

Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials

Sha **Chen** (1), Yuchen **Liu** (1), Jingya **Hu** (1), Zhaofeng **Zhang** (2), Zhenhui **Hou** (1), Fang **Huang** (1) and Huimin **Yu** (1)*

(1) CAS Key Laboratory of Crust–Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China

(2) State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, The Chinese Academy of Sciences, Guangzhou, 510640, China

* Corresponding author. e-mail: huy16@ustc.edu.cn

In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP-1M resin and then measured by MC-ICP-MS. Instrumental mass bias was corrected using the “sample-standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high-precision Zn isotope data were obtained with an intermediate measurement precision better than $\pm 0.05\text{\textperthousand}$ ($\delta^{66}\text{Zn}$, 2s) over a period of 5 months. The $\delta^{66}\text{Zn}_{\text{JMC-Lyon}}$ mean values of eighty-four and fourteen drilled powders from two nuggets were $0.11 \pm 0.02\text{\textperthousand}$ and $0.12 \pm 0.02\text{\textperthousand}$, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their $\delta^{66}\text{Zn}$ values were in agreement with most previously published data within 2s. The $\delta^{66}\text{Zn}$ values of most of the rock reference materials analysed were in the range 0.22–0.36%, except for GSP-2 ($1.07 \pm 0.06\text{\textperthousand}$, $n = 12$), NOD-A-1 ($0.96 \pm 0.03\text{\textperthousand}$, $n = 6$) and NOD-P-1 ($0.78 \pm 0.03\text{\textperthousand}$, $n = 6$). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.

Keywords: zinc isotopes, NIST SRM 683, multi-collector inductively coupled plasma-mass spectrometry, rock reference materials, isotope fractionation.

Received 08 Jun 15 – Accepted 08 Oct 15

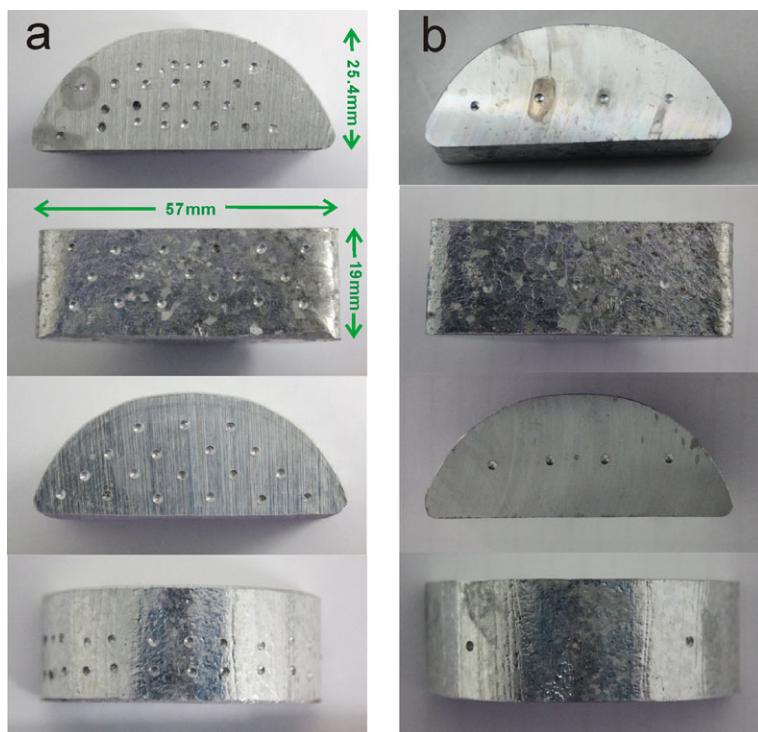
Dans cette étude, l’homogénéité de l’isotope de zinc dans le matériau de référence NIST SRM 683 était examinée par la mesure de la signature isotopique en Zn micro foré poudres d’échantillons provenant de deux pépites métalliques. Zinc a été purifié en utilisant une résine AG MP-1M, puis mesurée par MC-ICP-MS. Biais de masse instrumentale était corrigée en utilisant la méthode de bracketing de l’échantillon-étalon et “empirical external normalisation” avec Cu dopage. Après avoir évalué les effets potentiels des différentes fractions de la masse de l’acide et des différentes matrices, les données isotopiques de Zn de haute précision ont été obtenus avec une précision de mesure intermédiaire meilleure que $\pm 0.05\text{\textperthousand}$ (de $\delta^{66}\text{Zn}$, 2s) sur une durée de 5 mois. Les valeurs moyennes de $\delta^{66}\text{Zn}_{\text{JMC-Lyon}}$ en 84 et 14 poudres percés de deux pépites étaient de $0.11 \pm 0.02\text{\textperthousand}$ et $0.12 \pm 0.02\text{\textperthousand}$, respectivement, indiquant que le NIST SRM 683 est un bon matériau de référence isotopique des isotopes de Zn homogènes. Les compositions isotopiques de zinc de dix-sept matériaux de référence de roche ont également été déterminées, et leurs valeurs de $\delta^{66}\text{Zn}$ étaient en accord avec les données les plus préalablement publiées au sein de 2 écarts-types. Les valeurs de $\delta^{66}\text{Zn}$ de la plupart des matériaux de référence de roche analysés se situaient entre 0,22 à 0,36 %, sauf pour GSP-2 ($1.07 \pm 0.06\text{\textperthousand}$, $n = 12$), NOD-A-1 ($0.96 \pm 0.03\text{\textperthousand}$, $n = 6$) et NOD-P-1 ($0.78 \pm 0.03\text{\textperthousand}$, $n = 6$). Ces données détaillées doivent servir de valeurs de référence pour l’assurance de la qualité et des exercices de calibration inter laboratoires.

Mots-clés : isotopes de zinc, NIST SRM 683, spectrométrie de masse à source plasma à multi-collection, matériaux de référence de roche, le fractionnement isotopique.

Over the past decades, with the development of high-precision Zn isotope measurement, Zn isotope geochemistry has been increasingly applied in Earth and planetary sciences. For example, measuring the zinc isotopic signature was a novel tool to study the origin and evolution of the solar system because of the Zn isotopic fractionation produced during volatilisation processes (Humayun and Clayton 1995, Luck *et al.* 2005, Paniello *et al.* 2012a, b, Chen *et al.* 2013a, Day and Moynier 2014); zinc isotopes can be used to explore ore genesis because of a significant Zn isotopic fractionation during the transportation and deposition processes of hydrothermal systems (Mason *et al.* 2005, John *et al.* 2008, Kelley *et al.* 2009, Gagnévin *et al.* 2012, Chen *et al.* 2014, Pašava *et al.* 2014, Zhou *et al.* 2014a, b); and zinc isotope variation can also help track contamination sources in soils, plants and aerosols because some anthropogenic inputs have different Zn isotope signatures compared with natural sources (Cloquet *et al.* 2006, Chen *et al.* 2009a, Fekiacová *et al.* 2015, Thapalia *et al.* 2015). In addition to applications briefly described above, Zn isotopes have also been used to monitor palaeo-pH (Pons *et al.* 2011), used to study the transport mechanisms of Zn in plants (Weiss *et al.* 2005, Viers *et al.* 2007, Moynier *et al.* 2009, Jouvin *et al.* 2012) and even used in life sciences (Balter *et al.* 2013, Moynier *et al.* 2013, Larner *et al.* 2015).

The measurement methods for Zn isotopic determination improved as a result of the broadening of the range of fields of applications. Maréchal *et al.* (1999) developed a high-precision method using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The analytical method was then progressively modified to accommodate the changing matrix characteristics and element compositions of a variety of terrestrial and extra-terrestrial samples. The Zn purification procedures differed for river water, seawater, plants and rock samples (e.g., Bermin *et al.* 2006, Borrok *et al.* 2007, Chen *et al.* 2009b, Arnold *et al.* 2010, Sossi *et al.* 2015). Furthermore, to limit the problems of mass discrimination effects and time drifts during mass spectrometry measurements, different correction schemes including “sample-standard bracketing” (SSB), external normalisation and the double spike method were introduced (e.g., Maréchal *et al.* 1999, Albarède 2004, Archer and Vance 2004, Mason *et al.* 2004, Makishima and Nakamura 2013).

The use of a common international reference standard should be encouraged to facilitate the comparison of measurement results from the different laboratories performing delta-scale Zn isotopic measurements. Currently, JMC 3-0749L (JMC-Lyon or Lyon) plays this role, but is no longer commercially available, and a new international reference standard should be adopted instead. Several research


groups have started using IRMM-3702, a certified zinc nitrate solution produced by the Institute for Reference Materials and Measurements (IRMM). The $\delta^{66}\text{Zn}$ value of IRMM-3702 against JMC-Lyon was found to be $\sim 0.32\text{\textperthousand}$ (e.g., Cloquet *et al.* 2006, Petit *et al.* 2008, Borrok *et al.* 2010, Moeller *et al.* 2012). NIST SRM 683 could also be envisaged to replace JMC-Lyon as a reference measurement standard (Albarède and Beard 2004). NIST SRM 683 is a reference material produced by the National Institute of Standards and Technology as a unit of Zn nuggets ($\sim 140\text{ g}$, Figure 1). The large mass of material provided guarantees its availability for a long time. It is, however, critical to ensure that there is a sufficient degree of homogeneity for the Zn isotopic composition in the different nuggets. Tanimizu *et al.* (2002) dissolved NIST SRM 683 metal nuggets and determined the Zn isotopic composition by MC-ICP-MS (using a Nu Plasma 500 instrument), and the relative deviation of $^{66}\text{Zn}/^{64}\text{Zn}$ from JMC-Lyon Zn was reported as 1.00007 ± 0.00007 . However, whether the NIST SRM 683 Zn nuggets have a homogeneous Zn isotopic composition is still not clear. In this study, we intensively examined the homogeneity of two NIST SRM 683 metal nuggets and their Zn isotopic compositions relative to JMC-Lyon to assess whether this material can be considered a suitable reference measurement standard for future Zn isotope determination.

