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Abstract

We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ)
submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having
the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most
have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/
(230Th) up to 2.97, while four samples are in 226Ra–230Th equilibrium within error. All KEJ samples have high (231Pa)/
(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high
231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole
fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphi-
bole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as
Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/
(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra–230Th equilibrium, forming rough posi-
tive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these
correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent
fluid addition at the slab–wedge interface.

The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity;
such a model will also produce significant 238U–230Th and 226Ra–230Th disequilibrium in erupted lavas, meaning that signa-
tures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the
238U–230Th, 226Ra–230Th, and 235U–231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the man-
tle wedge (reflecting variations in U/Th, daughter–parent ratios, fO2, and thermal structure), followed by modification by
magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different
U-series parent–daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than
a few thousand years imposed by models whereby 226Ra excess is derived from the slab.
� 2010 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Convergent margins are thought to be the major tec-
tonic setting for forming juvenile continental crust and
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recycling of subducted materials back to the convecting
mantle. Hydrous fluid is transferred from the subducting
slab to the overriding mantle wedge, lowering the solidus
of mantle peridotite and inducing partial melting of hy-
drous mantle peridotite (e.g., Gill, 1981). Indeed, fluxes
from slabs (i.e., hydrous fluids and sediment melts) clearly
dominate the trace element geochemical properties of con-
vergent margin lavas (e.g., Turner et al., 1996, 1997, 1998,
2000, 2001, 2003; Elliott et al., 1997; Regelous et al.,
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1997; Turner and Hawkesworth, 1997, 1998; Heath et al.,
1998; Chabaux et al., 1999; Bourdon et al., 1999; Sigmars-
son et al., 2002; George et al., 2003, 2004). An important
goal of subduction zone magmatism remains understanding
the processes and time scales of melting, slab-mantle trans-
fer and magma ascent and differentiation.

Several intermediate nuclides within the U-series decay
chains have half-lives comparable to the time-scales of mag-
matic processes (e.g., 231Pa (t1/2 = 32.8 kyr), 230Th (t1/2 =
75.7 kyr), and 226Ra (t1/2 = 1.6 kyr)). The differing geochem-
ical behaviors of these elements during dehydration and melt-
ing processes result in deviations of the activity ratios of the
various parent–daughter pairs from secular equilibrium. Be-
cause parent–daughter disequilibrium returns to an activity
ratio of unity after five half-lives of the daughter nuclide,
U-series data provide a unique tool to constrain the time-
scales and thus processes of magmatism in subduction zone
settings, including the transfer time-scale of slab components
to the overlying mantle wedge. By using three longer
lived parent–daughter pairs (238U–230Th, 230Th–226Ra, and
235U–231Pa) in parallel, increased constraints on the interpre-
tations of each system exist, leading to improved identifica-
tion of the processes forming the disequilibria.

Numerous U-series disequilibrium surveys on young arc
lavas have produced two important observations: (1) while
the majority of young samples have (238U)/(230Th) greater
than unity, a significant number do have (238U)/(230Th)
<1; and (2) most young samples have (226Ra)/(230Th) and
(231Pa)/(235U) >1 (e.g., Gill and Williams, 1990; Turner
et al., 1996, 1997, 1998, 2000, 2001, 2003, 2006; Pickett
and Murrell, 1997; Turner and Hawkesworth, 1997, 1998;
Heath et al., 1998; Bourdon et al., 1999; Chabaux et al.,
1999; Turner and Foden, 2001; Sigmarsson et al., 2002;
Thomas et al., 2002; Dosseto et al., 2003; Peate and
Hawksworth, 2005; Asmerom et al., 2005; Dufek and
Cooper, 2005; DuFrane et al., 2006; Garrison et al., 2006;
Reagan et al., 2006; Huang and Lundstrom, 2007; Toothill
et al., 2007; Touboul et al., 2007). However, although these
features are observed universally in arcs, there remains
substantial debate about which processes and mechanism
generate these disequilibria. Namely, the main issue is
whether the disequilibria that are observed in erupted lavas
reflect processes of fluid transfer at the slab–wedge interface
or whether such signatures are erased by subsequent pro-
cesses occurring within the mantle wedge during partial
melting. Answering this question is important as it dictates
whether the observed 226Ra excesses place constraints on
the time from slab to the Earth’s surface or only from some
location in the shallow mantle or even crust where reaction
between melt and coexisting minerals ceases.

Relatively few studies have focused on examining the
U-series disequilibria variations in a suite of samples from
a single volcano. However, because shallow crustal-level
magma differentiation processes can significantly modify
U-series disequilibria in young lavas (Vigier et al., 1999;
Blake and Rogers, 2005; Garrison et al., 2006; Touboul
et al., 2007; Price et al., 2007; Huang et al., 2008), studies
of single volcanic systems are needed to identify such
processes. Because determination of magma ascent rates
depends on discriminating a disequilibrium signature pro-
duced prior to shallow crustal differentiation, it is critically
important to evaluate the effect of shallow differentiation
processes on U-series disequilibria.

In this study, we present U–Th–Ra–Po and U–Pa data
from a suite of samples ranging in composition from basalt
to basaltic andesite from Kick’em Jenny (KEJ hereafter)
submarine volcano in the Southern Lesser Antilles arc. This
paper is a straightforward extension of our earlier work
documenting the large 235U–231Pa disequilibria in KEJ
lavas (Huang and Lundstrom, 2007); in that work, we
focused on the tectonic control of convergence rate in pro-
ducing 235U–231Pa disequilibrium globally in subduction
zone settings. Here our goals are to determine the effect
of magma differentiation on 238U–230Th–226Ra disequilibria
in a single volcano and to interpret the remaining U-series
disequilibria behavior in terms of mantle melting processes
in order to sort out whether signatures of slab fluid transfer
are preserved in erupted lavas. The data are then used to
constrain the timing and processes of magmatism in the
Southern Lesser Antilles and offer a guide to future model-
ing of global subduction zone volcanic processes.

2. GEOLOGICAL BACKGROUND AND SAMPLE

DESCRIPTIONS

The geological background of the Lesser Antilles arc has
been discussed extensively in the literature (Hawkesworth
et al., 1979; Speed et al., 1993; Devine and Sigurdsson,
1995; Devine, 1995; Turner et al., 1996; Heath et al.,
1998; Macdonald et al., 2000; Zellmer et al., 2003; Toothill
et al., 2007; DuFrane et al., 2009). Briefly, the Lesser Antil-
les arc is �800 km long, formed by westward subduction of
the Atlantic oceanic plate beneath the Caribbean plate
(Fig. 1). The arc can be divided into two segments, a north-
ern zone defined by portions north of Martinique and a
southern zone south thereof. The change in obliquity of
subduction along the arc results in significantly lower con-
vergence rate in the south (�1.3 cm/yr) than the north
(3.7 cm/yr) (Jarrard, 1986; Speed et al., 1993). A double
arc occurs north of Dominica, while it is not obvious in
the Southern Lesser Antilles arc (Macdonald et al., 2000).
The northern zone has a slab dip of 50–60o while the south-
ern zone ranges from a slab dip of 45–50o in the north to
almost vertical in the south (Wadge and Shepherd, 1984).
Magma production rates in the Lesser Antilles are low
(4 km3/Ma per km of arc) over the past 100,000 years,
which may be due to the slow convergence rate (Wadge
and Shepherd, 1984). Magma production is greatest in the
central arc, possibly reflecting the change in slab dip and
obliquity of subduction (Macdonald et al., 2000). The
Lesser Antilles arc has the thickest crust (�35 km) of all
island arcs (Gill, 1981; Plank and Langmuir, 1998).

