}^{*}$	21. 86		¹⁸⁹ O s	16. 15
	$^{128}{ m Te}^{*}$	31.74		¹⁵⁶ D y	0. 06		¹⁹⁰ O s	26. 26
	$^{130}{ m Te}^{*}$	34 08		¹⁵⁸ D y	0. 10		$^{192}Os^{*}$	40. 78
	$^{124}{ m Xe}$	0 095		¹⁶⁰ D y	2.34	Ţ	¹⁹² Ir	37. 3
	$^{126}{ m X}{ m e}$	0 089	Dy	¹⁶¹ D y	18.91	l Ir	¹⁹³ Ir	62 7
	$^{128}{ m X}{ m e}$	1 91		¹⁶² D y	25. 51		¹⁹⁰ Pť	0. 014
	$^{129}{ m Xe}$	26 4		¹⁶³ D y	24. 90		¹⁹² Pt	0. 782
Xe	$^{130}{ m X}{ m e}$	4 07		¹⁶⁴ D y	28. 18	р.	¹⁹⁴ Pt	32. 967
	$^{131}{ m X}{ m e}$	21 2		¹⁶² E r	0. 139		¹⁹⁵ Pt	33. 832
	$^{132}{ m X}{ m e}$	26 9		¹⁶⁴ E r	1. 601		¹⁹⁶ Pt	25. 242
	$^{134}\mathrm{X}\mathrm{e}$	10 4	E.	¹⁶⁶ E r	33. 503		¹⁹⁸ Pt	7. 163
	¹³⁶ X e	8 86	Er	¹⁶⁷ E r	22. 869		¹⁹⁶ Hg	0. 15
	¹³⁰ B a	0 106		¹⁶⁸ E r	26.978		$^{198}\mathrm{Hg}$	9. 97
Ва	¹³² B a	0 101		¹⁷⁰ E r	14. 910		¹⁹⁹ Hg	16.87
	¹³⁴ B a	2 417		$^{168}\mathrm{Yb}$	0. 13	Нg	$^{200}\mathrm{Hg}$	23 1
	¹³⁵ B a	6 592		$^{170}\mathrm{Yb}$	3. 04		$^{201}\mathrm{Hg}$	13. 18
	¹³⁶ B a	7. 854	Yb	$^{171}{ m Y}{ m b}$	14. 28		$^{202}\mathrm{Hg}$	29.86
	¹³⁷ B a	11 23		$^{172}\mathrm{Y}\mathrm{b}$	21. 83		$^{204}\mathrm{Hg}$	6. 87
	¹³⁸ B a	71 7		$^{173}\mathrm{Y}\mathrm{b}$	16. 13	 Т1	²⁰³ T l	29. 524
	¹³⁶ C e	0 185		$^{174}\mathrm{Y}\mathrm{b}$	31. 83		²⁰⁵ T l	70. 476
C e	¹³⁸ C e	0 251		¹⁷⁶ Y b	12. 76		$^{204}\mathrm{Pb}^*$	1. 4
46	¹⁴⁰ C e	88 450		¹⁷⁴ H Î	0. 162	∥ ₽h	²⁰⁶ Pb	24 1
	¹⁴² C e*	11. 114		¹⁷⁶ H f	5. 206		²⁰⁷ Pb	22 1
Nd	¹⁴² N d	27. 2	Ηf	¹⁷⁷ H f	18. 606		²⁰⁸ Pb	52 4
	¹⁴³ N d	12 2		¹⁷⁸ H f	27. 297	II.	²³⁵ U	0. 7204
	$^{144}{ m N}{ m d}^{*}$	23 8				U	²³⁸ U	99. 2742

* 为放射性同位素,其半衰期(年)为: ⁴⁰K, 1 248×10⁹; ⁴⁶Ca > 2 8×10¹⁵; ⁴⁸Ca > 4×10¹⁹; ⁵⁰V, 1 5×10¹⁷; ⁵⁰Cr > 1.8×10¹⁷; ⁵⁴Fe > 3 1×10²²; ⁷⁶Ga 1. 78×10²¹; ⁸²Se 1. 08×10²⁰, ⁸⁷Rb 4 88 × 10¹⁰; ¹⁰⁰Ma 7.8×10¹⁸; ¹⁰⁶Cd > 9 5×10¹⁷; ¹⁰⁸Cd > 6 7×10¹⁷; ¹¹³Cd 7.7×10¹⁵; ¹¹⁴Cd > 9 3×10¹⁷; ¹¹⁶Cd 2 9×10¹⁹; ¹²⁰Te > 2 2×10¹⁶; ¹²³Te > 1 0×10¹³; ¹²⁸Te 2 2×10²⁴; ¹³⁰Te 7.9×10²⁰; ¹⁴²Ce > 5×10¹⁶; ¹⁴⁴Nd 2.29×10¹⁵; ¹⁵⁰Nd 6 7×10¹⁸; ¹⁴⁷Sm, 1 06×10¹¹; ¹⁵⁰Sm, > 2×10¹⁵; ¹⁵²Gd 1. 08×10¹⁴; ¹⁶⁰Gd > 1 3×10²¹; ¹⁵⁶Dy, 1×10¹⁸; ¹⁷⁴Hf 2×10¹⁵; ¹⁷⁶Lu 3 78×10¹⁰; ¹⁸⁰Ta > 1.2×10¹⁵; ¹⁸⁰W, 1.8×10¹⁸; ¹⁸⁷Re, 4 35×10¹⁰; ¹⁸⁴Os > 5 6×10¹³年; ¹⁸⁶Os 2 0×10¹⁵年; ¹⁹²Os > 9 8×10¹² 年; ¹⁹⁰Pt 6 5×10¹¹1年; ³⁰⁴Pb, > 1.4×10¹⁷; ²³⁵U, 7 038×10⁸; ²³⁸U, 4.468×10⁹. ff abg/a b ttp://www.wikipedia.org/
© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

同位素在自然样品中会发生质量分馏,而在化学流程和 仪器测量的过程中,同位素也可能发生较大的质量分馏。因 此要准确地得到地质样品的同位素数据,化学流程和测量仪 器造成的分馏应该尽量避免或者能够精确的校正。要达到 这个目的,高精度的分析方法至少应该包括两个方面:高质 量的化学分离流程和性能稳定的高分辨质谱仪。

2.1 化学流程

纯化溶液对减小质谱测量过程中杂质造成的基体效应 的干扰以及维持质谱仪长时间的稳定状态至关重要。一般 采用溶液-树脂离子交换的方法纯化溶解好的岩石矿物样 品,去掉其它杂质离子。由于金属元素的同位素在溶液和离 子交换树脂之间的分配系数略微不同,和其质量有关,因此 同位素在酸液和树脂相互交换的过程中可能会发生显著的 质量分馏(Anbar et al, 2000, Bryant et al, 2003, Chang et al, 2003, 2004, Milbtetal, 2004, Teng et al, 2007)。— 般可采用两种方法来避免这种情况带来的误差:对于稳定同 位素数量低于 4的体系,尽量保证流程的回收率接近 100%; 对于拥有 4个或者 4个以上稳定或者半衰期超过几千年的 同位素的体系,可以利用双稀释剂法校正分馏。

高回收率几乎是所有非传统稳定同位素化学流程的要求(Moriguti and Nakamura, 1998, Weyer and Schwieters, 2003, Dauphas and Rouxel, 2006, Fitoussi *et al*, 2009, Li WY *et al*, 2010)。以硅酸盐样品的 Mg同位素分析为例(Teng *et al*, 2007, Tipper *et al*, 2008, Handler *et al*, 2009, Huang *et al*, 2009a)。适量的全岩粉末和矿物样品溶于浓 HNO₃和浓 HF的混合溶液,蒸干后转化为硝酸盐,然后在硝酸介质中用阳离子树脂提纯。在淋滤 Mg的过程中,重同位素比轻同位素稍早离开树脂(Chang *et al*, 2003, Teng *et al*, 2007),因此低回收率会损失一部分轻或者重的同位素,造成较大的误差。Mg只有²⁴Mg、²⁵Mg和²⁶Mg三个稳定同位素,不能采用双稀释剂法校正分馏,因此必须确保回收率超过 9%。

双稀释剂法是指把已知同位素比值和浓度的稀释剂加 入未知样品中,通过测量稀释剂的同位素分馏来校正样品在 化学流程和仪器测量中的分馏。一个成功的应用是精确测 量陨石和地球样品的²³⁸ U /²³⁵ U 比值 (Weyer *et al*, 2008 Bopp *et al*, 2009, Brennecka *et al*, 2010)。自然界²³⁸ U 和 ²³⁵ U的半衰期很长(表 1),因此可以视为稳定同位素。U 在 绝大部分地质样品中是微量元素,化学流程的回收率难以达 到 9% 以上。²³⁶ U 和²³³ U 是人造的 U 同位素,自然界中不存 在,其半衰期分别为 1.59×10⁵ a和 2.34×10⁷ a 因此²³⁶ U –²³³ U 的混合溶液是理想的 U 双稀释剂。Weyer *et al* (2008)将欧 洲标准物质和测量研究所(RMM)提供的 IRMM–3636标样 和地质样品完全混合后加入树脂交换柱进行淋滤,然后测量 在淋滤过程中不同阶段接取的溶液的 U 同位素比值,这些溶 液的 U <u>同</u>位素比值经过双稀释剂校正后的误差仅为 0.1%。

2.2 测量仪器

传统的热电离质谱产生的离子束能量分布很小(~ 0.5eV), 仪器造成的质量分馏也很小 $(1\% \cdot mu^{-1} \sim 5\% \cdot$ amu^{-1}), 但是这个分馏在测量的过程中会发生显著变化而且 难以校正,因此无法精确测量样品中非传统稳定同位素比值 的微小变化。虽然热电离质谱结合双稀释剂法在测量 Fe同 位素的误差时可以达到 ± 0.14‰ • amu⁻¹ (Beard and Johnson, 1999, Johnson and Beard, 1999), 这个精度仍然限制 Fe同位素在岩石矿物样品中的应用。M C-ICP-M S的诞生引 发了同位素分析方法革命性的进步,自从 1993年成功地测 量 Ph Nd和 Hf同位素以来 (Wahler et al, 1993), 它已被广 泛的应用于非传统稳定同位素和其它体系的高精度测量。 相对于热电离质谱, M C-ICP-M S的优点主要有: 仪器造成的 质量分馏变化平稳且易干监控和校正:利用 Ar等离子体产 生的高温,离子化效率高;测量时间短、效率高。但是它也有 一些显著的缺点:离子的动能分布范围大,因此同位素峰形 稳定性差: 高温下所有离子都电离. 因此基体效应的干扰较 大: 仪器造成的质量分馏比热电离质谱大。

所有高精度的同位素分析方法都围绕着 MC-ICP-MS的 优缺点,扬长避短,以期达到最好的分析结果。很多最新的 质谱仪装备有双聚焦系统(电子透镜和磁场透镜)来减小离 子的能量分布。对于基体效应的校正,首先需要良好的化学 纯化过程使得杂质离子的含量低到对同位素测量影响忽略 不计: 其次可以提高仪器的分辨率, 减小质量相近的离子的 等压干扰,例如利用高分辨率来区分⁴⁰A r¹⁶O⁺ 对 ⁵⁶Fe⁺ 的干扰 (Poitrasson and Freydier 2005);还要想办法扣除以目前分辨 率不能区分的等压干扰,例如测量⁵²Cr来扣除⁵⁴Cr对⁵⁴Fe的 干扰。仪器的质量分馏校正则可利用样品标样间差法、添加 元素法或者双稀释剂法。标样间差法是测量 Li Mg和 Si同 位素最常见的方法,把浓度相同的标样和样品快速间隔测量 得到样品相对标样的同位素差值。类似于双稀释剂法,添加 元素法是在测量的溶液中加入质量相近的已知同位素比值 的其他元素,假设添加元素和测量元素具有相同质量分馏系 数,然后利用添加元素的分馏系数来校正所测量的元素的同 位素比值,代表性的应用有添加 Cu测量 Fe同位素、Zn和 Cu 的相互添加和测量 (Marchal et al, 1999, Dauphas et al, 2009b).