Furthermore, to compare the data quality of different laboratories, it is critical to measure well-studied rock reference materials, such as those from the USGS and GSJ. However, there is still a lack of systematic determinations for Zn isotopic compositions of these reference materials; indeed, some igneous rocks (e.g., RGM-1, GSP-1 and GSP-2) have no published Zn isotope data. We analysed seventeen reference materials from the USGS and GSJ, namely BCR-2, BHVO-2, BIR-1 and JB-2 (basalts), AGV-1, AGV-2 and JA-2 (andesites), RGM-1 (rhyolite), DTS-2 (dunite), W-2 (diabase), GSP-1, GSP-2 (granodiorites), G-2 (granite), QLO-1 (quartz latite), SDC-1 (mica schist) and NOD-A-1 and NOD-P-1 (manganese nodules). Our measurements provide a high-precision Zn isotope database of reference materials for interlaboratory comparison.

Experimental procedures

Materials, reagents and samples

All high-purity acids used in this study were purified by double sub-boiling distillation of the TraceMetalTM grade acids (from Thermo Fisher Scientific) and then diluted using ultrapure water (18.2 MΩ cm, same below). The Bio-Rad Poly-Prep columns and pipette tips were cleaned by being soaked in 10% v/v HCl for 48 hr (at room temperature) and

Figure 1. Photographs (with dimensions) of the two NIST SRM 683 metal nuggets drilled for Zn isotope determination.

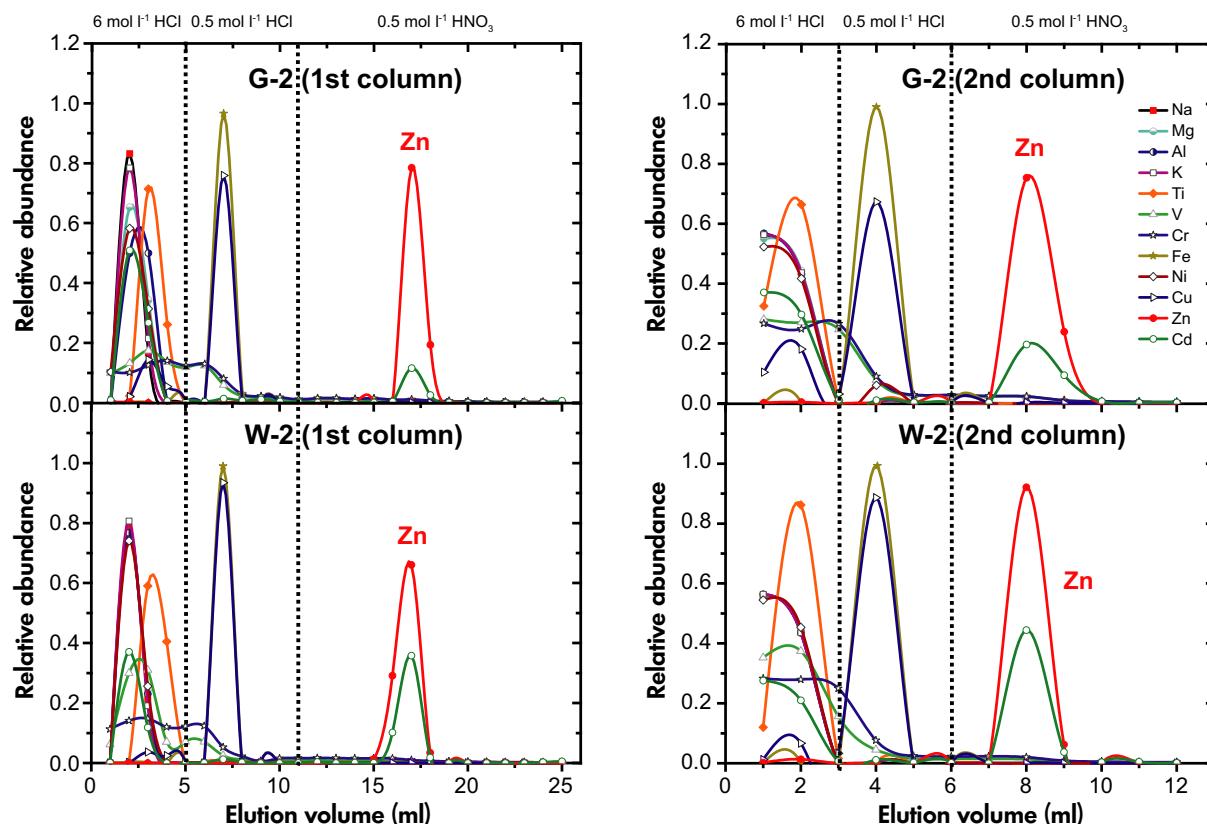
then rinsed with ultrapure water. All of the Savillex® PFA Teflon beakers were cleaned by boiling in 8 mol l⁻¹ HNO₃, 6 mol l⁻¹ HCl, 8 mol l⁻¹ HNO₃ and ultrapure water, alternately. The temperature for boiling was 130 °C and duration was 6 hr for boiling in each reagent. Between boiling in different reagents, the beakers were sufficiently rinsed using ultrapure water.

NIST SRM 683 preparation: To examine whether NIST SRM 683 is homogeneous in Zn isotopic composition, we drilled two metal nuggets using an electric hand drill with a tungsten carbide bit. Eighty-four and fourteen spots were drilled from the two nuggets (Figure 1), and around 2–3 mg of powder was removed from each spot. To avoid cross-contamination, the drill bit and the metal nugget were rinsed using 2% *m/m* HNO₃ (~ 0.2 mol l⁻¹, same below) followed by ultrapure water before and after each drilling. After rinsing, the drilled Zn metal powder was transferred to a 7-ml Savillex® PFA Teflon beaker and then dissolved in 1 mol l⁻¹ HNO₃. The solution was then diluted with ultrapure water to 2% *m/m* HNO₃ for instrumental measurement.

After checking the homogeneity of the Zn isotopes, the Zn metal nugget with the eighty-four drilled spots was dissolved in a 1-l Teflon bottle that was precleaned using

HNO₃. Before digestion, the metal nugget's surface was cleaned using diluted HNO₃ to remove possible surface contamination and then rinsed with ultrapure water. After 340 g of ultrapure water was first added to the bottle with the NIST SRM 683 metal nugget, ~ 700 g of 14 mol l⁻¹ HNO₃ was slowly added until the metal nugget was completely dissolved, producing a 0.136 g g⁻¹ Zn solution. Part of the solution was further diluted to 200 ng g⁻¹ with 2% *m/m* HNO₃ for instrumental measurement.

Preparation of whole-rock reference materials: For most reference materials, different amounts of powders (2.5–60 mg) containing ~ 4 µg Zn were digested for chemical separation. For samples with very low Zn mass fractions (RGM-1 and DTS-2), powders containing 2 µg Zn were prepared. Samples were digested in 3 ml of 22 mol l⁻¹ HF and 1 ml of 14 mol l⁻¹ HNO₃ in 7-ml Savillex® PFA beakers. After the capped beakers were placed on a hot plate at 120 °C for at least 2 days, the samples were dried and then treated with aqua regia followed by 11 mol l⁻¹ HCl for full digestion. Samples were finally dissolved in 1 ml 6 mol l⁻¹ HCl for chemical purification.


The procedure for the digestion of DTS-2 (dunite) was slightly different from the other reference materials because

of the existence of a minor amount of chromite. About 60 mg of sample powder was weighed into a Teflon bomb, followed by the addition of 22 mol l⁻¹ HF and 14 mol l⁻¹ HNO₃ in a 3:1 ratio. The sample was completely dissolved after the capped bomb was heated in an oven at 195 °C at high pressure for 2 days. After cooling, the sample was transferred to a precleaned PFA beaker and treated with the above procedure to digest thoroughly.

Chemical purification procedure

The separation procedure used in this study is modified from Maréchal *et al.* (1999) and Chen *et al.* (2009a). We used a two-step method to purify Zn isotopes from matrices, and Figure 2 shows the elution curves. The first column was a 10-ml Bio-Rad Poly-Prep column with 2 ml of AG MP-1M (100- to 200-mesh) anion-exchange resin, and the second was a 2-ml Bio-Rad Poly-Prep column with 0.5 ml of the same resin. Before loading into the column, the resin was precleaned using 7 mol l⁻¹ HNO₃, ultrapure H₂O, 6 mol l⁻¹

HCl and ultrapure H₂O, alternately. The details of the chemical purification procedure are given in Table 1. After 2 ml of AG MP-1M resin was loaded into the precleaned first column, it was washed with 0.5 mol l⁻¹ HNO₃ (30 ml) and ultrapure H₂O (15 ml) and then conditioned by 6 mol l⁻¹ HCl (8 ml). The sample was loaded to the column in 1 ml 6 mol l⁻¹ HCl. After Na, Mg, Ti, Al, Ni, K and Ca were eluted using 4 ml 6 mol l⁻¹ HCl and Fe and Cu were eluted using 6 ml 0.5 mol l⁻¹ HCl, Zn was collected with 10 ml 0.5 mol l⁻¹ HNO₃ (Figure 2). Because of the small residue of matrix elements remaining in the collected Zn solutions, a second separation step with 0.5 ml AG MP-1M (100- to 200-mesh) resin was used for further purification following the procedure described in Table 1. Before being introduced into the instrument, a split aliquot of the sample was measured to ensure that the yield of Zn, which is the ratio of Zn content before and after chemical purification, was > 99% and residual matrix elements were negligible. Then, the samples were diluted in 2% *m/m* HNO₃ to 200 ng g⁻¹ Zn solutions for isotopic determination.

