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A simple flux-free fusion technique was developed to
analyse major and trace element compositions of silicate
rocks. The sample powders were melted in a molybde-
num capsule sealed in a graphite tube to make a
homogenous glass in a temperature-controlled one-
atmosphere fumace. The glass was then measured for
both major and trace element concentrations by LA-ICP-
MS using a calibration strategy of total metal-oxide
normalisation. The optimum conditions (i.e., temperature
and duration) fo make homogeneous glasses were
obtained by performing melting experiments using a
series of USGS reference materials including BCR-2,
BIR-1, BHVO-2, AGV-1, AGV-2, RGM-1, W-2 and GSP-2
with SiO, contents from 47 to 73% m/m. Analytical
results of the USGS reference materials using our method
were generally consistent with the recommended values
within a discrepancy of 5-10% for most elements. The
routine precision of our method was generally better than
5-10% RSD. Compared with previous methods of
LA-ICP-MS whole-rock analyses, our flux-free fusion
method is convenient and efficient in making silicate
powder into homogeneous glass. Furthermore, it limits
contamination and loss of volatile elements during
heating. Therefore, our new method has great potential to
provide reliable and rapid determinations of major and
trace element compositions for silicate rocks.

Keywords: LAICP-MS, bulk analysis, flux-free fusion, silicate
rocks, molybdenum—graphite capsule.
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Une technique simple de fusion sans flux a été développée
pour analyser les compositions en éléments majeurs et
traces de roches silicatées. Les poudres d'échantillons ont
été fondues dans une capsule de molybdéne scellée dans
un tube de graphite pour la production d'un verre
homogeéne dans un four & une atmosphére et température
controlée. Le verre a ensuite été mesuré pour les concen-
frations en éléments majeurs et fraces par LA-ICP-MS en
utilisant une stratégie de calibration basée sur la normal-
isation totale des oxydes de métaux. Les conditions
optimales (i.e, température et durée) pour faire des verres
homogénes ont été obtenues en effectuant des
expériences de fusion en utilisant une série de matériaux
de référence USGS comprenant BCR-2, BIR-1, BHVO-2,
AGV-1, AGV-2, RGM-1, W-2 GSP-2 avec un contenu en
SiO, compris entre 47 et 73% m/m. Les résultats de
I'analyse des matériaux de référence USGS en utilisant
notre méthode sont généralement compatibles avec les
valeurs recommandées dans un intervalle de 5 a 10%
pour la plupart des éléments. La précision de routine de
notre méthode est généralement meilleure que 5-10%
RSD. Par rapport aux méthodes précédentes d’analyse sur
roche totale par LA-ICP-MS, notre méthode de fusion sans
flux est pratique et efficace par la production de verres
homogénes d partir de poudres de silicate. En outre, elle
limite la contamination et la perte d’éléments volatils
pendant le chauffage. Par conséquent, notre nouvelle
méthode a un grand potentiel pour fournir des détermi-
nations fiables et rapides des compositions en éléments
majeurs et fraces des roches silicatées.

Mots-clés : LA-ICP-MS, analyse roche totale, fusion sans flux,
roches silicatées, capsule molybdéne-graphite.
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Determination of the elemental composition of silicate
rocks provides essential information about their geochem-
ical characteristics. Solution ICP-MS analysis of samples
treated by wet chemistry digestion or alkali fusion is @
conventional method for multi-element determinations that
is time-consuming and complicated (eg, Jarvis 1988,
Jenner et al. 1990, Eggins et al. 1997, Yu et al 2001,
Awaiji et al. 2006, Pretorius et al. 2006, Bayon et al.
2009, Park et al. 2013). In contrast, laser ablation ICP-MS
(LAJICP-MS) has odvcmtoges in several respects, inc|uo|ing
quick sample preparation, in situ analysis and low blank
levels. It has become a powerul tool for rapid and
precise defermination of chemical compositions in geo-
logical and environmental samples (e.g, Fedorowich et al
1993, Janvis and Williams 1993, Perkins et al 1993, Gao
et al 2002, Stoll et al. 2008, Hu et al. 2009, Chen et al.
2011, Li et al. 2011, Jochum et al. 2012, Malherbe et al.
2013, Nielsen and Lee 2013, Zhu et al 2013, Mukher-
jee et al 2014).

