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Abstract Subduction zone fluids are critical for transporting materials from subducted slabs to the mantle
wedge. Jadeitites from Myanmar record fluid compositions and reactions in the forearc subduction channel.
Here we present high-precision Mg isotope data of the Myanmar jadeitites and associated rocks to
understand the Mg isotope composition of subduction zone fluids at forearc depths. Two types of jadeitites
(white and green) exhibit distinct Mg isotope compositions. The white jadeitites precipitated fromNa-Al-Si-rich
fluids and have low δ26Mg values, varying from �1.55‰ to �0.92‰, whereas the green jadeitites have
higher δ26Mg values (�0.91‰ to �0.74‰) due to metasomatic reactions between fluids and Cr spinel. The
amphibole-rich blackwall in the contact boundaries between jadeitites and serpentinites also exhibits low
δ26Mg values (�1.17‰ to �0.72‰). Therefore, the jadeite-forming fluids have not only high concentrations
of Na-Al-Si but also low δ26Mg values. The low δ26Mg signature of the fluids is explained by the dissolution of
Ca-rich carbonate in subducted sediments or altered oceanic crust, which is supported by the negative
correlation of δ26Mg with CaO/TiO2, CaO/Al2O3, and Sr in the white jadeitites. Given the common occurrence
of Ca-rich carbonates in the subduction channel, the Mg isotope composition of low-Mg aqueous fluids
would be significantly modified by dissolved carbonates. Metasomatism by such fluids along conduits has
the potential to generate centimeter-scale Mg isotope heterogeneity in the forearc mantle wedge. Therefore,
Mg isotopes could be a powerful tracer for recycled carbonates not only in the deep mantle but also in the
shallow regions of subduction zones.

1. Introduction

The subduction of oceanic lithosphere has long been recognized as a key process in recycling large
amounts of fluids into the mantle (e.g., Bebout, 2013; Hermann et al., 2006; Manning, 2004; Schmidt &
Poli, 1998). The fluids derived from the dehydration of subducted slabs can change the mantle
chemical-physical properties including volatile contents, trace element abundances, radiogenic isotope sys-
tematics, seismic velocities, and electrical conductivities (Hyndman & Peacock, 2003; Morris & Ryan, 2003).
Arc volcanism in convergent plate margins is commonly linked to the fluids released into the mantle
wedge (e.g., Elliott et al., 1997; Plank & Langmuir, 1993; Tatsumi, 1989). Furthermore, the residual descend-
ing slab could also reserve some fluids in hydrous or nominally anhydrous minerals and influence the che-
mical composition of the deep mantle, which may subsequently contribute to the source material of
intraplate basalts (Hofmann, 1997).

Sediments and oceanic crust in subducted slabs have been identified as the major reservoirs delivering fluid-
mobile elements to the overlying mantle wedge (e.g., Elliott, 2003; Spandler & Pirard, 2013). Serpentinites are
also an important reservoir for volatiles and fluid-mobile elements (Scambelluri et al., 2004, 2015; Spandler
et al., 2014). The contributions of slab fluid sources (such as metamorphosed basalt, sediment, and serpenti-
nite) can be identified based on the trace element and isotope compositions of subduction-related magmas
(e.g., King et al., 2006; Marschall & Schumacher, 2012; Spandler & Pirard, 2013).

Unlike many incompatible trace elements and radiogenic isotopes, the Mg isotope composition of mantle
wedge peridotites are insensitive to metasomatism and partial melting processes because the Mg
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concentrations of slab-derived fluids are significantly lower than those of mantle peridotites. However, recent
studies have revealed that some arc lavas have slightly higher δ26Mg values relative to the normal mantle (Li
et al., 2017; Teng et al., 2016), whereas some cratonic eclogites and subduction-related basalts have lower
δ26Mg values (Huang, Li et al., 2015; Li et al., 2017; Wang et al., 2012, 2015; Yang et al., 2012). These observa-
tions raise an important question on the mechanisms for transferring the heterogeneous Mg isotope signa-
tures of the recycled slabs to the mantle. Determining the Mg isotope composition of subduction zone fluids
can place critical constraints on this recycling process (Chen et al., 2016; Wang et al., 2017). However, there
are no experimental calibrations or direct measurements of Mg isotope data from subduction zone fluids,
which hampers our understanding of the above question.

Jadeitite is a rare high-pressure/low-temperature metamorphic rock composed almost entirely of jadeite
(NaAlSi2O6), which is commonly associated with oceanic blueschists and eclogites in serpentinite
mélanges (Harlow et al., 2015; Schertl et al., 2012; Tsujimori & Harlow, 2012). Jadeitite samples directly record
fluid activities in the subduction channel (Harlow et al., 2015; Shi et al., 2012; Tsujimori & Harlow, 2012) and
thus offer a window into the geochemical processes of fluid-related mass transfer within oceanic subduction
zones (Harlow et al., 2016). The Jade Mine Tract from Kachin State in northwestern Myanmar is the largest
jadeitite (jade) deposit in the world. Intensive studies have demonstrated that the Myanmar jadeitites repre-
sent either the direct aqueous fluid precipitate (P-type) from slab dehydration into the mantle wedge (Shi
et al., 2009, 2012; Sorensen et al., 2006) or the metasomatic replacement (R-type) of crustal protoliths by
fluid-rock interaction (Lei et al., 2016; Yui et al., 2013). Therefore, the Myanmar jadeitites provide an excellent
opportunity to study the Mg isotope composition of subduction zone fluids.

In this study, we provide precise Mg isotope data for jadeitites and associated rocks, including amphibole-rich
blackwalls and serpentinites collected from the serpentinite mélange at the Myanmar Jade Mine Tract. The
purpose of this study is to constrain the Mg isotope composition of subduction zone fluids and to reveal
the influence of metasomatic processes on Mg isotopes in the subduction channel. Our results suggest that
subduction zone fluids derived from carbonated oceanic crust and sediments in the forearc region poten-
tially have Mg isotope compositions lower than oceanic crust or mantle peridotite and thus could create a
low δ26Mg signature in the mantle.