为得到高质量的同位素数据,分析流程应该遵守一些基本原则:化学流程低本底,高回收率,低杂质;日常维护和校正法拉第杯,保持稳定的仪器状态;优化灵敏度,所有同位素峰形平坦重合良好,尽量使用静态测量;测量时间适中,样品和标样之间干净酸液清洗时间适中;了解并校正所有重要的干扰;在样品测量前,确定多个不同性质的标样的测量结果无误,建议对已知同位素组成的标样加入岩石矿物样品的杂质后进行化学分离和测量,确定数据无误;MC-ICP-MS极容

易产生精度很高的错误数据.因此强烈推荐对未知样品用不同的方法(例如干和湿的进样方法)进行一定数量的重复测量。

3 高温岩石矿物样品的非传统稳定同位素 观测结果和应用

传统上认为,稳定同位素分馏的尺度随温度和质量数的 升高显著减小,因此在高温岩浆作用中不发生分馏。但是随 着人们对高温地质样品的研究深入,过去很多被很多地球化 学家深信不疑的观点被新的观测结果推翻或者修正。例如 在 2007年德国科隆的 Goldschmidt年会上,高温下重同位素 是否发生分馏还是会议的争论焦点之一,而随后 2008年加 拿大温哥华和 2009年瑞士达沃斯的年会上,高温下同位素 分馏已经被学术界接受,并被广泛应用到高温地球化学的各 个领域。在本文的写作过程中,大量新的工作还在不断发 表。鉴于篇幅限制,本文不能做到面面俱到,只对研究程度 较高的几个同位素体系(Li Fe和 Mg)的研究现状进行简要 的回顾总结。

3.1 Li同位素

Li有两个稳定同位素,⁶Li和⁷Li(表 1),是元素周期表中 相对质量差 (16%)最大的非传统稳定同位素体系。Li是一 个中等不相容元素,在大部分基性矿物和熔体间的分配系数 在 0.1 到 0.5 之间 (Brenan et al, 1998, Ottolini et al, 2009)。Li同位素测量所用的国际标样为 L-SVEC 文献中用 M C-ICP-M S的分析精度可以达到 ±0.5‰ ~ 1‰ (2^o) (Tom asack, 2004), 利用 SMS方法测得的 Li同位素数据误 差在 1.5到 2.5‰ (Zhang et al, 2010)。海水的 δ⁷Li约为 32‰。 δ⁷ Li在洋中脊玄武岩 (MORB) 中在 1.6‰到 5.6‰之 间, 平均值为 3.4±1.4‰(2^{\sigma}) (Tom ascak et al, 2008), 来自 夏威夷的洋岛玄武岩 (OB)为 2.5% ~ 5.7% (Chan and Frey, 2003), 这说明全球的上地幔的 Li同位素组成并不均 一。此外, 蚀变的 MORB 的 δ^7 Li变化范围 约在 – 2‰到 + 14‰之间 (Chan et al. 2002)。 δ^7 L i在 榴辉岩中 变化范围 较大,可以从 + 10‰到 - 22‰ (Zack et al, 2003; Marschall etal, 2007)。上地壳的 δ⁷L 约为 0±2‰, 略低于 MORB和 OB,可能是风化作用的结果(Tenget al, 2004)。

对分异的玄武岩和花岗岩的研究表明矿物分离结晶可 能不会造成 Li同位素的显著分馏(Tom ascak *et al*, 1999, Teng *et al*, 2009)。硅酸盐熔体的化学扩散实验证明,由 于⁶Li扩散比⁷Li快 3% 到 5%, Li同位素在浓度(或者活度) 梯度存在时极易发生同位素分馏(Richter *et al*, 2003),这 一实验结果被来自 Trinity橄榄岩和 Tin Mountain的伟晶岩及 其围岩的 L 同位素研究证实。Trinity橄榄岩包含几个从纯 橄岩到方辉橄榄岩再到尖晶石橄榄岩最后到斜长石橄榄岩 的演化系列, Lundstram. *et al*. (2005)发现接近纯橄岩的方辉 橄榄岩富 L_i 而远离纯橄岩的方辉橄榄岩富 L_i 二者的 $\delta'L_i$ 相差 10‰。Tin Mountain从伟晶岩到围岩 10m 的范围内. Li 含量从 471×10⁻⁶降低到 68×10⁻⁶. 而 δ⁷Li从 7.6% 变化到 - 19.9‰ (Teng et al, 2006)。这两个代表性的观察结果以 及之后更多的研究均表明 Li沿着浓度梯度的扩散,在橄榄 岩、基性侵入岩以及变质岩的矿物之间或者内部造成同位素 不平衡 (Jeffcoate et al, 2007, Marks et al, 2007, Rudnick and Ionoy, 2007, Tang et al., 2007, 2008a, Park inson et al., 2007; Jonov and Seitz 2008; Au bach and Rudnick 2009; Zhang et al, 2010, Qiu et al, 2011)。为了理解地幔橄榄岩 包体中的 Li同位素分馏, Ionov and Seitz(2008)在总结了文 献中橄榄岩的 L 詞位素数据后发现 L i同位素分馏多出现在 缓慢冷却的大体积玄武岩携带的包体中,而在快速喷发的岩 浆携带的包体中少见,因此推测 Li在温度降低时会在矿物 间重新分配,从而导致同位素分馏。这一结论被一个基于温 度变化造成 Li在矿物间迁移扩散的模型所支持 (Gallagher and Elliott 2009), 最近也被用来解释极慢拉张的 Gakkel洋 脊中橄榄岩的 L 詞位素分馏 (Gao et al , 2011)。因此 L 詞 位素可以成为一个研究岩浆作用晚期的高精度地质速度计。

流体和矿物间的 L 词位素分馏实验表明. 重 L 词位素 易进入流体 (Wunder et al, 2007; Caciagli et al, 2011),因 此俯冲板片析出的流体应该富集⁷Li,而残留的榴辉岩富 集⁶L;这一推测和榴辉岩的低 δ^7 Li一致 (Zack *et al*, 2003, Marschall et al, 2007)。考虑到俯冲析出的流体还应该具有 其他同位素 (例如高⁸⁷ Sr/⁸⁶ Sr 高 δ^{11} B)和微量元素特征 (高 B). δ^7 Li和这些地球化学指标相结合可以提供俯冲物质再循 环和地幔富集端元之间的联系 (Xiao et al, 2007, Agostiniet al, 2008; Walker et al, 2009; Magna et al, 2011). Elliott et al (2006)发现来自 East Pacific Rise的 MORB的 δ⁷Li和 Sm /Nd和⁸⁷Sr/⁸⁶Sr正相关,和 ε_{sa}, La/Nb负相关,并解释这 些关系为俯冲带中受到流体交代的富集端元在上地幔混合 的结果 (Elliot et al, 2006)。有的研究还建议地幔端元的 δ^{7} L 可能和其他同位素体系一样存在系统变化, 例如 EM I型 的地幔端元的 δ' Li较低, 而 EM II 型较高 (N ship et al, 2004)。但是考虑到 Li同位素易受化学扩散的影响, 俯冲物 质再循环产生的富集端元能否在地幔中长期存在受到质疑 (Hakmaetal, 2008)。最近 V last lic et al (2009) 对地幔 端元 L 詞位素异常的存在似乎给出一个合理的解释:虽然 俯冲的蚀变洋壳在上地幔深度经过几百万年后因为化学扩 散而不再具有高 Li含量, 但是其特殊的 Li同位素特征可以 在俯冲洋壳或者附近的地幔(20km)中存在 15亿年或更久。 这样看来,利用 Li同位素来研究地幔的不均一性以及地幔 端元的形成才开始起步,还需要更多深入广泛的研究。

3.2 Fe同位素

利斜长石橄榄岩 铁是基性矿物的主要元素之一,是地球中含量最高的过 E 使体橄岩的方辉 ... 渡族元素、有⁵⁴ Fe⁻³⁶ Fe⁻³⁷ Fe和⁵⁸ Fe四个稳定同位素。目前 T Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 六合方山尖晶石橄榄岩全岩的 δ^{56} F e和 M $\frac{d}{2}$ 、O s同位素、CaO /A $\frac{1}{2}$ O₃、温度、F eO 含量、La/Yb以及矿物比例的关系 高 δ^{56} F e的两个样品 (IHLS-5和 LHLS-16)具有高温、高 F eO 和高 La/Yb、低 δ^{56} F e样品 (LHLS-6)的其它地球化学指标没有明显异常之处 . 数据来源: H uang et al (2011)

Fig 1 The relationships of whole rock Fe isotopes with $Mg^{\#}$, Os isotopes, CaO/A $\frac{1}{2}O_3$, temperature, total FeO, La/Yh, and mineral modes for spinel peridotite at Liuhe-Fangshan in east-central China

Fe同位素的数据报道为相对 RMM-014的差值,国际上大多 数实验室的分析误差一般可以达到 $\pm 0.04\%$ • amu^{-1} ,少数 能够达到 $\pm 0.015\%$ • amu^{-1} (Dauphas *et al*, 2009b)。由于 铁在岩浆过程和高温高压的环境下可以有两种价态共存 (+2和+3),地核为 0价,在下地幔的压力下还会出现铁离 子的外层电子自旋状态的改变 (Badro *et al*, 2003) Badro *et al*, 2004),因此不同价态和自旋状态的铁离子之间可能发 生同位素分馏 (Polyakov and Mineey, 2009) Polyakov, 2009, Rustad and Yin, 2009)。

较早的研究认为铁同位素在地幔样品中均一,产生的熔体的 Fe同位素也均一,因此铁同位素的数据甚至可以报道为相对于平均基性岩浆岩的差值(Beard et al, 2003, Beard and Johnson, 2004)。但是大量对地幔超基性岩包裹体和岩浆岩的研究表明 δ^{56} Fe在地幔和岩浆作用的温度下分馏可以高达 1‰ (Zhu et al, 2002, Williams et al, 2004, 2005, Poitrasson and Freydier, 2005, Weyer et al, 2005, 2007, Poitrasson, 2006, Weyer and Ionov, 2007, Heimann et al, 2008, Teng et al, 2008h, Schoenberg et al, 2009, Schuessler et al, 2009, Dauphas et al, 2019, Zhao et al, 2010)。因此, 用基性岩石平均来做为 Fe同位素的基准并不合适,这个