Figure 2. Elution curves of two columns for G-2 and W-2, which contained 4 µg Zn. After loading samples, most matrices were eluted using 6 mol l⁻¹ HCl, and Fe and Cu were eluted using 0.5 mol l⁻¹ HCl, and then, Zn was collected with 0.5 mol l⁻¹ HNO₃. The x-axis is the volume of acid used and the y-axis is the relative abundance, which is the element content in the cut compared with the total abundance of that element. Element mass fractions were measured using ICP-MS, and Zn yields for G-2 and W-2 were 99.8% and 100%, respectively.

Table 1.
Protocol for Zn purification by anion exchange

Reagent	Volume (ml)
First column	
AG MP-1M (100- to 200-mesh) resin	2
0.5 mol l ⁻¹ HNO ₃	30
Utrapure water	15
6 mol l ⁻¹ HCl (conditioning)	8
6 mol l ⁻¹ HCl (loading sample)	1
6 mol l ⁻¹ HCl	4
0.5 mol l ⁻¹ HCl	6
0.5 mol l ⁻¹ HNO ₃ (collect Zn)	10
Second column	
AG MP-1M (100- to 200-mesh) resin	0.5
0.5 mol l ⁻¹ HNO ₃	8
Utrapure water	4
6 mol l ⁻¹ HCl (conditioning)	2
6 mol l ⁻¹ HCl (loading sample)	1
6 mol l ⁻¹ HCl	2
0.5 mol l ⁻¹ HCl	3
0.5 mol l ⁻¹ HNO ₃ (collect Zn)	5

This protocol was modified from Maréchal *et al.* (1999) and Chen *et al.* (2009a).

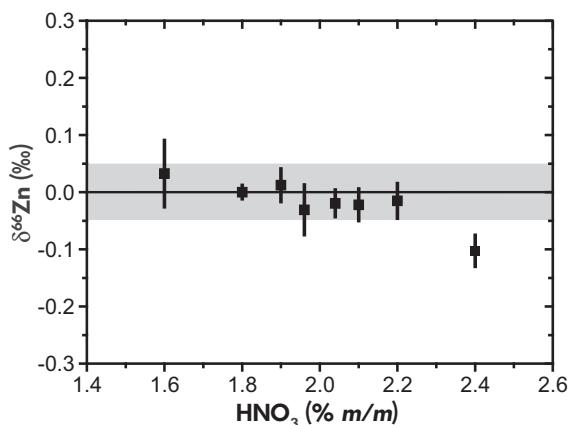
Mass spectrometry

After purification, the sample solutions were analysed using inductively coupled plasma-mass spectrometry (ICP-MS) in the CAS Key Laboratory of Crust-Mantle and Environments at the University of Science and Technology of China (USTC), Hefei, to ensure that the chemical procedure effectively separated matrix elements, and the yield of Zn was > 99%. Then, Zn isotope ratios were measured using MC-ICP-MS (a Neptune Plus instrument from Thermo Fisher Scientific) in the same laboratory. Sample solutions were introduced using a PFA microflow nebuliser (ESI) with an uptake rate of ~ 50 µl min⁻¹ and a quartz dual cyclonic spray chamber (Thermo Fisher Scientific). Nickel cones (X skimmer + jet sample cones) were used for all measurements. The cup configuration and parameters for the instrument are summarised in Table 2. Five Zn isotopes (⁶⁴Zn, ⁶⁶Zn, ⁶⁷Zn, ⁶⁸Zn and ⁷⁰Zn) were collected by L2, C, H1, H3 and H4, respectively, and the sensitivity was ~ 25 V per µg g⁻¹ [Zn] at low resolution on the ⁶⁴Zn ion beam. One block analysis consisted of sixty cycles with an integration time of 2.097 s per cycle. Mass discrimination and time drifts during isotope measurements were corrected using SSB, and empirical external normalisation (EEN; Mason *et al.* 2004) with Cu doping was also applied for the analysis of three samples – BCR-2, AGV-2 and G-2. Each sample was bracketed before and after by the measurement standard (bracketing reference solution or calibrator) JMC-Lyon, with usually three or four repeated analyses of the same sample

Table 2.
Instrument operating parameters for Zn isotope measurement

Instrument parameters						
RF power	1125–1200 W					
Cooling Ar flow rate	~ 16 l min ⁻¹					
Auxiliary Ar flow rate	~ 0.8 l min ⁻¹					
Sample Ar flow rate	0.9–1.1 l min ⁻¹					
Extraction voltage	-2000 V					
Vacuum	4–8 × 10 ⁻⁹ Pa					
Typical ⁶⁴ Zn sensitivity	25 V per µg g ⁻¹ (LR)					
Cones	Ni X skimmer cone, Ni jet sampler cone					
Sample uptake	~ 50 µl min ⁻¹					
Mass resolution	Low resolution					
Cup configuration						
Cup	L2-F	C-F	H1-F	H3-F	H4-F	
Isotopes	⁶⁴ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁷⁰ Zn	

solution. Between each sample/standard measurement, the introduction system was cleaned using ~ 2% *m/m* HNO₃ for at least 4 min to eliminate potential cross-contamination, until the ⁶⁴Zn signal was less than 3 mV. In general, samples and measurement standards were diluted to 200 ng g⁻¹ by 2% *m/m* HNO₃ and then introduced into the instrument. The total procedural blanks ranged from 7 to 12 ng, which is negligible compared with the ~ 4 µg Zn in samples loaded into the columns.


Results and discussion

Tolerance to mismatching conditions of acid and zinc mass fractions between the sample and the isotopic standard solutions

The Zn isotope data are reported relative to an isotope standard using the δ notation:

$$\delta^{\text{X}}\text{Zn} = ((^{\text{X}}\text{Zn}/^{\text{64}}\text{Zn})_{\text{Sample}} / (^{\text{X}}\text{Zn}/^{\text{64}}\text{Zn})_{\text{Standard}} - 1) \times 1000 \quad (1)$$

where ${}^{\text{X}}\text{Zn} = {}^{66}\text{Zn}$, ${}^{67}\text{Zn}$, ${}^{68}\text{Zn}$ or ${}^{70}\text{Zn}$. Previous studies found that the mismatch of acid molarities and element mass fractions between the samples and bracketing measurement standard can produce artefacts when using SSB (Albarède and Beard 2004, Huang *et al.* 2009, An *et al.* 2014). In this study, a series of tests was made to examine these effects. First, a high-purity Zn solution (USTC-Zn), which is an in-house reference solution used in our laboratory, was diluted to 200 ng g⁻¹ using 2% *m/m* HNO₃ as a bracketing measurement standard, while aliquots of the same tested

Figure 3. Plot showing the effect of mismatching conditions of acid mass fraction between samples and standard on Zn isotopic measurement. The grey area depicted in this and Figures 4 and 5 represents the intermediate measurement precision ($\pm 0.05\text{‰}$, 2s) determined during the course of this study.

material were diluted to 200 ng g⁻¹ using HNO₃ with mass fractions varying from 1.6% *m/m* to 2.4% *m/m* as unknown samples. As illustrated in Figure 3, when the difference in the acid mass fraction between samples and measurement standard is within 10%, it will not cause an obvious offset in $\delta^{66}\text{Zn}$. When the difference is $\geq 20\%$, the offset in $\delta^{66}\text{Zn}$ can be 0.10‰, which is significant. To eliminate the possible effect, we always diluted 1 l 2% *m/m* HNO₃ before each batch of analyses and used the same bottle of newly diluted 2% *m/m* HNO₃ for the whole isotope determination process.

We also fixed the Zn mass fraction of the bracketing standard ($[M]_{\text{Standard}}$) at 200 ng g⁻¹ and varied the mass fractions of aliquots of the same tested material from 40 to 600 ng g⁻¹ to test the effect of mass fraction mismatch on Zn isotope determinations. Figure 4 shows that Zn isotope measurements have a large tolerance for mass fraction mismatch when the sample has a greater mass fraction than the measurement standard. No isotopic offset in $\delta^{66}\text{Zn}$ could be observed when the $[M]_{\text{Sample}}/[M]_{\text{Standard}}$ ratio increased from 1 to 3. When $[M]_{\text{Sample}}/[M]_{\text{Standard}}$ was < 0.5, the isotopic offset in $\delta^{66}\text{Zn}$ was obvious (> 0.14‰). To ensure the precision and accuracy of Zn isotope determination, the Zn mass fraction mismatch between sample and standard solutions was kept at less than ± 10%.

Matrix effects

When using SSB, matrix effects should be rigorously examined to ensure accurate and precise isotope measurement (Albarède 2004). Natural samples usually have quite