2. Geological Setting and Samples

Myanmar is located on the eastern prolongation of the Himalayan orogenic system (Figure 1a). From west to
east, it comprises the following four major tectonic domains: the Indo-Burma Range, the West Burma Block,
the Mogok Belt, and the Shan Plateau (Mitchell et al., 2012; Searle et al., 2007). The Myanmar jadeitite mines
are located at the eastern edge of the West Burma Block in a complex association with the Sagaing Fault and
the boundary of the Jade Mine Tract with the Nanyaseik Uplift (Mitchell et al., 2007, 2012). The Jade Mine
Tract is exposed in the western boundary of the Sagaing Fault in the Hpakan area of Kachin State
(Bertrand et al., 1999) andmainly consists of jadeitite-bearing serpentinite mélange, glaucophane schist, mica
schist, diopside marble, and amphibolite (Bender, 1983; Shi et al., 2001, 2014). Jadeitite mostly exhibits a
white color and occurs as veins (0.5–20 m) or blocks in serpentinized peridotites or as boulders in drainages
and conglomerates in the Jade Mine Tract (Figures 1b, 2a, and 2b). Between the serpentinite and jadeitite
veins, there exists a 3–50-cm-wide amphibole-rich blackwall (Figure 2b). Within or along the amphibole-rich
blackwall, several green kosmochlor and Cr-jadeite occur as 1–10-cm-wide veins. The country rock of jadeitite
is antigorite serpentinite or serpentinized peridotite (Shi et al., 2012). Rare eclogites and blueschists have
been found in the Jade Mine Tract (Goffé et al., 2000; Nyunt, 2009).

The formation age of the Myanmar jadeitite is highly debated. In situ zircon U-Pb data indicate that the for-
mation age of jadeitite is 147–158 Ma (Qiu et al., 2009; Shi et al., 2008, 2009). In contrast, Yui et al. (2013) sug-
gested that such old ages represent inherent protolith ages, with the youngest zircon U-Pb ages, 77 ± 3 Ma,
being comparable to the peak metamorphic age. Recently, Eocene 40Ar/39Ar ages obtained on phengites
from quartz schists in the Jade Mine Tract suggested that the jadeitites likely underwent rapid exhumation
at ~45 Ma along the Sagaing Fault (Shi et al., 2014).

Most P-type jadeitites occur as veins in serpentinite and have euhedral jadeite crystals with rhythmic
zoning under cathodoluminescence and backscattered images, suggesting that they precipitated from
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a Na-Al-Si-rich aqueous fluid (Shi et al., 2008, 2009, 2012; Sorensen et al., 2006). Alternatively, R-type
jadeitites preserve textural, mineralogical, or geochemical evidence of a crustal protolith, such as
gabbro or plagiogranite (Lei et al., 2016; Ng et al., 2016). The Myanmar jadeitite is enriched in Ba,
Pb, Sr, U, and Li and depleted in Rb and K, relative to midocean ridge basalt (Harlow et al., 2015;
Shi et al., 2008). The sources of jadeite-forming fluids have previously been interpreted to be subducted
altered oceanic crust (AOC), sediments, and/or serpentinites. The highly depleted mantle Hf isotope sig-
natures of zircons in jadeitites suggest that the fluids were derived from the dehydration of altered
oceanic mafic crust (Qiu et al., 2009; Shi et al., 2009). However, the presence of Ba-rich minerals,
deep-sea spherules, and CH4-rich fluid inclusions in the Myanmar jadeitites suggests that subducted
sediments were also incorporated into the jadeite-forming fluids (Shi et al., 2008, 2010, 2011). In addi-
tion, Mg-Cr-rich jadeite rims in jadeitites reflect a minor addition of serpentinite-derived fluid into the
jadeite-forming fluids (Sorensen et al., 2006).

The present study focuses on the jadeitites and associated rocks (amphibole-rich blackwall and serpen-
tinite) collected from a natural exposure of the serpentinite mélange in the Jade Mine Tract (Figures 1b
and 2). Generally, the jadeitite samples can be classified into two groups: one group is white jadeitite
(Figure 2c), and the other group is green jadeitite (Figure 2d). The white jadeitite primarily consists of
jadeite (Figure 3a) with minor accessory omphacite, amphibole, albite, and zircon (Table S1). The
jadeite commonly shows rhythmic zoning in Ca and Mg under backscattered images (Figure 3b).
The green jadeitite is mainly composed of Cr-bearing jadeite and kosmochlor, with minor omphacite,
relict chromite, and sodic amphibole (Figure 3c). The green jadeitite commonly occurs as thin veins
(1–10 cm) along the fractures or grain boundaries in the white jadeitite or amphibole-rich zones,

Figure 1. (a) Geological sketch map of Myanmar, modified after Liu et al. (2016). (b) Geological sketch map of the Myanmar jadeite area (modified after
Shi et al., 2014).
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implying that the green one is a later-stage metasomatic product (Shi et al., 2012). Several
metasomatic textures are observed in the green jadeitite, as characterized by the replacement of
chromite by kosmochlor and Cr-bearing jadeite (Figures 3c and 3d). Sodic to sodic-calcic amphiboles
occur at the boundaries of the white jadeitites and appear as a blackwall (Figure 3e). Serpentinite
can be subdivided into brucite-antigorite (Bru-Atg) serpentinite and olivine-antigorite (Ol-Atg)
serpentinite. The Bru-Atg serpentinite (sample A1-1) is mainly composed of brucite and antigorite
(Figure 3f), occasionally associated with chlorite, relict Cr-spinel, and clinopyroxene. The Ol-Atg
serpentinite (sample J4) adjacent to the jadeitites is characterized by the absence of brucite and the
presence of Mg-rich olivine rims with abundant tiny antigorite inclusions (1–3 μm) in direct contact
with primary olivine cores (Figures 3g and 3h). A detail description of sample distributions is given
in supporting information Text S1. The mineral modal proportions of the studied samples are
presented in supporting information Table S1.

3. Methods
3.1. Whole-Rock Major and Trace Elements

Whole-rock major element compositions were analyzed by X-ray fluorescence spectrometry on fused
glass disks at the Institute of Geology and Geophysics, Chinese Academy of Sciences. The analytical uncer-
tainties range from 1% to 3% for elements above 1 wt.% and are approximately 10% for elements
below 1 wt.%.