The sample preparation processes are critical for LAICP-
MS analysis of whole-rock powdered samples. Commonly
used preparation techniques include the use of (a) pressed
powder pe||ets, (b) flux-addition fusion and (c) flux-free

fusion.

The pressed powder pellet technique has been widely
applied to igneous rocks and soil samples (e.g, Gray 1985,
Van Heuzen and Morsink 1991, Pearce et al. 1992, Jarvis
and Williams 1993, lee et al 2003, Mukheriee et al.
2014). The powdered samples are usually spiked with
internal standard elements or enriched isotopes and then
pressed into a pellet for LA-ICP-MS analysis (Lee et al. 2003).
However, the analytical precision of this method is not high
enough (about 10-20% RSD) compared with solution ICP-
MS and other bulk analysis techniques (Stoll et al. 2008).
Several factors (such as the sample grain size, pellet
compactness and amount of binding media) can potentially
affect the homogeneity of the pellets, resulting in significant
analytical uncertainties (Mukherjee et al 2014).

The flux-addition fusion technique can produce homo-
geneous glasses by mixing a flux agent (e.g, lithium borate)
with sample powders. However, because of the dilution of
the lithium borate flux, this technique increases the detection
limits of trace elements, hompering accurate analysis for low-
abundance elements (Eggins 2003, Yu et al 2003). Addi-
tionally, the ICP-MS can be contaminated by ‘sticky’ elements
(such as Li, B and Cs) from the flux (Sy|vester 2001).

In contrast, the flux-free fusion method can directly melt
sample powders into homogenous glasses without adding

fluxes or standard elements. Previous studies have devel-
oped different methods to make silicate glasses by using the
following: (1) special metal (e.g, W, Ir and Mo) strip heaters
(Nicholls 1974, Brown 1977, Fedorowich et al 1993, Reid
et al 1999, Nehring et al. 2008, Stoll et al 2008); (2)
welded platinum capsules (Kurosawa et al. 2006); and (3)
boron nitride (BN) hermetic crucibles (Zhu et al 2013).
Although these techniques are rapid and simple, some
problems remain. For example, the use of metal strip heaters
could cause dep|eﬁon of volatile elements (e.g., Cs, Pb and
Zn) because of the high melting temperature (> 1600 °C)
required for making the glasses. In addition, using welded
platinum capsules may cause loss of transition metals into
the platinum capsule during melting (Kurosawa et al. 2006);
platinum is also expensive. Boron nitride is so reducing that
transition metals (such as Cr, Ni and Cu) may precipitate
from the melt (Zhu et al. 2013).

In this study, in order to minimise the drawbacks of
sample preparation methods, we established a new flux-free
fusion method for routine LAIICP-MS whole-rock analyses.
Briefly, we used a molybdenum (Mo) capsule sealed in a
graphite tube (Figure 1) to make silicate glasses in a
temperature-controlled one-atmosphere fumace. Following
this, both major and frace element contents of the glasses
were determined simultaneously by LAJICP-MS. Homogene-
ity of the fused glasses and accuracy of LAICP-MS data
were rigorously evaluated to prove the reliability of this
method.

Experiments

Reference materials and samples

The USGS reference materials used in this study included
three basalts (BIR-1, BHVO-2 and BCR-2), two andesites
(AGV-1 and AGV-2), one rthyolite (RGM-1), one diabase
(W-2) and one granodiorite (GSP-2). We also analysed two
well-characterised natural samples (basalt 13AFS-2 and
granodiorite 06TG-1). The RMs and natural samples display
a wide range of SiO; contents from 44% to 73% m/m. The
recommended values of major and trace element contents
for BIR-1, BHVO-2, BCR-2, AGV-1, AGV-2 and W-2 were
taken from the GeoReM database (http://georem.mpch-
mainzgwdg.de/). The reference values for RGM-1 were
taken from the GeoReM database, which were cited by Zhu
et al (2013). The reference values for GSP-2 were from
Wilson (1998) and Cotfta and Enzweiler (2012). The
reference major and trace element contents of basalt
13AFS-2 were derived from XRF spectrometry and solution
ICP-MS, respectively (. Huang, S.G. Li, YL Xiao, S. Ke, WY. Li,
Y. Tian, unpublished data). The reference data of granodi-
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Figure 1. (a) Cross section of the Mo—graphite assembly used for flux-free fusion in our study. (b) Parts to make the

Mo-graphite assembly, including molybdenum sheet, capsule made of Mo sheet and graphite tube. (c) Overview of

the one-atmosphere furnace in the laboratory at the USTC.

orite 06TG-1 were measured by XRF spectrometry and LA-
ICP-MS with LiBO3 fusion (He et al. 2011).