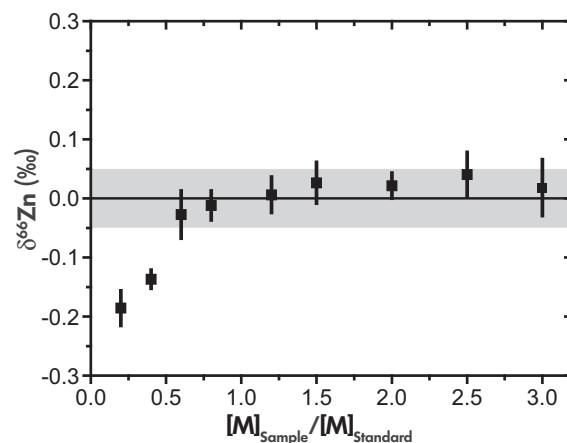
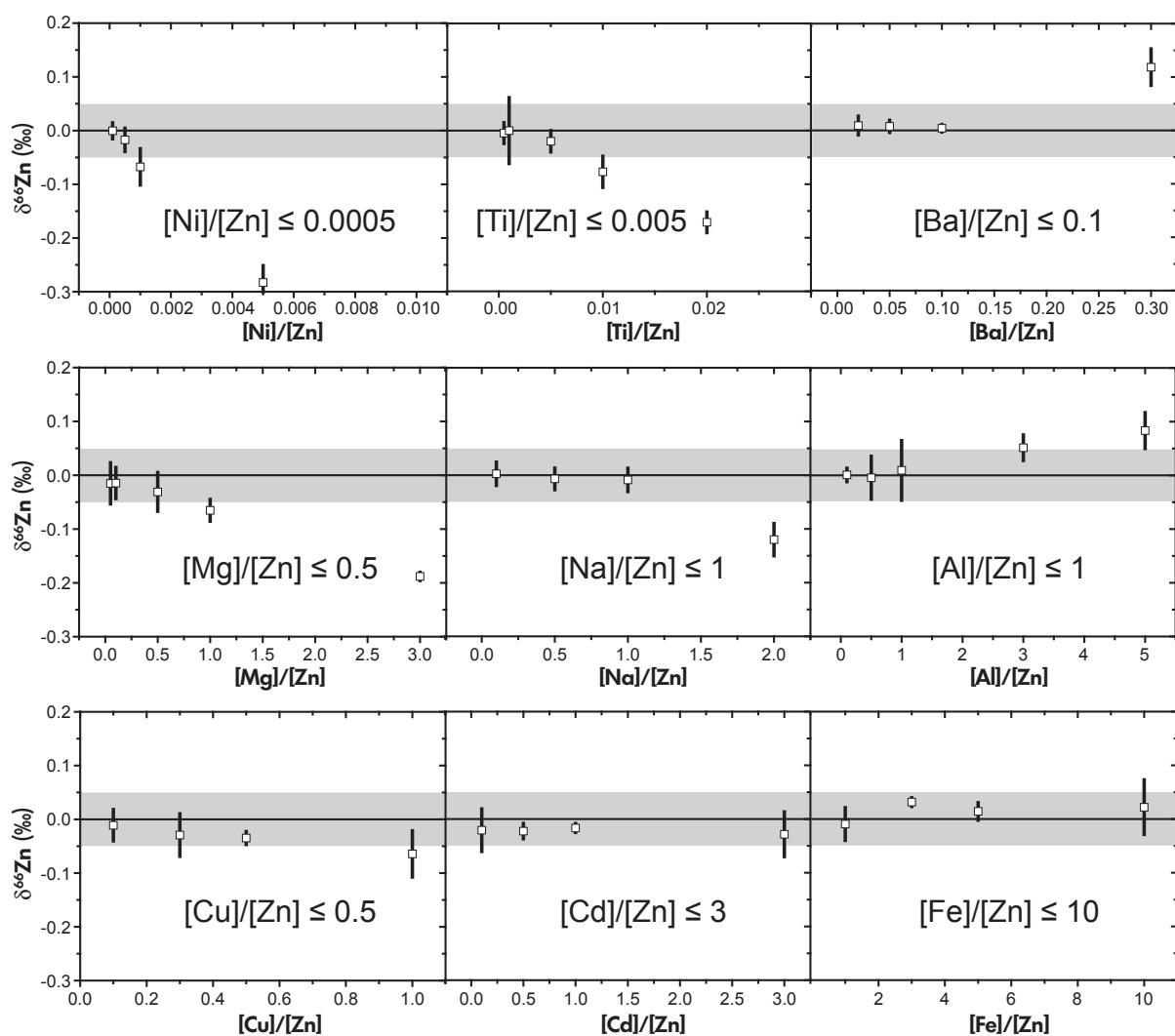



Figure 4. The measured value of $\delta^{66}\text{Zn}$ with deviation of the Zn mass fractions for samples from the measurement standard. The mass fraction of the measurement standard was 200 ng g⁻¹, and that of the samples varied from 40 to 600 ng g⁻¹ ([M]_{sample}/[M]_{Standard} was from 0.2 to 3).

complex matrices. Although most of the matrix elements can be separated during the chemical purification procedure, some residue might still be collected with the Zn solution. When the mass fractions of these residual matrix elements reach a certain level, they might produce spectral- or nonspectral-related interferences to affect the isotope measurements. In this study, we quantitatively assessed eleven matrix elements (Fe, Mg, Na, Al, Ti, Ni, Cr, Cu, Cd, V and Ba) for their possible effects on Zn isotope measurements with their mass fractions varied in sample solutions. Elements at different mass fractions were doped into 200 ng g⁻¹ Zn standard solutions and bracketed using the same pure Zn measurement standard without any doping.

The results show that Zn isotope determinations have different tolerances with different matrix elements. The $\delta^{66}\text{Zn}$ values are sensitive to Ni and Ti amounts in the sample solutions because $^{64}\text{Ni}^+$ and $^{48}\text{Ti}^{16}\text{O}^+$ can produce intense isobaric interferences on $^{64}\text{Zn}^+$. When $[\text{Ni}]/[\text{Zn}]$ and $[\text{Ti}]/[\text{Zn}]$ ratios reach 0.001 and 0.01, respectively, an obvious offset of $\delta^{66}\text{Zn}$ ($> 0.07\%$) was observed (Figure 5). We did not observe abnormal high mass 64 when monitoring the blank (2% *m/m* HNO_3); this ensured that there was no $^{64}\text{Ni}^+$ interference produced by the Ni cone used in the instrument. Previous studies have also proved that the contribution of $^{64}\text{Ni}^+$ (as interference of $^{64}\text{Zn}^+$) from Ni cones was so small that its effect on Zn isotope measurement was not detectable (Bermin *et al.* 2006, Borrok *et al.* 2007, Balistrieri *et al.* 2008). However, small amounts of Ti and Ni residues in the sample solution will affect Zn isotope determinations.

Figure 5. Plots of data from the doping experiment to examine matrix effects on Zn isotope measurement.

Although $\delta^{66}\text{Zn}$ values are not as susceptible to other elements as to Ni and Ti, the addition of other matrix elements still can noticeably affect the precision and accuracy of Zn isotope determinations. For example, significant drifts in $\delta^{66}\text{Zn}$ were observed when $[\text{Ba}]/[\text{Zn}] > 0.3$, $[\text{Mg}]/[\text{Zn}] > 0.5$, $[\text{Na}]/[\text{Zn}] > 2$ or $[\text{Al}]/[\text{Zn}] > 3$ occurred in sample solutions (Figure 5). When $[\text{Cu}]/[\text{Zn}]$ reaches 1, there is a small shift of $\delta^{66}\text{Zn}$ (0.06‰). No observable isotope ratio shift was detected over the range we measured for the other elements ($[\text{M}]/[\text{Zn}] \leq 0.5$, $[\text{Cr}]/[\text{Zn}] \leq 3$, $[\text{Cd}]/[\text{Zn}] \leq 3$ and $[\text{Fe}]/[\text{Zn}] \leq 10$). The doping experiment proved that NIST SRM 683 could be dissolved and used directly as a reference measurement standard without any further purification process. This is because the matrix elements Pb, Cu, Fe, Ag, Cd, Tl and Sn in NIST SRM 683 metal are present only at $\mu\text{g g}^{-1}$ mass fraction levels (i.e., $[\text{matrix}]/[\text{Zn}] \approx 10^{-6}$) and cannot produce offsets of the Zn isotopes.

In general, a one-column purification procedure cannot remove matrix elements completely, especially major elements in igneous rocks (e.g., Mg, Na, Al, Ti). After one-column separation of sample W-2 (diabase), we detected that the $[\text{Ti}]/[\text{Zn}]$ ratio in the Zn aliquot was greater than 0.02. Based on the experiments above, this high content of Ti residue could produce an obvious offset of $\delta^{66}\text{Zn}$ ($> 0.07\text{‰}$). Therefore, a second ion-exchange column was necessary to separate Zn further from the matrices. After two column separations, in this study, all purified Zn solutions contained matrices lower than that could produce significant artefacts on Zn isotopes. Nevertheless, to ensure the precision and accuracy of Zn isotope determinations, every purified Zn solution needs to be carefully checked for the matrix element contents. Only when the Zn solution contains matrix element contents lower than certain levels could such a sample be measured using

MC-ICP-MS. Otherwise, a third column would be necessary to purify Zn further to avoid producing significant artefacts ($> 0.05\%$).

The column separation results also show that part of the Cd could not be separated from Zn (Figure 2), but this would not affect Zn isotopic determination. First, Cd contents in igneous rocks are generally much lower than Zn contents based on the data from GERM (<http://earthref.org/GERMRD/e:48/>), so the sample solutions did not contain too much Cd. Second, Cd isotopes do not interfere with any Zn isotope. Both our doping experiment and previous studies (Borrok *et al.* 2007) found that residual Cd (i.e., $[Cd]/[Zn] \leq 1$) in the sample solution did not affect Zn isotopic measurements. In this study therefore, we did not further separate Cd from Zn by another step.

Precision and accuracy of Zn isotope measurement

The precision under intermediate measurement conditions for Zn isotope determinations in our laboratory was derived by analysing different aliquots of NIST SRM 683 or independent digestions of the same sample powder over a 5-months period (the number of total analyses is denoted by M in Table 3). Each analysis included n repeated measurements of the same solution (generally $n \geq 3$, same below). All of the measurement uncertainties reported in this study are expressed as two standard deviations ($2s$) based on n of the same solution during each measurement session. All of the data uncertainties from published work listed in this paper were transformed to $2s$. The $\delta^{66}\text{Zn}$ value of the NIST SRM 683 measurement after 5 months was $0.12 \pm 0.04\%$ ($2s$, $M = 18$, M is the number of independent analyses of NIST SRM 683 in 5 months, and each analysis includes $n \geq 3$ measurements), and replicates from independent digestions of rock samples agree well with each other within $\pm 0.05\%$ ($2s$, M is listed in Table 3). Therefore, the intermediate measurement precision of Zn isotope measurement in our laboratory was better than $\pm 0.05\%$ ($2s$).