Whole-rock trace element concentrations were analyzed by inductively coupled plasma mass spectrometry
using a Finnigan Mat Element Spectrometer at the Institute of Geology and Geophysics, Chinese Academy
of Sciences. Sample powders were digested in concentrated HF + HNO3 in high-pressure Savillex Teflon

Figure 2. (a) Field photo showing a jadeitite vein in serpentinite from the Hkamti Jade Mine Tract. (b) Amphibole-rich
blackwall occurs in the contact boundary between serpentinite and jadeitite (Hkamti, Saging region). The length of band
tape is 1 m. (c) White jadeitite with an amphibole-rich boundary. The regions of 4a–4d refer to four samples (MDB4a to
MDB4d) that are separated from MDB4. (d) Green jadeitite containing abundant Cr-spinel grains.
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bombs at 120 °C for 7 days, evaporated to near dryness, and then diluted to 50 ml using super-pure HNO3 for
analysis. A blank solution was prepared, and the total procedural blank was <50 ng for all trace elements.
Indium was used as an internal standard to correct matrix effects and instrument drift. Two reference
standards (GSR-1 and GSR-3) were measured during the course of the analytical procedure. The precision
for most trace elements was better than 5%.

Figure 3. Microphotographs (a, c, d, e) and backscattered electron images (b, f, g, h) showing textures and mineral assem-
blages in the Myanmar jadeitites and associated rocks. (a) Subhedral jadeite grains in the white jadeitite (MDB5). (b)
Rhythmic zoning of jadeite grains in the white jadeitite (MDB4c) is an oscillatory variation in chemical composition. Note
that the rims of jadeites show light color due to their high Ca and Mg contents. (c) Replacement of chromite by kosmochlor
and Cr-bearing jadeite in the green jadeitite (MDB1). (d) Newly formed kosmochlor cutting chromite into anhedral frag-
ments (MDB1). (e) Coarse-grained amphibole occurring in the boundary of the white jadeitite. (f) Antigorite in contact with
brucite in the Bru-Atg serpentinite (A1-1). (g) High-Mg olivine overgrowth rims surrounding the primary olivine in the Ol-
Atg serpentinite (J4). (h) Abundant antigorite inclusions occurring in the high-Mg olivine rims. Mineral abbreviations are
from Whitney and Evans (2010).
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3.2. Mineral Major Elements

The major element concentrations of rock-forming minerals were ana-
lyzed with a CAMECA SXFive microprobe analyzer at the Institute of
Geology and Geophysics, Chinese Academy of Sciences. The analytical
conditions are 15-kV accelerating voltage, 20-nA beam current, and 3-μm
spot diameter for all minerals. The counting time for most minerals is
20 s on the peak and 10 s on the lower and upper background posi-
tions. The counting time for TiO2, Al2O3, Cr2O3, MnO, and NiO in olivine
is 60 s. The detection limits for these elements are approximately 100–
200 ppm. The precision of all major elements was better than
1.5% (3SD).

3.3. Whole-Rock Mg Isotopes

Magnesium isotope ratios were measured using a Thermo Scientific
Neptune Plus multicollector-inductively coupled plasma mass spectro-
metry following the method of An et al. (2014) at the CAS Key
Laboratory of Crust-Mantle Materials and Environments at the
University of Science and Technology of China, Hefei. Whole-rock pow-
ders were digested by a mixture of concentrated HF-HNO3. Mg purifica-
tion was performed in Savillex microcolumns loaded with 2 ml of Bio-Rad
AG50W-X12 resin. The blanks were around 5 ng, negligible relative to
the amount of purified Mg (20–40 μg). Mg isotope ratios were measured
using the sample-standard bracketing method with DSM-3 as the
bracketing standard. The Mg isotope results are reported using the stan-
dard δ notation relative to DSM-3: δ26Mg (‰) = ([26Mg/24Mg]sample/
[26Mg/24Mg]DSM-3 – 1) × 1,000. The uncertainties for δ25Mg and δ26Mg
are given as two standard deviations (2SD). Based on the repeated ana-
lyses of samples and whole-rock standards, the error for δ26Mg is better
than 0.06‰ (2SD). The standard data are consistent with literature
values within error (Table 1; e.g., An et al., 2014; Huang et al., 2009).
Duplicated analyses of rock samples also produced consistent δ26Mg
data, indicating the reliability of our measurements.

4. Results
4.1. Whole-Rock Compositions

The whole-rock major and trace element contents are presented in supporting information Table S2.
The two types of jadeitites have Mg# (= Mg/[Mg + Fe2+] × 100) values of 71–89 and high concentra-
tions of fluid-mobile elements (e.g., Li, Ba, U, Pb, and Sr). The green jadeitites have lower Na2O (9.39–
11.75 wt.%) but higher MgO (4.16–10.40 wt.%) and Cr2O3 (0.44–9.54 wt.%) relative to the white ones,
which is consistent with their high modal proportions of chromite and kosmochlor observed in thin
sections (Figures 2d and 3c). The serpentinite samples have refractory compositions, with high concen-
trations of MgO (~37 wt.%), Cr (3,830–4,064 ppm), and Ni (1,850–3,358 ppm), and extremely low con-
centrations of CaO (0.04–0.10 wt.%) and Al2O3 (0.32–0.42 wt.%). Compared with the serpentinites, the
amphibole-rich blackwalls show lower MgO contents and higher CaO, Na2O, Al2O3, and SiO2 contents
(Table S2).

4.2. Mineral Chemistry

The detailed compositions of minerals from jadeitites and associated amphibole-rich blackwalls have been
investigated in previous studies (e.g., Shi et al., 2003, 2012; Shi, Tropper et al., 2005; Sorensen et al., 2006).
Only minerals from serpentinites are summarized in supporting information Table S3. The relict olivine cores
(Ol1) are characterized by high Mg# (91.6–92.8) and NiO (0.38–0.52 wt.%) contents and low MnO contents
(0.11–0.23 wt.%), whereas the secondary olivine rims (Ol2) have extremely high Fo values (95.6–97.0) with
higher MnO (0.33–0.48 wt.%) and NiO (0.46–0.59 wt.%) contents (Figures 4a and 4b) than Ol1. Cr-spinel

Table 1
Magnesium Isotope Composition of Jadeitite, Amphibole Blackwall,
and Serpentinite