Geochemical studies have shown that primary magmas
erupted in the Lesser Antilles arc result from melting of de-
pleted mid-ocean ridge basalt (MORB)-type mantle that
has been metasomatised by fluid and sediment components
derived from the subducted Atlantic oceanic slab (Turner
et al., 1996; Macdonald et al., 2000). Magma compositions
systematically vary along the arc from low-K tholeiites in
the north, to higher-K calc-alkaline lavas in the central



Fig. 1. Geologic background of Kick’em Jenny submarine volcano and the Lesser Antilles arc. Revised from Devine and Sigurdsson (1995)
and Turner et al. (1996).
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region and alkaline lavas in the south. The along-arc varia-
tion of major element compositions is mirrored in trace ele-
ment and radiogenic isotopic compositions. For instance,
lavas from the Southern Lesser Antilles have lower Ba/Th
and more radiogenic Pb and Sr isotope ratios than those
of the Northern Lesser Antilles; this is interpreted to reflect
a southward increase in the relative contribution of sedi-
ment components compared to fluid components (Turner
et al., 1996). The Southern Lesser Antilles arc contains
lavas with the highest average (231Pa)/(235U) from any con-
vergent margin, likely attributable to this location having
the lowest convergence rate of any subduction zone (Turner
et al., 2006; Huang and Lundstrom, 2007).

KEJ volcano is located �9 km to the north of Grenada
in the Southern Lesser Antilles (Devine and Sigurdsson,
1995) (Fig. 1). The summit depth of KEJ volcano was sur-
veyed in 1978 as 160 m below sea level. Several eruptions in
the last century make KEJ an excellent location to study
submarine eruptions of an island arc volcano (Devine and
Sigurdsson, 1995). Our samples were collected by dredging
from the crater environment of Kick’em-Jenny submarine
volcano (12o300N, 61o380W) in 1972 (Sigurdsson and
Shepherd, 1974; Devine and Sigurdsson, 1995); these sam-
ples were most likely derived from 20th century eruptions,
principally the 1939 eruption. Therefore, the ageing effect
after eruption on 238U–230Th–226Ra and 235U–231Pa data
should be negligible. Fourteen whole rock samples with
compositions ranging from basalt to basaltic andesite were
selected for U-series disequilibrium analysis. Note that
(231Pa)/(235U) and U–Th contents for all but two of these
samples (porphyritic olivine basalts KEJ010 and KEJ017)
were reported in Huang and Lundstrom (2007). Further
details of the mineralogy and petrology of the KEJ lavas
can be found in Devine and Sigurdsson (1995).

3. ANALYTICAL METHODS

After the samples were crushed into �5 mm sized chips,
fresh pieces without visible alteration or secondary veins
were handpicked and cleaned in an ultrasonic bath for
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10 min with ultra-pure water 3 times to remove any adhered
seawater. Rock chips were then powered in methanol using
an agate mortar.

Trace element compositions of KEJ010, KEJ017, KEJ
100, KEJ101, KEJ103, and KEJ1976 were measured at
the GeoAnalytical Lab of Washington State University
using a Sciex Elan model 250 Inductively Coupled Plasma
Mass Spectrometry (ICP-MS) (Table 1) (Knaack et al.,
1994; Knaack, 2003). Long term precision is better than
5% (RSD) for the rare earth elements and 10% for the other
trace elements based on analyses of USGS and interna-
tional rock standards. Sr isotope ratios were measured by
a Nu-Plasma HR multi-collector ICP-MS (MC-ICP-MS)
in the Dept. of Geology at the University of Illinois at
Urbana-Champaign (UIUC). Sr was purified using Sr-Spec
resin with a procedural blank <1 ng. Instrumental mass
fractionation was corrected using an exponential law
and 86Sr/88Sr = 0.1194. Measurement of BCR-2 gave
87Sr/86Sr = 0.705005 ± 40 (2r, n = 3).
Table 1
Major (wt.%) and trace element (ppm) compositions of six

KEJ010 KEJ017 KEJ100

SiO2 52.58 47.58 51.74
TiO2 0.87 1 0.86
Al2O3 19.44 16.59 19.37
Fe2O3 8.40 9.29 8.71
MnO 0.18 0.15 0.13
MgO 4.87 11.85 5.38
CaO 9.71 11.13 9.72
Na2O 3.17 2.07 3.17
K2O 1.11 0.51 0.93
P2O5 0.24 0.26 –
Total 100.33 100.17 100.01

Sc 28.8 55.1 37.6
Rb 46.0 14.2 33.3
Sr 343 266 333
Y 22. 6 18.5 21.2
Zr 96 49 86
Nb 4.94 2.77 5.09
Cs 1.80 0.65 1.26
Ba 206 95 186
La 9.21 4.11 8.80
Ce 18.9 9.5 18.3
Pr 2.43 1.40 2.43
Nd 10.4 7.0 10.6
Sm 2.84 2.25 2.88
Eu 0.98 0.85 1.05
Gd 3.31 2.90 3.44
Tb 0.61 0.53 0.60
Dy 4.13 3.55 3.98
Ho 0.89 0.76 0.85
Er 2.59 2.02 2.37
Tm 0.38 0.29 0.35
Yb 2.51 1.83 2.26
Lu 0.41 0.29 0.36
Hf 2.71 1.58 2.49
Ta 0.34 0.19 0.34
Eu*a 1.05 0.98 1.03

a Eu* = EuN/(SmN � GdN)1/2, N is the value normalized
elements data are from Devine and Sigurdsson (1995).
U, Th, Pa, and Ra concentrations were determined using
the Nu-Plasma MC-ICP-MS at UIUC by isotope-dilution
methods involving enriched isotopic spikes of 228Ra,
229Th, 233Pa, and 236U. Separations for U and Th were
based on chromatographic methods using anion exchange
resin. Ra was separated using cation exchange resin
(AG50-X8) followed by two Sr-spec resin columns to re-
move Ba. The Pa separation followed procedures given in
Regelous et al. (2004). Typical procedural blanks are
<0.1 fg for 226Ra and 231Pa, and <10 pg for Th and U.
210Po was analyzed by isotope dilution alpha spectrometric
methods using 209Po as a spike. Chemistry and plating of
210Po were done at UIUC with alpha spectrometry per-
formed at the University of Iowa. Chemical separation
for Po follows procedures given in Reagan et al. (2005,
2006).

The accuracy of 238U–230Th and 230Th–226Ra activity ra-
tio determinations was checked by measurements of rock
standards ATHO and BCR-2; the accuracy of 235U–231Pa
Kick’em Jenny samples.