Accuracy can be assessed by comparing our data for reference materials with published information. Table 4 shows that $\delta^{66}\text{Zn}$ values for the reference materials reported in this study are in good agreement with most published data within $\pm 0.05\%$ ($2s$). To prove the validity of the SSB method, BCR-2, AGV-2 and G-2 were analysed and corrected using EEN, following the method described by Mason *et al.* (2004) and Chen *et al.* (2009b). A high-purity Cu solution (ERM-AE647) was added to the bracketing

measurement standard and sample solutions to produce mixtures containing 66 ng g^{-1} Cu and 200 ng g^{-1} Zn. According to a matrix examination experiment, when $[\text{Cu}]/[\text{Zn}] \leq 0.5$, Zn isotopic artefacts are not produced. Table 3 shows that these three samples have the same $\delta^{66}\text{Zn}$ value after having been corrected by either SSB or EEN, indicating that both methods can provide a reliable instrumental bias correction.

To test the accuracy further, we measured synthetic standard solutions made by mixing NIST SRM 683 with Zn-free matrices. Matrix elements were collected from powders of BHVO-2 (200 mg) and BIR-1, AGV-2, G-2 and NOD-A-1 (50 mg) during the separation of Zn using chromatography. Quantities of 1, 2, 4 and 6 μg of Zn from NIST SRM 683 were mixed with four aliquots of BHVO-2 matrix solutions, while each of the other four matrix solutions was mixed with 4 μg of Zn (NIST SRM 683). The same chromatography procedure described above was then applied to the synthetic solutions. The collected Zn solutions were measured to examine the effects of different sample masses and different sample types. All measurements are shown in Figure 6. There was no Zn isotope offset (within $\pm 0.05\%$) observed from these synthetic solutions, indicating that neither different Zn masses (1–6 μg) with similar matrices nor the same Zn content mass with different matrix compositions (from mafic to felsic) produced Zn isotope artefacts during ion-exchange column purification and instrumental measurement. Our method is reliable for samples with total Zn contents varying from 1 to 6 μg . To reduce the contribution of Zn in the blank, 2 or 4 μg of Zn was prepared depending on the Zn mass fraction of the sample in this study.

The Zn three-isotope plots of all reference materials and NIST SRM 683 are shown in Figure 7. The equation of the $\delta^{66}\text{Zn}$ (X) and $\delta^{67}\text{Zn}$ (Y) fractionation line ($y = (1.48 \pm 0.02)x + (0.03 \pm 0.01)$, $R^2 = 0.986$) is consistent with the slope values of kinetic (1.48) and equilibrium (1.49) fractionation within error (Young *et al.* 2002), and the Zn isotopes of all of these reference materials show mass-dependent fractionation.

Zn isotopic compositions of NIST SRM 683

The average $\delta^{66}\text{Zn}$ value of the eighty-four drilled powders from the first NIST SRM 683 metal nugget was $0.11 \pm 0.02\%$ ($M = 84$), and that of the fourteen drilled powders from another NIST SRM 683 metal nugget was $0.12 \pm 0.02\%$ ($M = 14$). Both are consistent with the results obtained for the solution of the first whole metal nugget

Table 3.
Zinc isotope compositions of seventeen rock reference materials reported in this study

Reference materials	Zn ($\mu\text{g g}^{-1}$)	$\delta^{66}\text{Zn} (\text{‰})$	2s	$\delta^{67}\text{Zn} (\text{‰})$	2s	$\delta^{68}\text{Zn} (\text{‰})$	2s	n
Dunite								
DTS-2	45	0.27	0.04	0.43	0.01	0.51	0.04	3
Basalt								
BCR-2	127	0.24	0.06	0.36	0.11	0.49	0.13	4
		0.24	0.03	0.37	0.03	0.51	0.05	4
		0.27	0.03	0.39	0.04	0.54	0.07	3
		0.24	0.03	0.34	0.00	0.49	0.07	3 [†]
Average (M = 4)		0.25	0.04	0.37	0.07	0.51	0.09	14 ^a
BHVO-2	103	0.28	0.05	0.48	0.10	0.57	0.08	4
		0.30	0.01	0.46	0.09	0.61	0.05	4
		0.31	0.03	0.49	0.07	0.65	0.05	4
		0.30	0.03	0.50	0.03	0.63	0.02	4
		0.32	0.01	0.46	0.05	0.63	0.04	6
		0.32	0.03	0.51	0.02	0.64	0.03	4
		0.30	0.01	0.50	0.07	0.62	0.03	4
		0.33	0.01	0.51	0.05	0.65	0.02	4
		0.31	0.03	0.50	0.04	0.62	0.03	4
		0.31	0.02	0.47	0.04	0.62	0.02	4
		0.31	0.00	0.47	0.03	0.63	0.04	4
Average (M = 11)		0.31	0.03	0.49	0.06	0.62	0.06	46 ^a
BIR-1	70	0.21	0.05	0.33	0.05	0.46	0.07	4
		0.20	0.02	0.41	0.04	0.49	0.04	4
		0.21	0.03	0.36	0.06	0.45	0.02	4
		0.25	0.02	0.39	0.02	0.52	0.04	4
		0.24	0.03	0.38	0.13	0.47	0.05	3
		0.25	0.04	0.35	0.05	0.48	0.08	4
Average (M = 6)		0.23	0.05	0.37	0.08	0.48	0.06	23 ^a
JB-2	108	0.21	0.02*	0.33	0.05*	0.43	0.04*	2
		0.23	0.04	0.36	0.04	0.46	0.08	7
Average (M = 2)		0.23	0.04	0.35	0.05	0.46	0.08	9 ^a
Diabase								
W-2	80	0.20	0.04	0.32	0.04	0.44	0.05	3
		0.21	0.05	0.38	0.10	0.44	0.10	4
		0.24	0.03	0.39	0.03	0.49	0.02	4
Average (M = 3)		0.22	0.05	0.37	0.09	0.46	0.08	11 ^a
Andesite								
AGV-1	88	0.29	0.05	0.46	0.11	0.60	0.10	4
		0.29	0.02	0.46	0.05	0.56	0.04	3
		0.28	0.02	0.44	0.02	0.57	0.03	3
		0.28	0.02	0.43	0.05	0.58	0.04	3
Average (M = 4)		0.29	0.03	0.45	0.07	0.58	0.06	13 ^a
AGV-2	86	0.28	0.01	0.44	0.01	0.56	0.02	4
		0.29	0.03	0.43	0.03	0.60	0.02	4
		0.28	0.02	0.44	0.02	0.56	0.02	3
		0.29	0.04	0.49	0.04	0.60	0.12	4
		0.23	0.03	0.36	0.03	0.48	0.02	3 [†]
Average (M = 5)		0.28	0.05	0.43	0.09	0.56	0.10	18 ^a
JA-2	64	0.27	0.04	0.39	0.03	0.56	0.03	3
		0.28	0.02*	0.46	0.00*	0.58	0.06*	2
Average (M = 2)		0.28	0.03	0.42	0.07	0.57	0.05	5 ^a
Quartz latite								
QLO-1	61	0.27	0.01	0.42	0.06	0.55	0.04	3
		0.26	0.02	0.45	0.02	0.52	0.03	3
		0.26	0.05	0.38	0.07	0.52	0.11	4
		0.28	0.05	0.43	0.09	0.55	0.11	4
Average (M = 4)		0.27	0.04	0.42	0.08	0.53	0.09	14 ^a

Table 3 (continued).
Zinc isotope compositions of seventeen rock reference materials reported in this study

Reference materials	Zn ($\mu\text{g g}^{-1}$)	$\delta^{66}\text{Zn}$ (‰)	2s	$\delta^{67}\text{Zn}$ (‰)	2s	$\delta^{68}\text{Zn}$ (‰)	2s	n
Granodiorite								
GSP-1	104	0.29 0.33 0.31 1.15 1.01 0.99 1.07 1.06 1.10 1.03	0.05 0.03 0.05 1.66 1.42 1.40 0.02 0.03 1.57 1.45	0.50 0.52 0.51 0.05 0.11 0.05* 1.56 1.52 0.03 0.03	0.07 0.06 0.06 0.89 1.66 1.62 0.01 0.03 0.03 0.03	0.62 0.64 0.63 0.04 0.08 0.01* 1.76 1.73 0.04 1.67	0.07 0.08 0.08 0.04 0.08 0.05 0.02 0.06 0.04 0.05	4 4 8 ^a 3 4 2 3 3 3 3
Average (M = 2)		1.07	0.06	1.53	0.11	1.74	0.10	12 ^a
GSP-2	120							
Average (M = 4) [#]		1.07						
Granite								
G-2	86	0.33 0.34 0.33 0.34 0.35 0.35	0.06 0.03 0.06 0.03 0.04 0.03	0.56 0.52 0.48 0.54 0.55 0.53	0.10 0.03 0.07 0.06 0.09 0.02	0.66 0.70 0.67 0.69 0.69 0.69	0.13 0.05 0.12 0.06 0.05 0.07	4 4 4 4 4 3 ^b
Average (M = 6)		0.34	0.04	0.53	0.08	0.68	0.08	23 ^a
Rhyolite								
RGM-1	32	0.37 0.37 0.35	0.05 0.06 0.01	0.57 0.57 0.57	0.04 0.11 0.02	0.74 0.72 0.71	0.04 0.12 0.03	3 6 3
Average (M = 3)		0.36	0.05	0.57	0.07	0.72	0.09	12 ^a
Manganese nodule								
NOD-A-1	590	0.96 0.96 0.96	0.02 0.04 0.03	1.59 1.60 1.59	0.10 0.04 0.07	1.99 2.00 2.00	0.04 0.07 0.05	3 3 6 ^a
Average (M = 2)		0.78 0.78 0.78	0.04 0.02 0.03	1.19 1.20 1.20	0.01 0.08 0.05	1.59 1.53 1.56	0.05 0.06 0.09	3 3 6 ^a
NOD-P-1	1600							
Average (M = 2)		0.78	0.03	1.20	0.05	1.56	0.09	6 ^a
Mica schist								
SDC-1	103	0.27 0.26 0.26	0.01 0.02 0.03	0.40 0.42 0.43	0.02 0.04 0.06	0.52 0.51 0.53	0.03 0.04 0.06	3 3 3
Average (M = 3)		0.26	0.02	0.42	0.04	0.52	0.05	9 ^a

n is the times of repeated measurement of the same solution.