Sample preparation procedure

The success of the flux-free fusion method hinges on
whether silicate rock powders can be efficiently fused into
homogenous glasses. We used a graphite-Mo assembly to
do so, illustrated in Figure Ta. A Mo sheet (0.2 mm thick;
purity = 99.9%) was cut into rectangular fragments (27 mm
long and 25 mm wide), which were then rolled into
capsules (Figure 1b). To avoid any contamination of the
surface of the Mo sheet, the Mo capsules were cleaned for
10 min in an ultrasonic bath with 5% v/ HNO5 and then
dried before being filled with test portion powder. About
0.3 g of powder was put in the cleaned Mo capsule using a
stainless steel scoop. Finally, the capsule was placed in the
graphite tube.

Melting experiments were performed in a high-femper-
ature one-atmosphere furnace (KSL-1700X-A4) produced
by the Hefei Kejing Material Technology Company (Fig-
ure 1¢c). The volume of the oven chamber was 36 litres
(30 em x 40 cm x 30 cm), allowing at least ten samples
to be melted simultaneously. The melting conditions were
controlled by an infelligent programmable system with @
heating rate of 10 °C min™'. The highest temperature
designed for the fumace is 1700 °C, while the routine
working temperature was less than 1650 °C.

After heating to fusion in the furnace at high temperature
for a given duration, the sample-contained graphite-Mo
assemblies were quenched fo room temperature within a
few seconds by dropping them into cool water. The
quenched glasses were then removed from the capsules,
mounted in petro-epoxy, and well polished for microscopic
observation and LAICP-MS analyses.

Instrumentation

LAICP-MS analyses in our study were mainly performed
atthe Chinese Academy of Sciences Key Laboratory of Crust-
Mantle Materials and Environments, University of Science
and Technology of China (USTC), Hefei, China. For a
comparison, a fused AGV-2 glass (1400 °C, 10 min) was
also measured at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of
Geosciences (CUG), Wuhan, China.

In the USTC laboratory, an Agilent 7700e ICP-MS was
combined with a GeolasPro ArF (193 nm) excimer laser
sampling system. The fused glasses were ablated in single-
spot mode, with a spot size of 44 pm and repetition rate of
10 Hz Helium was used as the carrier gas flowing through
the sample cell, with the aerosol materials ablated by laser
info the ICP-MS. Argon was used as the make-up gas fo mix
with He before entering the plasma. The instrumental
operating parameters (e.g, carrier gas, make-up gas flows
and sampling depth) were optimised by ablating NIST SRM

© 2015 The Authors. Geostandards and Geoanalytical Research © 2015 International Association of Geoanalysts 7
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610 to obtain the strongest signal intensity for 2°Pb while
keeping ThO*/Th* (1.5-2%) and Ca®*/Ca* (~ 0.2%) low,
to minimise the inferferences from oxide and doubly
charged ions. The Th*/U" ratio was close to 1 when
ablating NIST SRM 610, indicating a high ionisation rate of
the laser-generated particles (Guillong and Ginther 2002,
Gunther and Hattendorf 2005).

The detailed LAICP-MS instrumental operation condi-
tions are listed in Table 1. During each LAICP-MS analysis, it
took about 25 s for blank, 40 s for ablation and 35 s for gas
flow washing. All data acquisition occurred in time-resolved
analysis mode. In the CUG laboratory, major and trace
elements were determined using an Agilent 7500a ICP-MS
in combinafion with an excimer 193-nm laser ablation
system (Geolas 2005). Single-spot mode with spot size of
44 pm was applied, and the other operating conditions
were same as those described by Liu et al. (2008).