KEJ101 KEJ103 KEJ1976

48.56 53.85
1.13 0.75

18.49 19.48
9.30 8.08
0.11 0.16
7.79 4.39

12.11 9.19
2.40 3.51
0.68 1.13
– –

100.57 100.54

58.8 18.2 52.5
20.2 25.7 22.8

287 485 300
21.0 23.1 21.8
64 112 70
3.86 10.08 4.18
0.65 1.01 0.71

135 273 151
6.10 19.38 6.75

13.5 36.5 14.5
1.90 4.35 2.02
8.9 17.1 9.2
2.70 3.76 2.77
1.01 1.25 1.02
3.34 3.95 3.54
0.62 0.66 0.63
4.15 4.30 4.21
0.85 0.93 0.89
2.34 2.61 2.45
0.34 0.40 0.36
2.17 2.63 2.28
0.33 0.42 0.35
2.01 2.98 2.17
0.25 0.65 0.28
0.97 0.99 1.00

by C1-chondrite (McDonough and Sun, 1995). Major



Table 2
U-series data, Sr isotopes, Mg#, Ba/Th, Sr/Th, Ho/Sm, and K/Rb of KEJ submarine volcano.

Samples U
(ppm)

(234U)/
(238U)

Th
(ppm)

U/
Th

(230Th)/
(238U)

(230Th)/
(232Th)

(238U)/
(232Th)

226Ra
(fg/g)

(226Ra)/
(230Th)

Pa
(fg/g)

(231Pa)/
(235U)

210Po
(dpm/g)

(226Ra)/
(210Po)

87Sr/
86Sr

Mg# Ba/
Th

Sr/
Th

Ho/
Sm

K/
Rb

RB07 0.982 0.995 2.515 0.390 0.875 1.036 1.184 862 2.970 833 2.61 1.95 0.97 0.705900 45.6 73.0 123.7 0.249 353
Duplicate 834 2.61
Duplicate 863 2.70
Average 843 2.64
RB47 4.876 0.993 10.780 0.452 0.793 1.088 1.372 1247 0.954 2975 1.88 2.47 1.11 0.705326 54.4 38.1 40.9 0.179 115
Duplicate 1266 0.968 2975 1.88
Duplicate 1273 0.974
Average 1262 0.965 2975 1.88
RB51b 1.813 0.989 3.863 0.469 0.728 1.037 1.424 787 1.763 1343 2.28 0.706326 54.0 60.6 102.3 0.299 196
RB64 2.184 0.998 5.120 0.427 0.778 1.008 1.296 605 1.053 1679 2.36 1.20 1.11 0.705592 64.2 44.6 75.5 0.230 170
Duplicate 589 1.025
Average 597 1.039
RB65 2.007 0.987 5.302 0.379 0.866 0.994 1.148 568 0.967 1724 2.64 1.41 0.89 0.705573 62.0 44.9 80.1 0.223 176
Duplicate 560 0.954
Average 564 0.961
RB79 0.535 0.996 1.252 0.427 0.815 1.058 1.298 308 2.089 271 1.56 0.705384 61.2 85.3 225.2 0.321 232
RB82 0.929 0.998 1.830 0.508 0.707 1.089 1.540 493 2.220 704 2.33 0.705675 65.2 74.6 174.0 0.311 263
KEJ010 1.875 0.996 3.810 0.492 0.716 1.068 1.492 805 1.813 1395 2.29 0.706373 53.7 53.9 89.6 0.314 89
Duplicate 1.904 0.992 3.858 0.494 0.690 1.032 1.496 813 1.830 1376 2.22
Duplicate 1.908 0.996 3.861 0.494 0.689 1.032 1.498 1405 2.26
Average 1.896 0.995 3.843 0.493 0.698 1.044 1.495 809 1.822 1392 2.26

KEJ017 0.577 1.000 1.146 0.503 0.726 1.108 1.526 315 2.227 417 2.23 0.705636 71.8 83.4 232.2 0.336 299
Duplicate 0.575 1.001 1.138 0.505 0.725 1.110 1.532 317 2.253 422 2.26
Duplicate 0.589 0.999 1.168 0.504 0.726 1.110 1.529 308 2.130
Average 0.580 1.000 1.151 0.504 0.726 1.109 1.529 313 2.20 420 2.25
KEJ100 1.574 0.998 3.141 0.501 0.708 1.076 1.520 1036 2.749 1123 2.21 1.98 1.14 0.705806 55.3 61.3 109.8 0.294 232
Duplicate 1.572 3.161 0.497 0.712 1.075 1.510 1032 2.727
Duplicate 1.539 3.126 0.492 0.719 1.074 1.494 1033 2.762
Average 1.562 3.143 0.497 0.713 1.075 1.508 1034 2.746
KEJ100*a 1.840 1.00 3.090 0.595 0.63 1.14 1292 2.15
KEJ101 1.013 1.005 2.000 0.507 0.699 1.074 1.536 530 2.212 755 2.29 1.26 0.92 0.705762 62.6 65.3 138.9 0.317 279
KEJ103 3.149 0.998 6.743 0.467 0.897 1.271 1.417 1031 1.080 2106 2.06 3.59 0.63 0.705605 52.1 37.6 67.0 0.246 365
Duplicate 954 0.999
Average 993 1.040
KEJ899 1.689 0.989 3.365 0.502 0.703 1.071 1.523 790 1.969 1266 2.30 0.705801 51.9 63.4 114.1 0.273 200
KEJ1976 1.173 0.992 2.360 0.497 0.705 1.062 1.506 593 2.124 878 2.29 0.705844 64.6 128.7 0.320
ATHO 2.234 0.995 7.471 0.299 1.138 0.907 0.906 854 0.999
2stdev 0.024 0.006 0.033 0.003 0.031 0.07 0.09 29 0.033
BCR-2 1.696 0.997 5.907 0.287 1.002 0.872 0.870 551 1.00
2stdev 0.003 0.002 0.001 0.000 0.003 0.008 0.000 28 0.05
RGM-1 4.18

a U-Th data of KEJ100* are from Gill and Williams (1990) and Pa data are from Williams and Perrin (1989). Pa, U, and Th contents are from Huang and Lundstrom (2007) except KEJ010 and
KEJ017. U–Th–Pa–Ra data were analyzed by isotope-dilution methods using MC-ICP-MS. ATHO was measured 5 times for U and Th and 3 times for Ra. BCR-2 was measured 3 times for U
and Th and 6 times for Pa. Po content was measured by alpha counting.
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determination was verified using BCR-2 (Table 2). Dupli-
cated analyses of ATHO show typical external precision
for U concentrations of �1%, Th �0.4%, and 226Ra
�3%, while the 231Pa reproducibility is estimated as 5%
based on measurements of BCR-2 (2d). The U, Th and
231Pa concentrations and (230Th/232Th) of these two stan-
dards are in good agreement with recommended values in
the literature (Prytulak et al., 2008; Sims et al., 2008;
Koornneef et al., 2010). Duplicate U-series analyses for
samples also show good agreement (Table 2). Accuracy of
210Po analysis was checked by measuring USGS rhyolite
standard RGM-1; the activity for 210Po in RGM-1 is
4.18 ± 0.06 (dpm/g, 2d), consistent with the result
(4.23 ± 0.07 dpm/g) given in Reagan et al. (2005). The error
of a single sample analysis was estimated to be 9% to 15%
(2d) based on the number of 210Po counts (200–500) col-
lected by alpha counter.
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Fig. 2. (A) Primitive mantle normalized trace element patterns. (B)
Chondrite-normalized REE patterns. The solid bold lines are the
results of the AFC model (DePaolo, 1981). Assuming KEJ017 as
the most primitive magma, the AFC model can generally simulate
the REE patterns of the KEJ samples with F (fraction of magma
remaining in magma chamber) varying up to 60%. The parameters
used in the AFC model are given in Table 3. Chondrite and
primitive mantle data are from McDonough and Sun (1995); Pa
and Ra data are calculated assuming that the primitive mantle is in
U-series secular equilibrium. U and Th contents are from Table 2,
and other trace element data are from Table 1.
4. RESULTS

4.1. Major and trace elements

Compositionally, the KEJ samples range from 47.2 to
55.5 wt.% SiO2 with Mg# between 30 and 73 (Devine and
Sigurdsson, 1995; Huang and Lundstrom, 2007; Table 2).
The corresponding major and trace element compositions
of six samples not previously published are reported in
Table 1. The Sr, Ba, Rb, Zr, and Y contents of KEJ010,
KEJ017, KEJ 100, KEJ101, and KEJ103 were previously
reported in Devine and Sigurdsson (1995); the new data
presented here generally agree with these previous data.