所谓的平均值严重依赖于所测量的样品的代表性,容易产生 分歧和不必要的误差,所以 RMM-014仍然是最合适的 标样。

目前文献中地幔橄榄岩全岩和矿物间均已观察到显著 的 Fe同位素变化, 但是其原因仍然没有定论。William s etal (2004)根据包体中尖晶石的 δ^{56} Fe和氧逸度 (f_{02})、Fe³⁺ / 全铁以及 C[#]的反相关关系,认为地幔包体的 Fe同位素组成 和地幔熔融时 f_{0_2} 的变化有关; W eyer and Ionov(2007)发现橄 榄岩的 M_{a}^{a} 和 δ⁶ Fe 有微弱的负相关关系. 因此确认部分熔 融可以改变地幔橄榄岩的 Fe同位素变化,同时因为某些富 铁样品的 5⁵⁶ Fe变化较大,熔体渗透过程中的交代作用也可 能起了一定的作用: Zhao et al (2010) 对汉诺坝和鹤壁的橄 榄岩包体的研究支持地幔交代作用对 Fe同位素的改造。 H uang et al (2011) 也对苏北六合方山的尖晶石橄榄岩包 体进行了系统的研究,发现绝大部分橄榄岩的δ⁵⁶Fe变化范 围有限,但是两个富铁和高δ⁶⁶Fe的样品明显受到交代的影 响. 而一个低 δ⁵⁶Fe的样品可能反映了橄榄岩和渗透的熔体 之间的扩散作用 (图 1)。因此综合来看, 地幔橄榄岩的 Fe 同位素受熔融、交代和扩散等诸多因素的影响。文献中发表 的富集的橄榄岩平均 δ⁶⁶ Fe约为 0.02‰ (Weyer and Jonoy

2007), 类似于火星和 Vesta的玄武岩、球粒陨石、月球上地 幔、钙长辉长陨石以及石铁陨石的铁同位素组成 (Weyer *et al*, 2005, Lin Y *et al*, 2010), 这可能意味着行星在最初形 成和增生时的 Fe同位素非常均一 (Zhu *et al*, 2001)。

此外,更多高精度数据的发表表明,虽然同一岩石样品 中不同矿物的 Fe同位素组成大多在误差范围内一致,但是 在统计意义上, 矿物之间系统的分馏还是可以分辨出来。一 般来说, δ^{56} $F_{\Phi_{had}, \underline{w} \notin \overline{v}} > \delta^{56}$ $F_{\Phi_{had}, \underline{u} \notin \hat{\mu} \# fac, \underline{w} \equiv adv}$ > δ⁵⁶ Fe_{微 揭石, 斜方辉石} (Zhu et al, 2002, Beard and Johnson, 2004; Williams et al., 2004, 2005; Zhao et al., 2010; Huang et al., 2011)。虽然文献中的观测结果渐渐趋于一致,有的作者认 为这些 Fe同位素分馏反映了矿物的不平衡 (Beard and Johnson, 2004; Zhao et al., 2010). 另外一些作者则认为矿 物间大多到达了平衡 (Williams et al, 2005; Huang et al, 2011)。本文倾向后一种看法,理由如下: (1)矿物 Fe同位素 变化的顺序和利用 M^L ssbauer谱预测的矿物平衡分馏一致 (Polyakov and Mineey, 2000); (2)地幔温度下的化学扩散使 得同位素不平衡很快消失,而矿物的重结晶使得同位素平衡 更快 (Williams et al, 2005); (3)上述文献中基于矿物平衡 计算得到的温度压力接近正常的地幔条件, 暗示其主要元素 应该已经平衡,同位素的平衡则更易达到。当然,还有可能 是对地幔矿物的 Fe同位素研究程度还不够, 矿物间的 Fe同 位素不平衡在某些样品中可能存在,这意味着单矿物间的 Fe 同位素分馏有助于来判断地质温压计的准确程度:如果矿物 间 Fe同位素不平衡.则根据矿物化学组成计算得到的温度 压力可能不准确。

MORB和 OB的平均的 5% Fe约为 0.1‰,比橄榄岩略富 集重同位素 (Weyer and Ionov, 2007; Tenget al, 2008b),也 比来自岛弧的玄武岩和玻安岩高大约 0.06‰ (Dauphas et al, 2009a)。这说明岩浆岩的 Fe同位素组成很不均一, 对 新生地壳贡献最多的 MORB和其地幔源区并不相同,因此早 期认为基性岩浆岩的 δ^{56} Fe类似于其源区. 因此可代表全硅 酸盐地球 (BSE)的想法需要更新。同样,想利用高压下含铁 矿物和金属熔体之间的平衡分馏来解释地壳富集⁵⁶Fe的想 法可能也没有必要 (Polyakov, 2009)。 Dauphas et al (2009a)把这些岩浆岩之间以及和源区之间的同位素差异解 释为熔融时地幔源区的 ƒ0,不同造成的,并推测岛弧玄武岩 的地幔源区的 Fe^{3+} / Fe^{2+} 等于或低于 MORB 的源区, 意味着 俯冲带地幔楔的 fo,等于或低于洋中脊下的地幔。这个结论 和俯冲带橄榄岩包体的 f_0 较高的观点有些矛盾(Park inson and Arculus 1999),因此还需要进一步的研究来厘清这些 争议。

除了源区的差异可能造成岩浆岩 δ^{ss} Fe的变化,岩浆分 异过程中,矿物分离结晶、流体-岩石的相互作用以及热扩散 均可能造成 Fe同位素的分馏。由于 Fe³⁺比 Fe²⁺更加不相 容,矿物分离结晶时基性矿物富 Fe²⁺而残留熔体富集 Fe³⁺, Schoenberg *et al*, 2009, Schuessler *et al*, 2009)。 另外, 月 球的高Ti玄武岩比低Ti玄武岩富⁵⁶Fe 也可能是还原环境下 钛铁矿结晶的结果 (Weyer *et al*, 2005)。 Heimann *et al* (2008)认为,在花岗岩岩浆演化的末期存在强烈的流体-熔 体相互作用, Fe同位素在含Fe 硅酸盐矿物、磁铁矿和含 FeCl₂的流体间分异, 由于FeCl₂富集轻同位素而且随着去气 过程离开岩浆体系, 残留的经过演化的花岗岩岩浆则具有升 高的 δ^{56} Fe, 热迁移模型则推测在岩浆房缓慢冷却时, 如果 岩体中的温度梯度可以存在较长时间, 重同位素则富集于冷 端, 轻同位素富集于热端, 这样也可以造成岩浆岩的Fe同位 素分异 (Huang *et al*, 2009h, Lundstrom, 2009, Huang *et al*, 2010, Lundstrom *et al*, 2011)。显而易见,虽然Fe同位 素的测量方法日渐成熟, 其分馏机制的解释仍需要更多实验 和理论的研究。

3.3 Mg同位素

 M_g 是地幔中含量仅次于 O和 Si的主要元素,也是地壳 中最重要的元素之一。目前 Mg同位素数据以相对 DMS-3 的差值报道 (Galv et al, 2001, 2003)。对比 Fe同位素的分 析, M g同位素的精确测量难度更大, 主要是因为 M g同位素 轻,因此仪器造成的质量分馏较大,而且 M g同位素测量时易 受各种有机和无机基质效应的影响,此外低浓度标准溶液的 储存也有可能造成系统误差 (Huang et al, 2009a)。虽然目 前国际上优秀的实验室报道的 δ^ωΜg的外部精度可以达到 或者略好于 $\pm 0.1\%$ (2SD), 不同实验室对同一标样的测量 的差别却高达 0.2‰以上。例如对于最常见的 USGS标样, BCR-2从 - 0.16‰ (Tipper et al, 2008)到 - 0.36‰ (Teng et al. 2007)。这样在对比各个实验室发表的文献数据的时 候,要注意可能存在的系统误差,只有在两个实验室的多个 不同成分的标样数据均一致时,对比这两个实验室发表的样 品数据才有意义。目前文献中发表的全岩标样和 M g溶液标 样数据总结在表 2中以供读者参考。可以看到,随着化学流 程、仪器分析技术和标样测量的改进, Mg同位素数据的质量 近年来稳步提高。

Mg同位素在低温和生物地球化学方向有极其广泛的应 用,而在高温地球化学方面目前的焦点问题主要有:(1)地球 和行星际物质的 Mg同位素组成;(2)地球内部各圈层的 Mg 同位素组成;(3)Mg同位素在岩浆岩以及矿物间是否存在分 异。过去几年的进展使我们对这3个问题有了一些初步的 认识,而且相信随着今后更多高质量数据的发表,我们会对 这些问题有更深入的理解:

(1)W iechert and Halliday (2007)分析了一系列球粒陨 石和地球的橄榄岩和矿物样品,发现球粒陨石和地球样品有 系统偏差,并解释其为初始行星物质增生和分异的结果,并 得到了少数学者的支持(Young *et al*, 2009)。但是这一发 现很快受到质疑, Teng *et al* (2007)发现夏威夷 K ihuea Lava

表 2 Mg 同位素标样数据的对t Table 2 Comparison of Mg isotop	ck (%o) De data for referer	ice samples ($\%$	(00							
δ ²⁶ Mg	CAM-1	BCR-1	BCR-2	BHV0-1	BHV0-2	DTS-1	DTS-2	PCC-1	GA	GSN-1
Caly et al. (2003)	-2.58 ± 0.14									-
Young and Galy (2004)		-0.37 ± 0.11								
Bizzarro et al. (2005)			-0.17 ± 0.35	-0.12 ± 0.15	-0.16 ± 0.10					
Wiechert and Halliday (2007)		-0.09 ± 0.27			-0.14 ± 0.23					
$rac{1}{2}$ reng et al. (2007)		-0.34 ± 0.06	-0.30 ± 0.08							
Tipper et al. (2008)	-2.59 ± 0.09		-0.16 ± 0.11							
Pogge von Strandmann et al. (2008)	-2.78 ± 0.15				-0.25 ± 0.11					
Vang et al. (2009)	-2.63 ± 0.09					-0.30 ± 0.05	-0.38 ± 0.14 -0.32 ± 0.07			
Toung et al. (2009)	2.52, -2.72, -2.	71					0.04 77.0			
Bolou-Bi et al. (2009)	-2.62 ± 0.13								-0.75 ± 0.14	
Wombacher et al. (2009)	-2.64 ± 0.23		-0.14 ± 0.11			-0.25 ± 0.08				
⊇Huang et al. (2009a)	-2.63 ± 0.11	-0.30 ± 0.11	-0.34 ± 0.12	-0.30 ± 0.08		-0.33 ± 0.14		-0.22 ± 0.10	-0.34 ± 0.15	-0.24 ± 0.23
Chakrabarti and Jacobsen (2010)	-2.58 ± 0.16	-0.58 ± 0.29		-0.59 ± 0.27		-1.03 ± 0.28		-0.51 ± 0.32		
$\overline{\Box}$ Teng et al. (2010a)	-2.63 ± 0.06						-0.31 ± 0.05			
I. WYet al. (2010)									-0.26 ± 0.07	-0.22 ± 0.07
Bourdon et al. (2010)	-2.60 ± 0.10	-0.16 ± 0.12	-0.16 ± 0.11						-0.29 ±0.09	-0.21 ±0.09
Creng et al. (2010b)	-2.61 ± 0.08					-0.30 ± 0.09	-0.33 ± 0.05			
5. 改编自 Huang et al. (2011)中 T	Table 1									