Sample Rock type δ26Mga 2SD δ25Mg 2SD N

MDB-4c White jadeitite �1.33 0.08 �0.68 0.04 6
MDB-4d White jadeitite �1.24 0.03 �0.62 0.02 3
MDB5 White jadeitite �1.03 0.06 �0.51 0.04 4
Replicateb �1.03 0.06 �0.53 0.06 4
MDB13 White jadeitite �1.34 0.04 �0.70 0.02 3
MDB14 White jadeitite �1.29 0.03 �0.65 0.03 3
MDB16 White jadeitite �1.55 0.03 �0.79 0.02 3
MDB17 White jadeitite �0.92 0.02 �0.47 0.01 3
MDB18 White jadeitite �1.00 0.02 �0.52 0.03 3
Replicate �0.99 0.01 �0.51 0.03 3
MDB1 Green jadeitite �0.11 0.04 �0.07 0.04 3
MDB2 Green jadeitite �0.91 0.06 �0.47 0.02 3
MDB15-1 Green jadeitite �0.75 0.04 �0.38 0.02 3
MDB15-2 Green jadeitite �0.74 0.02 �0.37 0.02 3
Replicate �0.84 0.11 �0.43 0.06 7
J3 Green jadeitite �0.80 0.01 �0.43 0.05 3
MDB-4a Amphibole blackwall �1.16 0.05 �0.60 0.03 6
MDB-4b Amphibole blackwall �1.17 0.02 �0.59 0.03 3
MDB3 Amphibole blackwall �1.08 0.03 �0.55 0.02 3
MDB7 Amphibole blackwall �0.72 0.02 �0.35 0.02 3
MDB10 Amphibole blackwall �1.13 0.07 �0.57 0.03 9
J2 Amphibole blackwall �0.84 0.04 �0.43 0.06 4
J4 Ol-Atg serpentinite �0.08 0.06 �0.04 0.03 6
A1-1 Bru-Atg serpentinite �0.26 0.01 �0.13 0.02 3
Standards
IGG �1.74 0.06 �0.89 0.04 21
CAM-1 �2.59 0.05 �1.34 0.03 12
GSP-2 0.03 0.05 0.02 0.03 4
BHVO-2 �0.20 0.05 �0.10 0.02 3

aδ26Mg = ([26Mg/24Mg]sample/[
26Mg/24Mg]DSM3� 1) × 1,000‰; DSM3 is

solution made from pure Mg metal. bReplicate represents repeating
sample solution, column chemistry, and instrumental analysis.
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grains from both serpentinite samples show systematically higher Cr# (atomic Cr/[Cr + Al] × 100) in the rims
due to alteration (e.g., Burkhard, 1993; Kimball, 1990). Homogeneous spinel cores have high Cr# (72–81) and
YFe (= Fe3+/[Cr + Al + Fe3+] = 0.12–0.23) values and low TiO2 contents, mostly <0.1 wt.% (Figures 4c and 4d;
Table S3). The hydrous minerals have highMg#, 96–97 for antigorite and 98 for brucite. Antigorite and brucite
contain 0.15–0.48 wt.% NiO (Table S3).

4.3. Whole-Rock Mg Isotope Data

The whole-rock Mg isotope data are presented in Table 1. The jadeitites and country rocks display a large
range of δ26Mg values (�1.55‰ to �0.08‰). The Atg-Ol serpentinite has a δ26Mg value of �0.08 ± 0.06‰
(2SD), which is higher than that of the Bru-Atg serpentinite (�0.26 ± 0.01‰, 2SD). The two types of jadeitites
have distinctively lower δ26Mg values than the associated serpentinites, with the white jadeitites having
values of �1.55‰ to �0.92‰ and the green ones having values of �0.91‰ to �0.74‰ with the exception
of sample MDB1, which has an anomalously high δ26Mg value of �0.11‰. The δ26Mg values of amphibole-
rich zones range from �1.17‰ to �0.72‰, falling between those of the white jadeitites and
serpentinites (Figure 5).

Figure 4. Mineral compositions of olivine and spinel in the serpentinites from the Myanmar Jade Mine Tract. (a) Fo-MnO
relations in olivines. (b) Fo-NiO relations in olivines. Olivine mantle array representing the residual mantle olivine
(Takahashi, 1986) is shown. The compositions of abyssal peridotites and forearc peridotites are collected from Warren
(2016) and Ishii et al. (1992), respectively. (c) Trivalent cation relations of the unaltered cores of chromian spinels. (d) Mg#-
Cr# relations in the unaltered cores of chromian spinels. Data sources: The Mariana forearc mantle (Ishii et al., 1992), the
Himalayas forearc mantle (Hattori & Guillot, 2007), abyssal peridotites (Barnes & Roeder, 2001; Dick & Bullen, 1984), boni-
nites (Barnes & Roeder, 2001), and rift-related peridotites (Ishwar-Kumar et al., 2016).
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5. Discussion
5.1. Fluid Sources Along the Subduction Interface

Serpentinites in oceanic subduction zones originate either from the
downgoing slab or from the mantle wedge along the subduction
interface (Deschamps et al., 2013). Previous studies have proposed
that jadeitites may document fluid processes in the forearc mantle
(e.g., Harlow et al., 2015, 2016; Tsujimori & Harlow, 2012). Our results
further indicate a forearc origin for the host serpentinites. The primary
olivine cores from serpentinites have Fo (91.6–92.8), NiO (0.38–
0.52 wt.%), and MnO (0.14–0.36 wt.%) values similar to those in refrac-
tory mantle peridotites (Tatsumi, 1986) and forearc peridotites (Ishii
et al., 1992) but deviate from those in abyssal peridotites (Warren,
2016; Figures 4a and 4b). The composition of Cr spinel is plotted
within the forearc mantle field (Figures 4c and 4d) and shows dis-
tinctly higher Cr# and lower Mg# values than those observed in abys-
sal peridotites (Warren, 2016). The consistently high Cr# (76–88) and
YFe (0.12–0.23) values and low TiO2 contents (<0.1 wt.%) in the Cr-
spinel also reflect the highly refractory nature of the forearc mantle
wedge (Arai et al., 2011; Pearce et al., 2000). In addition, the P-T condi-
tions of the Myanmar jadeitites, 1.0–1.5 GPa and 300–500 °C (Shi et al.,
2012), are similar to those along the subduction interface at forearc
depths (Figure 6; Penniston-Dorland et al., 2015). Therefore, the jadei-
tites likely formed at the forearc slab-mantle interface.

The jadeites in the white jadeitites commonly exhibit rhythmic zoning
in Ca and Mg (Figure 3b), suggesting that they were most likely precipitated from Na-Al-Si-rich fluids
(Figure 7; Shi et al., 2003, 2012; Sorensen et al., 2006). Such fluids were mainly derived from subducted
AOC and sediments (e.g., Harlow et al., 2015; Qiu et al., 2009; Shi et al., 2010, 2011). Minor locally
serpentinite-derived fluids might also contribute to the jadeitite-forming fluids (Sorensen et al., 2006); how-
ever, no direct mineral evidence for serpentinite dehydration was observed.