M is the times of independent digestions of the same reference material powder.

2s = 2 times the standard deviation of the population of n repeat measurements.

^a The total number of repeated runs of the same sample, including different digestions.

^b The difference between two samples instead of two standard deviations.

[†] The sample corrected by EEN method with doping Cu.

[#] The first three results (in italics) were not taken into account for the calculation of the average (because of possible instability of the instrument during measurements, see details in text).

$(0.12 \pm 0.04\text{‰, } M = 18, \text{ Figure 8})$ and previously published data $(0.07 \pm 0.07\text{‰})$ (Tanimizu *et al.* 2002). Each drilled powder was analysed four times ($n = 4$), and the whole metal solution was analysed eighteen times independently with four single runs for each analysis. The small analytical errors of these independent analyses and consistent $\delta^{66}\text{Zn}$ values of different metal pieces indicate that NIST SRM 683 metals in our laboratory are homogeneous in Zn isotopic composition.

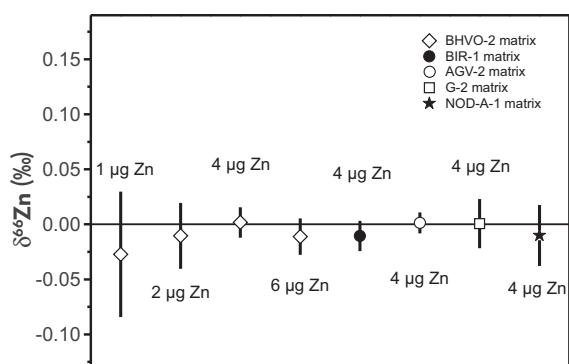
To assess our data further, we performed chemical separation for two aliquots of NIST SRM 683 solution, using the same processes described above. The $\delta^{66}\text{Zn}$ values of the two parallel samples were $0.12 \pm 0.02\text{‰}$ ($n = 3$) and $0.11 \pm 0.02\text{‰}$ ($n = 3$), which are the same within $\pm 0.05\text{‰}$ compared with the unpurified NIST SRM 683 samples (Figure 8). This experiment further proved that the minor matrix elements in the NIST SRM 683 metal nugget are negligible.

Table 4.
Comparison of data from this study with previously published data

Reference materials	$\delta^{66}\text{Zn}$ (‰)	$2s$	References
BCR-2	0.25	0.04	This study
	0.33	0.09	Herzog <i>et al.</i> (2009)
	0.23	0.08	Bigalke <i>et al.</i> (2010)
	0.25	0.02	Moynier <i>et al.</i> (2011)
	0.33	0.13	Moeller <i>et al.</i> (2012)
	0.25	0.01	Sossi <i>et al.</i> (2015)
BIR-1	0.23	0.05	This study
	0.26	0.09	Herzog <i>et al.</i> (2009)
	0.31	0.04	Chen <i>et al.</i> (2013b)
	0.20	0.04	Sossi <i>et al.</i> (2015)
BHVO-2	0.31	0.03	This study
	0.29	0.09	Herzog <i>et al.</i> (2009)
	0.21	0.09	Moynier <i>et al.</i> (2010)
	0.17	0.09	Moynier <i>et al.</i> (2010)
	0.48	0.13	Moeller <i>et al.</i> (2012)
	0.33	0.04	Chen <i>et al.</i> (2013b)
JB-2	0.27	0.06	Sossi <i>et al.</i> (2015)
	0.23	0.04	This study
	0.19	0.08	Makishima and Nakamura (2013)
AGV-1	0.22	0.07	Sossi <i>et al.</i> (2015)
	0.29	0.03	This study
	0.50	0.06	Moeller <i>et al.</i> (2012)
	-1.58	0.30	Makishima and Nakamura (2013)
JA-2	0.28	0.03	This study
	-0.01	0.14	Makishima and Nakamura (2013)
AGV-2	0.28	0.05	This study
	0.32	0.04	Chen <i>et al.</i> (2013b)
	0.25	0.09	Moynier <i>et al.</i> (2010)
G-2	0.34	0.04	This study
	0.32	0.09	Paniello <i>et al.</i> (2012a)
	0.30	0.09	Paniello <i>et al.</i> (2012b)
	0.44	0.09	Moeller <i>et al.</i> (2012)
NOD-P-1	0.43	0.05	Moeller <i>et al.</i> (2012)
	0.78	0.03	This study
	0.78	0.09	Chapman <i>et al.</i> (2006)
	0.87	0.08	Bigalke <i>et al.</i> (2010)
	0.63	0.07	Gagnevin <i>et al.</i> (2012)

Zinc isotopic compositions of reference materials

The Zn isotopic compositions of seventeen reference materials are listed in Table 3. One to eleven replicated analyses (independent digestions) were performed for them, and all measurements for each sample agree well with each other within analytical error. Data comparison of our data and previously published data is shown in Table 4.


The $\delta^{66}\text{Zn}$ values of three basalts, BCR-2 ($0.25 \pm 0.04\text{‰}$, $n = 14$), BHVO-2 ($0.31 \pm 0.03\text{‰}$, $n = 46$) and BIR-1 ($0.23 \pm 0.05\text{‰}$, $n = 23$), are consistent with previously reported data (Herzog *et al.* 2009, Bigalke

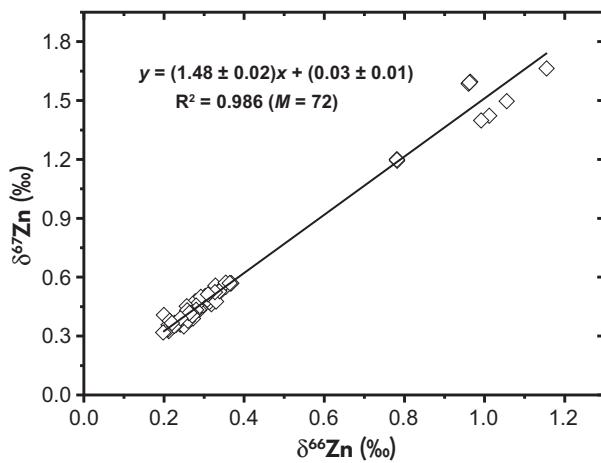
et al. 2010, Moynier *et al.* 2010, 2011, Moeller *et al.* 2012, Chen *et al.* 2013b, Sossi *et al.* 2015). The analyses of two separately digested JB-2 samples yielded an average $\delta^{66}\text{Zn}$ of $0.23 \pm 0.04\text{‰}$ ($n = 9$), consistent with $0.19 \pm 0.08\text{‰}$ reported by Makishima and Nakamura (2013) and $0.22 \pm 0.07\text{‰}$ by Sossi *et al.* (2015). We report $\delta^{66}\text{Zn}$ values for dunite DTS-2 ($0.27 \pm 0.04\text{‰}$, $n = 3$) and diabase W-2 ($0.22 \pm 0.05\text{‰}$, $n = 11$) for the first time.

The andesite reference materials analysed in this study included AGV-1, AGV-2 and JA-2, which have consistent Zn isotopic compositions. The average $\delta^{66}\text{Zn}$ value of AGV-2 was $0.28 \pm 0.05\text{‰}$ ($n = 18$), in agreement with the value $0.25 \pm 0.09\text{‰}$ reported by Moynier *et al.* (2010) and $0.32 \pm 0.04\text{‰}$ by Chen *et al.* (2013b). The average $\delta^{66}\text{Zn}$ value for AGV-1 was $0.29 \pm 0.03\text{‰}$ ($n = 13$), showing an indistinguishable Zn isotopic composition with AGV-2 within $\pm 0.05\text{‰}$. However, it is slightly lighter than $0.50 \pm 0.06\text{‰}$ reported by Moeller *et al.* (2012) and much heavier than $-1.58 \pm 0.30\text{‰}$ reported by Makishima and Nakamura (2013). The average $\delta^{66}\text{Zn}$ value for JA-2 in this study was $0.28 \pm 0.03\text{‰}$ ($n = 5$), also inconsistent with data from Makishima and Nakamura (2013) ($-0.01 \pm 0.14\text{‰}$). However, our data for AGV-1 and JA-2 are consistent with other previously published data for andesites (Chen *et al.* 2013b, Zhu *et al.* 2013).