此为代表的 BSE 和球粒陨石的 δ^{26} Mg在误差范围内一致。 随后,大量对球粒陨石和地幔样品的测量均没有发现地球和 球粒陨石有显著的 Mg同位素组成差别(Handler *et al*, 2009, Huang *et al*, 2009a, 2011; Yang *et al*, 2009, Bourdon *et al*, 2010, Chaknabarti and Jacobsen, 2010, Teng *et al*, 2010a)。 地幔橄榄岩的 δ^{26} Mg 和月球样品可能一致 (Sedaghatpour and Teng 2010)。 这说明和 Fe同位素一样, 在太阳系形成时,行星际物质的 Mg同位素也可能非常均一。

(2) Pearson et al (2006) 通过激光剥蚀-M C-ICP-M S方 法测量地幔橄榄石的 M_g 同位素组成,发现其 $\delta^{26}M_g$ 变化超 过 4‰。如果这个结果是可靠的, 意味着地球上 Mg的最大 储库的 δ³⁶Mg极端不均一。但是 Norman et al (2006)用类 似的方法测量了来自地球、月球、火星和石铁陨石的橄榄石 的 Mg同位素,发现这些橄榄石的 δ^{26} Mg在误差范围内一致 (±0.2‰)。之后文献中对地幔橄榄岩全岩和单矿物的高精 度测量均未发现 Pearson et al (2006)报道的巨大分馏 (H and ler et al, 2009, H uang et al, 2009a Y ang et al, 2009, Young et al., 2009, Bourdon et al., 2010, Chakrabarti and Jacobsen, 2010, Teng et al, 2010a)。因此, 地幔橄榄岩 的镁同位素可能相对均一,最近的一些文献估计 BSE的 δ^{26} Mg约在 - 0.22‰到 - 0.30‰之间(图 2)(Handler et al, 2009, Yang et al, 2009, Bourdon et al, 2010, Dauphas et al, 2010, Teng et al, 2010a, Huang et al, 2011)。地幔部 分熔融可能不会产生显著的 Mg同位素分馏,这样新鲜洋壳 和地幔的 Mg同位素组成可能类似。陆壳岩石的 Mg同位素 也容易受到风化的影响,对陆壳的 Mg同位素研究已经清楚 地表明上地壳的主要岩石 (花岗岩和沉积岩)的 δ³⁶ M g是非 常不均一的 (Shen et al, 2009, Liu SA et al, 2010, LiWY et al, 2010), 变化范围从 - 0.52‰到 0.92‰ (图 2), 但是大 陆地壳平均的 δ^{26} Mg(- 0.22‰)仍然接近地幔值 (LiWY et al, 2010).

(3)虽然含镁硅酸盐矿物间的 Mg同位素分馏程度很 小,基本上在误差范围内一致,但是最近的文献数据表明,统 计上辉石可能比橄榄石富集重 Mg同位素 (Handler *et al*, 2009, Yang *et al*, 2009, Young *et al*, 2009, Huang *et al*, 2011)。而且由于尖晶石 MgO 键的强度明显高于其他硅酸 盐矿物,橄榄岩中的尖晶石和辉石、橄榄石之间可能有较大 的分馏,并且可能成为一个新的地质温度计 (Young *et al*, 2009, Schaub k, 2011)。此外,虽然绝大部分基性超基性岩 石的 δ^{as} Mg均一,极个别地幔橄榄岩和科马提岩样品同时具 有低 δ^{as} Fe和稍高的 δ^{26} Mg 使得全岩的 δ^{36} Fe和 δ^{36} Mg有微 弱的负相关关系,这个现象有可能是 FeMg在熔体和岩石中 交换扩散的结果 (Dauphas *et al*, 2010, Huang *et al*, 2011)。

3.4 其他同位素体系

1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 近期文献中 BSE的 δ^{26} M g估计值以及和上地壳岩 石和矿物 δ^{26} M g的对比

数据来源: BSE: Handler et al (2009), Yang et al (2009), Bourdon et al (2010), Dauphas et al (2010), Teng et al (2010a), Huang et al (2011); 上地売岩石和矿物: Shen et al (2009), Liu SA et al (2010), LiWY et al (2010)

Fig 2 Comparison of Mg isotope ratios between BSE and the upper crustal nocks and minerals

据发表,将来可能在高温地质过程的研究中得到广泛应用的 同位素体系。(1)Si同位素。 S_1^9 在核幔分异时进入金属熔 体,而 Si⁺⁺则进入地幔硅酸质熔体和矿物,因此不同价态 Si 的分配可以产生很大的同位素分馏。地球样品和球粒陨石 的 Si同位素差异已经被用来定量地制约地核中 Si的含量 (Fitoussi et al, 2009)。(2) Cu同位素。Cu同位素在高温 下在蒸汽、流体和硫化物之间发生分馏,因此可以应用于研 究 Cu+Au热液矿床的形成 (LiWO et al, 2009, 2010)。(3) U同位素。²³⁸U/²³⁵U同位素在岩石矿物样品中变化较小,但 是在球粒陨石样品中分异明显,可能说明太阳系形成时行星 际物质中发生过较大的²⁴⁷ Cm /U 分异, 同时有可能对陨石的 Pb-Pb 定年的产生一定的影响 (Weyer et al, 2008, Brennecka et al, 2010)。(4) Ca同位素。Ca同位素在地幔 包体的单斜辉石和斜方辉石之间发生显著分馏,因此地幔可 能在 Ca同位素组成上非常不均一 (Huang SC et al, 2010)。 (5) Cl同位素。最近一些研究表明,月球的水含量可能超过 过去人们的理解,在月球玄武岩玻璃中可能高达几百×10⁻⁶ (Saalet al, 2008)。Cl同位素对月球贫水富水的争议提供 重要制约, Sham et al (2010)发现月岩的 δ^{37} C1变化超过 25%,最好的解释是极端缺水的情况下氯化物高温蒸发是动

力学分馏的结果,因此月球可能还是贫水的。总之,这些新 的同位素体系为地球化学家提供了崭新的工具和广阔的视 野,必将开创稳定同位素地球化学的黄金时代。

4 同位素分馏机制——理论和实验进展

合理解释岩石矿物样品的非传统稳定同位素数据迫切 需要针对同位素分馏机制的理论研究和实验工作。本文简 要回顾近年来关于同位素的动力学和平衡分馏的实验和理 论研究进展,然后详细介绍早已发现但是最近才引起人们注 意的"新"的元素和同位素分异机制-热扩散及其在地学和物 理学上的意义。

4.1 动力学分馏

动力学效应可造成传统稳定同位素分馏,同样也能造成 非传统稳定同位素的分馏。动力学分馏是指轻重同位素在 传输的过程中,因为其运动速度不同造成的分馏。例如,当 主微量元素成分迥异的玄武岩和流纹岩熔体相接触时,主微 量元素沿着浓度(或者活度)梯度发生化学扩散。由于轻重 同位素的扩散系数和其质量成反比,结果轻的同位素扩散得 快,这样化学扩散可产生显著的质量分馏(Richter et al, 1999, 2003, 2008, Watk ins et al, 2009)。另外一个经典的 例子是熔体在真空中挥发汽相物质和凝华时,同位素可以在 液相-汽相-固相之间转化时发生动力学分馏(Richter, 2004, Knight et al, 2009)。

4.2 平衡分馏

在矿物--熔体--流体相之间达到平衡时,如果元素在不同 相内的化学环境(例如键长、价态等等)显著不同,这样即使 在高温下,同位素在矿物-矿物以及矿物-熔体间可以发生分 馏。Fe和 Si因为在地球内部具有多价态,特别引起实验地 球化学家的兴趣。Schuessler et al (2007)测定了 Fe同位素 在流纹岩熔体和磁黄铁矿之间的分馏系数,确认 Fe的配位 数和价态的差别可以造成显著同位素分异; Shahar et al (2008)则测定了 Fe同位素在磁铁矿和铁橄榄石之间的分馏 系数,发现重铁同位素富集在富含 Fe^{3+} 的相中; Poitrasson et al (2009)在实验中发现金属熔体和硅酸盐熔体在 7.7GPa 和 2000°C下 Fe同位素不发生显著分馏,说明地核的形成可 能不会造成 BSE 的 Fe 同位素组成变化。 Shahar et al (2009)测量了 Si同位素在金属熔体和硅酸盐熔体之间的分 馏,发现硅酸盐熔体的 δ^{30} S比金属熔体高,说明核幔分异会 升高 BSE 的 δ³⁰Si 需要指出的是,由于同位素高温分馏研究 的实验难度很大,同时涉及到高温高压实验岩石学和高精度 同位素测量技术,而且高温高压设备中的温度梯度也可以产 生很大的同位素分馏,因此关于同位素平衡分馏系数测定的 <mark>实验工作目前仍然少见。</mark> http://www.cnki.net

图 3 湿安山岩的热迁移实验的背散射图像,主要元素和水的含量、熔体和矿物的体积和到冷端距离的关系,以及 IR ID IUM 软件对热迁移过程的模拟

氧化物含量和对应矿物的含量变化——对应,下部固相的 S102含量达到 73%.矿物缩写:mg+磁铁矿; i+钛铁矿; amp-角闪石; cpx-单斜辉石; bio-黑云母; K-spar钾长石; qz石英; ple-斜长石.改编自 Huang *et al* (2009 b)中 Fig 3.具体细节可参考 Huang *et al* (2009 b) Fig 3 The relationships between BSE in ages, major element and water contents, melt and mineral volumes, and distance away

from the cold end of the thermalm ignation experiment of wet and esite

4.3 理论模拟

因为实验室内能够达到的温度压力条件有限,对众多同 位素体系进行研究也需要大量资源和时间,因此定量和定性 的理论模拟尤为重要。早在 Fe同位素的高精度分析方法建 立前, Polyakov和他的同事利用 M^L essbauer谱预测含 Fe矿物 之间的分馏系数 (Polyakov, 1997; Polyakov and Mineev, 2000),这些极具前瞻性的工作为后来 Fe同位素地球化学的 发展提供了重要的参考。下地幔温压条件下含铁相的同位 素分馏是目前实验岩石学技术难以达到的.利用 M^Lessbauer 谱或者矿物密度方程则可以进行一些有意思的预测 (Polyakov, 2009, Rustad and Yin, 2009)。此外,利用体积方 程、第一性原理和离子的振荡频率以及电子结构的计算可模 拟计算重同位素和质量或者体积相关的分馏 (Schauble etal, 2001; Schauble, 2007, 2011; Huang SC et al, 2010 Li and L in 2010)。最近关于 M g 同位素分馏模拟计算表明,尖 晶石和其他矿物间高温下可能发生较大平衡分馏,从理论上 预测了 Mg同位素地质温度计的应用前景 (Schauble, 2011)。