In detail, the KEJ samples are enriched in large ion
lithophile elements (LILE, e.g., U and K) and depleted in
high field strength elements (HFSE, e.g., Ta and Nb), as
is typical for arc magmas (Fig. 2A). Notably, in contrast
with other arcs such as the Northern Lesser Antilles, Ton-
ga, and Kermadec (e.g., Turner et al., 1996, 1997), Ba con-
centrations are depleted relative to Cs, Th, and U. Ra and
Pa are also normalized to their values in a primitive mantle
in U-series secular equilibrium in Fig. 2 ; this shows that Pa
and Ra are enriched relative to many highly fluid-mobile
elements such as Ba and Rb. KEJ lavas have low Sr/Th
(41–232) and Ba/Th (37.6–85.3), compared with other arc
lavas globally (Fig. 3A and B), suggesting a larger contribu-
tion of sediment to the mantle source. Sr/Th of KEJ lavas is
generally negatively correlated with SiO2, consistent with
magma differentiation, while the variable Sr/Th in the low
SiO2 (<50 wt.%) samples more likely reflects source hetero-
geneity (Fig. 3A).

REE patterns vary from slightly light rare earth element
(LREE) enriched to strongly LREE enriched patterns
(Fig. 2B). La and Lu contents vary significantly with a
range of 9.5–36.5 ppm and 1.6–3.0 ppm, respectively, while
middle REE generally show smaller ranges than LREE and
heavy REE. Eu does not show a significant anomaly rela-
tive to Sm and Gd with Eu* ranging from 0.97 to 1.05
(Table 1). Similar to an important observation from
Davidson et al. (2007), KEJ lavas show a negative correla-
tion between SiO2 and Dy/Yb (Table 1), documenting the
role of amphibole fractionation in magma differentiation.
However, because Ho/Sm best captures the amphibole frac-
tionation signature (the amphibole partition coefficients
peak at DHo) and also negatively correlates with SiO2, we
use Ho/Sm as the best indicator of magma differentiation
in KEJ lavas.

4.2. Sr isotopes

All KEJ samples have moderately enriched Sr isotope
ratios with 87Sr/86Sr ranging from 0.7056 to 0.7064, consis-
tent with previously reported values for KEJ (Turner et al.,
1996) and M-series basalts from Grenada (Thirlwall et al.,
1996), but significantly higher than Northern Lesser Antil-
les lavas and Grenadan C-series basalts (Thirlwall et al.,
1996; Turner et al., 1996). This follows the inference based
on trace elements that a greater contribution of a sediment
component exists in KEJ lavas (Macdonald et al., 2000).
Furthermore, there is no correlation between 87Sr/86Sr
and magma differentiation indices such as SiO2 and Mg#,
suggesting that assimilation of sediments during magma
differentiation may be insignificant.
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4.3. U-series disequilibria

The results of U-series isotope analyses are listed in
Table 2. (234U)/(238U) of the KEJ samples are all within
error of unity, given the 2r uncertainty of �0.006 (based
on five analyses of ATHO), indicating that seawater con-
tamination/alteration is insignificant. Based on the premise
that these KEJ samples were most likely erupted in the past
100 years, post-eruption decay of (238U)/(230Th), (231Pa)/
(235U), and (226Ra)/(230Th) should be negligible. All sam-
ples except KEJ103 have (226Ra)/(210Po) within errors of
unity. This could be taken to mean that ages might be



202 F. Huang et al. / Geochimica et Cosmochimica Acta 75 (2011) 195–212
greater than 120 years; however it is also consistent with the
observation that most young arc lavas erupt with (226Ra)/
(210Po) = 1 (Turner et al., 2004; Berlo and Turner, 2010).
The exception, KEJ103, has (226Ra/210Po) of 0.63 and
(226Ra)/(230Th) of 1.04.

The (226Ra)/(230Th) of these samples show wide varia-
tion with 10 out of 14 KEJ samples having (226Ra)/
(230Th) from 1.76 to 2.97, indicating general youthfulness
(erupted within the last 8000 yrs); the other four samples
(Rb47, Rb64, Rb65, and KEJ103) have (226Ra)/(230Th)
within 4% of unity, which we conservatively take to indicate
secular equilibrium. The KEJ lavas can be divided into two
groups based on their (226Ra)/(230Th) behavior and this
grouping holds for several other geochemical properties
as well. Except for RB07, high 226Ra excess samples are
characterized by having higher Ho/Sm, K/Rb, Sr/Th, Ba/
Th, and SiO2, but lower Sr contents and La/Yb (not shown)
relative to the four samples close to 226Ra–230Th equilib-
rium (Figs. 3 and 4). Combined with previous data (Turner
et al., 1996; Heath et al., 1998; Zellmer et al., 2003), our re-
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(%). Sr, Ho/Sm, and K/Rb data are from Table 1 and 2, Devine
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sults show that the positive correlation between (238U)/
(230Th) and (226Ra)/(230Th) observed in Chabaux et al.
(1999) is statistically valid (Fig. 5B).

U and Th contents of KEJ lavas measured by ICP-MS
are consistent with the isotope-dilution determinations
and generally increase with SiO2 content. U varies from
0.54 to 4.88 ppm and Th from 1.15 to 10.78 ppm, while
U/Th shows less variability ranging from 0.38 to 0.51 (Ta-
ble 2). All KEJ samples show significant 238U excess over
230Th, consistent with previous results for KEJ lavas (Gill
and Williams, 1990; Turner et al., 1996). The (230Th)/
(238U) (0.698–0.728 excepting Rb07 of 0.875) of samples
with high 226Ra excess are generally lower than that of
the four samples close to 226Ra–230Th equilibrium (0.778–
0.897) (Table 2 and Fig. 5). Combining all KEJ samples ex-
cept KEJ103 with samples from adjacent Ile de Caille island
(Turner et al., 1996) forms a linear correlation across the
(230Th)/(232Th)–(232Th)/(238U) equiline diagram (Fig. 5A).
It is unclear why KEJ103 has higher (230Th)/(232Th) (1.27)
and (230Th)/(238U) (0.897) than other KEJ samples.