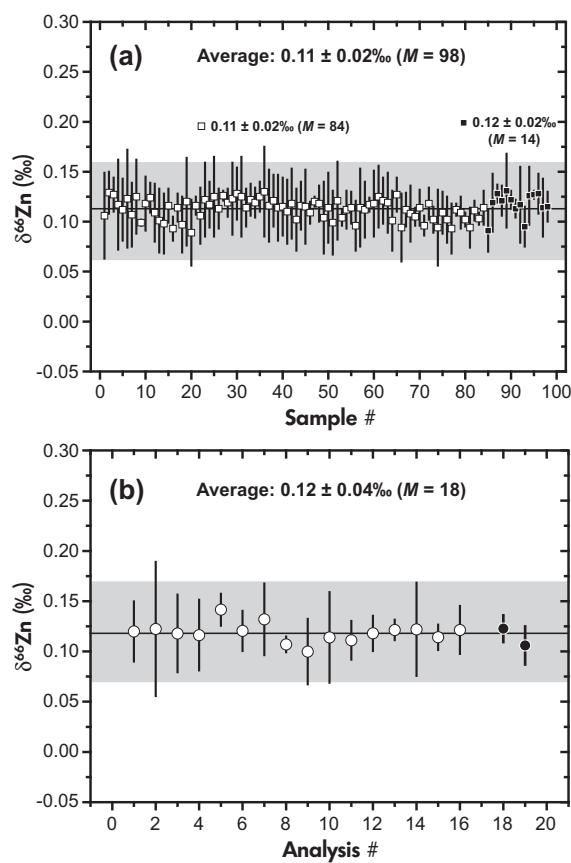
The average $\delta^{66}\text{Zn}$ value of granite G-2 was $0.34 \pm 0.04\text{‰}$ ($n = 23$), in agreement with $0.32 \pm 0.09\text{‰}$ reported by Paniello *et al.* (2012a) and $0.30 \pm 0.09\text{‰}$ reported by Paniello *et al.* (2012b), but lighter than $0.44 \pm 0.09\text{‰}$ and $0.43 \pm 0.05\text{‰}$ reported by Moeller *et al.* (2012). The average $\delta^{66}\text{Zn}$ value for RGM-1 was $0.36 \pm 0.05\text{‰}$ ($n = 12$), and that for QLO-1 (quartz latite) was $0.27 \pm 0.04\text{‰}$ ($n = 14$). The average $\delta^{66}\text{Zn}$ values of two granodiorites, GSP-1 and GSP-2, were $0.31 \pm 0.05\text{‰}$ ($n = 8$) and $1.07 \pm 0.06\text{‰}$ ($n = 12$), respectively. These two samples were collected from the same location, but they have different geochemical characteristics (Raczeck *et al.* 2001, 2003). In Table 3, the first three independent digestion solutions of GSP-2 (italics in the table) have very large $2s$ values for $\delta^{66}\text{Zn}$ (0.18‰), possibly due to the instability of the instrument during measurement. To ensure the precision of Zn isotopes determined in our laboratory, we digested GSP-2 four more times and measured them under better instrumental conditions. The average $\delta^{66}\text{Zn}$ value of GSP-2 for these four independent digestions was $1.07 \pm 0.06\text{‰}$ ($n = 12$), which is the datum reported in this study.

In summary, the $\delta^{66}\text{Zn}$ values derived for igneous rock reference materials, except GSP-2, fell in the range 0.22–

Figure 6. Zinc isotopic composition of synthetic standards. Different symbols represent different compositional matrix solutions. The first four were the matrix solutions from 50 mg BHVO-2, and the others were the matrix solutions from 50 mg BIR-1, AGV-2, G-2 and NOD-A-1. Different amounts of NIST SRM 683 Zn were doped into these solutions, and then, Zn was separated using chromatography. The bracketing measurement standard was the pure NIST SRM 683 solution without any doping element.


0.36‰, consistent with most previously reported data for igneous rocks (Paniello *et al.* 2012a, Chen *et al.* 2013b, Zhu *et al.* 2013). The $\delta^{66}\text{Zn}$ value for GSP-2 is much heavier than that of the other igneous rock reference materials.

The schist reference material SDC-1 gave an average $\delta^{66}\text{Zn}$ value of $0.26 \pm 0.02\text{‰}$ ($n = 9$), which is similar to most igneous rocks. The Zn isotopic compositions of two


manganese nodules (NOD-P-1 and NOD-A-1) and one schist (SDC-1) were determined. NOD-P-1 had an average $\delta^{66}\text{Zn}$ of $0.78 \pm 0.03\text{‰}$ ($n = 6$), agreeing well with $0.87 \pm 0.08\text{‰}$ reported by Bigalke *et al.* (2010) and $0.78 \pm 0.09\text{‰}$ by Chapman *et al.* (2006) within 2s, but slightly heavier than $0.63 \pm 0.07\text{‰}$, reported by Gagnepain *et al.* (2012). Currently, there are no published Zn isotopic data for NOD-A-1. $\delta^{66}\text{Zn}$ value for NOD-A-1 measured in this study was $0.96 \pm 0.03\text{‰}$ ($n = 6$), similar to the mean value for ferromanganese nodules ($0.90 \pm 0.28\text{‰}$) reported by Maréchal *et al.* (2000) and for Fe–Mn crusts ($1.04 \pm 0.08\text{‰}$) reported by Little *et al.* (2014). Compared with the $\delta^{66}\text{Zn}$ value of deep seawater ($\sim 0.5\text{‰}$) (Little *et al.* 2014, Zhao *et al.* 2014), Zn isotopic compositions of manganese nodules have heavier Zn isotopes. This might be related to the formation process of manganese nodules.

Conclusions

The Zn isotopic compositions of ninety-eight drilled metal powders and the whole metal measured in this study clearly prove that the NIST SRM 683 metal nuggets have a homogeneous Zn isotopic composition, which is only slightly heavier than JMC-Lyon ($\delta^{66}\text{Zn}_{\text{JMC-Lyon}} = 0.12 \pm 0.04\text{‰}$, $M = 18$). Because the JMC-Lyon material is no longer available, the NIST SRM 683 metal is a good choice to be a reference measurement standard for Zn isotope determinations because of its homogeneity, availability, reserve and isotopic composition. We examined the potential parameters that might affect the precision and accuracy of Zn isotope determinations, including mismatching conditions of acid and zinc mass fractions between samples and

Figure 7. Zinc three-isotope plot ($\delta^{67}\text{Zn}$ vs. $\delta^{66}\text{Zn}$) of all reference materials and NIST SRM 683 analysed in this study. The slope of the linear regression is 1.48 ± 0.02 , which is consistent with the slope values of kinetic (1.48) and equilibrium (1.49) fractionation within error (2s, $M = 72$) (Young *et al.* 2002).

Figure 8. Zinc isotopic composition of NIST SRM 683.
(a) The data of drilled NIST SRM 683 metal powders: open and filled square symbols represent the two different metal nuggets. Each square represents the average $\delta^{66}\text{Zn}$ value of one drilled powder, which was determined four times ($n = 4$). The average $\delta^{66}\text{Zn}$ value of eighty-four samples from the first metal was $0.11 \pm 0.02\text{‰}$ ($M = 84$), and that of fourteen samples from the other metal was $0.12 \pm 0.02\text{‰}$ ($M = 14$). The average $\delta^{66}\text{Zn}$ value of all the ninety-eight drilled powders was $0.11 \pm 0.02\text{‰}$ ($M = 98$). **(b)** The $\delta^{66}\text{Zn}$ data of the bulk solution of the first metal nugget. The open circle symbols represent unpurified NIST SRM 683 solution, while the two filled circle symbols represent purified samples with additional chemical separation. A total of eighteen measurements ($n = 3$ for each measurement) of the same solution over 5 months yielded an average of $0.12 \pm 0.04\text{‰}$ ($M = 18$).

bracketing measurement standard, and matrix effects. No significant analytical artefact was observed when $[M]_{\text{Sample}}/[M]_{\text{Standard}}$ varied from 0.5 to 3, or there was less than 10% difference in acid mass fractions. Zinc isotope determinations are sensitive to the matrix elements, especially to Ni and Ti, which can produce an obvious offset of $\delta^{66}\text{Zn}$ when

$[\text{Ni}]/[\text{Zn}]$ and $[\text{Ti}]/[\text{Zn}]$ ratios reach 0.001 and 0.01, respectively. Significant drifts in $\delta^{66}\text{Zn}$ were also observed when the ratio values $[\text{Ba}]/[\text{Zn}] > 0.3$, $[\text{Mg}]/[\text{Zn}] > 0.5$, $[\text{Na}]/[\text{Zn}] > 2$ or $[\text{Al}]/[\text{Zn}] > 3$ occurred in sample solutions. We also report Zn isotopic compositions of a broad range of reference materials, which are suitable for interlaboratory comparison and quality control for future Zn isotopic studies in geo-science. The significant Zn isotope fractionation found in igneous rocks (0.85‰) might reflect different mantle sources, and Zn isotopes could potentially be used to trace their sources. It is also possible that later geological processes produced the Zn isotope fractionation.

Acknowledgements

This research was financially supported by the National Science Foundation of China (41173031, 41325011 and 41373007) and the 111 project, the Fundamental Research Funds for the Central Universities and State Key Laboratory of Isotope Geochemistry grants (SKLIG-KF-12-05, SKLIG-KF-13-03). Special thanks to Dr. Ryan Mathur and Dr. Kejun Hou for sharing the JMC-Lyon standard solutions, Dr. Yongsheng He for providing the GSJ reference materials JA-2 and JB-2 and Dr. Xiangkun Zhu for helpful discussion. Dr. Christophe Quétel and two anonymous reviewers are thanked for their valuable comments, which helped to improve the quality of this paper.

References

Albarède F. (2004) The stable isotope geochemistry of copper and zinc. In: Johnson C.M., Beard B.L. and Albarède F. (eds), *Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry*, 55, 409–427.

Albarède F. and Beard B. (2004) Analytical methods for non-traditional isotopes. In: Johnson C.M., Beard B.L. and Albarède F. (eds), *Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry*, 55, 113–152.

An Y., Wu F., Xiang Y., Nan X., Yu X., Yang J., Yu H., Xie L. and Huang F. (2014) High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. *Chemical Geology*, 390, 9–21.

Archer C. and Vance D. (2004) Mass discrimination correction in multiple-collector plasma source mass spectrometry: An example using Cu and Zn isotopes. *Journal of Analytical Atomic Spectrometry*, 19, 656–665.

references

Arnold T., Schonbächler M., Rehkämper M., Dong S., Zhao F.J., Kirk G.J., Coles B.J. and Weiss D.J. (2010)
Measurement of zinc stable isotope ratios in biogeochemical matrices by double-spike MC-ICP-MS and determination of the isotope ratio pool available for plants from soil. *Analytical and Bioanalytical Chemistry*, 398, 3115–3125.

Balistreri L.S., Borrok D.M., Wanty R.B. and Ridley W.I. (2008)
Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. *Geochimica et Cosmochimica Acta*, 72, 311–328.

Balter V., Lamboux A., Zazzo A., Télouk P., Leverrier Y., Marvel J., Moloney A.P., Monahan F.J., Schmidt O. and Albarède F. (2013)
Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. *Metallomics*, 5, 1470–1482.

Bermin J., Vance D., Archer C. and Statham P.J. (2006)
The determination of the isotopic composition of Cu and Zn in seawater. *Chemical Geology*, 226, 280–297.