4.4 温度梯度下的元素和同位素分异: 热迁移和热扩散 实验

温度梯度可以造成流体中的微小物质或者化学成分的 迁移,这个现象称为热扩散效应或者 Soret-Ludwig效应 (Ludwig 1856, Soret, 1879)。在地球的形成和演化的过程 中, 温度梯度无处不在, 但是温度梯度造成的岩浆分异并不 为人们重视。其主要原因是岩浆房中热梯度存在的时间有 限, 在硅酸盐物质发生显著的迁移之前, 温度梯度已经消失 了(Lesher and Waker, 1986)。热传导模拟计算表明, 如果 岩体侵入地壳后没有额外的热源, 直径 20km 的岩体在 IM a 内会冷却到锆石的封闭温度以下(Cokman et al, 2004; G lazner et al, 2004)。但是对同心带状花岗岩岩体的精确 锆石 U-Pb年代学研究表明, 直径 10~20km 的岩体从外到内 年龄逐渐年轻, 变化达到 10M a以上(Costa and Chakraborty, 2004; G lazner et al, 2004)。这说明大型侵入岩岩体的冷却 可能不是一次热事件的结果, 而岩体中温度梯度存在的时间 尺度远超过去人们的想法, 因此有必要进一步研究温度梯度 对硅酸盐岩浆演化的影响。

Lesher and waker(1986)把均一的硅酸盐熔体置于活塞 式压机的温度梯度下一段时间,发现热梯度使得熔体的成分 发生显著变化,Si和 Na富集于热端,而 Fe Mg和 Ca富集于 冷端。温度梯度造成的物质迁移产生了活度梯度,化学扩散 随之发生。如果热扩散实验时间够长,最后热扩散和化学扩 散会处于平衡状态,在熔体中随着温度的变化,元素出现稳 定的浓度梯度(Lesher and Walker 1986, Richter *et al*, 2008, 2009)。但是,热扩散实验并不能直接应用于自然界 的岩浆体系中,主要原因有:热扩散实验的温度大大高于自 然界岩浆活动的温度;热扩散实验中只出现熔体,而岩浆活 动中同时存在熔体和矿物;自然界岩浆活动中一般含水。

(Ludwig, 1856, Soret, 1879)。在地球的形成和演化的过程。 与热扩散实验之相比更接近自然体系的是热迁移实

图 4 湿安山岩热迁移实验中 Fe-Mg同位素随温度梯度发生分馏情况 上端 2/3部分 Fe-Mg同位素随温度梯度发生分馏,而下端 1/3部分没有分馏 · Fe-Mg同位素呈现良好的正相关线性关系 · 改编自 Huang et al (2009b)中 Fig 8 具体细节可参考 Huang et al (2009b). CD-chemical diffusion, FC-fractional crystallization, TD-thermal diffusion Fig 4 Fe-Mg isotope fractionation in the thermalm igration experiments of wet and esite

验:温度和岩浆活动相当,熔体岩浆共存,体系含水。Huang et al (2009b)把湿的安山岩放在 0.5GPa和 950~350°C的 热梯度下,经过 66d的热迁移实验后,均一的安山岩随着温 度的降低分成大致长度相同的三部分 (图 3): 上端全部为 熔体,中间熔体和矿物共存,下端无熔体全是矿物。磷灰 石、角闪石、磁铁矿、钛铁矿、斜长石、黑云母、钾长石、石英 和萤石等矿物随温度的降低依次出现. 锆石和榍石零星出 现。受矿物组分的影响,主微量元素也随温度系统变化 (Ding et al, 2009, Huang et al, 2009b)。和热扩散实验 相反,热迁移实验的热端富集 Mg和 Fe,最后在下端固体部 分产生 SD,高达 73% 的花岗质成分。这是因为在矿物存 在时,熔体的成分或者活度受与之平衡的矿物控制,而不 是简单的热扩散和化学扩散平衡的结果。这样,在特定 的地质条件下(较长的冷却时间),热迁移可以产生显著 的岩浆分异。这可能是一个人们从未认识到的岩浆演化 的机制,甚至有可能对花岗质陆壳的形成和演化有重要 作用 (Huang et al, 2009h, Lundstrom, 2009, Lundstrom et al., 2011).

表 3 热迁移过程和 Bowen反应系列对比

Table 3 Comparison between them al transport process and Bowen reaction series

	热迁移过程	Bowen反应系列
初始岩浆	假设为均一	假设为均一
体系温度	不均一	均一
矿物结晶	随温度梯度的变化而结晶	随温度的降低而结晶
主微量元素	受矿物组成控制	受矿物组成控制
稳定同位素	熔体中发生显著分馏	一般不发生大的分馏
存在条件	足够长的冷却过程	温度在液相和固相线之间

对比列在表 3中。可以看出, 二者的主微量元素成分变化均 受矿物组成和温度的控制。因此理论上说, 传统的岩石地球 化学数据不能直接区分二者, 而热迁移实验中另一个重要发 现提供了绝好的区分手段 (图 4)。在热迁移实验中, 含有熔 体的部分 (PCA, PCB和 PCC)发生显著的 FeMg 同位素分 馏, δ^{6} Fe和 δ^{5} Mg随着温度的降低而升高, 分别变化了 2 8‰和 9.9‰, 远远超过自然界高温样品的变化范围 (Huang et al, 2009b); 而下端固体部分, FeMg同位素没有

→ 硅酸盐岩浆的热迁移过程和传统的 Bow en反应系列的 出现明显变化,仍然接近其初始物质 —— USGS安山岩标准

图 5 热扩散和热迁移实验中同位素含量和比值对温度梯度的关系

图 5d e, 纵坐标相当于同位素比值的" 5"标表示法.具体细节请参考 Huang et al (2010)中 Fig 3

Fig 5 The relationship of temperature gradient to isotopic abundances and ratios in the them ald iffusion and migration experiments

计划中利用热扩散来提纯²³⁵U,但是其基本的物理机理并没

有得到很好的理解。对于一个处于稳定状态的仅仅含有溶

质和溶剂的简单二元体系,浓度 (C)的变化是索瑞系数 (S_r)

和温度 (T) 梯度的函数: $dC C = -S_T dT(1)$ 。 S_T 是热扩散系

数对化学扩散系数的比值,它对很多参数非常敏感且易变,

例如体系的温度、成分、溶质的大小、电价等等。这使得某个

体系测得的 S_r不能应用到其他体系中。因此热扩散效应被

称为目前唯一缺乏简单物理解释的流体传输机制(Kincaid

and Hafsk jol 1994),而同位素地球化学则为解开热扩散之 谜提供一个有意思的思路。本文在这里简述 Huang *et al*

AGV-1。同时, O和 H 同位素也发生了类似的分馏, 随温度 的降低而富集重同位素 (Lundstrom, 个人通信)。这样, 所有 同位素体系均随温度系统地变化, 热端富集轻同位素而冷端 富集重同位素, 说明存在熔体-流体体系稳定同位素分馏的 温度效应 (郑永飞, 个人通信)。因此多个同位素之间可形成 正相关关系, 为鉴别热迁移在岩浆演化过程中的作用提供了 最有力证据。热迁移模型也被用来解释为什么有些高 Si花 岗岩具有高的 δ^{56} Fe (Lundstrom, 2009)。

4.5 同位素的热扩散效应的物理意义

虽然热扩散现象在 150 年前就被发现,而且在生物、物如果溶质和溶剂间没有化学作用,例如水里的惰性塑料理、材料科学和地质过程中有重要应用,甚至在美国曼哈顿,小球 (直径约 200纳米),如果施加一个温度梯度,小球的分子2012 China Academic Journal Electronic Publishing House, All reserved.

(2010)的主要发现和结论。

布浓度随温度的降低呈指数升高(Duhrand Braun, 2006a,

b)。对(1)式进行积分,得到 $\frac{C_T}{C_{T_0}} = \exp\left(-\sum_{T_0}^T \int_T dT\right)$ (2), T

和 T。分别指冷端和热端的温度。小球浓度随温度的指数函 数变化说明小球在水里的 S₂是常数,这是因为惰性小球和水 没有化学相互作用。但是对于含有多达 9个以上主要元素 的硅酸盐熔体,各个组分之间的化学作用非常复杂,高价离 子(S⁴⁺和 A³⁺⁾称为网格形成离子(network former),它们和 O²⁻形成硅氧四面体,一、二价阳离子和四面体上的非桥键氧 连接,称为网格修改离子 (network modifier)。图 5a, h, c显 示, 硅酸盐熔体的主要元素含量 (对数坐标)和温度梯度呈现 非线性关系,表明它们的 S_{T} 不是常数 (Huang et al, 2010)。 有时候甚至随着体系化学成分的变化, S_{*}可以从正值变成负 值,即该元素改变了富集的方向(Lesher and Walker 1986, 1991)。虽然主要元素含量给出的信息非常复杂,但是网格 修改离子的稳定同位素数据却给出完全不同的景象。图 5d e f中,虽然热扩散实验使用的初始物质的化学成分(SIO₄从 ~ 48% 到~ 70%)、平均温度(> 1550°C到 650°C)以及体系 的组成 (熔体以及熔体和矿物共存)变化很大,所有的同位素 比值数据都回归到一条和温度梯度负相关的直线上。

如果假设某同位素 ^{X}M 的浓度为 $C^{X}M$,则根据公式(2),

可以得到 $\frac{(C^{X}M)_{T}}{(C^{X}M)_{T_{0}}} = \exp\left(-\sum_{T_{0}}^{T}\int S_{T} x_{M} dT\right)$ (3), 这里 $(S_{T} x_{M})$ 是 ^{X}M 的索瑞系数。结合另一同位素 ^{Y}M 的浓度变化来考察 两个同位素 S_{T} 的差值 (ΔS_{T}) , 可以得到

$$\ln \frac{(C^{x}M)_{T} / (C^{x}M)_{T_{0}}}{(C^{y}M)_{T} / (C^{y}M)_{T_{0}}} = \ln \frac{(C^{x}M / C^{y}M)_{T}}{(C^{x}M / C^{y}M)_{T_{0}}} = \frac{\delta^{x}M}{1000}$$
$$= -\frac{T}{T} \oint S_{T} dT$$
(4)

结合图 5d, e, f说明 ΔS_r 是一个常数, 与体系的化学成分和 温度高低无关。其原因是, 同一元素的同位素的最大差别仅 仅是其质量, 而它们化学性质相同, 当考察热扩散过程中同 位素分馏时, 造成元素浓度变化的化学作用因素被相互抵消 了, 因此同位素之间的 S_r 差值是一个与体系无关的常数, 即 使在复杂的硅酸盐熔体中也表现得如此明显。这样, 熔体中 的同位素比值竟然类似于水里的惰性小球。 S_r 可以分解为 两个分量, 即质量相关的函数 *fm* 以及和体系化学组成、温度 等等其他因素相关的函数 *fc*