Data processing

In this study, we applied the calibration strategy of
summed metal-oxide normalisation for data reduction. Briefly,
the sum of all measured metal oxides was normalised to
100% m/m affer subtracting the loss on ignition (Halicz and
Giinther 2004, Guillong et al. 2005, Liu et al. 2008, Zhu
et al 2013). Compared with calibration combined with
internal standardisation, this method can obtain major and
trace element contents simultaneously without an internal
standard element predetermined by electron probe micro-

Table 1.
Summary of the operating conditions for LA-ICP-MS
analysis in this study

ICP-MS (Agilent 7700e)

RF power 1350 W
Plasma gas 14 | min™' Ar
Auxiliary gas 09 I min" Ar
Make-up gas 075 I min™" Ar
Sampling depth 7.0 mm
Sample cone T mm Ni
Skimmer cone 0.4 mm Ni

Dwell time 5 ms for major elements; 10 ms for
trace elements
Detector Dual (pulse and analogue counting)

Laser (GeolasPro)

Wavelength 193 nm
Energy density 10 J em™
Carrier gas 0.6 | min' He
Ablation style Single spot
Laser pulse 400

Ablation spot size 44 pum
Repetition rate 10 Hz

analysis (EPMA) or XRF spectrometry. Three USGS basalt glass
reference materials (BHVO-2G, BCR-2G and BIR-1G) were
used for calibration, which can provide more precise and
accurate elemental concentrations relative to calibration
using NIST SRM 610 (Liv ef al 2008). The anticipated
measurement uncertainties of this calibration method are
generally within 5% for major elements (RSD = 0.3-3.9%
except for P,Os), and 5-10% for trace elements based on
analyses of MPI-DING reference glasses (Liu et al. 2008). The
sequence of analysis began with four analyses of reference
glasses (NIST SRM 610, BHVO-2G, BCR-2G and BIR-1G),
followed by analyses of samples and then four analyses of
reference glasses again. NIST SRM 610 was repetitively
analysed every eight sample analyses for time-drift correction.
ICPMSDataCal software (copyright reserved by Wuhan
Sample Solution Analytical Technology Co, Ltd, Wuhan,
China) edited by Liu et al (2008) was used to perform the
offline selection and integration of background and ablation
signals, time-drift correction and quantitative calibration.
Measurement uncertainties due fo various oxidation states
of Fe and Mn, matrix inferferences, and trace metal elements
and anions (e.g, F, Cl and OH) that were not analysed were
discussed in detail by Liu et al. (2008).

Results and discussion

Optimum melting conditions for extrusive rocks

For the flux-free fusion technique, melting temperature
and duration are the most crifical parameters to make
homogenous glasses. Melting at optimum conditions should
dissolve all refractory minerals and avoid significant loss of
volatile elements (such as Cs, Pb and Zn) (Stoll et al. 2008).
Relative fo infrusive rocks, extrusive rocks are more easily fully
fused because they contain smaller amounts of refractory
minerals and the mineral sizes are also smaller. In our study,
basalt and andesite RMs, BCR-2 and AGV-2, were selected
to assess the effect of melting conditions on element
homogeneity and analytical accuracy of fused glasses for

extrusive rocks.

We first obtained AGV-2 glass fused at 1400 °C for
10 min, and then BCR-2 and AGV-2 g|asses at 1450 °C for
5, 10 and 15 min, respectively. As shown in Figure 2q, b,
both BCR-2 and AGV-2 glasses contained numerous vapour
bubbles, while a significant amount of pure glass was also
preserved. To eliminate the effect of bubbles on sample
analysis, random spots on the bubble-free solid glass zones
were fargeted for LAICP-MS analysis. No metal grains or
residual refractory minerals within the glass beads were
observed using scanning electron microscopy, indicating
homogeneity of the BCR-2 and AGV-2 glasses.

8 © 2015 The Authors. Geostandards and Geoanalytical Research © 2015 International Association of Geoanalysts
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(a) BCR-2 (1450 °C, 10 min)
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Figure 2. Photomicrographs of polished glass beads of (a) BCR-2, (b) AGV-2 and (c) RGM-1, respectively. The
vapour bubbles are shown in the glass beads. (d) Ten laser spots (44 pm) along the A-B profile in the W-2 glass

bead.