The Ol-Atg serpentinite surrounding the Myanmar jadeitites pre-
serves mineral textural and compositional evidence for serpentinite
dehydration. The secondary olivines in the Ol-Atg serpentinite,
characterized by overgrowth rims surrounding the primary olivines,
commonly include tiny antigorite (Figures 3g and 3h). This texture
and the wide chemical variation of olivine (Figure 4a) are character-
istics of deserpentinization in subduction-zone peridotites (Arai
et al., 2012; Nozaka, 2003; Yang & Powell, 2008). The secondary oli-
vine rims contain high MgO (Fo96-97), clearly greater than the nor-
mal mantle olivine (<Fo95; Arai, 1982), suggesting that the olivine
likely formed by the dehydration of brucite or antigorite. Their high
NiO contents (up to 0.6 wt.%) most likely result from brucite or anti-
gorite with high NiO contents (0.23–0.48 and 0.15–0.31 wt.%,
respectively) during deserpentinization.

The subducting slab can release aqueous fluids that infiltrate the over-
lying mantle wedge, forming a serpentinite layer at the forearc slab-
mantle interface (Bebout & Penniston-Dorland, 2016; Deschamps
et al., 2013; Guillot et al., 2009). During the further subduction of ser-
pentinite at the interface, fluids are progressively released by the pro-
grade dehydration of chrysotile/lizardite, brucite, antigorite, and
chlorite (Figure 6). The Bru-Atg serpentinite may be produced at the
shallow slab-mantle interface (300–450 °C). The absence of brucite
and orthopyroxene, as well as the occurrence of secondary high-Mg

Figure 5. Plots of δ26Mg versus MgO for jadeitites and associated rocks from the
Myanmar Jade Mine. The Cr-spinel-rich green jadeitites are marked as dashed
outline. The shaded area represents the average δ26Mg and 2SD of the normal
mantle (�0.25 ± 0.04‰; Teng et al., 2010). Error bars represent 2SD uncertainties.
The light blue curve represents binary mixing between white jadeitite and ser-
pentinite. The values along the curve refer to the proportion of white jadeitite.

Figure 6. Pressure-temperature diagram illustrating the phase relations and the
metamorphic evolution of subducted serpentinites. The P-T paths for the global
oceanic subduction interface are from the D80model of Syracuse et al. (2010). The
grey shaded region represents the broad P-T conditions of the Myanmar jadeitites
(Shi et al., 2012). The figure is modified from Scambelluri et al. (2004). Mineral
abbreviations are from Whitney and Evans (2010).
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olivine in the Ol-Atg serpentinite, implies that brucite is dehydrated out via the following reaction (Ulmer &
Trommsdorff, 1995):

Mg3Si2O5 OHð Þ4 antigoriteð Þ þMg OHð Þ2 bruciteð Þ ¼ 2Mg2SiO4 olivineð Þ þ 3H2O Figure 6ð Þ: (1)

This reaction commonly occurs in the forearc region (450–650 °C) and releases Cl-rich fluids (Scambelluri et al.,
2004; Scambelluri & Tonarini, 2012; Sharp & Barnes, 2004). This is consistent with the high-salinity aqueous
fluid inclusions observed in the Myanmar jadeitites (Qi et al., 2015). Consequently, the jadeite-forming fluids
are sourced from not only AOC and sediments but also serpentinite. Such fluids with multiple sources are
very common at the slab-mantle interface (e.g., Bebout & Penniston-Dorland, 2016; Manning, 2004;
Marschall & Schumacher, 2012).

5.2. Mg Isotope Constraints on the Origin of Jadeite-Forming Fluids

Mg isotopes are not significantly fractionated during melting and crystallization (Liu et al., 2010; Teng et al.,
2010, 2016). Metamorphic dehydration only generates limited Mg isotope fractionation (<0.07‰) on a bulk-
rock scale (Li et al., 2011; Li, Teng, et al., 2014; Wang et al., 2014). Recent studies have demonstrated that the
Mg isotope signatures of subduction zone fluids are likely inherited from Mg-rich hydrous minerals in source
reservoirs (Chen et al., 2016; Wang et al., 2017). Given the limited isotopic fractionation, Mg isotopes can be
used to provide further constraints on the source composition of jadeite-forming fluids.

Both the Myanmar jadeitites (�1.55‰ to �0.74‰) and amphibole-rich blackwalls (�1.17‰ to �0.72‰)
show significantly lower δ26Mg than the normal mantle values (�0.25 ± 0.04‰; Teng et al., 2010; Figures 5
and 8). Such low values are first going to be considered in terms of diffusion.

The depleted 26Mg in the jadeitites could be due to a kinetic effect such as thermal or chemical diffusion
(Huang et al., 2010; Pogge von Strandmann et al., 2015; Richter et al., 2003). As experimental studies show,
diffusion along a thermal or chemical potential gradient can be accompanied by significant isotopic fractio-
nation (Huang et al., 2010; Richter et al., 2003). Because of the lack of melt during the formation of jadeitites at
low temperatures (<500 °C; Goffé et al., 2000; Harlow et al., 2015; Shi et al., 2003, 2012), thermal diffusion is
considered to be too sluggish to play an important role (Huang et al., 2009). Chemical diffusion by Mg-rich
fluids can also induce significant Mg isotope fractionation (Pogge von Strandmann et al., 2011, 2015). If Mg
diffusion occurs along the serpentinite-jadeitite interface, the markedly low δ26Mg values in the jadeitites
and amphibole-rich blackwalls would primarily originate from metasomatic fluids. Regardless of the

Figure 7. Cartoon illustrating the distribution and Mg isotope compositions of jadeitites, amphibole blackwall, and
serpentinite.
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conditions of chemical diffusion, a negative correlation between MgO and
δ26Mg should be expected (Pogge von Strandmann et al., 2015). However,
this is not the case in the white jadeitites and amphibole-rich blackwalls
observed in this study (Figure 5). Therefore, both thermal and chemical dif-
fusion are unlikely to create the low δ26Mg signatures in the white jadei-
tites. Given that the white jadeitites directly precipitated from aqueous
fluids (Figure 7), the low δ26Mg in the white jadeitites is better explained
by low δ26Mg sources.