The KEJ samples have very high 231Pa excesses with
(231Pa)/(235U) ranging from 1.56 to 2.64; there is no obvious
difference between 231Pa excess in the samples with high
226Ra excesses and those near 226Ra–230Th equilibrium
(Fig. 5C). KEJ010 and KEJ017 have similar (231Pa)/
(235U) of 2.26 and 2.25, respectively, consistent with the
high (231Pa)/(235U) ratios previously observed in the sam-
ples from KEJ and other volcanoes from the Southern Les-
ser Antilles arc (Pickett and Murrell, 1997; Turner et al.,
2006; Huang and Lundstrom, 2007). Notably, although
RB07 is the most differentiated sample based on high
SiO2 and low Mg#, it has the highest 231Pa excess (2.64)
and 226Ra excess (2.97). (231Pa)/(235U) is not correlated with
magma differentiation indices such as Ho/Sm (Fig. 6B), K/
Rb, La/Yb, Mg#, and SiO2 content, indicating that magma
differentiation does not significantly modify (231Pa)/(235U)
of the KEJ samples. The correlation between (231Pa)/
(235U) and (230Th)/(238U) does not follow the trend of addi-
tion of U-enriched hydrous fluid (Fig. 5D). Finally, KEJ
samples have both high (231Pa)/(235U) and (238U)/(230Th),
and the highest average (231Pa)/(230Th) of all arc lavas pro-
viding a conundrum to simple models of U-rich fluid
addition.
5. DISCUSSION

Because time-dependent magma differentiation pro-
cesses can significantly modify the U-series disequilibria in
young lavas (e.g., Price et al., 2007; Touboul et al., 2007;
Huang et al., 2008), we first focus on assessing how the
magma differentiation process affects U-series disequilibria
in KEJ lavas. We then apply our KEJ data to the problem
of constraining the time-scales and processes of magma
generation and ascent in a subduction zone having a low
convergence rate.

5.1. Magma differentiation in KEJ submarine volcano

Few if any convergent margin lavas can be considered to
reflect primary magmas which were in equilibrium with
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mantle peridotite. Indeed, most have undergone significant
amounts of fractional crystallization or assimilation, lower-
ing the Mg# and increasing SiO2. Variations of SiO2 con-
tent and Mg# in this suite of KEJ samples clearly
indicate that all have undergone significant amounts of dif-
ferentiation. K/Rb is negatively correlated with Sr, which
cannot be explained by fractional crystallization of mafic
minerals such as amphibole and clinopyroxene. The lack
of negative Eu anomaly and the positive correlation be-
tween Sr and SiO2 argue against a major role of plagioclase
during closed system differentiation. Therefore, an open
system AFC process is required to explain the geochemical
variations in the KEJ samples, similar to that proposed to
explain differentiation trends from other Lesser Antilles
volcanoes (Thirlwall et al., 1996; Defant et al., 2001;
Toothill et al., 2007). The negative correlation between
SiO2 and Ho/Sm or Dy/Yb suggests that the crystallizing
mineral assemblage contains considerable amphibole
(Davidson et al., 2007). Applying a crustal assimilant with
appropriate geochemical features and assuming the assimi-
lation to crystallization ratio (r) is 0.2 with amphibole being
the main crystallizing phase (80%) (Table 3), the AFC tra-
jectories using KEJ017 as a representative of the parent
magma can satisfactorily explain the variations of Sr con-
tents with Ho/Sm and K/Rb in the KEJ samples (Fig. 4)
as well as generally reproduce the REE patterns in
Fig. 2B. However, we emphasize that the primitive magma,
crystallizing assemblage, and assimilant are poorly con-
strained, such that the purpose of these models is to show
that matches to observed data can be obtained from reason-
able assimilants and phase assemblages making AFC a
self-consistent although not unique explanation.

5.2. The effect of AFC process on U-series disequilibria in the

KEJ lavas

Because the U-series nuclides in most rock forming miner-
als are highly incompatible (e.g., Blundy and Wood, 2003), it
is commonly thought that U-series disequilibria are not sig-
nificantly affected by fractional crystallization processes
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(e.g., Turner et al., 2003). However, recent numerical models
show that assimilating old crustal material along with ageing
can significantly modify U-series disequilibria of magmas
(Blake and Rogers, 2005; Touboul et al., 2007; Huang
et al., 2008). Therefore, the effect of magma differentiation
on U-series disequilibria in the KEJ samples needs to be as-
sessed before the disequilibria can be used to constrain the
time scales of slab-to surface transfer.

An important observation is that KEJ samples with high
(226Ra)/(230Th) have higher Ho/Sm than those with
226Ra–230Th near equilibrium, while (231Pa)/(235U) in both
types of samples are similar (Fig. 6). The difference in
Ho/Sm is unlikely to reflect an addition of a slab derived
Ra-rich fluid because Ho and Sm are essentially fluid-
immobile. As mentioned above, the coherent changes in
the REE pattern with SiO2 contents suggest that the varia-
tion in Ho/Sm mostly reflects crustal level differentiation
via amphibole fractionation. Therefore, to first order, the
relationship between Ho/Sm and (226Ra)/(230Th) should re-
flect magma differentiation processes. As illustrated in
Fig. 6, time-dependent magma differentiation can generally
reproduce the features of near equilibrium 226Ra–230Th and
low Ho/Sm in the evolved samples from a less-differentiated
magma having higher 226Ra excess and Ho/Sm. While
highly simplified, this time-dependent AFC model still use-
fully shows the possible effects of magma differentiation on
U-series disequilibria. Less differentiated samples have sim-
ilar 231Pa excess and slightly lower (230Th)/(238U) relative to
more differentiated samples, suggesting that the AFC pro-
cess effects these disequilibria little (for 230Th–238U) to none
(for 231Pa–235U). The simplest interpretation is that the age-
ing effect is negligible for 238U–230Th and 235U–231Pa but
significant for 226Ra–230Th data.

Coupled variations in Sr/Th, Ba/Th, and 226Ra excess in
arc lavas have often been regarded to reflect fluid addition
processes (e.g., George et al., 2004 and references therein).
The large variations of Sr/Th and Ba/Th in low SiO2

(�50 wt.%) arc lavas indeed require contribution of slab
components to the mantle wedge, while decreases in Sr/Th
and Ba/Th with increasing SiO2 must be attributable to mag-
ma differentiation (Fig. 3A and B). Notably, (226Ra)/(230Th)
of global arc lavas also decreases with increasing SiO2

(Fig. 3E), leading Huang et al. (2008) to propose that time-
dependent AFC processes could alternatively explain the
correlations between Sr/Th, Ba/Th, and (226Ra)/(230Th).

Our arguments for differentiation creating these correla-
tions rather than fluid addition follow these lines. If the
226Ra excess in KEJ lavas were from fluid addition, the po-
sitive correlations should be more clearly observed in the
less evolved samples with higher Mg#. As shown in
Fig. 7, the four samples with both high Mg# (>60) and
226Ra excess have variable Sr/Th (225–139) and Ba/Th
(85–65), but nearly constant (226Ra)/(230Th) (2.09–2.22);
no correlation with Sr/Th and Ba/Th is apparent. In con-
trast, for the low Mg# (<60) samples, (226Ra)/(230Th) cor-
relates well with Sr/Th and Ba/Th, fully consistent with
the time-dependent AFC process proposed by Huang
et al. (2008). Furthermore, the samples with 226Ra–230Th
close to equilibrium have lower Ho/Sm which for KEJ sam-
ples is an index of greater degrees of differentiation. While
we do not dispute that Sr, Ba, Ra, and other fluid-mobile
elements are added to the mantle wedge at the slab–wedge
interface, there is no evidence supporting the 226Ra excess
observed in KEJ lavas being produced by this process.
5.3. The role of in-growth melting in generating U-series

disequilibria in subduction zones

Because of the greater mobility of U and Ra relative to
Th in hydrous fluids having higher fO2 or salinity (Keppler



Table 3
Partition coefficients and concentrations of trace elements and U-series nuclides (ppm) in the initial magma and assimilant.