LAICP-MS analyses further confirmed that most ele-
ments were homogenously distributed in both AGV-2 and
BCR-2 glasses at a spot scale of 44 um. Table 2
summarises the LAICP-MS data from AGV-2 and BCR-2
glasses fused under different conditions. RSD values are
used to evaluate the homogeneity of element distribution in
these glasses. In order to address measurement reproduc-
ibility, we performed multi-spot analyses on different pieces
of glass beads instead of multiple analyses of the same
bead. Figure 3a shows that AGV-2 glass produced at
1400 °C for 10 min generally gave higher RSD values for
most elements than that made at 1450 °C for 10 min,
indicating that elevating the melting temperature could
effectively homogenise the melt. In contrast, RSD values
were generally lower than 10% and only changed slightly
for most elements when fused at 1450 °C for 5, 10 and
15 min (Figure 3a). Such a phenomenon is also illustrated
in Figure 4a. This implies that changing fusion duration
from 5 min to 15 min did not obviously improve the glass
homogeneity for most elements.

Notably, some elements (moin|y Cr, Co, Ni, Zn and Pb)
showed relative high RSD values (> 10%) in the BCR-2 glass
fused at 1450 °C for 15 min relative to that fused for 5-
10 min (Figure 4a). This may be atiributed to reactions
between the melt and the Mo capsule or contamination of
Cr, Co and Ni during prolonged fusion process. The high
RSD values (> 10%) for Zn and Pb may have been caused
by volatilisation, indicating that prolonged fusion durations
do not always ensure better homogeneity of elements such

as Cr, Co, Ni, Zn and Pb. Therefore, a moderate melting
condition (1450 °C, 10 min) may be more appropriate for
melting basaltic and andesitic extrusive rocks.

The accuracy of the LAICP-MS data was evaluated by
comparing the results with recommended values from the
GeoReM database. Figures 3b and 4b show that analytical
data for BCR-2 and AGV-2 glasses produced at different
me|ting conditions (1400-1450 °C, 5-15 min) genero”y
agree with the recommended values within 5-10% for most
elements. To minimise possible contamination or volatilisa-
tion during prolonged melting, we selected 1450 °C and
10 min as the routine melting conditions for extrusive rocks.

Noticeable discrepancies were observed for Ni and Cu
in the BCR-2 glass (eg, Ni: 11.5 ug g'; Cu: 17 pg g™ of
g|oss fused at 1450 °C for 10 min) compared with the
preferred values from the GeoReM database (Ni:
18+ 1 pgg'iCu: 21 1 pg g'), but the results were in
good agreement with recently published data (Ni: 11.8—
139 ugg™'; Cu: 166-180 pg g™') (Stoll et al 2008, Cotta
and Enzweiler 2012, Zhang et al. 2012). It was suggested
that more analyses would be helpful to better constrain the
Ni and Cu contents of BCR-2 given the limited number of
sample analyses (Zhang et al. 2012, Hu et al. 2013).

Optimum melting conditions for granitoids

In contrast fo exfrusive rocks, granitoids are difficult to

completely fuse due to the high viscosity of the melt and

© 2015 The Authors. Geostandards and Geoanalytical Research © 2015 International Association of Geoanalysts 9
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Figure 3. Effect of melting conditions (1400 °C, 10 min and 1450 °C, 5-15 min) on (a) relative standard deviations
(RSD) and (b) relative deviations (RD) [100x (measured values - reference values)/reference values)] of the
measured values from the reference values in the AGV-2 glasses.
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Figure 4. Effect of melting conditions (1450 °C and 5-15 min) on (a) RSD and (b) relative deviations of the
measured values from the reference values in the BCR-2 glasses.

the low solubility of zircon in high-SiO, melts. This may
cause significant heterogeneity for Zr, Hf and heavy rare
earth elements (HREEs) due to their high compatibility in
zircon. USGS granodiorite reference material GSP-2 (with
a high Zr content of 550 ug g') was selected to
evaluate the effect of melting conditions on analytical
performance for granitoids. Relafive to volcanic rocks,