Bigalke M., Weyer S., Kobza J. and Wilcke W. (2010)
Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. *Geochimica et Cosmochimica Acta*, 74, 6801–6813.

Borrok D.M., Wanty R., Ridley W., Wolf R., Lamothe P. and Adams M. (2007)
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. *Chemical Geology*, 242, 400–414.

Borrok D.M., Giere R., Ren M. and Landa E.R. (2010)
Zinc isotopic composition of particulate matter generated during the combustion of coal and coal plus tire-derived fuels. *Environmental Science and Technology*, 44, 9219–9224.

Chapman J.B., Mason T.F.D., Weiss D.J., Coles B.J. and Wilkinson J.J. (2006)
Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. *Geostandards and Geoanalytical Research*, 30, 5–16.

Chen J.-B., Gaillardet J., Louvat P. and Huon S. (2009a)
Zn Isotopes in the suspended load of the Seine River, France: Isotopic variations and source determination. *Geochimica et Cosmochimica Acta*, 73, 4060–4076.

Chen J.-B., Louvat P., Gaillardet J. and Birck J.-L. (2009b)
Direct separation of Zn from dilute Aqueous solutions for isotope composition determination using multi-collector ICP-MS. *Chemical Geology*, 259, 120–130.

Chen H., Nguyen B.M. and Moynier F. (2013a)
Zinc isotopic composition of iron meteorites: Absence of isotopic anomalies and origin of the volatile element depletion. *Meteoritics and Planetary Science*, 48, 2441–2450.

Chen H., Savage P.S., Teng F.-Z., Helz R.T. and Moynier F. (2013b)
Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. *Earth and Planetary Science Letters*, 369–370, 34–42.

Chen J.-B., Gaillardet J., Dessert C., Villemant B., Louvat P., Crispé O., Birck J.-L. and Wang Y.-N. (2014)
Zn isotope compositions of the thermal spring waters of La Soufrière volcano, Guadeloupe Island. *Geochimica et Cosmochimica Acta*, 127, 67–82.

Cloquet C., Carignan J. and Libourel G. (2006)
Isotopic composition of Zn and Pb atmospheric depositions in an urban/periurban area of northeastern France. *Environmental Science and Technology*, 40, 6594–6600.

Day J.M. and Moynier F. (2014)
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. *Philosophical Transactions of the Royal Society of London A*, 372, 20130259.

Fekiacova Z., Cornu S. and Pichat S. (2015)
Tracing contamination sources in soils with Cu and Zn isotopic ratios. *Science of the Total Environment*, 517, 96–105.

Gagnevin D., Boyce A.J., Barrie C.D., Menuge J.F. and Blakeman R.J. (2012)
Zn, Fe and S isotope fractionation in a large hydrothermal system. *Geochimica et Cosmochimica Acta*, 88, 183–198.

Herzog G.F., Moynier F., Albarède F. and Berezhnoy A.A. (2009)
Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. *Geochimica et Cosmochimica Acta*, 73, 5884–5904.

Huang F., Glessner J., Ianno A., Lundstrom C. and Zhang Z. (2009)
Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. *Chemical Geology*, 268, 15–23.

Humayun M. and Clayton R.N. (1995)
Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. *Geochimica et Cosmochimica Acta*, 59, 2131–2148.

John S.G., Rouxel O.J., Craddock P.R., Engwall A.M. and Boyle E.A. (2008)
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. *Earth and Planetary Science Letters*, 269, 17–28.

Jouvin D., Weiss D.J., Mason T.F., Bravin M.N., Louvat P., Zhao F., Ferec F., Hinsinger P. and Benedetti M.F. (2012)
Stable isotopes of Cu and Zn in higher plants: Evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. *Environmental Science and Technology*, 46, 2652–2660.

Kelley K.D., Wilkinson J.J., Chapman J.B., Crowther H.L. and Weiss D.J. (2009)
Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. *Economic Geology*, 104, 767–773.

references

Larmer F., Woodley LN., Shousha S., Moyes A., Humphreys-Williams E., Strekopytov S., Halliday A.N., Rehkämper M. and Coombes R.C. (2015) Zinc isotopic compositions of breast cancer tissue. *Metallomics*, 7, 107–112.

Little S.H., Vance D., Walker-Brown C. and Landing W.M. (2014) The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. *Geochimica et Cosmochimica Acta*, 125, 673–693.

Luck J.-M., Othman D.B. and Albarède F. (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. *Geochimica et Cosmochimica Acta*, 69, 5351–5363.

Makishima A. and Nakamura E. (2013) Low-blank chemistry for Zn stable isotope ratio determination using extraction chromatographic resin and double spike-multiple collector-ICP-MS. *Journal of Analytical Atomic Spectrometry*, 28, 127–133.

Maréchal C.N., Télouk P. and Albarède F. (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. *Chemical Geology*, 156, 251–273.

Maréchal C.N., Nicolas E., Douchet C. and Albarède F. (2000) Abundance of zinc isotopes as a marine biogeochemical tracer. *Geochemistry, Geophysics, Geosystems*, 1, 1015.

Mason T.F.D., Weiss D.J., Horstwood M., Parrish R.R., Russell S.S., Mullane E. and Coles B.J. (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry Part 2. Correcting for mass discrimination effects. *Journal of Analytical Atomic Spectrometry*, 19, 218–226.

Mason T.F.D., Weiss D.J., Chapman J.B., Wilkinson J.J., Tessalina S.G., Spiro B., Horstwood M.S.A., Spratt J. and Coles B.J. (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. *Chemical Geology*, 221, 170–187.

Moeller K., Schoenberg R., Pedersen R.-B., Weiss D. and Dong S. (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. *Geostandards and Geoanalytical Research*, 36, 177–199.

Moynier F., Pichat S., Pons M.-L., Fike D., Balter V. and Albarède F. (2009) Isotopic fractionation and transport mechanisms of Zn in plants. *Chemical Geology*, 267, 125–130.

Moynier F., Beck P., Yin Q.-Z., Ferroir T., Barrat J.-A., Paniello R., Télouk P. and Gillet P. (2010) Volatilization induced by impacts recorded in Zn isotope composition of ureilites. *Chemical Geology*, 276, 374–379.

Moynier F., Paniello R.C., Gounelle M., Albarède F., Beck P., Podosek F. and Zanda B. (2011) Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes. *Geochimica et Cosmochimica Acta*, 75, 297–307.

Moynier F., Fujii T., Shaw A.S. and Le Borgne M. (2013) Heterogeneous distribution of natural zinc isotopes in mice. *Metallomics*, 5, 693–699.

Paniello R.C., Day J.M.D. and Moynier F. (2012a) Zinc isotopic evidence for the origin of the Moon. *Nature*, 490, 376–379.

Paniello R.C., Moynier F., Beck P., Barrat J.-A., Podosek F.A. and Pichat S. (2012b) Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. *Geochimica et Cosmochimica Acta*, 86, 76–87.

Pašava J., Tornos F. and Chrástný V. (2014) Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. *Minerallium Deposita*, 49, 797–807.

Petit J.C.J., de Jong J., Chou L. and Mattielli N. (2008) Development of Cu and Zn isotope MC-ICP-MS measurements: Application to suspended particulate matter and sediments from the Scheldt estuary. *Geostandards and Geoanalytical Research*, 32, 149–166.

Pons M.-L., Quitté G., Fujii T., Rosing M.T., Reynard B., Moynier F., Douchet C. and Albarède F. (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. *Proceedings of the National Academy of Sciences*, 108, 17639–17643.

Raczeck I., Stoll B., Hofmann A.W. and Jochum K.P. (2001) High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MC-SSMS. *Geostandards Newsletter: The Journal of Geostandards and Geoanalysis*, 25, 77–86.

Raczeck I., Jochum K.P. and Hofmann A.W. (2003) Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2F, GSP-1, GSP-2 and eight MPI-DING reference glasses. *Geostandards Newsletter: The Journal of Geostandards and Geoanalysis*, 27, 173–179.

Sossi P.A., Halverson G.P., Nebel O. and Eggin S.M. (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. *Geostandards and Geoanalytical Research*, 39, 129–149.

references

Tanimizu M., Asada Y. and Hirata T. (2002)
Absolute isotopic composition and atomic weight of commercial zinc using inductively coupled plasma mass spectrometry. *Analytical Chemistry*, 74, 5814–5819.

Thapalia A., Borrok D.M., Van Metre P.C. and Wilson J. (2015)
Zinc isotopic signatures in eight lake sediment cores from across the United States. *Environmental Science and Technology*, 49, 132–140.

Viers J., Oliva P., Nonell A., Gélabert A., Sonke J.E., Freydier R., Gainville R. and Dupré B. (2007)
Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon). *Chemical Geology*, 239, 124–137.

Weiss D.J., Mason T.F.D., Zhao F.J., Kirk G.J.D., Coles B.J. and Horstwood M.S.A. (2005)
Isotopic discrimination of zinc in higher plants. *New Phytologist*, 165, 703–710.

Young E.D., Galy A. and Nagahara H. (2002)
Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. *Geochimica et Cosmochimica Acta*, 66, 1095–1104.

Zhao Y., Vance D., Abouchami W. and de Baar H.J.W. (2014)
Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. *Geochimica et Cosmochimica Acta*, 125, 653–672.

Zhou J.-X., Huang Z.-L., Zhou M.-F., Zhu X.-K. and Muchez P. (2014a)
Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb–Zn sulfide deposits, southwest China. *Ore Geology Reviews*, 58, 41–54.

Zhou J.-X., Huang Z.-L., Lv Z.-C., Zhu X.-K., Gao J.-G. and Minejad H. (2014b)
Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb–Zn deposit, southwest China. *Ore Geology Reviews*, 63, 209–225.

Zhu X.-K., Wang Y., Yan B., Li J., Dong A.-G., Li Z.-H. and Sun J. (2013)
Developments of non-traditional stable isotope geochemistry. *Bulletin of Mineralogy, Petrology and Geochemistry*, 32, 651–688.