Rb K Ba Sr La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Plg/meltD 0.010 0.050 0.264 2.360 0.072 0.055 0.055 0.043 0.039 0.258 0.038 0.025 0.029 0.020 0.018 0.010 0.010 0.007
Cpx/meltD 0.001 0 0 0.063 0.099 0.158 0.237 0.335 0.535 0.621 0.697 0.758 0.800 0.818 0.817 0.802 0.778 0.748
Amph/meltD 0.2 0.58 0.16 0.298 0.116 0.185 0.277 0.396 0.651 0.657 0.933 1.00 0.967 1.03 0.851 0.816 0.787 0.698
Bulk D 0.161 0.47 0.156 0.481 0.025 0.039 0.066 0.106 0.222 0.310 0.358 0.425 0.487 0.529 0.555 0.563 0.560 0.548
Initial
magma

14.2 4232 95 172, 266 4.11 9.53 1.40 6.98 2.25 0.85 2.90 0.53 3.55 0.76 2.02 0.29 1.83 0.29

Assimilant 142.9 11900 829 638 52.18 91.56 9.40 30.23 4.64 1.39 3.82 0.57 3.08 0.62 1.79 0.39 1.97 0.34

U Th Pa Ra (238U)/
(232Th)

(230Th)/
(232Th)

(238U)/
(230Th)

(226Ra)/
(230Th)

(231Pa)/
(235U)

Plg/meltD 0.0006 0.003 0 0.0304
Cpx/meltD 0.002 0.0029 0 0
Amph/meltD 0.0041 0.0039 0 0.0128
Bulk D 0.00354 0.00376 0 0.0133
Initial
magma

0.58 1.15 4.24 � 10�7 4.25 � 10�7 1.53 1.11 1.377 3 2.25

Assimilant 10.16 26.80 7.43 � 10�6 2.97 � 10�6 1.15 0.994 1.155 1 2.25

Plagioclase, plg; clinopyroxene, cpx; amphibole, amph. Plg/meltD are from (Bindeman et al., 1998; Zajacz and Halter, 2007); Cpx/meltDREE are from
experiment 4EHE in Hill et al. (2000). Cpx/meltD for U, Th, and Sr are from experiment Tr9 in Lundstrom et al. (1994). Cpx/meltD for K and Ba are
zero. Amph/meltD for Rb, K, Ba, and Sr from Latourrette et al. (1995), and REEs from Bottazzi et al. (1999). Amph/meltDRa is calculated from
Blundy and Wood (2003), while Plg/meltDRa is calculated from Eq. (6) in Fabbrizio et al. (2009) assuming Xn = 0.65 and T = 1050 �C. DPa for all
minerals is zero, which does not significantly change the result of the AFC model. Bulk D = Amph/meltD � 0.8 + plg/meltD � 0.1 + cpx/meltD � 0.1.
(226Ra)/(230Th) of the initial magma and assimilant is 3 and 1, respectively. The initial magma uses variable Sr contents to account for the
heterogeneity of primitive magma. Curve 1 in Fig. 7A uses Sr of 172 ppm and Sr/Th of 150, while curve 2 uses the Sr and Th contents of KEJ017.
Other trace element and U-series data for the initial magma use the data of the most primitive sample, KEJ017. Trace element compositions
except U of the assimilant are calculated assuming the assimilant is a 40% batch melt of the most differentiated sample RB47 with 80% amphibole,
10% clinopyroxene, and 10% plagioclase as the solidus phases. U/Th and (230Th)/(232Th) of the assimilant are from Rb65. Because (231Pa)/(235U)
does not vary with differentiation indices, (231Pa)/(235U) of the assimilant and primitive magma are fixed at 2.25.
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and Wyllie, 1990; Keppler, 1996; Bali et al., in press), ex-
cesses of 238U and 226Ra over 230Th in arc lavas are most
often attributed to the process of hydrous fluid addition
from the slab (Turner et al., 2003 and references therein).
If so, then the time scale from the time of slab fluid addition
to eruption must be <8000 yrs, placing tight constraints on
magma ascent velocities (e.g., Turner et al., 2000, 2001,
2003; George et al., 2003, 2004). Yet the large 231Pa excesses
over 235U observed in many arc settings provide a contra-
diction to this simple model of fluid addition. If Pa, as a
HFSE element, has similar immobility to Th and Nb, then
an excess of 235U should occur over 231Pa. However, 235U
excess is extremely rare, having been observed in only a
few samples from Tonga and Kermadec to date (Bourdon
et al., 1999).

Indeed, 231Pa excesses are ubiquitously observed in
young magmas in all tectonic settings including convergent
margins (e.g., Pickett and Murrell, 1997; Bourdon and
Sims, 2003 and references therein; Dosseto et al., 2003;
Lundstrom, 2003 and references therein; Turner et al.,
2006). A key point to make is that if in-growth melting pro-
cesses (based on differing residence times of U and Pa in the
melting column) produce the 231Pa–235U disequilibria as
has been suggested by numerous workers (Pickett and
Murrell, 1997; Thomas et al., 2002; Dosseto et al., 2003;
Turner et al., 2006; Huang and Lundstrom, 2007), then dis-
equilibria between all other U-series parent–daughter pairs
having differing solid/meltD must also be produced during
this process. For instance, any in-growth based process
forming (conservatively) 100% excess of 231Pa requires a
235U residence time of order the half life of 231Pa, or
32.8 kyr. Therefore, any 226Ra excess produced at the slab
but participating in the melt generation process cannot sur-
vive the melting column residence time dictated by the
231Pa. Only if a multi-stage fluid addition process occurs
to add 226Ra independently of melting could the signature
be preserved; even then it would be subject to mixing with
the 226Ra–230Th produced in the melting column.

Below we use a series of in-growth melting models to
reproduce U-series disequilibria of the KEJ samples,
including the inclined linear trend between (230Th)/(232Th)
and (238U)/(232Th) on the U-Th equiline diagram, the high
231Pa excesses coexisting with high (238U)/(230Th), and the
226Ra excesses.

5.3.1. The inclined linear trend between (230Th)/(232Th) and

(238U)/(232Th)

Linear trends on the U–Th equiline diagram between
(230Th)/(232Th) and (238U)/(232Th) have been observed in
several subduction zones including New Britain (Gill
et al., 1993), Mariana (Elliott et al., 1997), Vanuatu (Turner
et al., 1999), and the Aegean (Zellmer et al., 2000). While
such trends have been most commonly interpreted to reflect
the time of decay since addition of U-rich fluid to the man-
tle wedge (Elliott et al., 1997), alternative explanations also
exist for this observation. For instance, addition of a U-rich
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fluid with variable amounts of Th to a homogenous mantle
source or a constant addition of U-rich fluid to the wedge
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could represent a 21 kyr isochron, assuming simple hori-
zontal U-Th fractionation followed by ageing (arrow (1)
in Fig. 8A). However, the high 231Pa excesses observed rule
out this interpretation because the time-scale required for
enough 231Pa in-growth should be much longer than
21 kyr and a simple parent–daughter fractionation and age-
ing effect cannot explain the 231Pa excess. Instead, an
in-growth melting process (involving a source with a
231Pa-deficit (arrow (2) in Fig. 8B) or in 235U–231Pa equilib-
rium (arrow (3) in Fig. 8B)) is required to produce the 231Pa
excesses and this process will also affect the 238U–230Th
disequilibria as illustrated by our modeling.