© 2015 The Authors. Geostandards and Geoanalytical Research © 2015 International Association of Geoanalysts

higher temperatures (1550-1600 °C) and |onger dura-
tions (25-35 min) were applied to GSP-2. Figure 5 shows
that small amounts of residual zircons (10-20 um) were
preserved in the melt even under extreme fusion condi-
tions, indicating complete decomposition of zircon s
difficult for granitoids using the conventional flux-free
fusion technique.
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(a) GSP-2 (1550 °C, 25 min) (b) GSP-2 (1600 °C, 30 min) (c) GSP-2 (1600 °C, 35 min)
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Figure 5. Back-scattered electron SEM images of residual zircons in GSP-2 glasses fused at (a) 1550 °C for 25 min,
(b) 1600 °C for 30 min and (c¢) 1600 °C for 35 min.

<]

= =N
Q0000

- GSP-2 (1550 °C, 25 min
- GSP-2 (1550 °C, 30 min,
A GSP-2 (1550 °C, 35 min,

&
o

Relative deviation (%)

2
o

o
=]

Figure 6. Effect of melting conditions (1550-1600 °C, 25-35 min) on (a) RSD and (b) relative deviations of the

measured values from the reference values for the GSP-2 glasses.

Analytical results for GSP-2 glasses fused at different elements that are not sensitive to volatilisation or crystallisa-
me|ﬁng conditions are listed in Table 3. Figure 6a demon- tion of refractory minerals (e.g., Na,O, K5O, Rb, Sr and |ighf
strates the effects of different me|ﬁng temperatures and rare earth elements (LREEs)), RSD values were genera”y less
durations on homogeneity of elements. It is clear that RSD than 5-10%.
values of GSP-2 glasses show similar distribution patterns
even though melting temperature changed from 1550 °C The accuracy of LAICP-MS data for GSP-2 glasses is
to 1600 °C and durations from 25 to 35 min. Analytes demonstrated in Figure 6b. It is obvious that most data are
including PoOs, Cr, Co and Ni were found to be hetero- consistent with the reference values within 5-10% for major
geneously distributed as displayed in their systematically elements and 10-20% for trace elements, proving the
high RSD values. Zirconium and Hf were also heteroge- reliability of our method for analysis of granitoids. Exceptions
neous, with RSD values greater than 10-20%, confirming the include Cr, Co and Ni, which showed large bias from the
influence of residual zircon grains. Our data illustrate that reference values. Due to the relatively low concentrations

volatile elements (e.g, Zn, Ga, Cs and Pb) were generally (reference values: Cr: 20 pg g™'; Co: 7.3 ug g'; Ni: 17 g
homogeneously distributed (RSD < 10-20%). Notably, for g’"), these elements are easily affected by loss to Mo or

14 © 2015 The Authors. Geostandards and Geoanalytical Research © 2015 International Association of Geoanalysts
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contamination during prolonged heating. We also note that
loss of volatile elements (e.g, Pb, Zn and Cs) was minor
(< 10-20%), and elements such as Zr, Hf and the HREEs

(which are compatible in zircon) are in agreement with the

reference values within error of 10-20%.

One issue during determination of REE by LAICP-MS is
the isobaric interferences of Ba and LREE oxides on middle
rare earth elements (MREEs; e.g, Eu and Gd), and these
interferences can be exacerbated by high contents of Ba

P

GEOSTANDARDS and
" GEOANALYTICAL
RESEARCH

Overall, our method provided reliable LAICP-MS data
for granitoids. One of the advantages of the method is that it
avoids tedious wet chemistry digestion procedures, high-
purity MgO or fluxes (e.g, LIBO; and LioB4O-) to melt high-

SiO, samples for conventional solution ICP-MS and LA-ICP-
MS methods (Nehring et al 2008, Park et al 2013). In