 $S_T(m, \text{ composition, } T, \dots) = f_m(m, \dots) + f_c(\text{ composition, } T, \dots)$ (5)

同一元素的同位素的 fc相同, fm 则不同。这个拆分可以为 其它体系 S_r系数的研究提供一个有用的指导框架。

此外,最近的实验进展也有助于阐明一些关于温度梯度 造成的同位素分馏的重要问题。使用相同的初始物质、处于 相同温度梯度的时间系列实验证明,热扩散产生的同位素的 稳定状态比元素的稳定状态早到达(Huang et al., 2010);化 学扩散造成的同位素分馏是一个暂时的中间状态,而热扩散则不然,只要温度梯度存在,同位素分馏就会存在;对于熔体中处于相同位置的元素,例如 Mg Ca Fe,同位素分馏的尺度随质量的增加而减小;对于 O和 Si 因为它们形成 SiO 四面体,分馏的尺度比相同质量的四面体网格修改离子小 (Kyser et al, 1998; Richter et al, 2009);最后,如前所述,同位素分馏的大小只和温度梯度大小有关,这使得某些稳定同位素体系可以做为相对地质温度计。

5 结语与展望

地球化学的发展总离不开分析仪器和分析方法的进步。 过去十年间,地球化学家们已经见证了非传统稳定同位素地 球化学的飞速发展。虽然同位素的分馏随着温度的升高而 大大减小, 对以 Li Mg和 Fe为代表的非传统稳定同位素体 系在高温地质过程的研究仍然取得丰硕的成果。Li同位素 在风化、脱水和扩散等过程中发生显著的分馏,因此 Li同位 素能够广泛地应用于研究地幔地球化学、俯冲带物质再循 环、接触和区域变质作用及岩浆作用。Fe同位素的变化则 多反映不同价态的 Fe在部分熔融和分离结晶过程中的分 馏,因此成为研究地幔不均一性、交代作用和岩浆演化的新 工具。岩浆岩的 Mg同位素大致反映其源区的特征,因此基 性岩浆岩可能代表了 BSE的 Mg同位素组成, 为低温地球化 学过程中 Mg同位素的分馏提供一个均一的背景。MgFe同 位素在地幔橄榄岩中共存的矿物间有轻微的平衡分馏,它们 可能还会受扩散的影响。此外,其它文献中较少发表的同位 素体系 (Cl Si Cu Ca U 等等) 也有很好的应用价值。而热 扩散在某些特殊的背景下,有可能造成所有稳定同位素的 分馏。

理论模拟和实验研究对理解非传统稳定同位素的分馏 机制至关重要。利用第一性原理、分子动力学、矿物密度方 程和 M^L ssbauer谱等方法的理论计算已经对稳定同位素地球 化学的研究提供重要的理论指导;关于熔体化学扩散和蒸发 的实验工作也证明了高温下可以产生大的稳定同位素动力 学分馏。热扩散和热迁移实验中,温度梯度造成的元素和同 位素显著分异,这也许意味着温度梯度下的硅酸盐物质的迁 移是一种新的岩浆分异机制。稳定同位素的热扩散效应和 体系的化学成分以及总温度无关,这个重要观察在岩石地球 化学和物理学上都有重要意义,可以简化对复杂的热扩散和 索瑞系数的研究。

虽然非传统稳定同位素地球化学已经取得巨大的成就, 这个学科仍然有很多重要的问题需要解决。(1)仍然需要进 一步提高分析方法的精度和准确度,高质量的数据往往能导 致更多的新发现和新问题;(2)目前对矿物岩石样品的测量 还不够多,结合多个同位素体系制约同一问题的工作很少 见,我们对地球各个圈层和地球化学端元的了解有限,对行 星际物质的了解更是有限;(3)关于同位素分馏机制的实验 研究极其匮乏,缺乏实验岩石学和同位素地球化学相结合的 工作;(4)关于同位素分馏的理论模拟还需进一步深入,例如 对同位素的热扩散效应以及矿物间平衡分馏的理论研究程 度尚浅。我国的地球科学正步入高速发展期,能够进行高精 度同位素测量的 MC-ICPMS, TR IFON和 SMS等仪器在多个 科研院所安装多年而且运行良好,最近已有相关的同位素文 章发表。此外,若干研究所和大学已建立高温高压岩石学实 验室,关于理论模拟同位素分馏机制的工作在国内一些小组 已经开展并取得一定的成果。因此,有理由相信,我国地球 化学家将会在同位素的测量、实验研究和理论模拟等领域做 出高水平的工作。

致谢 郑永飞教授和滕方振博士的对论文进行了评审;张 兆峰和李王晔博士阅读了本文的初稿,在此表示感谢。

References

- Agostini Ş. Ryan JG, Tonarini S and Innocenti F. 2008. Drying and dying of a subducted slab. Coupled Li and B isotope variations inwestern Anatolia Cenozoic volcanism. Earth and Planetary Science Letters, 272, 139-147.
- Anbar AD, Roe JE, Barling J and Nealson KH. 2000. Nonbiological fractionation of iron isotopes Science, 288 126-128
- Aulbach S and Rudnick RL. 2009. Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotitem inerals Examples from Tanzania Chemical Geology, 258 17-27
- Badro J. Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G and Monaco G. 2003. Iron partitioning in Earth's mantle. Toward a deep low erm antle discontinuity. Science 300: 789 – 791
- Badro J Rueff JP, Vanko G, Monaco G, Fiquet G and Guyot F. 2004 Electronic transitions in perovskite Possible nonconvecting layers in the lower mantle Science 305: 383 – 386
- Beard BL and Johnson CM. 1999. High Precision iron isotope measurements of terrestrial and lunar material Geochimica et Cosmochimica Acta, 63: 1653 – 1660
- Beard BL, Johnson CM, Skukan JL, Neakon KH, Cox L and Sun H. 2003. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe Chemical Geology, 195: 87-117
- Beard BL and Johnson CM. 2004. In term in eral Fe isotope variations in mantle-derived rocks and implications for the Fe geochem ical cycle Geochem istry Geophysics Geosystem ş 68 4727-4743
- Bobu-BiEB, Vigier N, Brenot A and Poszwa A. 2009 Magnesium isotope compositions of natural reference materials Geostand Geoanal Res., 33: 95-109
- Bizzarro M, Baker JA, H aack H and Lundgaard KL 2005 Rapid tin escales for accretion and melting of differentiated planetesinals inferred from ^{26}A $l^{26}Mg$ chronometry Astrophys J, 632 41-44
- Bopp C.J. Lundstrom CC, Johnson TM and Glessner JJG. 2009 Variations in ²³⁸U /²³⁵U in uranium ore deposits. Isotopic signatures of the U reduction process? G eology, 37: 612-615
- Bourdon B, Tipper TE, Fitoussi C and Stracke A. 2010 Chondritic Mg isotope composition of the Earth. Geochim. Cosmodnim. Acta, 74 5069 – 5083
- Brenan M, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ and Phinney DL 1998 Behaviour of boron, beryllium, and lithium during melting and crystallization Constraints from mineral-melt partitioning experiments Geochimica et Cosmochimica Acta 62 2129 – 2141

in plications for Pb-Pb dating Science, 327. 449-491

- Bryant C.J. M. C. ulbeh M.T. and Bennett V.C. 2003 Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrumetry (MC-ICP-MS) under "cold" plasma conditions Journal of Analytical Atom ic Spectrum etry, 18 734 – 737
- CaciagliN, Brenan M, McDonough WF and Phinney D. 2011. M ineralfluid partitioning of lithium and in plications for slab-mantle interaction. Chemical Geology 280: 384-398
- Chak rabartiR and Jacobsen SB 2010. The isotopic composition of magnesium in the inner Solar System. Earth and Planetary Science Letters 293 349-358
- Chan LH, A It JC and Teagle DAH. 2002 Lithium and lithium isotope profiles through the upper oceanic crust A study of seaw ater-basa It exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201: 187 – 201
- Chan LH and Frey FA. 2003. Lithium isotope geochemistry of the Hawaiian plume Results from the Hawaiian Scientific Drilling Project and Kooku Vokano Geochem. Geophys Geosyst, 4 8707, doi 10. 1029/2002GC000365
- Chang VT-C, Makishina A, Belshawa NS and O'Nions RK 2003 Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS JAAS 18: 296 - 301
- Chang VT-C, William s R JP, M ak ishin a A, Belshaw I NS and O'N ions RK. 2004 Mg and Ca isotope fractionation during CaCO₃ birm ineralisation. Biochem ical and Biophysical Research Communication \$ 323 79-85
- Coleman DS, Gray W and Glazner AF. 2004 Rethinking the emplacement and evolution of zoned plutons Geochronologic evidence for incremental assembly of the Tuolum ne Intrusive Suite California Geology 32: 433-436
- Costa F and Chakraborty S. 2004. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine G eochimica et Cosmochimica Acta 227: 517 – 530
- Dauphas N and Rouxel O. 2006 M ass spectrom etry and natural variations of iron isotopes M ass Spectrom etry Reviews 25 515-550
- Dauphas N, Craddock PR, Asimov PD, Bennett VC, Nutman AP and Ohnenstetter D. 2009 a Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present Earth and Planetary Science Letters, 288 255-267
- Dauphas N, Pourn and A and Teng FZ 2009b Routine isotopic analysis of iron by HR-MC-ICPM S How precise and how accurat? Chemical Geobgy, 267: 175-184
- Dauphas N, Teng FZ and Amdt NT. 2010 Magnesium and iron isotopes in 2 7Ga A lexo komatiites Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine Geochim. Cosmochim. A cta, 74 3274–3291
- Ding X, Lundstrom C, Huang F, Li J, Zhang Z, Sun X, Liang J and Sun W. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation In termational Geology Review, 51: 473-501
- Duhr S and Braun D. 2006a. Why molecules move along a temperature gradient PNAS 103: 19678-19682
- Duhr S and Braun D. 2006b. The mophoretic depletion follows boltzm ann distribution Physical Review Letters, 96: 168301(4)
- Elliott T, Thomas A, Jeffcoate A and Niu Y. 2006 Lithium isotope evidence for subduction-enriched mantle in the source of mid-oceanridge basalts Nature, 443: 565-568
- Fitoussi C, Bourdon B, Kleine T, Oberli F and R eynolds BC. 2009 Si isotope systematics of meteorites and terrestrial peridotites In plications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core Earth and Planetary Science Letters 287. 77-85
- Gallagher K and Ellibit T. 2009 Fractionation of lithium isotopes in magnatic systems as a natural consequence of cooling Earth and Planetary Science Letters 278 286-296