Compared to mantle peridotites, subducted abyssal peridotites have
slightly higher δ26Mg values of�0.25‰ to +0.10‰ (Figure 8), likely attrib-
uted to the formation of secondary Fe oxides and clays (Liu et al., 2017).
One explanation for the low δ26Mg in the fluids is the breakdown of bru-
cite, as observed in the Ol-Atg serpentinite. Because brucite cannot be
physically separated from our samples (Figure 3f), we cannot directly ana-
lyze the Mg isotope composition of brucite. However, brucite formation
experiments indicate that brucite preferentially takes up higher δ26Mg
than aqueous fluid (Wimpenny et al., 2014) or does not fractionate Mg iso-
topes at temperatures of >40 °C (Li, Beard, et al., 2014). In addition, theo-
retical calculations suggest that Mg isotope fractionation between olivine
and aqueous fluid is <0.2‰, even at temperatures as low as 300 °C
(Schauble, 2011). Although the Mg isotope composition of metamorphic
olivine (Fo > 96) has not yet been reported, it is speculated to be not sig-
nificantly different from the normal mantle olivine (�0.26 ± 0.18, 2SD,
n = 108; Figure 8), because olivines contain the same 6-coordinated Mg
and Mg-O bonding environment. In this regard, the brucite breakdown
fluid equilibrated with the newly formed olivine is unlikely to have
δ26Mg values as low as �1.55‰, especially at temperatures of >450 °C
(Figure 6). Although chlorite in serpentinite has δ26Mg values (�0.38‰
to �0.24‰) slightly lower than mantle peridotites (Pogge von
Strandmann et al., 2015), it would be stable at the jadeite-forming condi-
tions (Figure 6) and therefore cannot be the primary source for low
δ26Mg fluids. Other Mg-rich hydrous minerals, such as antigorite and talc,
have high δ26Mg values (Figure 8; Beinlich et al., 2014), which also could
not release low δ26Mg fluids. Therefore, the dehydration of serpentinite
alone cannot result in fluids with significantly low δ26Mg values.

Subducted AOC and sediments have highly variable δ26Mg values from �3.65‰ to +0.52‰ (Figure 8), with
low δ26Mg in carbonated rocks and with high δ26Mg in carbonate-free rocks (Hu et al., 2017; Huang, 2013;
Huang, Ke et al., 2015; Teng, 2017; Teng et al., 2016). Therefore, carbonate-rich AOC and sediments are poten-
tial sources for the low δ26Mg fluids. Carbonates in subducted sediments and AOC commonly have high con-
centrations of Ca and Sr and high CaO/TiO2 and CaO/Al2O3 ratios (Huang & Xiao, 2016; Wang et al., 2015). The
δ26Mg values of white jadeitites are negatively correlated with CaO/TiO2, CaO/Al2O3, and Sr (Figure 9), imply-
ing that recycled carbonates are incorporated into the jadeite-forming fluids. This is also supported by CH4-
rich fluid inclusions observed in the white jadeitites (Qi et al., 2015; Shi, Tropper et al., 2005), which were likely
derived from carbonate-rich source (e.g., carbonate-richmarine sediments or AOC). In addition, diopsidemar-
bles do occur in the Jade Mine Tract (Bender, 1983; Shi et al., 2001) and thus potentially provide a carbonate
source for the jadeite-forming fluids. MgO/Al2O3 is not clearly correlated with δ26Mg values, suggesting that
the incorporated carbonate is likely calcite (Figure 9b). In the following sections, we will focus on the process
of how Mg isotopes behave during carbonate recycling in the forearc region.

5.3. Low δ26Mg Fluids: The Role of Carbonate Dissolution

Carbon transfer in subduction zone fluids is induced by decarbonation or dissolution processes (Ague &
Nicolescu, 2014; Gorman et al., 2006; Kelemen & Manning, 2015; Kerrick & Connolly, 1998, 2001). However,

Figure 8. Magnesium isotope composition of the studied samples com-
pared to subduction zone reservoirs and minerals. The gray shaded area
represents the mantle δ26Mg values after Teng et al. (2010). The blue shaded
area represents the δ26Mg values of white jadeitites. Data sources: Seawater
(Ling et al., 2011); oceanic island basalt (OIB), and midocean ridge basalt
(MORB; Bourdon et al., 2010; Teng et al., 2010); altered MORB (Huang, 2013;
Huang, Ke et al., 2015; Teng et al., 2016); marine sediments (Hu et al., 2017;
Teng et al., 2016); abyssal peridotite (Liu et al., 2017); talc and antigorite
(Beinlich et al., 2014); chlorite (Pogge von Strandmann et al., 2015); olivine
(Handler et al., 2009; Yang et al., 2009; Young et al., 2009; Huang et al., 2011;
Liu et al., 2011; Pogge von Strandmann et al., 2011; Xiao et al., 2013);
carbonates (Brenot et al., 2008; Fantle & Higgins, 2014; Geske et al., 2014;
Higgins & Schrag, 2010; Hippler et al., 2009; Huang & Xiao, 2016; Jacobson
et al., 2010; Kasemann et al., 2014; Tipper et al., 2006; Wombacher et al., 2011).
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carbonates can remain stable to very high pressures and temperatures in subduction zones, resulting in
inefficient decarbonation in forearcs (Collins et al., 2015; Dasgupta & Hirschmann, 2010; Kerrick & Connolly,
2001; Molina & Poli, 2000; Poli et al., 2009; Thomsen & Schmidt, 2008). Furthermore, the formation
temperatures of the Myanmar jadeitites (T < 500 °C) are significantly lower than the decarbonation condi-
tions (Goffé et al., 2000; Shi et al., 2003, 2012). This leaves carbonate dissolution as the best explanation for
the incorporation of recycled carbonate into the jadeite-forming fluids.