(relative to Eu) and La, Ce and Pr (relative to Gd) (Kent and

Ungerer 2005). GSP-2 has a high La/Gd ratio (~ 15), so
the isobaric interferences from La oxides should be evalu-

ated. The measured Gd contents in GSP-2 are systematically

higher than the reference values by 25% (Table 3), and
probably caused by the isobaric interference of '37la'®O
on '*°Gd. The calculation by Kent and Ungerer (2005)
showed that the '*%1a’®0/"*la is about 80% of the
maximum oxide production rate as presented by ThO*/Th".
We estimate that the '71a'®0/"*"la was around 1.2—
1.6% in our study, given that the optimised ThO*/Th* was
about 1.5-2%. Therefore, the Gd data can be corrected by
subtracting the contribution of '3?La'®O to '*°Gd assuming
that the '371a'®0/"*la is ~ 1.4%. The comected Gd
confents are consistent with the USGS reference data
(Table 3). We also suggest that '*>’Gd should be used for
measurement of Gd concentration because PrO*/Pr pro-
duction is relatively low and Pr abundances are lower than
La and Ce (Kent and Ungerer 2005). As contributions from
BaO to Eu are significant only for samples with Ba/Eu ratios
higher than 1000 (Kent and Ungerer 2005), Eu content was
not corrected for BaO interdference for analysis of GSP-2

glass due to its low Ba/Eu ratio (~ 580).

Concentration (% m/m)

served in high-SiO, powders.

routine analysis, melting at 1550 °C and 30 min is
recommended fo obtain homogeneous glasses although

small amounts of residual zircon (10-20 pm) were pre-

Analytical results for basalts, andesite, rhyolite
and diabase

To investigate the data quality from LAICP-MS in combi-
nation with our flux-free fusion technique, several USGS
extrusive rock RMs inc|uo|ing BHVO-2, BIR-1, AGV-1 and
RGM:-1 were measured. The recommended melting condition
(1450 °C, 10 min) was applied to all samples. The diabase
reference material W-2 was also fused under the same
condition to test its suitability for mafic intrusive rocks. Figure 2c,
d shows the morphology of RGM-1 and W-2 glasses fused at
1450 °Cfor 10 min.To examine elemental homogeneity, W-
2 was investigoted o|ong a profile (A-B) by LAICP-MS
(Figure 2d). Figure 7 shows that elements were homoge-
nously distributed along the profile and the composition was
consistent with reference data, implying that this melting
condition is feasible for diabase. As the liquidus of mafic
infrusive rocks such as gabbro and amphibolite is lower than
1450 °C at ambient pressure, our method could also be
useful for other mafic intrusive rocks, but could not be applied
to high-Mg mafic-ultramafic rocks (such as peridotites)

because of their high liquidus values.
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Figure 7. Element distributions along the A-B profile of the W-2 glass fused at 1450 °C for 10 min. The A-B profile

is shown in Figure 2 (d). Ref., reference values with 1s uncertainty; Ave., average values with 1s uncertainty.
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Figure 8. (a) RSD and (b) relative deviations of the measured values from the reference values for BHVO-2, BIR-1,
AGV-1, RGM-1 and W-2 glasses fused at the optimum melting condition (1450 °C and 10 min).

As shown in Table 4 and Figure 8, the data quality of
our results is comparable to conventional methods. LAICP-
MS data for BHVO-2, BIR-1, AGV-1, RGM-1 and W-2
generally agree with the recommended values within @
discrepancy of 5% for major elements and 5-10% for trace
elements, with precision better than 5-10% RSD for most
elements. Inferferences of 28Si'’O and 27Si'®O on *°Sc,
13°Ba'°0 on "*'Eu and "*La'®0 on '°°Gd do not cause
clear bias due to relatively low oxide inferferences for BHVO-
2, BIR-1, AGV-1, RGM-1 and W-2 (Figure 8b). Corrections
were thus not applied for the LAICP-MS data.

The LA-ICP-MS data in Figure 8 indicate that our method
has limitations in determining elements with low concentra-
tions. Taking BIR-1 as an example, these elements mainly
include K,O (003% m/m), P,Os (0027% m/m), Cs
(0007 pg g), Ta (00357 pg g'), Th (0032 png g™
and U (001 pg g') (from the GeoReM database). As
shown in Figure 9, negative correlations between concen-
trations and RSDs were found in BIR-1, BHVO-2, AGV-1 and
RGM-1 for most elements. The trend of decreasing RSD with
increasing concentration reveals the relationship between
analytical precision and counting statistics. To obtain accu-
rafe concentration data, chemical heterogeneities for ele-
ments in the glass should be smaller than analytical
uncertainty (Gao et al 2002, Luo et al. 2007, Hu et al
2009). This also shows that Cr and Niin AGV-1 and RGM:-1
lie beyond the negative correlation trends (Figure 9), which
may be due fo heterogeneous distributions in the glasses.
Similar to GSP-2, the high RSD and large bias in LAICP-MS