Brennecka GA, Weyer S, Wadhwa M, Janney PE, Zipfel J and Anbar Ga ly A, Belshaw NS, Ha licz L and O'N ions RK. 2001. High-precision AD, 2010 ²³⁸U/²³⁵U variations in meteorites. Extant ²⁴⁷ Cm and Sector inductively China Academic Journal Electronic Publishing House. All High reserved. http://www.chki.net coupled plasma mass spectrum etry. International Journal of M ass Spectrum etry, 208 89-98

- Galy A, Yoffe O, Janney P, Williams R, Cbquet C, Akard O, Halicz I, Wadhwa M, Hutcheon I Ramon E and Carignan J 2003 Magnesium isotope heterogeneity of the isotopic standard SRM 980 and new reference materials for magnesium-isotope ratio measurements Journal of Analytical Atomic Spectrum etry 18 1352 – 1356
- Gao Y J. Snow JF, Casey JF and Yu JB. 2011 Cooling-induced fractionation of mantle Li isotopes from the ultraslow-spreading GakkelRidge Earth and Planetary Science Letters 301: 231-240
- Glazner AF, Bartley M, Coleman DS, Gray W and Taylor RZ 2004 A replatons assembled over millions of years by amalgamtion from sam llm agn a chambers' GSA Today 14: 4-7
- Halama R, M dDonough W F, Rudnick RL and Bell K. 2008 Tracking the lithium isotopic evolution of the mantle using carbonatiles. Earth and Planetary Science Letters 265 726-742
- Halliday AN, Lee DC, Christensen JN, Rehkamper M, YiW, Luo X, Hall CM, Ballentine CJ. Pettke T and Stirling C. 1998 Applications of multiple collectoe ICPM S to cosmochem istry, geochemistry, and paleoceanography Geochimica et Cosmochimica Acta 62: 919-940
- Handler MR, Baker JA, Schiller M, Bennett VC and Yaxley CM. 2009 Magnesium stable isotope composition of Earth's uppermantle Earth and Planetary Science Letters 282 306-313
- Heimann A, Beard BL and Johnson CM. 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high ⁵⁶ Fe/⁵⁴ Fe ratios in siliceous igneous rocks Geochinica et Cosmochinica Acta 72: 4379 – 4396
- Hu ang F, G lessner J, Ianno A, Lund strom C and Zhang Z. 2009 a M agnesium isotopic composition of igneous rock standards measured by M.C.-ICP-M.S. Chemical G eobgy, 268 15–23
- Huang F, Lundstrom CC, Glessner J, Ianno A, Boudreau A, Li J, Ferre EC, Marshak S and DeFrates J. 2009b. Chemical and isotopic fractionation of wet andes ite in a temperature gradient. Experiments and models suggesting a new mechanism of magna differentiation Geochinica et Cosmochinica Acta, 73, 729-749.
- Huang F, Chakraborty P, Lundstrom CC, Hohn den C, Glessner JJG, Kieffer S and Lesher CE. 2010 Isotope fractionation in silicate mells by thermal diffusion. Nature 464 396-400
- Huang F, Zhang Z, Lundstrom CC and Zhi X. 2011. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim. Cosmochim. Acta, in press
- Hu ang SC, Farka^N J and Jacobsen SB. 2010. Calcium isotopic fractionation between clin opyroxene and orthopyroxene from mantle peridotites Earth and Planetary Science Letters, 292 337-344
- Ionov DA and Seitz HM. 2008 Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings M antle sources vs eruption histories Earth and Planetary Science Letters 266: 316-331
- Jeffcoate A.B, Elliott T, Kasemann SA, Ionov D, Cooper K and Brooker R. 2007. Li isotope fractionation in peridotites and mafic mells Geochimica et Cosmochimica Acta, 71: 202 – 218
- John son CM and B eard BL 1999 C orrection of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrum etry. ht J M ass Spectrum, 193: 87-99
- Johnson CM, Beard BL and Albar de E 2004 Overview and general concepts In Johnson CM, Beard BL and Albarede F (eds). Geochem istry of Non-Traditional Stable Isotopes Reviews in Mineralogy and Geochem istry, 55 1-22
- Kin caid M and Hafskjol B 1994 Thermal diffusion factors for the Lennard-Jones/spline system. Molecular Physics 82: 1099 – 1114
- Knight KB, KitaNT, Mendybaev RA, Richter FM, Davis AM and Valley
 JW. 2009. Silicon isotopic fractionation of CAI-like vacuum evaporation residues. Geochimica et Cosmochimica Acta, 73: 6390 6401

Kyser TK, Lesher CE and Walker D. 1998. The effects of liquid

- liquids Contributions to M ineralogy and Petrobegy, 133 373-381 Lesher CE and Walker D. 1986 Solution properties of silicate liquids
- from them al diffusion experiments Geochinica et Cosmochinica A cta, 50: 1397–1411
- Lesher CE and Walker D. 1991. Them al diffusion in petrology. In Ganguly J (ed). Diffusion, A tom ic Ordering and Mass Transport Advances in Physical Geochemistry 8 New York: Springer-Verlag 396-451
- LiWQ, Jackson SE, Pearson NJ A lard O and ChappellBW. 2009 The Cu isotopic signature of granites from the Lachlan Fold Belt SE Australia Chemical Geology 258: 38-49
- LiWQ, Jackson SE, Pearson N J and Graham S 2010. Copper isotopic zonation in the Northparkes porphyry Cu–Au deposit SE Australia Geochimica et Cosmochimica Acta 74: 4078 – 4096
- LiWY, Teng FZ, Ke S, Rudnick RL, Gao S, Wu FY and Chappell BW. 2010 Heterogeneous magnesium isotopic composition of the upper continental crust Geochimica et Cosmochimica Acta 74 6867-6884
- Li XF and Liu Y. 2010 First-principles study of Ge isotope fractionation during adsorption on to Fe (III)-oxyhydroxides surfaces Chemical Geobgy, 278 15-22
- Liu SA, Teng FZ, He Y, Ke S and Li S 2010 Investigation of magnesium isotope fractionation during granite differentiation In plication for Mg isotopic composition of the continental crust Earth and Planetary Science Letters, 297: 646-654
- Liu Y, Spicuzza M J. Craddock PR, Day MD, Valley JW, Dauphas N and Taylor LA. 2010. Oxygen and iron isotope constraints on nearsurface fraction ation effects and the composition of lunar mare basalt source regions. Geochim. Cosmochim. Acta, 74 6249-6262
- Ludwig C. 1856 Diffusion zwischen ungleich enwann ten Orten gleich zusammen-gesetzter I? sungen Sitzber Akad Wiss Wien, Math.natum, 20 539
- Lunds trom CC, Chauss idon M, H su i AT, Kelem en P and Z imm erman M. 2005. Observations of L i isotopic variations in the T rin ity ophiolite E viden ce for isotopic fractionation by diffusion during m antle m elting Geochim ica et Cosm och im ica A cta, 69 735-751
- Lundstrom CC. 2009. Hypothesis for the origin of convergent margin granitoids and Earth's continental crust by thermal migration zone refining Geochim ica et Cosmochim ica Acta 73: 5709-5729
- Lunds trom CC, Marshak S, DeFrates J and Mabon J 2011. A ltern ative processes for developing fabric and mineral compositional zoning in in trusive rocks International Geology Review (in press)
- Magna T, Wiechert U, Stuart FM, Halliday AN and Harrison D. 2011 Combined LiHe isotopes in Icekand and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle Geochimica et Cosmochimica Acta, 75: 922 – 936
- MarchalCN, T buk P and A lbar de F. 1999. Precise an alysis of copper and zinc isotopic compositions by plasma-source mass spectrometry Chemical Geology, 156 251 – 273
- Marks MAW, Rudnick RL, McCammon C, Vennemann T and Mark IG. 2007. A rrested kinetic Li isotope fractionation at the margin of the Ilmaussaq complex. South Greenland: Evidence for open-system processes during final cooling of penalkaline igneous rocks. Chemical Geology, 246 207–230
- Marschall HR, Strandmann PAEPv, Seitz HM, Elliott T and Niu Y. 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs Earth and Planetary Science Letters, 262 563 – 580
- M illot R, Guerrot C and Vigier N. 2004. A ccurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. G eostandards and Geoanalytical Research 28: 153-159
- MorigutiT and Nakamuna E 1998. High–yield linhium separation and precise isotopic analysis for natural rock and aqueous samples Chemical Geology, 145 91–104
- Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod ko VS and Araif S. 2004. Lithium isotopic systematics of the mantlederived ultramafic xenoliths. Implications for EM 1 origin. Earth and

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. 217 245-261 http://www.cnki.net

- Norman MD, Yaxley GM, Bennett VC and Brandon AD. 2006 Magnesium isotopic composition of olivine from the Earth, Mars Moon and pallasite parent body. Geophysical Research Letters 33. L15202 doi 10 1029/2006GL026446 2006
- Ottolin i L Laporte D. Raffone N. Devida LL and Fevre BL. 2009. New experimental determination of Li and B partition coefficients during upper mantle partial melting Contributions to Mineralogy and Petro logy 157: 313-325
- Park in son IJ and A reulus RJ 1999. The redox state of subduction zones h sights from arc-peridotites Chemical Geology, 160 409-423
- Park in son IJ Hamm ond SJ Jam es RH and Rogers NW. 2007. Hightemperature lithium isotope fractionation. Insights from lithium isotope diffusion in magnatic systems Earth and Planetary Science Letters 257: 609-621
- Pearson NJ GriffinWL and O'Reilly SY. 2006 The isotopic composition of magnesium in mantle olivine Records of depletion and m etasomatism. Chem ical Geology, 226: 115-133
- Pogge von Strandmann PAE, James RH, van Calsteren P, Gslason SR and Burton KW. 2008. Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic is lands Earth and Planetary Science Letters 274 462-471
- Poitrasson F and F reydier R. 2005. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS Chemical Geology, 222: 132-147
- Poitrasson F. 2006. On the iron isotope homogeneity level of the continental crust ChemicalGeology, 235: 195-200
- Poitrasson F, Roskosz M and Corgne A. 2009. No iron isotope fractionation between molten alloys and silicate melt to 2000°C and 7. 7GPa Experimental evidence and implications for planetary differentiation and accretion Earth and Planetary Science Letters 278: 376-385
- Polyakov VB 1997. Equilibrium fractionation of the iron isotopes Estimation from MLssbauer spectroscopy data Geochin. Cosmochin. Acta 61: 4213-4217
- Polyakov VB and M ineev SD. 2000. The use of M? ssbauer spectroscopy in stable isotope geochem istry Geochem istry Geophysics Geosystems, 64 849-865
- Polyakov VB 2009. Equilibrium iron isotope fractionation at core-mantle boundary conditions Science, 323 912-914
- QiuL, Rudnick RL, Ague JJ and McDonough WF. 2011. A lithium isotopic study of sub-green schist to green schist facies metamorphism in an accretionary prism, New Zea land Earth and Planetary Science Letters, 301: 213-221
- Richter FM, Liang Y and Davis AM. 1999. Isotope fractionation by diffusion in molten oxides Geochemistry Geophysics Geosystems 63 2853- 2861
- Richter FM, Davis AM, DePaolo DJ and Watson EB. 2003 Isotope fractionation by chemical diffusion between molten basalt and rhyolite Geochimica et Cosmochimica Acta 67: 3905 - 3923
- Richter FM. 2004 Timescales determining the degree of kinetic isotope fractionation by evaporation and condensation. Geochimica et Cosm och in ica Acta 68: 4971 – 4992
- R ichter FM, W atson EB, M endybaev R, Teng FZ and Janney P. 2008 Magnesium isotope fractionation in silicate melts by chemical and the sm al diffusion. Geoch in ica et Cosm och in ica Acta, 72 206 – 220
- Richter FM, Watson EB, Mendybaev R, Dauphas N, Georg B, Watkins J and Valley J 2009. Isotopic fractionation of the major elements of molten basalt by chemical and the mal diffusion Geochimica et Cosm och in ica Acta 73: 4250 - 4263
- Rudnick RL and Ionov DA. 2007. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction. Earth and Planetary Science Letters, 256 278-293
- Rustad JR and Yin QZ 2009. Iron isotope fractionation in the Earth's bwermantle. Nature Geoscience, 2: 514-518
- SaalAE, HauriEH, Cascio ML, Van Orman JA, Rutherford MC and CooperRF. 2008 Volatile content of lun ar volcanic glasses and the presence of water in the M oon's interior Nature 454 192-195 Publishing Further constraints on the Li isotopic composition of the continental