While in-growth melting processes are always invoked
for explaining 231Pa excesses, this interpretation has not of-
ten been integrated with the 238U–230Th and 226Ra–230Th
observations in arc lavas. For instance, if 231Pa excess is
generated by a longer residence time of 235U in the melting
column, then the same residence time will apply to 238U and
thus also affect 230Th–238U. Only if solid/meltDU were coinci-
dentally identical to solid/meltDTh would this process have no
effect on 230Th–238U disequilibrium. Experimental studies
on partition coefficients of U and Th between mantle min-
erals and silicate melt have shown that solid/meltDU/Th is
strongly dependant on oxygen fugacity (fO2), decreasing
from >1 to <1 with increasing fO2 (e.g., Beattie, 1993;
Lundstrom et al., 1994) and this could play an important
role in the generation of 238U–230Th disequilibria during
melting (Huang and Lundstrom, 2007). Arrow (3) in
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(Parkinson and Arculus, 1999) or in spinel lherzolite at
shallow depths (Tepley et al., 2004) where solid/meltDU/

Th < 1 , 238U excesses are produced by in-growth melting
of the mantle source regardless of the initial 238U excess
as shown by arrow (2) and (3) in Fig. 8A. Therefore, theo-
retically, if the time-scale of mantle melting is long enough,
whether 238U excesses are initially created at the slab inter-
face makes no difference as the melting process occurring in
the overlying melting column controls the 238U excesses
that are observed in most arc lavas.

One caveat to this conclusion is that 238U–230Th or even
231Pa–235U developed at the slab–wedge interface could still
be important in the specialized case of arcs having high con-
vergence rates and melting rates (e.g., Tonga). Because the
melting rate is low in a slow subduction zone due to the de-
creased water reaching the melting area (Cagnioncle et al.,
2007; Huang and Lundstrom, 2007), the effect of residence
time based partial melting on U-series disequilibria is more
prominent in the Southern Lesser Antilles than in a fast
subduction zone. Therefore, although the Southern Lesser
Antilles arc is special in terms of the great contribution of
sediment composition to the mantle wedge, the initial U-
series disequilibria in the mantle wedge produced by adding
fluid or sediment should not significantly affect the disequi-
libria observed in the KEJ samples. For the purpose of
demonstrating an end-member model, where U-series dis-
equilibria are solely produced by in-growth melting, we
simply assume that the mantle wedge beneath the Southern
Lesser Antilles arc is in U-series secular equilibrium prior to
partial melting. In this regard, adding Th or U bearing flu-
ids to the mantle source is not further considered for
explaining the linear trend between (230Th)/(232Th) and
(238U)/(232Th).

Both flux melting and adiabatic decompressional melting
can occur in the mantle wedge at arcs (e.g., Cagnioncle et al.,
Table 4
Parameters used in in-growth melting models. Partition coefficient data
et al. (2006). Bulk partition coefficients are calculated only using olivine

Partition coefficients Olivine Orthopyroxene

Mineral mode 52 28
DU 6.0 � 10�5 7.8 � 10�3

DTh 9.5 � 10�5 3.0 � 10�3

DPa 6.0 � 10�8 7.8 � 10�6

DRa 5.8 � 10�8 6.0 � 10�7

Physical parameters Unit

Melt density, qm kg/m3

Solid density, qs kg/m3

Melt degree, F –
Porosity, u –
Amount of convergence, d km
Subduction rate, vs cm/yr
Matrix velocity, W cm/yr
Melting rate, C kg/m3/yr

Fluid composition per increment (ppm) in flux melting models (Thomas

dU/dF d232Th/dF d230Th/dF
0.2 4.07 � 10�2 9.83 � 10�
2007). A number of in-growth melting models have been pro-
posed to explain U-series disequilibria in young arc lavas.
These models include dynamic melting (DM) (Bourdon
et al., 2003; Dosseto et al., 2003; Turner et al., 2003, 2006),
flux melting (FM) (Thomas et al., 2002; Bourdon et al.,
2003), and reactive porous flow (RPF) (Spiegelman and Elli-
ott, 1993; Turner et al., 2006; Huang and Lundstrom, 2007);
all can generally reproduce U-series disequilibria in arc lavas
with appropriate parameters applied including a large varia-
tion of U/Th in the mantle source (Table 4 and Fig. 9). We
vary solid/meltDU but keep solid/meltDTh constant to assess the
effect of fO2 variations on 238U–230Th disequilibrium. These
models are essentially similar to the one used in Beier et al.
(2010) where in-growth melting of an oxidized and heteroge-
neous mantle was called upon to explain the 238U and 226Ra
excesses in the Manus Basin lavas �150 km behind the New
Britain volcanic arc.

The results of three in-growth models consistently show
that, if solid/meltDU is higher than solid/meltDTh at low
fO2, 230Th excess can be produced, while decreasing
solid/meltDU/Th leads to increasing (238U)/(230Th), producing
significant 238U excesses over 230Th in the melt when
solid/meltDU/Th < 1 (Fig. 9). In Fig. 9A, the KEJ data define
a shallower slope than the grid lines of models using differ-
ent U/Th but similar solid/meltDU/Th. This may be due to
overestimating solid/meltDU/Th for a source with high
U/Th. As shown in a recent experimental study, increasing
fO2 not only decreases solid/meltDU/Th, but also enhances the
fluid mobility of U but not Th (Bali et al., in press). There-
fore, a high U/Th source is more likely coupled with a low
solid/meltDU/Th in the modeling. Based on the results of
in-growth melting models, we propose that an alternative
explanation for the inclined linear trend in U–Th equiline
diagram could be mixing between two melts derived
from heterogeneous mantle sources with variable U/Th
are from Blundy and Wood (2003) and the compilation in Turner
and pyroxene data.

Clinopyroxene Spinel Bulk

17 3
1.8 � 10�2 <10�5 5.2 � 10�3

2.1 � 10�2 <10�5 4.4 � 10�3

1.8 � 10�9 0 2.1 � 10�6

4.1 � 10�6 0 8.9 � 10�7

Value Comments

2800
3340
0.1
0.002
90
1.3 From Speed et al. (1993)
– Assuming W = vs

– C = Fqs vs/d

et al., 2002)

dPa/dF dRa/dF
7 3.38 � 10�8 2.04 � 10�6
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and fO2. This mixing process could accompany magma dif-
ferentiation in the shallow crust as discussed above. We do
agree that significant fractionation of U and Th may occur
at the slab–wedge interface and this is likely to produce the
variation in U/Th observed; however, such elemental frac-
tionation does not imply that 238U–230Th disequilibrium
created by this process is preserved in erupted lavas.

5.3.2. Coexistence of high 231Pa excesses with high 238U

excesses

KEJ provides an interesting case study as it combines
the highest 231Pa excesses in arcs globally with large 238U
excesses. However, the coexistence of high 231Pa and 238U
excesses is not unique in global arc lavas. Lavas from
nearby volcanoes in the Southern Lesser Antilles (e.g.,
St. Vincent and Ile de Caile) (Turner et al., 2006), Ija in
Sunda (Turner et al., 2006), and Vesuvius in southern
Italy (Avanzinelli et al., 2007) are also characterized by
having similar features. Given that the majority of young
oceanic arc lavas have 238U excesses and 231Pa excesses
(Fig. 5D), understanding the generation of combined high
231Pa and 238U excesses may provide important insights
into rates of slab-flux transfer and partial melting of the
mantle wedge.