1000
3 B BIR-1
@ BHVO-2
< AGV-1
100l > RGM-1
a
(-4
X
° 10k )
L #
2 <o
5 0 .. 0
- >
1t o §

102 102 107 100 10° 102 108 104
Concentration (ug g-')

Figure 9. Correlations between RSD values and trace
element concentrations for BIR-1, BHVO-2, AGV-1 and
RGM-1 glasses fused at 1450 °C for 10 min.

data for Cr and Ni in AGV-1 and RGM-1 may be also
susceptible to the fusion process due to their low concen-
trations (Figure 8). In contrast, results for Cr and Ni in BHVO-
2, BIR-1 and W-2 with relatively high contents (100-400 pg
g for Crand 69-400 pg g™ for Ni) generally showed low
RSD values and no significant bias (Figure 8). This indicates
that heterogeneity of Cr and Ni caused by the fusion process
is smaller than the analytical uncertainties of LAICP-MS
when their concentrations are high enough. The high RSD
values of Cs, Ta, Th and U in BIR-1 and Cs (0.1 ug g™') in
BHVO-2 reflect low signal intensities during ICP-MS analy-
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Figure 10. (a) Precision (RSD) of elemental contents of two natural samples (basalt 13AFS-2 and granodiorite 06TG-

1) analysed by the method described in this study; (b) comparison of primitive mantle-normalised trace element
concentrations of basalt 13AFS-2 and granodiorite 06TG-1 obtained from different methods.

ses, rather than chemical heterogeneity caused by the fusion
process.

Comparison with other methods

To investigate further the potential of our flux-free fusion
technique for routine bulk rock analysis, we fused two natural
rock samples, basalt 13AFS-2 and granodiorite 06TG-1,
under the recommended melting conditions of 1450 °C for
10 min and 1550 °C for 30 min, respectively. In Table 5,
the results are compared with literature data obtained from
other methods (XRF spectrometry, solution ICP-MS and LA-
ICP-MS after flux-fusion) (He et al 2011, J. Huang, SG. Li, Y.L.
Xiao, S. Ke, WY. Li, Y. Tian, unpublished data).

Figure 10a shows that the precision of our method was
generally better than 5-10% RSD for 13AFS-2 and 06TG-1.
Exceptions were Cr, Co, Ni, Zn, Zr, Hf and elements with low
concentrations in granodiorite 06TG-1. The accuracy of the
LAICP-MS data is demonstrated by the agreement of
concentration data obtained by different techniques. As
illustrated in Table 5, most LAICP-MS data for basalt 13AFS-
2 and granodiorite 06TG-1 agree with values derived by
XRF, solution ICP-MS and LAIICP-MS after flux-fusion within a
discrepancy of 10%. Figure 10b further shows that the
primitive mantle-normalised trace element patterns derived
from different methods match well (Sun and McDonough
1989). These observations suggest that the new flux-free
fusion technique described herein can provide reliable

elemental content data.

Conclusions

A new method was developed combining the flux-free
fusion technique with LAICP-MS for rapid and accurate
deferminations of major and trace elements in silicate rocks.
The advantage of our method is that homogeneous glasses
can be obtained through melting rock powders at 1450
1600 °C in a normal one-atmosphere fumnace without
adding any flux agent. This simple technique minimises
drawbacks causing analytical uncertainty, such as volatilisa-
tion, contamination and metal segregation (mainly Cr, Ni and
Cu). Analytical results obtained for eight USGS reference
materials and two natural samples using our method
generally agree with recommended values within discrep-
ancy of 5-10% for both major and trace elements. The
analytical precision, as given by one RSD, was less than 5-
10% for most elements. Therefore, this method has great
potential to provide reliable and rapid analyses of major and
trace element concentrations for silicate rocks, especially for

extrusive rocks and most mafic to intermediate intrusive rocks.
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