Theoretical modeling and experimental work demonstrate that aqueous fluids released from oceanic crust
and serpentinite at forearc conditions (<600 °C and <2.2 GPa) have low MgO contents (< 0.1 wt.%; Galvez
et al., 2015; Manning, 2004; Schneider & Eggler, 1986). Aqueous fluids derived from sediments also have
extremely low Mg concentrations (<200 ppm), even at 650 °C and 2.2 GPa (Spandler et al., 2007). This is
clearly supported by the composition of white jadeitites. The white jadeitites precipitated from Na-Al-Si fluids
have 0.84–3.13 wt.% MgO (Table S2). According to the jadeitite formation conditions (1–1.5 GPa, 300–500 °C)
and experimental work on Na-Al-Si-rich fluids (Manning et al., 2010; Wohlers et al., 2011), the bulk solubility in
Na-Al-Si-rich fluid is significantly lower than 3.4 wt.%. Therefore, if all MgO in the fluids was incorporated into
the jadeitites during crystallization, the Na-Al-Si fluids would have MgO contents lower than 0.03–0.10 wt.%.
Conversely, carbonate species dissolved in subduction zone fluids are mainly calcite/aragonite (Ague &
Nicolescu, 2014; Kelemen & Manning, 2015; Pan et al., 2013), which could have 0.8–2.0 wt.% MgO (Huang
& Xiao, 2016; Liu et al., 2015). Mg-calcite/aragonite commonly has very low δ26Mg signature, with δ26Mg

Figure 9. Correlation between whole-rock δ26Mg values and CaO/Al2O3 (a), MgO/Al2O3 (b), CaO/TiO2 (c), and Sr (d) values
for jadeitites and country rocks from Myanmar. The shaded area represents the mantle δ26Mg values after Teng et al.
(2010).
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ranging from�5.57‰ to�1.04‰ and an average value of�3.65 ± 2.17‰
(n = 284, 2SD, Huang & Xiao, 2016). Therefore, the Mg isotope composition
of aqueous fluids released at forearc depths can be easily modified by dis-
solved calcite/aragonite. The Mg isotope composition of Na-Al-Si-rich fluid
is unknown; however, most clays and other hydrous minerals in subduct-
ing reservoirs appear to have δ26Mg values higher than mantle peridotites
(Beinlich et al., 2014; Liu et al., 2017; Teng, 2017; Wang et al., 2017). Here we
assume a broad range of δ26Mg values (�0.25‰ to +0.5‰), which will not
affect the modeling significantly because of the low MgO content in the
Na-Al-Si-rich fluid. Our modeling results show that the low δ26Mg values
in the white jadeitites only require adding 0.5–1% of Mg-calcite/aragonite
with δ26Mg = �3.65‰ and 0.8–2.0 wt% MgO (Huang & Xiao, 2016; Liu
et al., 2015) to the Na-Al-Si-rich fluid (Figure 10).

Experimental studies show that the solubility of calcite/aragonite in aqu-
eous fluid may be considerable at forearc P-T conditions (e.g., Caciagli &
Manning, 2003; Manning et al., 2013; Pan et al., 2013). In addition, the solu-
bility of carbonates increases at a given P-T condition with decreasing pH
(Manning, 2013), with addition of NaCl (Newton & Manning, 2002), and
decreasing oxygen fugacity (Lazar et al., 2014). Both high-salinity and
CH4-rich, reduced aqueous fluid inclusions have been observed in the
Myanmar jadeitite (Qi et al., 2015; Shi, Tropper et al., 2005), which are likely
to enhance the solubility of Ca-rich carbonate in the jadeite-forming fluids.

5.4. Effects of Metasomatism on Mg Isotopes

The results of this study can further constrain the effects of metasomatism
on the Mg isotope composition of jadeitites and amphibole-rich black-
walls. The amphibole-rich blackwall, as a spatial and chemical intermediate
between jadeitite and serpentinite, is commonly considered to be the
metasomatic product of the jadeite-forming fluid-serpentinite interaction
(Figure 7; Shi et al., 2003, 2012). The MgO contents and δ26Mg values of
amphibole-rich blackwalls fall between jadeitite and serpentinite
(Figure 5), further indicating that the jadeite-forming fluids have low
δ26Mg. However, the white jadeitite-serpentinite mixing curve clearly does
not fit the data measured on the amphibole-rich blackwalls (Figure 5). This
suggests that the amphibole-rich blackwall formed in an open-system pro-

cess with high fluid/rock ratios.

The green jadeitites formed bymetasomatic reactions between jadeite-forming fluids and Cr-spinel (Figure 7;
Mével & Kiénast, 1986; Shi, Stöckhert et al., 2005; Shi et al., 2012). The green jadeitites show large variations in
δ26Mg (Figure 5), with the highest value (�0.11 ± 0.04‰) recorded in the sample MDB1 (Table 1). Spinel com-
monly has higher δ26Mg values (0.41–0.66‰) than coexisting olivine and pyroxene (Young et al., 2009). The
high δ26Mg for green jadeitite MDB1 may be simply due to the overabundance of Cr spinel, as supported by
the high concentrations of Cr2O3 (9.54 wt.%) and Fe2O3t (6.05 wt.%; Table S2). However, the other four green
jadeitites (MDB2, J3, MDB15-1, and MDB15-2), which are almost free of Cr-spinel, still exhibit higher δ26Mg
values than the white group (Figure 5). Compared with the white jadeitites, the green jadeitites have addi-
tional kosmochlor and diopside components in Cr-rich clinopyroxene (Table S1). The metasomatic texture
preserved in MDB1 suggests that the Cr-rich clinopyroxene formed by the replacement of Cr spinel
(Figure 11a). X-ray mapping shows that the Cr-spinel preserves compositional zoning characterized by an
outward increase in Fe but decrease in Mg (Figures 11b and 11c). This indicates that Mg is lost from the Cr
spinel into the newly formed Cr-rich clinopyroxene. The loss of isotopically heavy Mg during this metaso-
matic process may increase the δ26Mg of the green jadeitites, which is in good agreement with our results
(Figure 11d). Previous petrological studies indicated that the breakdown of Cr spinel was a late-stage process,
as recorded by Cr-rich clinopyroxene (green jadeitites) via late-stage veining along the fractures of the white
jadeitites at centimeter to decimeter scales (Harlow et al., 2015; Shi, Stöckhert et al., 2005; Shi et al., 2012).

Figure 10. Binary mixing model calculations compared to the MgO and Mg
isotopic data from the white jadeitites. The blue lines are mixing trends
between Na-Al-Si fluid and calcite/aragonite. The compositional range of
jadeite with rhythmic zoning (Shi et al., 2003, 2012) is used to represent the
anhydrous composition of the initial Na-Al-Si fluid, which is derived from
subducted altered oceanic crust and sediments, with minor addition of fluid
released by serpentinite. We assume that the bulk solubility of Na-Al-Si fluid
is 2 wt.%, based on the experimental data (1 GPa, 500 °C) of Manning et al.
(2010) and Wohlers et al. (2011). The MgO values of the Na-Al-Si fluid and
those precipitating white jadeitites are recalculated on the basis of this bulk
solubility value. The δ26Mg of the Na-Al-Si fluid is assumed to be�0.25‰ to
+0.5‰, because fluids released from Mg-rich hydrous minerals (e.g., mica
and serpentine) may have high δ26Mg values. Note that the change of this
value will not affect the modeling significantly, as the Na-Al-Si fluid contains
too little Mg. The MgO (0.8–2.0 wt.%) and δ26Mg (�3.65‰) values of calcite/
aragonite are taken from Liu et al. (2015) and Huang and Xiao (2016).
Numbers at diamond symbols represent the fraction of dissolved calcite/
aragonite.
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Thus, various degrees of interaction between the jadeite-forming fluids and serpentinite/Cr-spinel could
generate a large δ26Mg range in the green jadeitites and amphibole-rich blackwalls, inducing large Mg
isotope heterogeneity in a localized area along the subduction interface.