- Schauble EA, Rossman GR and Taylor HPJ 2001. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochinica et Cosmochinica A cta, 65 2487-2497
- Schauble EA. 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements Geochin. Cosmochin. Acta 71: 2170-2189
- Schauble EA. 2011. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide carbonate and hexaaquam agnesium (2+) crystals Geochim. Cosm och in. Acta 75 844- 869
- Schoenberg R, Marks MAW, Schuessler JA, Blanckenburg Fv and Mark l G. 2009. Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilmaussaq C on plex, South G reen and Ch em ical G eo bgy, 258 65-77
- Schuessler JA, Schoenberg R, Behrens H and Blanckenburg F. 2007. The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt Geochimica et Cosm och in ica Acta 71: 417 – 433
- Schuessler JA, Schoenberg R and Sign arsson O. 2009. Iron and lithium isotope systematics of the Hekka volcano, Iceland Evidence for Fe isotope fractionation during magna differentiation. Chemical Geology, 258 78-91
- Sedaghatpour F and Teng FZ 2010 Magnesium isotopic composition of the Moon Gold schmidt Conference ab stract
- Shahar A, Young ED and Manning CE. 2008. Equilibrium hightem perature Fe isotope fractionation between fayalite and magnetite An experimental calibration Earth and Planetary Science Letters, 268: 330-338
- Shahar A, Ziegler K, Young ED, Ricolleau A, Schauble EA and Fei Y. 2009. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation Earth and Planetary Science Letters 288: 228-234
- Sharp ZD, ShearerCK, McKeegan KD, Barnes JD and Wang YQ. 2010 The chlorine isotope composition of the moon and implications for an anhydrousmantle Science 329 1050-1053
- Shen B, Jacobsen B, Lee CTA, Y in QZ and M orton DM. 2009. The Mg isotopic systematics of granitoids in continental arcs and in plications for the role of chem ical weathering in crust formation. PNAS, 106 20652 - 20657
- Soret C 1879. Sur l tat d quilibre que prend au point de vue de sa concentration une dissolution saline primitivement homoh ne dont deux parties sont port es des temp ratures diffrentes Arch Sci Phys Nat, 2: 48-61
- Tang YJ Zhang HF, Nakamura E, Moriguti T, Kobayash i K and Ying JF. 2007. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for mel⊨rock interaction in the considerably thinned lithospheric mantle Geochimica et Cosmochimica Acta 71: 4327 - 4341
- Teng FZ McDonough WF, Rudnick RL, Dalpe C, Tomascak PB, Chappell BW and Gao S. 2004 Lithium isotopic composition and concentration of the upper continental crust Geochimica et Cosmochinica Acta 68: 4167 - 4178
- Teng FZ, McDonough WF, Rudnick RL and Wing BA. 2006 Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota American Mineralogist 91: 1488-1498
- Teng FZ, Wadhwa M and Helz RT. 2007. In vestigation of magnesium isotope fractionation during basalt differentiation In plications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters, 261: 84-92
- Teng FZ, Rudnick RL, McDonough WF, Gao S, Tomascak PB and Liu YS 2008 a Lithium isotopic composition and concentration of the de ep continental crust Chemical Geology, 25547-59
- Teng FZ, Dauphas N and Helz RT. 2008b. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320: 1620-1622

Teng FZ, Rudnick RL, McDonough WF and Wu FY. 2009. Lithium isotopic systematics of A-type granites and their mafic enclaves

crust ChemicalGeobgy, 262 415-424

- Teng FZ, LiWY, Ke S, Marty B, Dauphas N, Huang S, Wu FY and Pourn and A. 2010a. Magnesium isotopic composition of the Earth and chondrites G eochim. Cosmochim. Acta 74: 4150-4166
- Teng FZ, LiWY, Rudnick RL and Gardner LR 2010b. Contrasting lithium and magnesium isotope fractionation during continental weathering Earth and Planetary Science Letters 300 63-71
- Tipper ET, Louvat P, Capmas F, Galy A and Gaillardet J 2008 Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method. Chemical Geology, 257: 65 - 75
- Tomasack PB 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: Johnson CM, Beard BL and Albarede F (eds). Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy and Geochemistry, 55 153-195.
- Tomascak PB, Tera F, Hek RT and Walker RJ 1999. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multi-collector sector ICP-MS. Geochimica et Cosmochimica Acta 63: 907 – 910.
- Tomascak PB, Langnuir CH, Roux PJI and Shirey SB 2008 Lithium isotopes in global mil-ocean ridge basalts. Geochimica et Cosnochimica Acta 72: 1626 – 1637
- U rey HC. 1947. The therm odynam ic properties of isotopic substances J Chem. Soc (London): 562-581
- Vlast lic J Koga K, Chauvel C, Jacques G and T louk P. 2009 Survival of lithium isotopic heterogeneities in them antle supported by HMU-lavas from Rumutu Island, Austral Chain Earth and Planetary Science Letters 286: 456-466
- Wakler AJ Platzner I and Freedman PA. 1993. Isotope ratio measurement of lead neodymium and neodymium-samarium mixtures; hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer Journal of Analytical Atomic Spectrometry, & 19-23
- Walker JA, TeipelAP, Ryan JG and Syracuse E. 2009. Light elements and Li isotopes across the northern portion of the Central American subduction zone Geochemistry. Geophysics, Geosystems 10, 0.06516, doi: 10.1029/2009GC.002414
- Watkins M, DePaob DJ Huber C and Ryerson FJ 2009 Liquid composition-dependence of calcium isotope fractionation during diffusion in molten silicates Geochim. Cosmochim. Acta, 73: 7341 - 7359
- Weyer S and Schwieters JB 2003 High precision Fe isotope measurements with high mass resolution MC-ICPMS. Mass Spectrumetry, 226 355-368
- W eyer S, Anbar A D, Brey G P, M unker C, M ezger K and W ood land A B 2005. Iron isotope fractionation during planetary differentiation Earth and Planetary Science Letters, 240: 251 – 264
- Weyer S and Ionov DA. 2007. Partial melting and melt percolation in the mantle. The message from Fe isotopes Earth and Planetary Science Letters, 259, 119-133
- Weyer S, Anbar AD, Brey GP, M nker C, Mezger K and Wood land AB 2007. Fe-isotope fractionation during partial melting on Earth and the current view on the Fe-isotope budgets of the planets (reply to the comment of Poitrasson F and to the comment of Beard BL and Johnson CM on "Iron isotope fractionation during planetary differentiation" by Weyer S, Anbar AD, Brey GP, M nker C, Mezger K, and Wood land AB). Earth and Planetary Science

L etters, 256 638 – 646

- Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ and Boyle EA. 2008. Natural fractionation of ²³⁸U/²³⁵ U. Geochinica et Cosmochinica Acta 72: 345 – 359
- Wiechert U and Halliday AN. 2007. Non-chord ritic magnesium and the origins of the inner terrestrial planets. Earth and Planetary Science Letters, 256, 360 - 371.
- Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S and Burg JP. 2004. Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304 1656-1659
- William s HM, Peslier AH, M cC amm on C, Halliday AN, Levasseur S, T eutsch N and Burg JP. 2005 Systematic iron isotope variations in m antle rocks and m inerals. The effects of partial melting and oxygen fugacity Earth and Planetary Science Letters, 235–435–452
- W on bach er F, Eisenhauer A, Heuser A and Weyer S. 2009 Separation of M g. Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-M S and double-spike TMS. Journal of A nalytical A tom ic Spectrum etty, 24 627–636
- W under B, M eixn er A, Rom er RL, Feen stra A, Schettler G and H einrich W. 2007. Lithium isotope fractionation between Li-bearing staurolite, Limica and aqueous fluids An experimental study Chemical Geology, 238 277 – 290
- X iao Y, Romer RL, Hoefs J and Meixner A. 2007. Li and B isotope characteristics of ultrahigh-pressure metamorphic rocks from Sulu China. Goldschmidt Conference abstract
- YangW, Teng FZ and Zhang HF. 2009 Chondritic magnesium isotopic composition of the terrestrial mantle A case study of peridotite xenoliths from the North China craton Earth and Planetary Science Letters 288 475-482
- Young ED and Galy A. 2004 The isotope geochemistry and cosmochemistry of magnesium. In: Johnson CM, Beard BL and Albarede F (eds). Geochemistry of Non-Traditional Stable Isotopes Reviews in Minerabgy and Geochemistry. Minerabgical Society of America, Washington D. C, 197 – 230
- Young ED, TonuiE, Manning CE, Schauble E and Macris CA. 2009 Spinel-olivine magnesium isotope themometry in the mantle and in plications for the Mg isotopic composition of Earth. Earth and Planetary Science Letters, 288 524-533
- Zack T, Tomascak PB, Rudnick RL, Dalpe C and M dDonough WF. 2003. Extremely light Li in orogenic eclogites The role of isotope fractionation during dehydration in subducted oceanic crust Earth and Planetary Science Letters, 208–279–290
- Zhang H F, Debule E, Tang Y J and Ying JE. 2010. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula. North China Craton Li isotopic evidence Contributions to Mineralogy and Petrology. 160 261-277
- Zhao X, Zhang H, Zhu X, Tang S and Tang Y. 2010. Iron isotope variations in spinel peridotite xenoliths from North China Craton In plications for mantle metasomatism. Contrib M ineral Petrol, 160: 1-14
- Zhu XK, Guo Y, O'N ions RK, Y oung ED and Ash RD. 2001. Isotopic homogeneity of iron in the early solar nebula. Nature 412: 311 - 313
- Zhu XK, GuoY, Williams R JP, O'N ions RK, Matthews A, Belshaw NS Canters GW, Waal ECD, Weser U, Burgess BK and Salvato B 2002. Mass fractionation processes of transition metal isotopes Earth and Planetary Science Letters 200 47-62