Globally, there is no simple positive correlation between
(230Th)/(238U) and (231Pa)/(235U) in arc lavas if the South-
ern Lesser Antilles samples are included. Instead, the global
dataset can be divided into three end-member groups which
can be represented by the Southern Lesser Antilles
(with high 231Pa and 238U excesses), Tonga (with high
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238U excesses but low 231Pa excesses or deficits), and some
continental arcs (with 230Th and 231Pa excesses), respec-
tively (Fig. 5D). As an end-member arc, the Southern Les-
ser Antilles has the slowest subduction rate and highest
231Pa excesses, while the Tonga arc, the other end-member,
has the fastest subduction rate and lowest (231Pa)/(235U). If
the melting rate of the mantle mainly reflects the water flux
added from the subducted slab, and thus is a linear function
of subduction rate (Huang and Lundstrom, 2007), in-
growth melting processes at low melting rates could pro-
duce the high 231Pa excesses regardless of the initial
(231Pa)/(235U) (61). As mentioned above, the 238U excesses
could also be due to in-growth melting of the mantle wedge
with or without initial 238U excesses from the slab if
solid/meltDU/Th in the melting column is less than 1. As
shown in Fig. 9D, the results of the RPF model using var-
ious matrix velocities and values for solid/meltDU/Th are gen-
erally consistent with the (231Pa)/(235U) versus (230Th)/
(238U) trend. The FM and DM models can also reproduce
the KEJ trend with appropriate parameters applied. For
the case of Tonga, while the observation of (231Pa)/(235U)
<1 in a few samples requires a recent U-rich flux to the
mantle wedge (Bourdon et al., 1999), many of the Tonga
samples have slight 231Pa excess, suggesting that in-
growth melting overprints the initial 231Pa deficit of the
source (Bourdon et al., 1999; Turner et al., 2006). For
some continental arc lavas, in-growth melting with garnet
or Al-rich clinopyroxene as residual mineral(s) best
explains 230Th and 231Pa excesses (Wood et al., 1999;
Blundy and Wood, 2003). The majority of arc lavas have
combined 238U and 231Pa excesses (but with smaller ex-
cess compared to KEJ), similarly reflecting the effect of
in-growth melting of the heterogeneous mantle wedge
with the variable initial U-series daughter–parent ratios,
U/Th, fO2, and melting rate (as a function of a physical,
thermal and petrologic parameters such as subduction
rate, mantle potential temperature, and slab water
content).
5.3.3. 226Ra excesses in arc lavas

In-growth melting processes in the mantle (McKenzie,
1985; Spiegelman and Elliott, 1993) have been called upon
to explain 226Ra–230Th, 231Pa–235U, and 238U–230Th dis-
equilibria within “dry” tectonic settings such as MORB
(e.g., Lundstrom, 2003 and references therein) and OIB
(e.g., Bourdon and Sims, 2003 and references therein).
However, such processes have not been invoked to explain
226Ra excesses in arc lavas because they cannot readily ex-
plain the positive correlations between 226Ra excesses and
Sr/Th or Ba/Th. In order to reconcile the 231Pa excesses
with 226Ra excesses in arc lavas, many authors have pro-
posed that in-growth of 231Pa is followed by rapid melt
extraction in order to preserve 226Ra excesses produced
by Ra-rich fluid addition (Thomas et al., 2002; Bourdon
et al., 2003; Dosseto et al., 2003; Turner et al., 2003,
2006). However, because any in-growth melting process will
produce 226Ra excess during the time it produces 231Pa and
238U excesses, a later, second stage 226Ra-rich fluid addition
from the slab is not needed to explain the creation of 226Ra
excesses.
Based on the discussion above, we propose the alterna-
tive explanation that 226Ra excesses in arc lavas mostly
reflect in-growth processes during melting (e.g., either in-
growth melting or diffusion based melting and reaction)
(Feineman and DePaolo, 2003; Van Orman et al., 2006;
Huang and Lundstrom, 2007) and do not simply reflect slab
fluid transfer and rapid ascent. This is consistent with the
general observation of large 231Pa and 226Ra excesses in
many subduction zone lavas (e.g., Dosseto et al., 2003;
Turner et al., 2006; Huang and Lundstrom, 2007);
furthermore, evidence supporting the fluid addition process
can better be explained by the positive correlations between
226Ra excess and Ba/Th and Sr/Th) resulting from time-
dependent magma differentiation at shallow crustal depths
(Huang et al., 2008). This conclusion leads to relaxing the
temporal constraints on magma ascent inferred by 226Ra
excesses. If this conclusion is applicable to the global arc
settings, the time-scales for slab-flux transfer and magma-
tism in convergent margins are no longer constrained to
be <8000 yrs and are probably more similar to the half-lives
of 231Pa (32.8 kyr) or 230Th (75.7 kyr).
6. CONCLUSIONS

Lavas from KEJ submarine volcano in the Southern
Lesser Antilles arc have high 231Pa excesses over 235U as
well as high 238U and 226Ra excesses over 230Th. The high
231Pa excesses are best explained by in-growth melting pro-
cesses occurring in the mantle wedge in a low convergence
rate setting. This in-growth melting process can also explain
the high 238U and 226Ra excesses if solid/meltDU/Th < 1 in the
oxidizing mantle wedge. Samples with large 226Ra excess
have relatively higher Ho/Sm compared with those having
226Ra–230Th near equilibrium. While (226Ra)/(230Th) fol-
lows the commonly observed positive correlation with
either Sr/Th or Ba/Th, the relationship with REE data
are not consistent with the 226Ra excess simply reflecting
fluid addition from the slab. Instead, it more likely reflects
an open system magma differentiation process as indicated
by the negative correlations of Sr with Ho/Sm and K/Rb.

Given that 231Pa excesses are observed universally among
arcs, we propose that in-growth based processes probably
play a more important role in producing 238U and 226Ra ex-
cesses in arc lavas than previously acknowledged. In-growth
melting of a heterogeneous mantle wedge with variable initial
conditions (e.g., U/Th and daughter-pair ratios), fO2, ther-
mal structure, and matrix velocity can account for the dis-
equilibria in 238U–230Th, 230Th–226Ra, and 235U–231Pa
observed in convergent margins. Furthermore, the
226Ra–230Th disequilibria produced by this partial melting
process can be significantly modified by the later time-depen-
dent magma differentiation processes, resulting in the corre-
lations between U-series data and many other geochemical
parameters (e.g., 226Ra excesses vs. Sr/Th and Ba/Th) and
the inclined linear trend between (230Th)/(232Th) and
(238U)/(232Th). Therefore, 226Ra excess generation due to re-
cent fluid addition is not needed to explain these correlations
and the temporal constraint on magmas going from slab to
surface in <8000 yrs likely needs to be relaxed. Our estimated
time-scales of magmatism and flux transfer from the slab
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range from tens of thousands years up to < several millions
years as constrained from 10Be data in arc lavas (e.g.,
Sigmarsson et al., 1990, 2002).
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