5.5. Implications for Tracing Carbon Cycling in Forearc Regions Using Mg Isotopes

Deep carbon recycling is an important process for carbon budgets in terrestrial reservoirs (e.g., Dasgupta &
Hirschmann, 2010; Kelemen & Manning, 2015). Recent studies show that Mg isotopes play a powerful tracer
for recycled carbonates in the deep mantle (Huang, Li et al., 2015; Li et al., 2017; Tian et al., 2016; Yang et al.,
2012). For example, the low Mg isotope compositions of some intraplate basalts have been attributed to the
interaction of mantle peridotite with carbonatitic melts derived from subducted oceanic slab in the mantle
transition zone (Huang, Li et al., 2015; Li et al., 2017; Yang et al., 2012). However, carbonates are unlikely to
dominate the Mg budget at subarc depths (80–150 km), as some arc lavas have slightly higher δ26Mg values
relative to the normal mantle (Li et al., 2017; Teng et al., 2016). This indicates that subduction zone fluids at
subarc depths are likely to have high δ26Mg values, which are possibly inherited fromMg-rich hydrous miner-
als with high δ26Mg (Chen et al., 2016; Wang et al., 2017). In addition, dehydrated fluids at subarc depths
could have considerable MgO (Dvir et al., 2011; Kessel et al., 2005; Spandler et al., 2007). Therefore,

Figure 11. (a) Microphotograph and X-ray maps (b, c) showing the replacement texture of chromite by Cr-rich clinopyrox-
ene (kosmochlor) in sample MDB1. Note the outward increase of Fe but decrease of Mg in the chromite interior. (d)
Correlation between δ26Mg and Cr for the two types of jadeitites.
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dissolved Ca-rich carbonates may have a limited influence on the Mg isotope composition of subduction
zone fluids at subarc depths.

The Mg isotope composition of subduction zone fluids at forearc depths (<80 km) may be different from
those at subarc depths. Because Mg solubility in aqueous fluids strongly increases with pressure and tem-
perature (Manning, 2004; Stalder et al., 2001), dehydrated fluids in forearc regions have very low MgO

Figure 12. Schematic diagrams (not to scale) illustrating the possible geodynamic scenarios for the formation of jadeitites
from Myanmar. (a) Typical oceanic subduction system, with the hydrated mantle wedge, the plate interface, and the
downgoing slab distinguished with different colors. (b) Larger-scale diagram showing fluid activities in the serpentinized
subduction channel such as the Myanmar jadeitite area. At the early stage, the mantle wedge was hydrated by fluids
derived from the dehydration of the subducting hydrated slab, and a subduction channel was formed at the slab-mantle
interface. Large amounts of serpentine minerals, brucite, and chlorite were formed at this stage. Prograde meta-
morphism by the downgoing altered oceanic crust (AOC) and sediments would release Na-Al-Si-rich fluids. Such fluids
dissolve Ca-rich carbonates along migration conduits and precipitate white jadeitite veins or blocks with systematically
low δ26Mg. Locally, the jadeite-forming fluid reacted with the surrounding serpentinite (or chromite) to form higher
δ26Mg, heterogeneous amphibole blackwall, and green jadeitite, which were then exhumed to the surface.
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concentrations (Galvez et al., 2015; Manning, 2004; Spandler et al., 2007). A small fraction of Ca-rich
carbonate (e.g., Mg-calcite) dissolution would significantly decrease the δ26Mg values of aqueous fluids,
as shown in Figure 10. Experimental studies and observations for carbonated hydrothermal veins and
CH4-rich fluid inclusions in natural high-pressure rocks indicate that significant carbon could be
released from slabs at forearc depths via carbonate dissolution (Ague & Nicolescu, 2014; Caciagli &
Manning, 2003; Kelemen & Manning, 2015; Scambelluri et al., 2015, 2016; Song et al., 2009). The
jadeitite in the forearc region has captured a snapshot of dissolved carbonates in subduction zones
(Figure 12). Thus, considering the common occurrence of Ca-rich carbonates in sediments and
AOC (Alt & Teagle, 1999), shallow subduction zone fluids that dissolve carbonates are likely to have
low δ26Mg.

Aqueous fluid may be transferred in the slab-mantle interface through a channelized conduit (Bebout &
Penniston-Dorland, 2016; John et al., 2008; Plümper et al., 2017); thus, open-system metasomatism with high
fluid/rock ratios may be archived. The low δ26Mg values observed in the green jadeitites and amphibole-rich
blackwalls indicate that such metasomatism could result in significantly low δ26Mg signatures in these rocks.
Therefore, coupled dissolution of Ca-rich carbonates and metasomatism by fluid-mediated reactions could
deliver carbon to the forearc mantle, thus generating Mg isotope heterogeneity. Our study further indicates
that carbon cycling in forearc regions can be constrained by Mg isotopes.

6. Conclusions

The Myanmar jadeitites and country rocks record the fluid-mediated transfer of Mg from an oceanic subduc-
tion channel to the mantle wedge. The δ26Mg values of jadeitites range from�1.55‰ to�0.74‰, which are
considerably lower than those in oceanic crust and mantle peridotite. The amphibole-rich blackwalls formed
by the metasomatism between jadeite-forming fluids and serpentinites systematically exhibit low δ26Mg sig-
natures. All of these features indicate that the jadeite-forming fluids have low δ26Mg values, which are best
explained by the dissolution of Ca-rich carbonates in the fluids at the slab-mantle interface. Metasomatic
interactions between such fluids and Cr-rich spinel could increase the δ26Mg values in the green jadeitites.
Our study suggests that subduction zone fluids dissolving carbonate at forearc depths may have low
δ26Mg values and that the open-system metasomatism by carbonated fluids along conduits could locally
decrease the δ26Mg of the forearc mantle wedge.
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